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We examine potential deformations of inner black hole and cosmological horizons in Reissner-
Nordström de Sitter spacetimes. While the rigidity of the outer black hole horizon is guaranteed by
theorem, that theorem applies to neither the inner black hole nor the past cosmological horizon. Further, for
pure de Sitter spacetime, it is clear that the cosmological horizon can be deformed (by translation). For
specific parameter choices, it is shown that both inner black hole and cosmological horizons can be
infinitesimally deformed. However, these do not extend to finite deformations. The corresponding results
for general spherically symmetric spacetimes are considered.
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I. INTRODUCTION

In stationary spacetimes, the event horizon of a black hole
is a Killing horizon and foliated by surfaces with vanishing
outward null expansion: marginally outer trapped surface
(MOTS). More generally, given a Cauchy surface in any
spacetime, the boundary of the trapped region is an apparent
horizon which is also a MOTS. Motivated by these facts,
MOTS are key to many definitions of black hole boundaries
including trapping horizons [1], marginally trapped tubes
[2], isolated and dynamical horizons [3], the proposed
core of the trapped region [4], and the very recent future
holographic screens [5].
Apart from being foliated by MOTS, the event horizons

of the standard stationary black hole solutions (for exam-
ple, Kerr-Newman-de Sitter) have another property: they
separate the trapped region from the untrapped region, and
in particular, there are fully trapped surfaces uniformly
close to and “just inside” the MOTS. MOTS with slight
variations of this property go by many names including
stable [6], outer trapping [1], or strictly stably outermost
[7]. MOTS with one of these properties and which foliate a
stationary event horizon have been shown to be geomet-
rically rigid against deformations [7,8].
However, even in stationary spacetimes, stable horizons

are the (admittedly very important) exception rather than
the rule. Consider, for example, Reissner-Nordström-de

Sitter as depicted in Fig. 1. Focusing on the shaded region,
the inner black hole and past cosmological horizons have
trapped surfaces outside rather than inside and so are not
stable.1

Further, there is at least one case where an unstable
horizon can be smoothly deformed. Pure de Sitter space-
time is homogeneous and isotropic with a constant positive
Ricci curvature R ¼ 4Λ determined by the cosmological
constant. However, around any point p in the space, it is
possible to construct the standard static coordinate patch,

ds2 ¼ −
�
1 −

Λ
3
r2
�
dt2 þ dr2

1 − Λ
3
r2

þ r2dΩ2 ð1Þ

from which it is straightforward to show that there is a
MOTS at

rCH ¼ l≡
ffiffiffiffi
3

Λ

r
: ð2Þ

Like the cosmological horizons in Reissner-Nordström-de
Sitter (RNdS), it is not stable, and it is intuitively clear
that in this case, we can deform the MOTS. To see
this construct, an analogous MOTS around a point p0
infinitesimally close to p. This represents a deformation of
the p-MOTS which in this case is essentially a translation.
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1The terminology of outside versus inside becomes ambiguous
in some of these cases but we will return to clarify this in
Sec. II B.
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So at least in this case, the lack of stability corresponds to
a freedom to deform the MOTS. In the rest of this paper, we
will explore unstable MOTS in more detail. Section II
reviews basic nomenclature and geometry along with the
standard stability result. Section III shows that only
particular finely tuned unstable MOTS in RNdS can be
infinitesimally deformed. Section IV examines whether
these infinitesimal deformations can be made finite (and
so real). Section V summarizes and discusses our results.
Appendix reviews some useful identities for Legendre
polynomials that are applied in the main text.

II. BACKGROUND AND GENERAL THEORY

We begin with a very brief review of the mathematics and
geometry of marginally outer trapped surfaces and their
deformations. As general references for the next two sub-
sections, see [8] for more details on the geometry or [9] for a
review of the various types MOTS and their complications.

A. Spacetime and two-surface geometry

Let ðM; gab;∇aÞ be a (3þ 1)-dimensional time-oriented
spacetime and ðS; ~qab; daÞ be a spacelike closed and
orientable two-surface embedded in M.

The normal space at each p ∈ S is two dimensional and
timelike and so can be spanned by a pair of null vectors. In
particular, sinceM is time oriented, we may define a pair of
future-oriented vector fields l and n over S which do this
job in each normal space. Since they are null vector fields,
they each have 1 degree of rescaling freedom. However,
one of these is removed by requiring that they be cross
scaled so that l · n ¼ −1.
Geometric consistency requires that the combined

induced metric/projection operator on S satisfies

~qab ¼ gab þ lanb þ nalb: ð3Þ

This fixes the intrinsic geometry of S while the extrinsic
geometry comes from tangential derivatives of the null
normals. These are the connection on the normal bundle

