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We derive a general set of acceptable junction conditions for FðTÞ gravity via the variational principle.
The analysis is valid for both the traditional form of FðTÞ gravity theory as well as the more recently
introduced Lorentz covariant theory of Krššák and Saridakis. We find that the general junction conditions
derived, when applied to simple cases such as highly symmetric static or time dependent geometries (such
as spherical symmetry), imply both the Synge junction conditions as well as the Israel-Sen-Lanczos-
Darmois junction conditions of general relativity. In more complicated scenarios the junction conditions
derived do not generally imply the well-known junction conditions of general relativity. However, the
junction conditions of de la Cruz-Dombriz et al. make up an interesting subset of this more general case.
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I. INTRODUCTION

Junction conditions play an important role in physical
theories governed by differential equations. If a theory is
governed by a set of differential equations in several
domains, and one wishes to patch the solutions together
at the junction between the domains, then one must know
the acceptable continuity conditions to employ at the
junction. These conditions are not arbitrary but must obey
certain mathematical (and in the case of physical theories
physically motivated) criteria. The importance of knowing
the acceptable junction conditions of a theory is not just
limited to sudden divides. The study of a theory’s accept-
able junction conditions also yields information regarding
what must be continuous in continuous models. That is,
even if the solution sought is continuous, knowledge of
junction conditions reveal at what level of derivative a
discontinuity is allowed, and in which particular quantities
(for systems of several functions).
One arena (out of many) where junction conditions are

particularly important is that of gravitational field theory.
A common application here is, for example, some system
such as a star, where the surface of the star must be joined in
some way to the outside vacuum domain. Even inside the
star one might have several layers of different materials
which make up different domains in which the governing
differential equations must be solved. Another example
could be that of phase transitions in gravitational settings
where the transition divide could be sudden or continuous.
Currently, arguably the best theory of gravitation is the
theory of general relativity and the junction conditions in

general relativity have been studied in depth [1–4]. However,
it is possible that gravitation is not described by general
relativity, but instead by some other theory which yields
general relativity in some limit. Each particular theory is
accompanied with its own set of junction conditions which
must be known if any patching of solutions is to be attempted.
One particularly popular extension of general relativity is

the class of theories which are nonlinear in the Ricci scalar.
These are the well-studied FðRÞ theories. In these theories
the acceptable junction conditions tend not to always
coincide with those of general relativity [5–7]. Another,
less-studied alternative to general relativity is FðTÞ gravity.
In FðTÞ gravity the source of the gravitational field is not
curvature, but instead torsion as described by the torsion
tensor, Tα

βγ , which is defined by the antisymmetry of the
curvatureless Weitzenböck connection, Γ

ðWÞ
α

γβ

, including the

spin connection:

Tα
βγ ≔ Γ

ðWÞ
α

γβ

− Γ
ðWÞ

α

βγ

¼ haαð∂βhaγ − ∂γhaβÞ

þ haαωa
bβhbγ − haαωa

bγhbβ: ð1:1Þ

Here haμ is the metric compatible tetrad and ωa
bμ is the

inertial spin connection, which will be discussed shortly.1

From the torsion tensor one constructs the torsion scalar T,

T ≔
1

4
TαβγTαβγ þ 1

2
TαβγTγβα − Tαβ

αTγβ
γ; ð1:2Þ
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1Greek indices are spacetime indices whereas latin indices
are orthonormal Lorentz indices (sometimes also denoted by a
hat).
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and the following action is formed:

I ¼
Z �

FðTÞ
2κ

þ Lm

�
det½haμ�d4x; ð1:3Þ

with κ ¼ 8π and Lm the Lagrangian density for any matter
fields which may be present.
In the traditional version of FðTÞ gravity it is assumed

that the inertial spin connection vanishes. Therefore, in that
version of the theory one must choose a metric compatible
tetrad which also yields zero for the components ωa

bν. If
this is not done correctly, then one is inadvertently
including inertial (nongravitational) effects into the result-
ing equations of motion [8,9]. This is essentially the origin
of the “non-Lorentz covariance” of traditional FðTÞ gravity
[9–14], and leads one to having to choose a “good” tetrad
[15,16]. Finding such a tetrad is often nontrivial.
Progress has been made in FðTÞ gravity in order to

