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We study the canonical description of the axisymmetric vacuum in 2þ 1-dimensional gravity, treating
Einstein’s gravity as a Chern-Simons gauge theory on a manifold with the restriction that the dreibein is
invertible. Our treatment is in the spirit of Kuchař’s description of the Schwarzschild black hole in 3þ 1

dimensions, where the mass and angular momentum are expressed in terms of the canonical variables and a
series of canonical transformations that turn the curvature coordinates and their conjugate momenta into
new canonical variables is performed. In their final form, the constraints are seen to require that the
momenta conjugate to the Killing time and curvature radius vanish, and what remains is the mass, the
angular momentum, and their conjugate momenta, which we derive. The Wheeler-DeWitt equation is
trivial and describes time independent systems with wave functions described only by the total mass and
total angular momentum.
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I. INTRODUCTION

In 2þ 1 dimensions, many of the problems associated
with quantumgravity are expected to be alleviated by the fact
that pure gravity in 2þ 1 dimensions has no local, propa-
gating degrees of freedom. Still, the theory is far from trivial
[1]. The vacuum solutions of pure gravity are multiconical
spacetimes, obtained by the identification of points in flat
space [2], and in the presence of a cosmological constant, one
obtains maximally symmetric solutions, viz., the anti-de
Sitter (AdS) and de Sitter (dS) spacetimes with a similar
identification of points. Such an identification, by a discrete
subgroup of SOð2; 2Þ inAdS spacetime, was shown to give a
spinning black hole solution by Bañados, Teitelboim, and
Zanelli (BTZ) [3]. The BTZ black hole solution is locally
AdS, but globally it is characterized by conserved charges at
the boundary of theAdS spacetime [4]. The solution exhibits
many of the properties of black holes in 3þ 1 dimensions
and therefore provides a simpler setting for the study of
quantum effects. Likewise, gravitational collapse in 2þ 1
dimensions is rich in structure. The earliest study of
gravitational collapse in 2þ 1 dimensions with and without
a cosmological constant was carried out in Ref. [5]. In the
context of circularly symmetric, homogeneous dust, the
authors showed that collapse to a black hole depends
sensitively on the initial data. In the absence of a cosmo-
logical constant or in dS spacetime, collapse may or may not
occur depending on the initial velocity, but if the dust ball
collapses, then it does so to a naked, conical, point source
singularity [6].On theother hand, inAdS spacetime, theBTZ
black hole arises naturally as the end state, provided that the
initial density is sufficiently large. If not, the end state is a
again naked conical singularity, but in AdS spacetime. These

results led to a numerical study of critical phenomena
associated with the collapse process in Ref. [7] and were
confirmed in studies of inhomogeneous dust collapse in
Ref. [8]. Attempts to quantize dust collapse in Refs. [9,10]
also taught several lessons. Our ultimate goal is to obtain a
description of quantum gravitational collapse in 2þ 1
dimensions with rotation, for which a classical description
was developed in Ref. [11]. This paper is a first step in this
program.
Classical 2þ 1-dimensional gravity and supergravity

can also be viewed as Chern-Simons gauge theories of
the Poincaré, anti-de Sitter, and de Sitter groups and their
supersymmetric generalizations [12,13]. The general pro-
cedure is to identify an appropriate (super)group which
contains the structure group of the corresponding gravity
theory in its even part, construct its Lie algebra with
generators T̂a, expand the gauge superfield Aμ ¼ Aa

μT̂a,
and construct the Chern-Simons action according to

IC:S: ¼
1

2
Tr

Z
A ∧

�
dAþ 2

3
A ∧ A

�

¼ 1

2
γab

Z
Aa ∧

�
dAb þ 1

3
fbcdA

c ∧ Ad

�
; ð1Þ

where fabc are the structure constants of the Lie algebra and
γab ¼ TrðTaTbÞ plays the role of a metric on the Lie
algebra and must be nondegenerate so that the action
contains a kinetic term for all components of the gauge
field. By construction, the action is invariant under a gauge
transformation given by

δgAμ ¼ −DμΛ; ð2Þ

where Λ ¼ ΛaTa and Dμ ¼ ∂μ þ ½Aμ; � and the classical
equations of motion assert that the field strengths vanish
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identically. For the action (1) to be an acceptable gauge
theory of (super)gravity, gauge transformations must be
equivalent to diffeomorphisms. This is indeed true for small
diffeomorphisms on shell. It would be incorrect, however,
to conclude that Einstein’s action in 2þ 1 dimensions is
equivalent to the Chern-Simons action because the latter
contains many solutions that have no metric interpretation.
Here, we confine our attention to a subspace of solutions
that do have a metric interpretation. The gauge fields are
the dreibein and the spin connection, and the vanishing
field strengths simply assert that the torsion vanishes and
the curvature is constant. Our aim in this work is to cast the
dynamics of Chern-Simons gravity into a canonical form
for metric compatible solutions, in the spirit of Kuchař [14].
There is a long history of other approaches in the literature
[15]. These approaches focus on solving the constraints and
using them to derive a simplified Hamiltonian in a finite
number of degrees of freedom or on exploiting the local
isometries to begin with a reduced action for the system.
The advantage of our approach is that it focuses primarily
on simplifying the constraints via a series of canonical
transformations. These transformations are then easily
modified and continue to be useful in simplifying the
constraints in a variety of systems, including the Einstein-
Maxwell system [16], Lovelock gravity [17], and when
matter is included [18]. This makes it better adapted to the
study of dynamical collapse.
In Sec. II, we review the canonical form of the Chern-