~ωa ¼ − ~qcanb∇clb; ð4Þ

and the extrinsic curvatures

kðlÞab ¼ ~qca ~qdb∇cld and kðnÞab ¼ ~qca ~qdb∇cnd; ð5Þ

which may be conveniently decomposed into their trace
and trace-free parts

kðlÞab ¼ 1

2
θðlÞ ~qab þ σðlÞab and kðnÞab ¼ 1

2
θðnÞ ~qab þ σðnÞab : ð6Þ

Respectively, these are the expansions and the shears of
those vector fields. The reason for these names is clear if we
consider their alternate definition as deformations (also
known as variations [7]).
Consider a vector field Xa, which is normal to S and

defined in a neighborhood of the surface. Hence, on S,

Xa ¼ Ala − Bna ð7Þ

for some functions A and B.2 Then that function defines a
flow which can be used to evolve and deform S.
In coordinate terms, if xαSðθ;ϕÞ is a (local) parametriza-

tion of S then infinitesimally the deformation sends

xαSðθ;ϕÞ → xαSðθ;ϕÞ þ εXαðθ;ϕÞ: ð8Þ

The evolution also identifies points on the original and
deformed surfaces along the lines of flow. Thus, one may
consider the rate of change of the geometric properties of
the surface under the deformation, and we denote this

FIG. 1. One tile of the Penrose-Carter diagram for Reissner-
Nordström-de Sitter spacetime. It repeats (subject to possible
identifications) across the dotted lines. The various Killing hori-
zons are labeled: outer and inner black hole, outer and inner white
hole, and future and past cosmological horizons. The null direc-
tions are consistently labeled as L andN with the signs of θðLÞ and
θðNÞ in each region being, respectively, listed as ð�;�Þ. θðLÞ and
θðNÞ vanish on the horizons to which they are tangent. Stable
horizons are solid lines while unstable are dashed. Most of our dis-
cussion will focus on the shaded region containing outer and inner
black hole horizons along with the past-cosmological horizon.

2The negative sign for B is a convention chosen in [8] to
simplify calculations when studying dynamical horizons. Even
though they are not considered here, we retain the sign for
consistency with that paper from which we draw almost all of our
formulas.
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differential operator as δX. It is usually referred to as either
the deformation operator or variation with respect to X.
If the coordinate system is adapted to S and Xa so that S

is a level surface and X ¼ ∂=∂λ a coordinate vector field
then δX, the Lie derivative LX, and the partial derivative
∂=∂λ are all the same thing. This equivalence is often used
to simplify discussions of deformations in spherical sym-
metry. See, for example, [1].
It is not hard to show that

δX ~qab ¼ AkðlÞab − BkðnÞab ; ð9Þ

whence

δX ~ϵab ¼ ðAθðlÞ − BθðnÞÞ~ϵab; ð10Þ

where ~ϵ is the area two form on S (in coordinate form

~ϵ ¼ ffiffiffi
~q

p
dθ ∧ dϕ). Thus, θðXÞ and σ

ðXÞ
CD are, respectively, the

expansion and shear of S as it is evolved by Xa. Note too
that for these intrinsic quantities, the rates of change are
independent of how Xa extends off S.
One can also calculate variations of the extrinsic quan-

tities; however, for our purposes, we only need

δXθðlÞ ¼ κXθðlÞ − d2Bþ 2 ~ωadaB − Bð−da ~ωa þ ∥ ~ω∥2

− ~K þGablanb − θðlÞθðnÞÞ
þ Að−∥σðlÞ∥2 −Gablalb − ð1=2Þθ2ðlÞÞ: ð11Þ

Newly appearing quantities are κX ¼ −Xanb∇alb, ~K the
Gaussian curvature of S, and Gab the Einstein tensor.
Further, we have abbreviated d2 ¼ dada, ∥ ~ω∥2 ¼ ~ωa ~ωa

and ∥σðlÞ∥2 ¼ σðlÞabσðlÞab .
Unlike (9), this variation does depend on derivatives off

S. This is through the gauge dependent κX term which
under rescalings l → efl and n → e−fn of the null vectors
transforms as

κX → κX − LXf: ð12Þ

However, as will now be seen, we are only really interested
in situations where θðlÞ vanishes and so do not need to
worry about this dependence.

B. MOTS: Definition, deformation, and difficulties

The standard classification of two dimensional surface as
trapped, untrapped, or marginally trapped assumes that one
can unambiguously assign one of the null directions (say l)
as outward pointing and the other (n) as inward pointing.
Then a closed, spacelike two dimensional surface S is outer
untrapped if θðlÞ > 0, an outer trapped if θðlÞ < 0, and
marginally outer trapped (MOTS) if θðlÞ ¼ 0. A fully
trapped surface has both θðlÞ < 0 and θðnÞ < 0.