attempt to restore full Lorentz covariance. Krššák and
Saridakis have devised a straightforward method to restore
this covariance to the FðTÞ field equations in [9]. A more
in-depth justification for the method has also been provided
in [14]. The method involves picking any metric compat-
ible tetrad, and taking the G → 0 limit of this tetrad. This
G ¼ 0 “reference tetrad” is then used to calculate the
torsion tensor (1.1). This torsion tensor, due to the absence
of gravity in the G → 0 limit, should vanish, and therefore
one uses the condition limG→0Ta

βγ ¼ 0 in order to solve for
the components of the spin connection ωa

bμ. It has also
been shown in [8] that an appropriate spin connection can
be viewed as a renormalization which yields a physically
sensible stress-energy tensor (see also [17]). The resulting
spin connection is then to be used in formulating the
equations of motion, which read

h−1haρ∂μ

�
h
FðTÞ
dT

Saνμ
�
−
dFðTÞ
dT

TαβρSαβν þ
1

2
FðTÞδρν

þ dFðTÞ
dT

Saανhbρωa
bα ¼ 8πT ρ

ν; ð1:4Þ

with T ρ
ν the stress-energy tensor. The advantage of this

version of the theory is that one does not have to look for a
good tetrad but instead any metric compatible tetrad should
suffice. The quantity Sαβγ is known as the superpotential
(or modified torsion) and is defined as

Sαβγ ≔ Kβγα þ gαβTσγ
σ − gαγTσβ

σ; ð1:5Þ

with

Kαβγ ≔
1

2
ðTαγβ þ Tβαγ þ TγαβÞ ð1:6Þ

the contorsion tensor.

Equations (1.4) are derived via variation of the action
(1.3) with respect to the tetrad, and in the special case where
FðTÞ ¼ T one acquires the teleparallel equivalent of
general relativity (TEGR), which is equivalent to
Einstein theory save for a boundary term. In the case
where FðTÞ ≠ T the resulting equations of motion, though
more complicated, remain second order, which differs from
the corresponding FðRÞ ≠ R based theories.
As mentioned earlier, this theory of gravity is not as well

studied as curvature theories. However, it is a viable
gravitational field theory as it yields general relativity
results in the limit where terms in FðTÞwhich are nonlinear
in T may be neglected. Therefore it is useful to derive what
the acceptable junction conditions are for this theory of
gravity. One interesting set of junction conditions for the
noncovariant version of FðTÞ gravity has been studied in
[18] from demanding the avoidance of thin shells in the
bulk equations of motion. In this paper we derive a set of
junction conditions from the variational principle and deal
in the covariant version of the theory, although the analysis
also applies to the traditional version. The Lorentz covar-
iant version of [9] has not yet received as much attention as
the traditional version. A study setting limits on possible
nonlinear torsion contributions in the Lorentz covariant
theory may be found in [19].
The FðTÞ gravity has been used to study relativistic stars

[20–22]. Weyl static axially symmetric field equations in
FðTÞ gravity have been investigated in [23]. In the cosmo-
logical frameworkΛ-CDMmodels have been studied in [24]
in a thermodynamic perspective. Bianchi-Imodels have been
analyzed in [25,26], whereas other anisotropic cosmological
models have been studied in [27]. Studies of FðTÞ cosmol-
ogies may also be found in the large volume [28] (and
references therein). A thorough analysis of general con-
straints froma cosmological perspective can be found in [29].
In the vein of metric affine theory, teleparallel gravity has
been studied in [30] as a particular case of generalizedmetric
affine symmetry. A very thorough exposition on teleparallel
gravity may be found in [31].