Simons action for SOð2; 2Þ. We employ a general Arnowitt-
Deser-Misner (ADM) metric to choose a natural canonical
chart consisting of the three functions comprising the
spatial metric, LðrÞ, RðrÞ, and QðrÞ and their conjugate
momenta. We solve three of the six constraints of the
Chern-Simons action (corresponding to the vanishing of
torsion) and show that the other three are equivalent to the
Hamiltonian and momentum constraints that would be
obtained from the second order (Einstein) action. In
Sec. III, we consider the equations of motion and recover
the well-known classical, static solutions describing a
spinning particle and the BTZ black hole. We then develop
the constraints specific to the spinning particle and the BTZ
black hole. We discuss the appropriate fall-off conditions to
be imposed on our canonical variables in Sec. IV and
determine the boundary action. In Sec. V, by embedding the
hypersurfaces from which our ADM metric is constructed
in the spacetimes describing the spinning particle and the
BTZ black hole (derived in Sec. III), we are able to
reconstruct the mass and angular momentum in terms of
the canonical variables. This allows us to determine a new
canonical chart in which the constraints are greatly sim-
plified in Sec. VI. Taking into account the boundary action,
we perform yet another canonical transformation, leading
to a description in terms of the area radius, the Killing time,
and the mass and angular momentum (and their conjugates)
in Sec. VII. The resulting constraints take on a particularly

simple form. When they are imposed as operator con-
straints on the Wheeler-DeWitt wave functional, the result
is as expected: a time independent state, which depends
only the ADM mass and angular momentum and, once
prepared, remains the same on every spacelike hypersur-
face. We summarize our results in the concluding Sec. VIII.

II. CHERN-SIMONS GRAVITY

As mentioned in the Introduction, vacuum (super)gravity
in 2þ 1 dimensions can be described as a gauge theory of
the gauge groups ISOð2; 1Þ (pure gravity), SOð2; 2Þ (AdS),
SOð3; 1Þ (dS), and their supersymmetric extensions, with a
Chern-Simons action,

IC:S: ¼
1

2

Z
M
γabAa ∧

�
dAb þ 1

3
fbcdAc ∧ Ad

�
; ð3Þ

where Aa is the gauge connection; fabc are the structure
constants of the corresponding group G; γab is the metric of
the Lie algebra, i.e., γab ¼ 2TrðT̂aT̂bÞ; and the T̂’s are
generators of the Lie algebra. In what follows, letters from
the beginning of the roman alphabet, fa; b; c…g, will be
used for group indices; the greek alphabet, fα; β…g, will be
used for spacetime indices; and letters from the middle of
the roman alphabet, fi; j; k…g, will be used for spatial
indices. We take the group G to be the AdS group SOð2; 2Þ,
with generators P̂a and Ĵa satisfying the following com-
mutation relations,

½P̂a;P̂b�¼ΛϵabcĴc; ½P̂a;Ĵb�¼ ϵabcP̂c; ½Ĵa; Ĵb�¼ ϵabcĴc;

ð4Þ

where Λ > 0 is the cosmological constant and the group
indices are raised and lowered using the three-dimensional
Minkowski metric. We expand Aμ in the basis of generators

Aμ ¼ eaμP̂a þ ωa
μĴa; ð5Þ

where eaμ and ωa
μ are the dreibein and the spin connection,

respectively. There are two bilinear invariants (Casimirs),
namely P̂ · Ĵ þ Ĵ · P̂ and P̂2 þ Ĵ2=Λ2, which can be used to
determine γab as

ΛTrðĴa ĴbÞ ¼ TrðP̂a P̂bÞ ¼ Ληab ð6Þ

TrðĴa P̂bÞ ¼ TrðP̂a ĴbÞ ¼ ηab; ð7Þ

respectively. The first is degenerate in the limit as Λ → 0
and would not produce an acceptable Poincaré theory in
that limit. With the second, the Chern-Simons action can be
cast in the form
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IC:S: ¼
1

2
ηab

Z
M
d3xϵμνλ

�
eaμ

�
∂νω

b
λ þ ϵbcd

�
ωc

νω
d
λ

þ Λ
3
ecνedλ

��
þ ωa

μ∂νebλ

�
: ð8Þ

As we are primarily interested in the Hamiltonian formu-
lation, it is convenient to separate the time component in the
action and recast it in the form

IC:S:¼
1

2
ηab

Z
M
d3xϵijfeat½2∂iω

b
jþϵbcdðωc

iω
d
jþΛeciedjÞ�

þωa
t½2∂iebjþ2ϵbcdeciωd

j�−eai∂tω
b
j−ωa

i∂tebjg;
ð9Þ

making it evident that the dreibein and the spin connection
are canonical conjugates of one another. In this first order
form, if feai;ωa

ig are treated on an equal footing as
configuration space variables, the canonical momenta do
not involve time derivatives of the fields and become
primary constraints (they are second class). There are then
12 configuration space variables, 12 second class con-
straints, and 6 first class constraints (the theory has no
degrees of freedom). One must proceed by following
Dirac’s procedure for constrained systems.
Here, we will follow a different approach. We take the

spacetime to be of the form R × Σ and choose eai for our
configuration space variables. The Chern-Simons action (9)
is equivalent to the first order Einstein Hilbert action in the
dreibein formulation up to a total derivative, so, discarding
the total time derivative, we find that the momentum
conjugate to eai is

Πa
i ¼ ηabϵ

ijωb
j; ð10Þ

where ϵij is the two-dimensional Levi-Cività tensor. The
Hamiltonian density is then