A Killing horizon is null, and so if it is tangent to the
outgoing direction l, then any two-dimensional slice of that
horizon is a MOTS. Thus, for those MOTS

δlθðlÞ ¼ −∥σðlÞ∥2 − Gablalb ¼ 0: ð13Þ

Now, intuitively, the outer black hole Killing horizon of a
stationary spacetime should have outer trapped surfaces
“just inside”. In terms of deformations, the existence of
such surfaces implies that for some inward-oriented space-
like normal vector field R ¼ αl − βn (αβ < 0),

δRθðlÞ ¼ −d2β þ 2 ~ωadaβ − βδnθðlÞ < 0; ð14Þ

where

δnθðlÞ ¼ −da ~ωa þ ∥ ~ω∥2 − ~K þGablanb: ð15Þ

The vanishing of δlθðlÞ renders the value of α irrelevant.
Note too that if we rescale the null vectors so that n → βn
(and l → l=β), this condition becomes δnθðlÞ < 0.3

Now, a closed MOTS slice S of a Killing horizon with
δnθðlÞ < 0 is guaranteed to be geometrically stable in that it
cannot be smoothly deformed out of the Killing horizon
while preserving θðlÞ ¼ 0. To see this, consider variations
generated by a vector field X of the form (7) with B not
everywhere vanishing (that would correspond to a varia-
tion along the Killing horizon). Then any such MOTS-
preserving variation of S necessarily satisfies

δXθðlÞ ¼ 0: ð16Þ

However, as considered above δlθðlÞ ¼ 0 and again A is
irrelevant. Thus, the variation must satisfy

−d2Bþ 2 ~ωadaB − BδnθðlÞ ¼ 0: ð17Þ

For δnθðlÞ < 0, there are no solutions to this equation and
so no MOTS-preserving variation [7] (this can also be seen
by a maximum principle argument [8]).
MOTS satisfying versions of this condition have been

considered many times over the years, and among other
names have been termed stable [6], outer trapping [1], or
strictly stably outermost [7]. In this paper, we will generally
refer to them as stable.
This setup and labeling is all very well for outer black

hole horizons in a spacetime with an unambiguous notion
of ingoing and outgoing; however, in a multihorizon
spacetime like that shown in Fig. 1, outward and inward
labels are not well-defined. Neither L nor N is consistently

3Restricting attention spherical horizons, the correct scaling is
obvious but for a concrete demonstration of a less trivial situation,
see the discussion of Kerr in Appendix C of [8].
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outward pointing (towards an r ¼ ∞) or inward pointing
(towards an r ¼ 0).
While there are systems of nomenclature that distinguish

between the various types of horizons without reference to
“inner” and “outer” [10,11], for this paper, we will instead
just abuse the name “MOTS” and use it to refer to any
surface with one vanishing null expansion. We will always
label that direction l (so that θðlÞ ¼ 0) and the other future
null direction n. Note that the geometric stability arguments
made in the paragraph surrounding (17) continue to apply
regardless of the orientation of l and n. Thus, we may
always test the geometric stability of a MOTS by checking
for a scaling of the null vectors such that δnθðlÞ < 0.
Turning once again to Fig. 1, we see that on some

horizons l ¼ L while on others we will have l ¼ N.
However, whatever the labeling, the outer black and white
hole horizons are stable by this measure while all cosmo-
logical and inner black hole horizons are potentially
unstable with δnθðlÞ > 0.
For the rest of this paper, we will investigate whether this

potential instability translates into finite MOTS-preserving
variations.

III. “UNSTABLE” MOTS IN RNDS

In the last section, we tested stability based on how the
null expansions do or do not change signs across a horizon.
However, to understand whether the lack of a proof of
stability actually corresponds to a real instability, we need
more calculations and commence with finding exact
expressions for δnθðlÞ.
First, the RNdS metric in standard form [static for

FðrÞ > 0] is

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ dr
2 þ r2dΩ2 ð18Þ

with

FðrÞ ¼ −
Λ
3
r2 þ 1 −

2m
r

þ q2

r2
: ð19Þ

The horizons are located at roots of FðrÞ. For black hole
solutions like that depicted in Fig. 2, there is one negative,
unphysical, root and three positive roots that correspond to
horizons. In increasing order, these are the inner black/
white hole horizons at rIH, outer black/white hole horizons
rOH, and future and past cosmological horizons rCH.
However, not all members of this family of solutions are
cosmological black holes. Figure 3 shows the allowed
parameter range. It was produced by examining where the
discriminant of F vanishes (these are double or triple roots
and so the boundaries of the “regular” region).
For spherically symmetric r ¼ constant surfaces and a

similarly symmetric scaling of the null vectors, we have
~ωa ¼ 0. Thus, (15) becomes

δnθðlÞjspherical ¼ −
1

r2
þGablanb: ð20Þ

Note that this is invariant with respect to the scaling of the
null vectors, and in fact, we can find it without ever
defining them. By (3), Gablanb ¼ 1

2
Gabð ~qab − gabÞ so

δnθðlÞjRNdS ¼ −
F0

r
; ð21Þ

where the prime indicates a derivative with respect to r, and
we have applied FðrÞ ¼ 0. With Λ > 0, the asymptotic
behavior is fixed and so the requirement that there be three
positive roots means that FðrÞ will generically take a form
similar to Fig. 2. In particular, it is clear that

FIG. 2. FðrÞ for a typical cosmological black hole solution. In
this case, Λ ≈ 0.1417=m2 and q2 ≈ 0.8496m2. The inner black
hole horizon, outer black hole horizon, and cosmological horizon
are respectively labeled as IH, OH, and CH.