II. VARIATIONAL JUNCTION CONDITIONS

Oneway to obtain a general set of junction conditions for
a physical theory derived from an action is from the
variational principle. We refer to these conditions as
variationally admissible junction conditions. To illustrate
the method we introduce it in a simplified one-dimensional
context. Let us assume that we have some differential
equation, which is derived via the variational principle of
extremal action. Let the domain of this differential equation
be the domain from the inner boundary surface (Ji in Fig. 1)
to the outer boundary surface (Jo in Fig. 1). At both Ji and
Jo some boundary conditions are employed. Perhaps
Dirichlet conditions are employed there (e.g. the field
vanishes or is set to some other fixed asymptotic value),
but the specific form is not relevant as long as some
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boundary conditions exist at these boundaries. There is
some solution to this differential equation which obeys the
boundary conditions. A physical example could be a star
where we have a boundary condition at the center of the star
(Ji) as well as a “boundary” condition far away from the
star, Jo (e.g. Minkowski spacetime far away if Jo is
“infinity”).
Now, one could also break up the problem into sub-

domains, as shown in the figure. This could be done, for
example, because there are junction surfaces motivated by
the particular problem one wants to solve (e.g. stellar layers
or a matter-vacuum boundary in the case of stars). The
problem is still the same: one has a differential equation and
this equation must be solved with specific boundary
conditions at Ji and Jo. Let us assume we have some
action which depends on a dynamical field ϕ and its
derivative, ϕ0 (first derivative only for simplicity):

I ¼
Z

Lðϕ;ϕ0Þdr; ð2:1Þ

where for the purpose of this toy model we label the
integration variable r. Setting the variation of this action
equal to zero yields

B:T:jJoJi −
Z

Jo−

Jiþ
Bulkdr ¼ 0; ð2:2Þ

where B.T. refers to a “boundary term” and “Bulk” is the
bulk integrand, which yields the equations of motion of the
theory. Now, if one considers the same problem, but
subdivides the interval due to the presence of junctions,
as in Fig. 1, the variational principle of extremizing the
action yields the following:

lim
ϵ→0

�
B:T:jJ1−ϵJi

−
Z

J1−

Jiþ
Bulkdrþ B:T:jJ2−ϵJ1þϵ −

Z
J2−

J1þ
Bulkdr

þ B:T:jJoJ2þϵ −
Z

Jo−

J2þ
Bulkdr

�
¼ 0: ð2:3Þ

For (2.2) and (2.3) to be equal (note that the same
problem is being solved) the boundary terms at the internal
junctions (J1 and J2 here) need to be continuous as one
approaches the junction from either side of the junction so
that the boundary terms cancel out. This continuity across
the junction hypersurfaces gives rise to the mathematically
allowed variationally permitted junction conditions of the
theory and yields a very general set of allowable junction
conditions for a local theory [32]. Physically, such con-
tinuity might imply the absence of infinitely thin shells
which would otherwise be present due to the discontinu-
ities. Note that even if one wishes to supplement the
problem with further restrictions from, for example, some
specific desired physics of a particular model, the con-
tinuity of the boundary terms would still need to hold.
Hence those subsequent conditions need to be compatible
with this continuity in order to have a well-posed varia-
tional problem.
In this section we will apply this analysis to the case of

Lorentz covariantFðTÞ gravity but we first note a few issues.
Firstly, the variationally admissible junction conditions are
derived from an action, but the action is not unique. Onemay
always add a total divergence to the Lagrangian without
affecting the bulk equations of motion. This addition will
modify the surface term, and hence modify the junction
conditions. We assume here that the action is minimal,
meaning that the gravitational Lagrangian is of the form in
(1.3) and possesses no extra expressions which could
potentially affect the resulting surface terms. Secondly,
although it is possible that in some very special cases the
surface terms potentially arising from the matter Lagrangian
could cancel out discontinuities in the gravitational surface
term (and vice versa), in the generic setting this is generally
not the case.We therefore do not consider this possibility and
assume that the gravitational and matter surface terms (if
present) are each individually continuous. Also, the mixing
of gravitational field and matter in a nonminimal coupling
theory (such as [33–35]) would potentially yield a different

J i

J1

J 2

Jo

Inner hypersurface,

Junction hypersurface,

Junction hypersurface,

Outer hypersurface, 

(boundary)

(boundary)