H ¼ −ηabfeatFb½ω� þ ωa
tFb½e�g; ð11Þ

where

Fa½e� ¼ ϵacdη
dmeciΠm

i≈0

Fa½ω� ¼ ∂iΠa
iþ1

2
ϵacdðϵklηcmηdnΠm

kΠn
lþΛϵijeciedjÞ≈0

ð12Þ

are the six constraints of the theory. The first three enforce
the vanishing of torsion, and the second three require the
curvature to be constant.
Our next task is to rewrite the constraints above in terms

of metric functions. We will eventually be interested in
axisymmetric solutions, so we consider a general isotropic
line element in Σ, with circular coordinates ðr;ϕÞ,

ds2 ¼ γijdxidxj ¼ A2ðrÞdr2 þ B2ðrÞdϕ2 þ C2ðrÞdrdϕ;
ð13Þ

and foliate the three-dimensional spacetime with these
leaves, which then also become labeled by a time param-
eter, t. The resulting ADM metric,

ds2 ¼ N̄2dt2 − A2ðdrþ N̄rdtÞ2 − B2ðdϕþ N̄ϕdtÞ2
− C2ðdrþ N̄rdtÞðdϕþ N̄ϕdtÞ; ð14Þ

can be written more conveniently as

ds2¼N2dt2−L2ðdrþNrdtÞ2−R2

�
dϕþNϕdtþQ

R
dr

�
2

;

ð15Þ

with the identifications

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 −

C4

4B2

r
; R ¼ B; Q ¼ C2

2B
;

Nr ¼ N̄r; Nϕ ¼ N̄ϕ þ C2

2B2
N̄r; N ¼ N̄: ð16Þ

A driebein which yields the metric in (15) may be given in
lower triangular form,

eaμ ¼

0
B@

N 0 0

NrL L 0

NϕR Q R

1
CA; ð17Þ

in terms of which the nonvanishing constraints become

F0½e� ≔ LΠ2
r − RΠ1

ϕ þQΠ1
r ≈ 0

F1½e� ≔ RΠ0
ϕ þQΠ0

r ≈ 0

F2½e� ≔ LΠ0
r þ R0 ≈ 0

F0½ω� ≔ ∂rΠ0
r þ Π1

rΠ2
ϕ − Π2

rΠ1
ϕ þ ΛLR ≈ 0

F1½ω� ≔ ∂rΠ1
r þ Π0

rΠ2
ϕ − Π2

rΠ0
ϕ ≈ 0

F2½ω� ≔ ∂rΠ2
r − Π0

rΠ1
ϕ þ Π1

rΠ0
ϕ ≈ 0: ð18Þ

We may readily solve the first three constraints, which are
purely algebraic. From the third, we have Π0

r ¼ −R0=L.
Inserting this into the second yields Π0

ϕ ¼ QR0=LR and,
from the first equation, Π1

ϕ ¼ L
RΠ2

r − Q
RΠ1

r. With the
three momenta obtained, the remaining three nontrivial
constraints read

CANONICAL CHERN-SIMONS GRAVITY PHYSICAL REVIEW D 96, 024056 (2017)

024056-3



F0½ω� ≔ Π1
rΠ2

ϕ − Π2
rΠ1

ϕ þ ΛLR −
�
R0

L

�0
≈ 0

F1½ω� ≔ ∂rΠ1
r −

R0

L
Π2

ϕ −
QR0

LR
Π2

r ≈ 0

F2½ω� ≔ ∂rΠ2
r þ R0

R
Π2

r ≈ 0; ð19Þ

and, defining PL ¼ Π1
r, PQ ¼ Π2

r and PR ¼ Π2
ϕ, we may

write the simplified Hamiltonian density as

H ¼ −NHg − NrHr − NϕHϕ; ð20Þ

where

Hg ¼ PLPR þ ΛLR −
L
R
PQ

2 þQ
R
PQPL −

�
R0

L

�0
≈ 0

Hr ¼ LPL
0 − R0PR −

QR0

R
PQ ≈ 0

Hϕ ¼ ðRPQÞ0 ≈ 0; ð21Þ

which are the Hamiltonian and momentum constraints of
the theory. The last momentum constraint implies that

RPQ ¼ αðtÞ; ð22Þ

and we could also write

Hr ¼ LP0
L − R0PR þQP0

Q −
Q
R
Hϕ ≈ 0: ð23Þ

To summarize, the phase space is six dimensional, para-
metrized by three metric functions, L, R, and Q, and their
conjugate momenta. Axisymmetric solutions are obtained
by taking Q ¼ 0, and circularly symmetric solutions are
obtained by taking Q ¼ Nϕ ¼ 0. The entire content of the
theory is in the constraints; the equations of motion follow
by taking Poisson brackets with H, and in the following
section, we recover the well-known stationary solutions
with which we will work in later sections.

III. HAMILTONIAN EQUATIONS OF MOTION

The Hamiltonian equations of motion are quite generally
given by taking Poisson brackets with the smeared
constraints,

_X ¼ fX;−Hg½N� −Hr½Nr� −Hϕ½Nϕ�gP:B: ð24Þ

_PX ¼ fPX;−Hg½N� −Hr½Nr� −Hϕ½Nϕ�gP:B:: ð25Þ

For the six phase space variables,

_L¼fL;HgP:B:¼−NPR−
NQ
R

PQþðNrLÞ0

_R¼fR;HgP:B:¼−NPLþNrR0

_Q¼fQ;HgP:B:¼N

�
2L
R
PQ−

Q
R
PL

�
þNrQR0

R
þNϕ0R

_PL ¼fPL;HgP:B:¼NΛR−
N0R0

R2
−
NPQ

2

R
þNrPL

0

_PR¼fPR;HgP:B: ¼NΛL−
N″

L
þN0L0

L2
þNLPQ

2

R2

−
Q
R2

PQPLþðNrPRÞ0−Nϕ0PQ

_PQ¼fPQ;HgP:B: ¼
N
R
PQPLþNrPQ

0 ¼−
_R
R
PQ: ð26Þ

We have made no assumptions about the canonical
variables apart from isotropy, so any isotropic, classical
solution must satisfy (21) and (26). Combining the third
constraint with the last equation of motion, we find that α
must be constant.
In the static case, the time derivative of all canonical

variables must vanish. Using (22), this implies that the
equations of motion, together with the first two constraints
(21), will read