FIG. 3. Phase space of RNdS spacetimes with m ≠ 0. Λ and q2

are given in units ofm. Solutions with three horizons (inner black
hole, outer black hole, cosmological) are found in the grey shaded
region while naked solutions with a single cosmological horizon
form the rest of the phase space. The only exception is pure RN
along the Λ ¼ 0 line, where for q < m there are inner and outer
black hole horizons while q > m is horizon free. Along the
dashed line outer and cosmological horizons are degenerate as in
the Nariai limit of SdS while the solid line represents extremal
black holes. Where the lines meet, all three horizons are
degenerate.
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δnθðlÞjOH < 0 while δnθðlÞjIH;CH > 0 ð22Þ

as claimed earlier.
However, we now demonstrate that in (at least) the vast

majority of cases the inner and cosmological horizons are
also stable. To see this, we consider concrete solutions of
the stability equation (17). On both horizons, this becomes

∇2Bþ ðr2δnθðlÞÞB ¼ 0; ð23Þ

where ∇2B is the regular spherical Laplace operator on a
unit sphere. Thus, potential deformations must satisfy

∇2B ¼ ðrF0ÞB: ð24Þ

The only nondiverging solutions of the spherical Laplace
eigenvalue equation are spherical harmonics. That is if
there is an integer l such that

−rF0 ¼ lðlþ 1Þ ð25Þ

then (24) has solutions

B ¼ Plðcos θÞðAm cosðmϕÞ þ Bm sinðmϕÞÞ ð26Þ

for integers 0 ≤ m < l and constants Am and Bm.
We can then test for cases where these conditions might

be met. First, for m ¼ 0, the only non-naked singularity
spacetime is pure de Sitter. In that case, it is straightforward
to see that −rF0 ¼ 2 on the cosmological horizon and so
the MOTS-translation freedom manifests itself as an l ¼ 1
instability.
Turning to m ≠ 0, Fig. 4 shows the values −rF0 for all

horizons in RNdS black hole spacetimes, and so we can
consider them case by case.
First, for the outer horizon, −1 ≤ −rF0 ≤ 0, and so there

are no possible solutions. This is not a surprise as we have
already twice concluded that outer black and white hole
horizons are stable.
Similarly simple is the inner horizon with 0≤−rF0<∞.

In this case, a correct choice of parameter values will allow
any possible l. In particular, this is even possible for
pure RN.
The cosmological horizon is a little more subtle. The

figure shows that the only possible case is −rF0¼2⇔l¼1;
however, this limit is not achieved: it is along the Λ ¼ 0
line, where there is not a cosmological horizon. So for
m ≠ 0, there are no solutions and the cosmological horizon
is stable.
Thus, we have now explicitly demonstrated that while

the stability condition δXθðlÞ < 0 may be sufficient to
exclude deformations, it certainly is not necessary.
Examples are the cosmological horizon in m ≠ 0 RNdS
spacetimes and (at least) all but a finely tuned set of inner

horizons. In the next section, we will further examine those
special cases.

IV. FINITE DEFORMATIONS IN RNDS

In this section, we develop the formalism necessary to
test the higher order stability of the special cases that were
found to be first order unstable in the previous section. It is
easiest to do this by moving away from the general
formalism of Sec. II and to one specialized to the RNdS
spacetimes. In all the cases that we check, we will see that
the apparent first-order instability fails at higher order.

A. MOTS in Painlevé-Gullstrand coordinates

We begin by introducing Painlevé-Gullstrand (PG)
coordinates for RNdS spacetimes. Recall that time in these
coordinates is measured along a congruence of infalling
timelike geodesics while the spatial slices of constant time
are intrinsically flat [12]. For RNdS, the shaded patch
shown in Fig. 1 is (almost) covered by coordinates
ðT; r; θ;ϕÞ with metric,

ds2 ¼ −FðrÞdT2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðrÞ

p
dTdrþ dr2 þ r2dΩ2;

ð27Þ

where FðrÞ takes its usual form (19). The “almost” is
included in the previous sentence because for q ≠ 0, there
will always be a region where 1 − F < 0 and so the
coordinate system is not well-defined. However, as we
shall see, for example, in Fig. 5, this will always be inside
the inner horizon and so not cause us any problems.