FIG. 1. The domain of the differential equation of motion of interest divided into subdomains. The solid lines indicate the boundaries
of the physical system (Ji and Jo) and the dashed lines represent possible junctions (J1 and J2).
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set of junction conditions than those derived here. We
consider minimally coupled models only.
Before proceeding to the FðTÞ case it is perhaps

interesting to first briefly look at general relativity in this
context. Variation of the Einstein-Hilbert action yields the
following boundary result,

ðδIÞj∂D ¼ −
1

16π

Z
∂D

δ½gμνΓλ
λμ − gλμΓν

λμ�n̂νd3v; ð2:4Þ

and the continuity of this boundary term would represent
the variationally admissible junction conditions for general
relativity at junction hypersurfaces. Note however that if on
the inner and outer boundaries [Ji and Jo of Fig. (1)] one
imposes Dirichlet boundary conditions, δðgαβÞj∂D ¼ 0, this
is not necessarily sufficient to make the boundary terms
vanish there. In that case one still has surviving quantities
which may be written as [36]

ðδIÞj∂D ¼ −
1

8π

Z
∂D

δKd3v; ð2:5Þ

for the surface term,whichmaybenonzero (K being the trace
of the extrinsic curvature). This is the origin of the famous
Gibbons-Hawking surface term of general relativity which
must be added to the action in order to have a well-posed
variational problem [37]. [In FðTÞ gravity such a term
analogous to (2.5) does not arise, since as we will see below
the Dirichlet condition is sufficient to render the surface term
to zero.] The appearance of such terms is discussed in detail
in [38]. The effect of other boundary terms in the analog of
the torsion equivalent of Gauss-Bonnet cosmology has been
studied in [39].Regarding junctions, and therefore relevant to
the study here, the Israel-Sen-Lanczos-Darmois (ISLD)
conditions of general relativity [40–43] comprise a sufficient
set of junction conditions to make the boundary term of (2.4)
[or (2.5)] continuous at a junction, supplemented with the
(usual) condition that the first fundamental formmust also be
continuous [44]. The junction conditions of the various
authors ISLD are not exactly equivalent to each other but
in the literature the continuity of the second fundamental
form often falls under the umbrella of the ISLD conditions.
It may also be interesting to note that general relativity and
the teleparallel equivalent of general relativity may possess
different junction conditions even though they have the same
equations of motion, since the Lagrangians differ by a total
divergence,

R ¼ −T − 2∇αðTβ
αβÞ; ð2:6Þ

which translates into differing surface terms for the two
theories. This is an example of a situation where analyzing
junctions from the equations of motion is not sufficient to
determine the full junction conditions of a theory. We next
proceed with studying the junction conditions for FðTÞ
gravity.

A. Junction conditions for FðTÞ gravity
To determine the variationally admissible junction con-

ditions for FðTÞ gravity one needs to vary the action (1.3)
with respect to the tetrad but the surface terms must not be
discarded. The resulting bulk integrand implies the equa-
tions of motion (1.4) and we find that the resulting surface
term may be written as

ðδIÞj∂D ¼ 1

2κ

Z
∂D

dFðTÞ
dT

Saρσδhaσhn̂ρd3Σ; ð2:7Þ

where ∂D indicates the boundary of the domain, n̂ρ denote
the components of the unit normalized outward pointing
normal (co)vector of the junction surface, and h the
determinant of the tetrad. It is an extremely long calculation
to confirm that no other surface terms arise from the
variation of the action via, for example, some hidden
four-divergence when the action is explicitly written in
terms of the tetrad and its derivatives, but we have done so.
We make the (mild) assumption that the manifold is
orientable in the sense that a unique definition of “outward”
exists. Note that the surface terms arising from the spin
connection are present in T and the superpotential. We
should also note that we consider here the scenarios where
the spin connection is considered nondynamical and fixed.
This is compatible with both the traditional FðTÞ gravity
theory (where ωab