PR ¼ ðNrLÞ0
N

−
αQ
R2

PL ¼ NrR0

N

N

�
2αL
R2

−
Q
R
PL

�
þ Nr QR0

R
þ Nϕ0R ¼ 0

NΛR −
N0R0

L2
−
α2N
R3

þ NrPL
0 ¼ 0

NΛL −
N″

L
þ N0L0

L2
þ α2NL

R4
−
αQ
R3

þ ðNrPRÞ0 −
α

R
Nϕ0 ¼ 0

PLPR þ ΛLR −
α2L
R3

þ αQ
R2

PL −
�
R0

L

�0
¼ 0

PL
0 −

R0

L
PR −

αQR0

LR2
¼ 0: ð27Þ

We now have to find eight unknown functions from the
above seven equations. So there is the freedom to choose
one of the unknown functions, and we choose Nr ¼ 0. This
gives PL ¼ 0, PR ¼ −αQ=R2, and the last equation is
satisfied identically. We are left with four equations in five
unknowns, namely
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2αNL
R2

þ Nϕ0R ¼ 0

NΛR −
N0R0

L2
−
α2N
R3

¼ 0

NΛL −
N″

L
þ N0L0

L2
þ α2NL

R4
−
αQ
R3

−
α

R
Nϕ0 ¼ 0

ΛLR −
α2L
R3

−
�
R0

L

�0
¼ 0: ð28Þ

Therefore, we can yet choose another function; this we take
to beQ ¼ 0. Solving the first equation, Nϕ0 ¼ −2αNL=R3,
we find that the remaining equations are

NΛR −
N0R0

L2
−
α2N
R3

¼ 0

NΛL −
N″

L
þ N0L0

L2
þ 3α2NL

R4
¼ 0

ΛLR −
α2L
R3

−
�
R0

L

�0
¼ 0: ð29Þ

The equations are once again not independent; the second
can be obtained from the remaining two equations, so there
are two independent equations for three unknown functions,

NΛR −
N0R0

L2
−
α2N
R3

¼ 0

ΛLR −
α2L
R3

−
�
R0

L

�0
¼ 0; ð30Þ

and we are free to choose yet another function. We take
RðrÞ ¼ r below.

A. Λ= 0: The spinning point particle

With Λ ¼ 0, the gauge group SOð2; 2Þ turns into the
Poincaré group by a Wigner-Inonu contraction. Taking
RðrÞ ¼ r, the equations (30) readily yield the following
solutions,

LðrÞ ¼ 1=μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

μ2r2

q

NðrÞ ¼ Nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

μ2r2

s

NϕðrÞ ¼ Nϕ
þ þ Nþα

μr2
; ð31Þ

where μ, Nþ, and Nϕ
þ are constants of the integration. For

example, if we chooseNþ ¼ 1 andNϕ
þ ¼ 0, the line element

is given by

ds2 ¼ N2dt2 −
N−2

μ2
dr2 − r2

�
dϕ −

j
μr2

dt

�
2

; ð32Þ

where μ can be identified with the mass of the particle and
j ¼ −α can be identified with its angular momentum.

B. Λ ≠ 0: The BTZ black hole

With Λ ≠ 0, we find, from the second of (30), that

LðrÞ ¼
�
Λr2 −M þ α2

r2

�−1=2
; ð33Þ

where M is a constant of the integration. Using this in the
first, we have

NðrÞ ¼ Nþ

�
Λr2 −M þ α2

r2

�
1=2

; ð34Þ

and, together, these imply that Nϕ ¼ Nϕ
þ þ Nþα=r2. With

Nþ ¼ 1 and Nϕ
þ ¼ 0, we recover the BTZ solution of mass

M and angular momentum J ¼ −α with line element

ds2 ¼ NðrÞ2dt2 − NðrÞ−2dr2 − r2
�
dϕ −

J
r2

dt
�

2

: ð35Þ

IV. FALL-OFF CONDITIONS AND
BOUNDARY ACTION

The total action in general will combine the bulk action

SΣ ¼
Z

dt
Z

dr½PL
_Lþ PR

_Rþ PQ
_Q −H� ð36Þ

and a boundary action, S∂Σ, the function of which is to
cancel unwanted boundary variations and the value of
which will depend on the boundary conditions that are
imposed. We adopt boundary conditions that enforce every
solution to asymptotically approach one of the spacetimes
derived in the previous section. For the maximally extended
spinning particle, as for the BTZ black hole, the boundaries
of spatial hypersurfaces will be taken to lie at r → ∞.