FIG. 4. Values of r2δnθðlÞ ¼ −rF0 for cosmological (blue),
outer (grey), and inner (purple) horizons. Potential instabilities
exist when −r dF

dr ¼ lðlþ 1Þ for some positive integer l. Though it
is cut off in the figure, the inner horizon sheet diverges to infinity.
The domain for all horizons is as shown in Fig. 3.
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We will look for MOTS on hypersurfaces ΣT of constant
T, and in order to do this, it will be sufficient to know the
intrinsic and extrinsic geometry of ΣT . The intrinsic
geometry on ΣT is given by the Euclidean metric,

dΣ2 ¼ habdxadxb ¼ dr2 þ r2dΩ2; ð28Þ

while the extrinsic curvature is

K ¼
�

F0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p
�
dr2 − ðr

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p
ÞdΩ2; ð29Þ

which was calculated from the future-oriented unit timelike
normal to ΣT ,

û ¼
� ∂
∂T

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p � ∂
∂r

�
: ð30Þ

Then consider a rotationally symmetric surface S in a ΣT
and parametrize it by coordinates ðλ;ϕÞ as

ðT; R; θ;ϕÞ ¼ ðTo; RðλÞ;ΘðλÞ;ϕÞ; ð31Þ

for some functions RðλÞ and ΘðλÞ. For now, we will find it
convenient to take λ to be the arclength parameter as
measured from the north pole of S along the constant ϕ
lines of longitude. Then the tangent vector

d
dλ

¼ _R

� ∂
∂r

�
þ _Θ

� ∂
∂θ

�
ð32Þ

is unit length

_R2 þ R2 _Θ2 ¼ 1; ð33Þ

where we have marked derivatives with respect to λ
with dots.
Next the induced two metric on S is

dS2 ¼ dλ2 þ ðR2sin2ΘÞdϕ2; ð34Þ

with inverse,

~q ¼
� ∂
∂λ

�
⊗

� ∂
∂λ

�
þ 1

R2sin2Θ

� ∂
∂ϕ

�
⊗

� ∂
∂ϕ

�
:

The positive-r pointing spacelike normal to S in ΣT is

r̂ ¼ R

�
_Θ
� ∂
∂r

�
−

_R
r2

� ∂
∂θ

��
; ð35Þ

whence the trace of the extrinsic curvature of S in ΣT is

θðr̂Þ ≡ ~qab∇ar̂b ¼ −
R̈

R _Θ
þ 2 _Θ −

_R
R
cotðΘÞ; ð36Þ

where we have used the arclength condition to somewhat
simplify the expression. Note that no F appears in this
expression: ΣT is Euclidean so any geometric calculation
intrinsic to ΣT is independent of F.
Next, the trace of the extrinsic curvature of Swith respect

to û (and so out of ΣT) is

θðûÞ ≡ ~qab∇aûb ¼ Kabhab − Kabr̂ar̂b: ð37Þ

That is

θðûÞ ¼
ðRF0 þ 2ð1 − FÞÞ _R2 − 4ð1 − FÞ

2R
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p : ð38Þ

Then an outward oriented null vector is l ¼ ûþ r̂ and if

θðlÞ ¼ θû þ θr̂ ¼ 0; ð39Þ

we can combine this with the arclength constraint (33) to
get a pair of differential equations for R and Θ describing a
rotationally symmetric MOTS,

R̈ ¼ 2ð1 − _R2Þ
R

−
_R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p

R
cotΘ

þ 1

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

1 − F

s
ððRF0 þ 2ð1 − FÞÞ _R2 − 4ð1 − FÞÞ

ð40Þ

and

_Θ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p

R
; ð41Þ

FIG. 5. Axisymmetric θðlÞ ¼ 0 surfaces in a q=m ¼ 0.9 Re-
issner-Nordström spacetime. The inner horizon is purple and the
outer horizon is black. Other (open) θðlÞ ¼ 0 surfaces are
numerically solved from initial conditions (42) and (43) and
colored blue, grey, or dark red depending on the value of Ro. The
red circle in the middle is the region that is not covered by the PG
coordinates. The z axis is horizontal with the north pole on the
right-hand side.
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where we have assumed that _Θ > 0 (which turns out to be
true for all the situations in which we are interested).
We need initial conditions in order to solve these

equations. By the assumed symmetry, if we choose
λ ¼ 0 at θ ¼ 0 (the north pole) then

_Rð0Þ ¼ 0: ð42Þ

Thus, given a choice

Rð0Þ ¼ Ro ð43Þ

for some constant Ro, we can find a MOTS candidate.
These equations can always be integrated and so by
construction will always produce a θðlÞ ¼ 0 surface. Its
closure or lack thereof will determine whether or not it is a
MOTS. This shooting method is commonly used for
finding axisymmetric apparent horizons in numerical
relativity [13,14].