μ ¼ 0 is assumed from the start, and
hence nondynamical) as well as the version of the covariant
theory of [9] where the spin connection is seen as a function
of a nondynamical reference tetrad, yielding a bitetrad
theory [14]. In teleparallel theories one may wish to
consider the spin connection also as a dynamical variable
and therefore it is possible to also consider variations of the
spin connection to yield various covariantizations of the
theory [12]. In these latter theories it is possible that extra
surface terms arise as well as (2.7). If those surface terms do
not vanish on the junctions then one may need to demand
the continuity of those terms as well. The general varia-
tionally admissible junction condition of FðTÞ gravity in
the current case is essentially the requirement that (2.7) be
continuous across the junction hypersurface. However, this
is rather general and not very enlightening for practical
calculations so below we shall analyze some specific
scenarios of physical interest. Before proceeding to these,
we make the following comments regarding the general
case:

(i) A sufficient condition for the continuity of (2.7) is
that the integrand is continuous on ∂D. We will
restrict subsequent analysis to this case.

(ii) We will generally assume that the tetrad is continu-
ous on ∂D. This also implies a common coordinate
system on either side of the junction. This is
analogous to demanding that the metric be continu-
ous in general relativity. This ensures that h and δhaσ
are continuous across ∂D.
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(iii) The Dirichlet conditions δhaσ ¼ 0, though sufficient
to make (2.7) vanish and hence yield continuity at a
junction, can generally not be set as these conditions
may be incompatible with the boundary conditions
imposed on the problem at Ji and Jo.

(iv) In the case of TEGR, dFðTÞ=dT ¼ 1, and therefore,
subject to the above conditions listed, the junction
conditions of TEGR boil down to only requiring the
continuity of the superpotential in the normal direc-
tion, ½Sρσa n̂ρ�� ¼ 0.

(v) For FðTÞ ≠ T, the quantity dFðTÞ=dT is a function
of T and therefore the continuity of the torsion scalar
is sufficient to make this quantity continuous.

(vi) Since T ¼ Ta
μνSaμν [with Saμν being constructed

out of the torsion tensor as in (1.5) and (1.6)],
under the above assumptions it is possible to
satisfy junction conditions simply by demanding
that all components of the torsion tensor be
continuous. However, this is often too restrictive
a condition. It is analogous to demanding that the
Riemann tensor must be continuous in general
relativity. This imposition will certainly satisfy the
junction conditions of general relativity, but it is
too severe a condition to describe, for example, a
matter-vacuum junction where the energy density
½T0

0 ∝ G0
0 ¼ ð1=4Þεα0μνRμν

ρσερσ0α� drops to zero
discontinuously.

1. Case I: Static spherical symmetry

Here we study what may arguably be the most physically
relevant special case, that of static spherical symmetry. This
is relevant, for example, in theoretical models of calm stars,
idealized galaxies, or any distribution of matter which may
be approximated as spherical and time independent. We
take the following tetrad,

½haμ� ¼

0
BBB@

AðrÞ 0 0 0

0 BðrÞ 0 0

0 0 r 0

0 0 0 r sin θ

1
CCCA; ð2:8Þ

which is compatible with the well-known following metric:

ds2 ¼ A2ðrÞdt2 − B2ðrÞdr2 − r2dθ2 − r2 sin2 θdφ2: ð2:9Þ

Since we are employing the Lorentz covariant version of
the theory of [9], we are free to choose the diagonal tetrad
(2.8). The nonzero inertial spin connection components for
this case are as follows:

ωr̂ θ̂
θ ¼ −ωθ̂ r̂

θ ¼ 1; ωr̂ φ̂
φ ¼ −ωφ̂ r̂

φ ¼ sin θ;

ωθ̂ φ̂
φ ¼ −ωφ̂ θ̂

φ ¼ cos θ: ð2:10Þ

For static spherical symmetry the junctions of interest
reside on r ¼ const. surfaces. Therefore, the unit outward
normal points in the radial direction:

n̂ρ ¼
δr̂ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jδr̂αhaαhaβδr̂βj
q ¼ δr̂ρjBðrÞj: ð2:11Þ

Note that from the continuity of the tetrad, the unit normal
is already continuous at the junction hypersurface.
Demanding the continuity of the integrand in (2.7), in this
case, yields the following set of conditions:

½Sarσ�� ¼ 0 and ½T�� ¼ 0; ð2:12Þ
where the index r indicates that this index is fixed to the r
component. [Recall that the unit normal is already con-
tinuous due to the continuity of the tetrad, and that
dFðTÞ=dT can be made continuous by demanding the
continuity of T, yielding the second condition in (2.12).]
We find for the relevant nonzero components of the
superpotential