A. Point particle

In the case of a spinning point particle, we assume that
the canonical variables have an asymptotic expansion in
integer powers of 1=r as r → ∞. We adopt the conditions

R ⟶ rþO∞ðr−2Þ

L ⟶
1

μ�
−

j�2

2μ�3
r−2 þO∞ðr−3Þ

Q ⟶ O∞ðr−2Þ
PR ⟶ PR0 þO∞ðr−1Þ
PL ⟶ O∞ðr−1Þ
PQ ⟶ j�r−1 þO∞ðr−2Þ

N ⟶

�
1þ j�

2μ2�
r−2

�
N� þO∞ðr−3Þ

Nr ⟶ O∞ðr−1Þ

Nϕ ⟶ Nϕ
� þ j�

μ�
r−2 þO∞ðr−3Þ; ð37Þ
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where Oðr−nÞ represents a term of which the asymptotic
behavior is as r−n and is multiplied by some function of t
and the plus and minus refer to the right and left infinities,
respectively. It is easily verified that these fall-off con-
ditions are compatible with the constraints and preserved
by the time evolution equations (26). To determine the
boundary action, we must consider all terms in the
Hamiltonian density, H, the variation of which will lead
to boundary terms. As no derivative of PR appears, a
variation of PR will yield no boundary contribution, and
due to the fall-off conditions, contributions from all the
variations with respect to R and PL will fall off much faster
than r−1. Only variations with respect to L and PQ yield
boundary contributions, viz.,

Z
dt

�
NR0δ

�
1

L

�
− NϕRδPQ

�				∂M
¼ −

Z
dt½Nþδμþ þ N−δμ− − Nϕ

þδjþ − Nϕ
−δj−�: ð38Þ

This must be cancelled by an appropriate boundary action,
which we therefore take to be

S∂Σ ¼
Z

dt½Nþμþ þ N−μ− − Nϕ
þjþ − Nϕ

−j−�: ð39Þ

The boundary action affirms the role of μ and −α ¼ j as the
mass and the angular momentum of the spinning particle.

B. BTZ black hole

In this case, for the asymptotic behavior of our canonical
variables, we adopt

R ⟶ rþO∞ðr−2Þ

L ⟶
r−1ffiffiffiffi
Λ

p þM�r−3

2Λ3=2 þO∞ðr−4Þ

Q ⟶ O∞ðr−6Þ
PL ⟶ O∞ðr−2Þ
PR ⟶ O∞ðr−4Þ
PQ ⟶ −J�r−1 þO∞ðr−2Þ

N ⟶

� ffiffiffiffi
Λ

p
r −

M�
2

ffiffiffiffi
Λ

p r−1
�
Nþ þO∞ðr−2Þ

Nr ⟶ O∞ðr−2Þ
Nϕ ⟶ Nϕ

� þ J�r−2 þO∞ðr−4Þ: ð40Þ

Again, it is easy to check that these conditions are
compatible with the constraints and preserved by the time
evolution equations. As before, only those variables of
which the space derivatives appear in the action will
contribute to the boundary action. From the action, we
see that R, L, PL, and PQ are all likely to contribute to the

boundary action. However, by explicitly performing the
variation, we find that the variation with respect to R and
PL rapidly approach zero at both boundaries, but variations
with respect to L and PQ contribute at r → ∞. Explicitly,
using the asymptotic expressions for corresponding vari-
ables as before, we find that the boundary action will be

S∂Σ ¼ −
Z

dt

�
1

2
ðNþMþ þ N−M−Þ þ Nϕ

þJþ þ Nϕ
−J−

�
:

ð41Þ

While the inclusion of a boundary action unfreezes the
evolution at infinity, it leads to another problem, which is
that the lapse and shift functions may also be varied at the
boundaries. This would lead to the conclusion that
μ� ¼ j� ¼ M� ¼ J� ¼ 0. Therefore, Kuchař [14] pro-
posed that N� and Nϕ

� should be viewed as prescribed
functions of t. This “parametrization at infinity” will be
exploited in Sec. VII to present a greatly reduced form of
the canonical action.

V. EMBEDDING

Our aim now is to develop the action and constraints
specific to the two solutions obtained in Sec. III. First, we
show how the canonical data determine the mass and the
angular momentum of these systems by embedding
the hypersurfaces of the ADM metric into the metrics
describing the spinning particle and the BTZ black hole,
respectively, imagining that they are leaves of a particular
foliation of these spacetimes.

A. Spinning particle

We begin with the spinning point particle, expressing the
metric in terms of the Killing time and area radius as

ds2 ¼ FdT2 −
1

μ2F
dR2 − R2

�
dϕ −

j
μR2

dT

�
2

; ð42Þ

where F ¼ ð1þ j2

μ2R2Þ and μ and j are the mass and angular
momentum, respectively. It is convenient rescale the
Killing time according to T̄ ¼ T=μ; the metric in (42)
can then be written as

ds2 ¼ F1dT̄2 −
1

F1

dR2 − R2

�
dϕ −

j
R2

dT̄

�
2

;

where F1 ¼ ðμ2 þ j2

R2Þ. Taking T̄ and R to be functions of
the ADM coordinates, i.e., T̄ ¼ T̄ðt; rÞ and R ¼ Rðt; rÞ,
and comparing with the ADM form of the line element
(15), we find
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N ¼ R0 _̄T − T̄ 0 _R
L

Nr ¼ F−1
1

_RR0 − F1
_̄TT̄ 0

L2

Nϕ ¼ −
j _̄T
R2

L2 ¼ F−1
1 R02 − F1T̄ 02

Q ¼ −
jT̄ 0

R
: ð43Þ

Inserting the lapse and shift into the second equation of
(26), we then have

PL ¼ 1

N
ð− _Rþ NrR0Þ ¼ −

F1T̄ 0

L
⇒ T 0 ¼ −

LPL

F1

; ð44Þ

which, inserted into the expression for L2 in (43), gives

F1 ¼ μ2 þ j2

R2
¼

�
R02

L2
− P2

L

�
; ð45Þ

and, from the last equation in (43), we also find

j ¼ QR
LPL

�
R02

L2
− P2

L

�
: ð46Þ

Together, these equations allow us to recover the mass and
angular momentum from the canonical data. Furthermore,
differentiating (45) with respect to r, we find

ðF1Þ0 ¼
�
R02

L2
− P2

L

�0
¼ −2PLPL

0 þ 2

�
R0

L

��
R0

L

�0

¼ −
2R0

L
Hg −

2PL

L
Hr −

2R0

R
P2
Q;

ð47Þ

where Hg and Hr are the Hamiltonian and momentum
constraints. Therefore,

�
μ2þ j2

R2
−P2

Q

�0
¼−

2R0

L
Hg−

2PL

L
Hr−

2PQ

R
Hϕ ð48Þ

is a linear combination of the constraints, which, we note,
do not require μ0 and j0 to separately vanish.