B. Numerical examples

Some sample θðlÞ ¼ 0 surfaces are shown in Figs. 5 and 6,
which, respectively, show typical Reissner-Nordström and
Schwazschild-de Sitter spacetimes. Those figures show the
system (40)–(41) solved with initial conditions (42) and
(43). Solutions were obtained using Maple’s [15] built-in
routines for systems of differential equations. Note that
while the known horizons certainly show up as solutions,
there is also a θðlÞ ¼ 0 surface running through all points on
the positive z axis. The behaviors shown in the figures
appear to be generic. Axisymmetric θðlÞ ¼ 0 surfaces that
originate from 0 < Ro < rIH and rOH < Ro < rCH ulti-
mately diverge to infinity while those from rIH < Ro <
rOH and rCH < Ro < ∞ turn in and disappear into the
singularity (or in the case with q ≠ 0, the region where
the coordinate system is no longer defined). Thus, those
surfaces are not MOTS as they are not smooth and closed.
These divergences can be contrasted with the now

familiar pure de Sitter case. For that spacetime

θû ¼ −2
ffiffiffiffi
3

Λ

r
ð44Þ

and so in a T ¼ constant surface, any sphere of radius

rS ¼
ffiffiffiffi
3

Λ

r
ð45Þ

will have θðlÞ ¼ 0. Examples are shown in Fig. 5 (which
despite the preceding analysis were numerically evolved in
the same way as the previous examples).
Note that the open θðlÞ ¼ 0 surfaces shown in Fig. 5 are

not leaves of an isolated horizon [3]. That is, if a particular

θðlÞ ¼ 0 surface that opens up to infinity (or plunges into
the singularity) is extended to a three dimensional surface
as the locus of points, it traces as T varies, then that three
dimensional surface is not null. So while these are θðlÞ ¼ 0

surfaces, they should not be viewed as foliating a kind of
“open” horizon.
As a side note, the ubiquity of θðlÞ ¼ 0 surfaces seen in

Figs. 5 and 6 serves to emphasize the nonlocal character of
MOTS: finding a θðlÞ ¼ 0 surface is not difficult and in our
examples, it is possible to find such a surface through any
point. The hard part is finding a θðlÞ ¼ 0 that smoothly
closes. Determining whether or not that happens requires
an integration to find the full surface. Hence, whether or not
a particular section of a θðlÞ ¼ 0 surface is part of a MOTS
may be determined by the detailed geometric properties of
a far-away section of spacetime.

C. Higher order stability

We now return to the first-order unstable cases found in
Sec. III to investigate their stability at higher order.
We begin with numerical tests: evolving from initial

conditions Ro ¼ rIH þ δRo where rIH is the MOTS of an
inner Reissner-Nordström horizon while δRo is a finite
perturbation. Finite instabilities will manifest as finite
deformations (like those in Fig. 7) while higher order
stability will mean that any initially finite deformation will
diverge (like those in Figs. 5 and 6).
The l ¼ 0, 1, 2, 3 modes are shown in Fig. 8. For l ¼ 0,

2, the instability appears to fail as the numerical solutions
diverge at θ ¼ π; however, for l ¼ 1, 3, things are not so
clear. In those two cases, we do not observe any diver-
gences. However, while suggestive, these observations are
not conclusive as in both cases, the behavior could change
for sufficiently small δRo.

FIG. 6. Axisymmetric θðlÞ ¼ 0 surfaces in Λ ¼ 0.0768=m2

Schwarzschild-de Sitter spacetime. The outer black hole and
cosmological horizons are, respectively, black and blue. Other
(open) θðlÞ ¼ 0 surfaces are numerically solved from initial
conditions (42) and (43) and grey, dark red, or green depending
on the value of Ro. The z axis is horizontal with the north pole on
the right-hand side.
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To better understand what is happening, we turn to a
higher-order analysis of the equations. Then it is more
convenient to work with a single function and so we switch
to parametrize R with θ. Working from

λθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
θ þ R2

q
ð46Þ

and

_R ¼ Rθ

λθ
ð47Þ

(where derivatives with respect to θ are indicated with
subscripts), the conversion is straightforward, and we get
the following differential equation:

0 ¼ Rθθ −

0
B@3

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R2

θ

q
2R2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p ðRF0 − 2ð1 − FÞÞ

1
CAR2

θ

þ
�
R2 þ R2

θ

R2

�
cot θRθ − 2Rþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − FÞðR2 þ R2

θÞ
q

:

ð48Þ

FIG. 7. Translated cosmological horizons in pure de Sitter
spacetime. Coordinates are in terms of the de Sitter radius.