B. BTZ black hole

Similarly, for the BTZ black hole, the metric is expressed
as

FðRÞdT2 −
1

FðRÞ dR
2 − R2

�
dϕ −

J
R2

dT

�
2

; ð49Þ

where FðRÞ ¼ ΛR2 −M þ J2

R2 and M and J are the mass
and angular momentum, respectively. Embedding (15) into
the BTZ metric, we obtain (43). Then, inserting the lapse
and shift into the second equation of (26), we obtain T 0 and
substitute its value into the expressions for L2 and Q; this
gives

F ¼ ΛR2 −M þ J2

R2
¼ R02

L2
− PL

2

J ¼ QR
LPL

�
R02

L2
− PL

2

�
; ð50Þ

and, again, one recovers the mass and angular momentum
in terms of the canonical data. Furthermore,

ðF − ΛR2Þ0 ¼
�
R02

L2
− P2

L − ΛR2

�0

¼ −2PLPL
0 − 2ΛRR0 þ 2

�
R0

L

��
R0

L

�0

¼ −
2R0

L
Hg −

2PL

L
Hr −

2R0

R
P2
Q; ð51Þ

and we may write

�
−M þ J2

R2
− P2

Q

�0
¼ −

2R0

L
Hg −

2PL

L
Hr −

2PQ

R
Hϕ ≈ 0:

ð52Þ

As before, the constraints do not require M0 and J0 to
separately vanish. Equations (48) and (52) are identical
apart from the sign of the mass terms. If these solutions are
regarded as end states of collapse, then the signs strongly
depend on the initial data, as discovered in Ref. [5] and
noted in the Introduction.

VI. NEW CANONICAL VARIABLES

We have determined the mass and angular momentum in
terms of the canonical variables. Following Kuchař [14],
we now seek a new set of canonical variables in which the
constraints are simplified. From the expressions for μðMÞ
and jðJÞ, however, it appears that both the mass and the
angular momentum cannot be a part of the same canonical
chart because their Poisson brackets do not vanish. In the
quantum theory, they are not simultaneously observable.
A more transparent configuration space variable is provided
by the time-time component of the metrics. We will show
how this comes about.
We will work with a nonzero cosmological constant as

the spinning particle is the Λ → 0 limit of the same together
with M → −μ2. From the expression for F in (50), it is
straightforward to show that
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Z ¼ R02

L2
− P2

L − ΛR2 − P2
Q; PZ ¼ −

LPL

2F
ð53Þ

are conjugate variables, i.e., fZ; PZgP:B: ¼ 1. However, the
Poisson brackets of Z withQ and PR, as well as the Poisson
bracket of PZ with PR, are nonvanishing,

fZ; RgP:B: ¼ 0 fZ; PRgP:B: ¼ −
�
2R0

L2

�0
− 2ΛR

fZ;QgP:B: ¼ 2PQ fZ; PQgP:B: ¼ 0

fPZ; RgP:B: ¼ 0 fPZ; PRgP:B: ¼ −
�
R0PL

F2L

�0

fPZ;QgP:B: ¼ 0 fPZ; PQgP:B: ¼ 0: ð54Þ

We wish to replace L and PL by Z and PZ in the canonical
chart, and the Poisson brackets above tell us that a
canonical transformation to new variables, P̄R and Q̄, is
required. However, one explicitly checks that

Q̄ ¼ Qþ LPLPQ

F
ð55Þ

does, in fact, have vanishing Poisson brackets with Z, PZ,
and R and is conjugate to PQ. The only remaining problem
is to find P̄R, and there is a standard procedure for
achieving this. The canonical transformation from the
original chart, fL; R;Q; PL; PR; PQg, to the new chart,
fZ; R; Q̄; PZ; P̄R; PQg, is found to be generated by

G½L;R; PL; PQ�

¼
Z

dr

�
LPL

�
1 −

P2
Q

F

�
− R0tanh−1

�
R0

LPL

��
; ð56Þ

and P̄R is determined to be

P̄R ¼ PR −
ΛRLPL

F
−

ðR0=LPLÞ0
1 − ðR0=LPLÞ2

: ð57Þ

The fall-off of the new canonical variables is easily
determined from the fall-off conditions (40).
The momentum constraint Hr, written in terms of the

new variables, now reads

Hr ¼ Z0PZ − R0P̄R þ Q̄PQ
0 −

�
Q̄ − 2PZPQ

R

�
Hϕ; ð58Þ

and by substituting the new variables into the Hamiltonian
constraint, we also find

Hg ¼ 2FPZ

RL
½Q̄PQ þ RP̄R� −

R0

2FRL
½2PQðRPQÞ0 þ RZ0�:

ð59Þ

This last expression can be greatly simplified by exploiting
(48); after some algebra, we find