(a) (b)

(c) (d)

FIG. 8. Numerical solutions of first-order unstable inner Reissner-Nordström horizons for (a) l ¼ 0, (b) l ¼ 1, (c) l ¼ 2, and (d) l ¼ 3.
l ¼ 0, 2 appear to diverge for all sizes of initial perturbation but no divergence can be seen for l ¼ 1, 3. As in Fig. 5, the red center is not
covered by the PG coordinates.
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Given an inner horizon at rIH we can then look for MOTS
of the form,

RðθÞ ¼ rIH þmðϵR1ðθÞ þ ϵ2R2ðθÞ þ ϵ3R3ðθÞ þ � � �Þ;
ð49Þ

where, of course, ϵ is the initial perturbation from rIH at
θ ¼ 0. Then, we have initial conditions

R1ð0Þ ¼ 1 and RLð0Þ ¼ 0 for L > 1 ð50Þ

while the first derivative RLθð0Þ ¼ 0 for all L.
We also expand F ¼ 1 − 2m

r þ q2

r2 as a Taylor series
around rIH ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
as

FðrÞ ¼
X∞
n¼1

ð−1Þnðnlðlþ 1Þ þ ðn − 1ÞÞ
�
r − rIH
rIH

�
n
; ð51Þ

where deriving these expansion uses the first-order con-
dition rIHF1 ¼ −lðlþ 1Þ.
Then to the first 3 orders (48) expands as

0 ¼ △lR1 ð52Þ

0 ¼ △lR2 þ
�
l2ðlþ 1Þ2 − 4

4

�
R2
1θ

−
�ðl2 þ lþ 2Þ3

8

�
R2
1 ð53Þ

0 ¼ △lR3 þ
�ðl2 þ lþ 2Þ2 cot θ

4

�
R3
1θ

−
�
lðlþ 1Þðl2 þ lþ 2Þ2ðl2 þ lþ 4Þ

16

�
R1R2

1θ

þ
�
l2ðlþ 1Þ2 − 4

2

�
R1θR2θ

−
�ðl2 þ lþ 2Þ3

4

�
R1R2 þ

�ðl2 þ lþ 2Þ5
32

�
R3
1; ð54Þ

where △l is the second-order differential operator that
vanishes for first-order unstable perturbations (24),

△l ¼
d2

dθ2
þ cot θ

d
dθ

þ lðlþ 1Þ: ð55Þ

In the following, we refer to the non-△lRn terms in each
equation as hln.
Of course, the R1 equation is (24) again. Note that the

equations can be solved sequentially. Once we have R1, we
can solve for R2 and then both of them can be used to solve
for R3. While the rapidly growing complexity of the
expressions means that it is not practical to show the
higher order equations, this pattern continues.

Then, we are interested in solutions to equations of the
form

△lX þ hðθÞ ¼ 0; ð56Þ

where XðθÞ∶½0; π� → R satisfies initial conditions
Xð0Þ ¼ Xo ∈ R, Xθð0Þ ¼ 0, and hðθÞ can be expressed
as a finite sum of Legendre polynomials,

hðθÞ ¼
XLmax

L¼0

h½L�PLðcos θÞ: ð57Þ

Now, the solution to the homogeneous version of (56) is
the Legendre polynomial Plðcos θÞ. Therefore, by the
Fredholm alternative theorem, the inhomogeneous problem
has a solution if and only if hðθÞ is orthogonal to Plðcos θÞ,

h½l� ≡ 2lþ 1

2

Z
π

0

sin θhðθÞPlðcos θÞdθ ¼ 0: ð58Þ

Equivalently, the Legendre polynomial expansion of h does
not contain an hl term.
If a solution does exist then it is also a finite sum of

Legendre polynomials,

XðθÞ ¼
XLmax

L¼0

XLPLðcos θÞ; ð59Þ

where for L ≠ l

XL ¼ h½L�
LðLþ 1Þ − lðlþ 1Þ ð60Þ

and

Xl ¼ X0 −
XLmax

L¼0

����
L≠l

XL: ð61Þ

These observation can then be combined as an algorithm
to test for solutions to the deformation problem to arbitrary
order.
(1) Set R1 ¼ ϵmPlðcos θÞ and n ¼ 2.
(2) Find the ϵn term in the expansion of (48). It will take

the form

△lRn þ hln ¼ 0; ð62Þ

where hln will always be a sum of terms involving
l; cot θ; R1; R1θ; R2; R2θ;…; Rn−1, and Rðn−1Þθ.

(3) Substitute the known expressions for Rm into hlnðθÞ,
m < n and use (58) to test whether (62) has a
divergent solution. If hln½l� ≠ 0, stop. This case
cannot be finitely deformed.
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(4) If the solution of (62) is not divergent, use (59)–(61)
to generate Rnþ1 and repeat from step 2 with
n → nþ 1.