Hg ¼ þ F
RPL

½Q̄PQ þ RP̄R� −
R0

L2PL
Hr; ð60Þ

so the full Hamiltonian can now be written in terms of new
constraints,

~Hg ¼ RP̄R þ Q̄PQ

~Hr ¼ Z0PZ − R0P̄R þ Q̄PQ
0:

Hϕ ¼ ðRPQÞ0; ð61Þ

and adjoined to the action by means of new multipliers.
Explicitly,

H ¼ − ~N ~Hg − ~Nr ~Hr − ~Nϕ ~Hϕ; ð62Þ

where

~N ¼ NF
RPL

~Nr ¼ Nr þ NR0

L2PL

~Nϕ ¼ Nϕ −
�
Nr þ NR0

L2PL

��
Q̄
R

�
ð63Þ

with Q̄ given in (55). We also notice that

R0

R
~Hg þ ~Hr −

Q̄
R
Hϕ ¼ Z0PZ; ð64Þ

so we could just as well consider the constraint system

~Hg ¼ RP̄R þ Q̄PQ

HZ ¼ Z0PZ

Hϕ ¼ ðRPQÞ0 ð65Þ

and adjoin these [instead of (61)] to the bulk action by
means of new multipliers. In the next section, we will
absorb the boundary action into the bulk action, and by
doing so, we will be able to simplify the constraint system
even further.

VII. BOUNDARY ACTION

We will make one more canonical transformation, a
trivial one interchanging coordinates and momenta,

Q̄ ¼ −PY; PQ ¼ Y: ð66Þ

In terms of the new variables, the Chern-Simons action
takes the form
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S½Z; R;Ω;PZ; P̄R; PΩ�

¼
Z

dt
Z

∞

−∞
dr½PZ

_Z þ P̄R
_Rþ PY

_Y − ~N ~Hg

− ~Nr ~Hr − ~Nϕ ~Hϕ� þ S∂Σ; ð67Þ

where the boundary action is given by (41) in terms of the
old variables. If the lapse and shift functions on the
boundary were allowed to be freely varied, it would imply
that the mass and angular momentum of the black hole both
vanish at infinity. To avoid this conclusion and allow for a
nonvanishing mass and angular momentum, they must be
treated as prescribed functions of the ADM time parameter,
t; i.e., the lapse and shifts must have fixed ends. To
determine these functions, we compare the asymptotic
ADM metric in (15) at fixed r,

ds2 ¼ ðN2
� − R2Nϕ

�
2Þdt2 − 2R2Nϕ

�dtdϕ − R2dϕ2; ð68Þ

with the asymptotic metric in comoving coordinates [11]
(also at fixed r)

ds2 ¼ dt2� þ 2Ω�R2dτdϕ − R2dϕ2; ð69Þ

where t is the proper time and Ω is the angular velocity.
Evidently, we must take

N� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Ω2

�
q

_t�¼def � _τ�;

Nϕ
� ¼∓ Ω�_t�¼def � _ω�; ð70Þ

where t�ðtÞ represents the proper time and Ω�ðtÞ repre-
sents the angular velocity function as measured along
constant r world lines at the infinities. The surface action
now reads

S∂Σ ¼−
Z

dt
�
1

2
ðMþ _τþ−M− _τ−ÞþJþ _ωþ−J− _ω−

�
: ð71Þ

First, consider the Liouville form

Θ1 ≔
Z

∞

−∞
drPZδZ −

1

2
ðMþδτþ −M−δτ−Þ; ð72Þ

and note that, according to the fall-off conditions,
limr→∞ZðrÞ ¼ −M�. We therefore define the function
ΓðrÞ by

ZðrÞ ¼ −M− −
Z

r

−∞
dr0Γðr0Þ; Z0ðrÞ ¼ −ΓðrÞ ð73Þ

and rewrite Θ1 as follows:

Θ1 ≔
Z

∞

−∞
drPZðrÞ

�
−δM− −

Z
r

−∞
dr0δΓðr0Þ

�
−
1

2
δðτþMþ − τ−M−Þ þ

1

2
τþδMþ −

1

2
τ−δM−

¼ δM−

�
−
1

2
τ− −

Z
∞

−∞
drPZðrÞ

�
−
Z

∞

−∞
drPZðrÞ

Z
r

−∞
dr0δΓðr0Þ

þ 1

2
τþ

�
δM− þ

Z
∞

−∞
dr0δΓðr0Þ

�
−
1

2
δðτþMþ − τ−M−Þ

¼ δM−

�
1

2
ðτþ − τ−Þ −

Z
∞

−∞
drPZðrÞ

�
−
Z

∞

−∞
drPZðrÞ

Z
r

−∞
dr0δΓðr0Þ

þ 1

2
τþ

Z
∞

−∞
dr0δΓðr0Þ − 1

2
δðτþMþ − τ−M−Þ: ð74Þ

This allows us to identify the conjugate variables,

m ¼ M−; pm ¼ 1

2
ðτþ − τ−Þ −

Z
∞

−∞
drPZðrÞ; ð75Þ

and we have, apart from an exact form,

Θ1 ¼ pmδmþ
Z

∞

−∞
dr

�
1

2
τþδΓðrÞ − PZðrÞ

Z
r

−∞
dr0δΓðr0Þ

�
:

ð76Þ

Again, using the identity [14],

Z
∞

−∞
drPZðrÞ

Z
r

−∞
dr0δΓðr0Þ ¼−

Z
∞

−∞
drδΓðrÞ

Z
r

∞
dr0PZðr0Þ;

ð77Þ

we find

Θ1 ¼ pmδmþ
Z

∞

−∞
dr

�
1

2
τþ þ

Z
r

∞
dr0PZðr0Þ

�
δΓðrÞ; ð78Þ

which now allows us to identify the conjugate variables

CANONICAL CHERN-SIMONS GRAVITY PHYSICAL REVIEW D 96, 024056 (2017)

024056-9



ΓðrÞ ¼ −Z0ðrÞ; PΓðrÞ ¼
1

2
τþ þ

Z
r

∞
dr0PZðr0Þ:

ð79Þ

We note that P0
Γ ¼ PZ ¼ 1

2
T 0, so the Killing time can be

identified with the momentum 2PΓ up to a constant. We can
choose the constant so that T matches τþ at infinity; then,

T ¼ 2PΓ ¼ τþ þ 2

Z
r

∞
dr0PZðr0Þ; ð80Þ

and the momentum conjugate to the Killing time is just
PT ¼ − 1

2
Γ.

Next, consider the Liouville form

Θ2 ≔
Z

∞

−∞
dr½P̄RδRþ PQδQ̄� − ðJþδωþ − J−δω−Þ; ð81Þ

and recall that, under the fall-off conditions, limr→∞PQ ¼
−J�r−1. If we define

RðrÞPQðrÞ ¼ −J− þ
Z

r

−∞
dr0Σðr0Þ; ð82Þ

then, by the third constraint, ΣðrÞ ¼ 0. Therefore
Jþ ¼ J− ¼ J, and

Θ2≔
Z

∞

−∞
dr

�
P̄RδR−

J
R
δQ̄

�
−Jδðωþ−ω−Þ

¼
Z

∞

−∞
dr

�
P̄Rþ

JQ̄
R2

�
δR−Jδ

�
ðωþ−ω−Þþ

Z
∞

−∞
dr

�
Q̄
R

��

¼
Z

∞

−∞
dr

�
P̄Rþ

JQ̄
R2

�
δRþ

�
ðωþ−ω−Þþ

Z
∞

−∞
dr

�
Q̄
R

��
δJ

ð83Þ

up to an exact form. Thus, we identify

pJ ¼ ðωþ − ω−Þ þ
Z

∞

−∞
dr

�
Q̄
R

�
ð84Þ

as the momentum conjugate to J and a new momentum,

PR ¼ P̄R þ JQ̄
R2

; ð85Þ

conjugate to R. In terms of the new variables, the constraints
read

HR ¼ RPR

HT ¼ T 0PT ð86Þ

andmay be adjoined to the canonical action bymeans of new
Lagrange multipliers. The reduced canonical action,

S ¼ pm _mþ pJ
_J þ

Z
∞

−∞
dr½PT

_T þ PR
_R

− ðNTPT þ NRPRÞ�; ð87Þ

shows that the configuration space of vacuum 2þ 1-
dimensional gravity is covered by the coordinates T, R
and two degrees of freedom, m and J. The constraints are
straightforward: PT ¼ PR ¼ 0.
Quantization proceeds directly. According to Dirac’s

quantization program, the momenta are raised to operator
status, and the constraints act as operator constraints on the
state functional, Ψ ¼ Ψðm; J; t;T; R�. The two constraints
tell us that the wave functionals are independent of T and R
and the spacetimes are described by wave functions,
Ψðm; J; tÞ, which, moreover, are time independent because
the Hamiltonian vanishes,

i _Ψðm; J; tÞ ¼ 0 ⇒ Ψðm; J; tÞ ¼ Ψðm; JÞ: ð88Þ

No further information is available. The wave function,
once prepared, stays the same on every spacelike
hypersurface.

VIII. CONCLUSION

As mentioned in the Introduction, the principal goal of
this paper was to construct the canonical description of
axisymmetric, vacuum solutions to Einstein’s gravity in
2þ 1 dimensions using techniques that are easily extended
to the description of dynamical collapse. Just as the original
canonical reduction of static spherical geometries in 3þ 1
dimensions by Kuchař [14] has proved extremely useful in
understanding spherically symmetric dynamical collapse,
we expect the reduction presented in this paper to play a
pivotal role in describing gravitational collapse with rota-
tion, at least in 2þ 1 dimensions [11].
Here, we showed that the mass and angular momentum

can be recovered from the canonical data and that the
constraints describing the axisymmetric vacuum turn out to
be extremely simple after a series of canonical trans-
formations and after absorbing the boundary terms into
the hypersurface action. Indeed, one finally arrives at a
trivial system (with zero Hamiltonian) described by the
only two classical features of this vacuum: the ADM mass
and the angular momentum. The quantum mechanics of the
system describes a time independent wave function that
depends only on these variables. This may seem a bit
surprising considering that particle production is expected
to occur near the horizon, and in fact, this state of affairs
will no longer hold once matter is injected into the
spacetime. Studies of spherical quantum dust collapse,
employing Kuchař’s variables, have shown how Hawking
radiation arises in this approach [19], but they have also
shown that (modulo a selection rule) the collapse process
need not lead to the formation of black holes [20]. Infalling
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shells of matter are accompanied by expanding shells
emanating from the center, and neither the infalling
shells nor the expanding shells may ever cross the
horizon.
Our ultimate goal is to couple gravity to matter and

describe the quantum evolution of gravitational collapse
with rotation. One advantage of the canonical approach is
that all information is preserved in the canonical data. Thus,

if the leaves of the foliation are chosen carefully, so that
they cover all of the spacetime, then one can in principal
study the collapse everywhere, without and within the
horizon and even in the approach to the singularity. Such a
foliation is provided by slices of constant proper time, and
we will report on the classical and quantum results from
embedding the ADM metric here into the spacetime
described in Ref. [11] in a future publication.
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