Appendix recalls some results on series expansions of
derivatives and products of Legendre polynomials that are
used in implementing these steps.
For a finite deformation, this algorithm would never

terminate. However, in all cases that we have checked, we
find a divergence at some order and so the horizon cannot
be finitely deformed.
Explicitly, the first four even l cases are

R
m

����
l¼0

≈ 1þ P0ϵþ ðdivergent termÞϵ2 ð63Þ

R
m

����
l¼2

≈
1

4
þ P2ϵþ ðdivergent termÞϵ2 ð64Þ

R
m

����
l¼4

≈
1

11
þ P4ϵþ ðdivergent termÞϵ2 ð65Þ

R
m

����
l¼6

≈
1

22
þ P6ϵþ ðdivergent termÞϵ2; ð66Þ

while the first three odd cases are

R
m

����
l¼1

≈
1

2
þ P1ϵþ 4

�
P0 − P2

3

�
ϵ2 þ 16

�
−P1 þ P3

5

�
ϵ3

þ 8

�
−
17

15
P0 þ

7

3
P1 þ

1

21
P2 −

131

105
P4

�
ϵ4

þ ðdivergent termÞϵ5 ð67Þ

R
m

����
l¼3

≈
1

7
þP3ϵþ

�
−
11

12
P0þ

8

9
P2þ

35

2
P3

−
351

44
P4−

940

99
P6

�
ϵ2þðdivergent termÞϵ3 ð68Þ

R
m

����
l¼5

≈
1

16
þP5ϵþ

�
−
1312

165
P0−

12200

1287
P2−

3456

715
P4

þ112P5−
41600

1683
P6−

190400

8151
P8−

9620856

230945
P10

�
ϵ2

þðdivergent termÞϵ3: ð69Þ

In these expressions, the cos θ dependence of the Pn is
suppressed. The pattern appears to continue for all l > 1:
that is even l diverge at second order while odd cases
diverge at third order. This is demonstrated in Fig. 9, where
hl2½l� and hl3½l� are plotted up to l ¼ 31.
Though the trend in Fig. 9 seems clear, we were not able

to show that the growth continues for all l: the expressions,
particularly for the odd cases, become prohibitively
complex.

However, we can at least see why the odd cases do not
diverge at second order. Reading off h2l from (53) and
keeping in mind that R1l ¼ Plðcos θÞ then applying (A4), it
is straightforward to see that on expanding the R2

1 term into
a Legendre series we only obtain even terms. Meanwhile,
the R2

1θ term can be expanded using (A1) and then (A4)
again to see that it also contains only even terms. Hence,
h2l½l� necessarily vanishes for all odd l, and any divergence
must be at third or higher order.

V. DISCUSSION

While a stable MOTS cannot be smoothly deformed,
“instability” is not sufficient to imply that such deforma-
tions are possible. For spherically symmetric MOTS in
similarly symmetric spacetimes, we first showed that all but
a few finely tuned cases are not deformable. Then on
checking those special cases for RN spacetimes, we saw
that, apart from pure de Sitter spacetime, none of them
appeared to be deformable either (though we did not find a
completely general proof).
Hence, we expect that a much stronger result holds that

prevents (virtually all) horizons from being deformed. We
expect that only spacetimes with extra symmetries (such as
pure de Sitter) can house deformable MOTS, and that those
deformations will turn out to be translations.
This would not be a particularly shocking result. It would

be much more surprising to discover that inner black hole
MOTS could be finitely deformed. However, as far as we
know, there is no extant theorem that proves this.
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APPENDIX: USEFUL LEGENDRE IDENTITIES

In this appendix, we recall how to expand the derivative
and product of Legendre polynomials as a Legendre
series. These are used in solving the horizon deformation
equations.

1. Derivatives

By the standard recurrence relations, it is straightforward
to show that the derivative of a Legendre polynomial can be
expanded as

P0
lðcos θÞ ¼

(Pl=2
m¼1ð4m − 1ÞP2m−1ðcos θÞ l evenPðl−1Þ=2
m¼0 ð4mþ 1ÞP2mðcos θÞ l odd

)
;

ðA1Þ

where P0
lðxÞ ¼ dPlðxÞ=dx.

2. Products

Next recall that the integral of three polynomials PkðxÞ,
PlðxÞ, and PmðxÞ is given by the Wigner 3j symbol,

Z
1

−1
PkPlPmdx ¼ 2

�
k l m

0 0 0

�
2

; ðA2Þ

where if jk − lj ≤ m ≤ kþ l and 2s ¼ mþ kþ l is even,
then

�
k l m

0 0 0

�
2

¼ ð2s − 2kÞ!ð2s − 2lÞ!ð2s − 2mÞ!
ð2sþ 1Þ!

×

�
s!

ðs − kÞ!ðs − lÞ!ðs −mÞ!
�

2

; ðA3Þ

else it is zero.
Then we can series expand the product of polynomials as

a finite series,

PkPl ¼
Xkþl

m¼jk−lj
ð2mþ 1Þ

�
k l m

0 0 0

�
2

Pm: ðA4Þ

For purposes of the discussion in the main text, the
important point is that for kþ l even, there are only even
terms in the expansion, while for kþ l odd, there are only
odd terms.
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