Sθ̂
rθ ¼ AðrÞ þ A;rðrÞr − AðrÞBðrÞ

AðrÞB2ðrÞr2 ; ð2:13aÞ

Sφ̂rφ ¼ AðrÞ þ A;rðrÞr − AðrÞBðrÞ
AðrÞB2ðrÞr2 sinðθÞ ; ð2:13bÞ

St̂rt ¼ 2
1 − BðrÞ

AðrÞB2ðrÞr ; ð2:13cÞ

where the comma in the subscript denotes partial differ-
entiation. We also have, for the torsion scalar,

T ¼ 2ðBðrÞ − 1ÞðAðrÞBðrÞ − 2A;rðrÞr − AðrÞÞ
AðrÞB2ðrÞr2 : ð2:14Þ

Note that with the assumption that the continuities of AðrÞ
and BðrÞ already hold (via the continuity of the tetrad),
these continuity conditions on Sarν and T imply the residual
condition that the derivative

½A;rðrÞ�� ¼ 0 ð2:15Þ
must be continuous at the junction surface. It is interesting that
this turns out to be the same condition implied by both the
Syngeconditionsand the ISLDconditions ingeneral relativity.
The Synge conditions of general relativity read [45]

½T μ
νn̂μ�� ¼ 0: ð2:16Þ

For the normal given in (2.11) this requires that the radial
pressure, and by extension the Gr

r ¼ 8πT r
r Einstein field

equation, must be continuous at the junction. Let us now
look at the radial pressure in this static spherically symmetric
case for FðTÞ gravity. The relevant FðTÞ field equation is
(suppressing r dependence of the functions)
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½4rðB − 2ÞA;r þ 4AðB − 1Þ� dFðTÞdT þ FðTÞr2B2A

2r2AB2
¼ 4πT r

r:

ð2:17Þ
It can be seen that, since AðrÞ and BðrÞ are continuous,
the residual condition (2.15) is sufficient to satisfy the
continuity of (2.17). Further, the ISLD junction conditions
generally read

½Kμν�� ¼ 0; ð2:18Þ

with Kμν the extended extrinsic curvature of the junction
hypersurface. (Weuse the four-dimensionalextendedextrinsic
curvature here, with one eigenvalue zero, but could
easily have used its three-dimensional counterpart in lieu of
it. Also, we refer to the extrinsic curvaturewith the Christoffel
connection, since we wish to make comparisons with the
results of general relativity.) For an r ¼ const. hypersurface,
the extrinsic curvature is calculated as

Kμν ¼

2
6666664

− A;rðrÞ
2

ffiffiffiffiffiffiffi
BðrÞ

p 0 0 0

0 0 0 0

0 0 rffiffiffiffiffiffiffi
BðrÞ

p 0

0 0 0
r sin2ðθÞffiffiffiffiffiffiffi

BðrÞ
p

3
7777775
jr¼r0

: ð2:19Þ

Again noting the continuity of AðrÞ and BðrÞ, the condition
(2.15) implies the continuity of (2.19) and hence a similar
result as in general relativity holds for static spherical
symmetry, namely, the continuity of the radial pressure or
continuity of the second fundamental form at the junction
hypersurface. One can confirm that the same conclusions can
be drawn if oneworks in the non-Lorentz-covariant version of
the theory but with the properly rotated tetrad of [16,22]
yielding zero inertial spin connection.

2. Case II: Homogeneous spherically symmetric
black hole interiors

Here we look at the time dependent analog of the static
spherically symmetric scenario considered previously.
This is useful for the study of certain black hole interiors
(sometimes known as “T-spheres” [46–49]) and certain
cosmological models. Black hole interiors in FðTÞ gravity
have been studied in [50]. The line element for these
metrics takes on the following form,2

ds2 ¼ A2ðtÞdt2 − B2ðtÞdy2 − t2dθ2 − t2 sin2 θdφ2; ð2:20Þ

and the corresponding tetrad chosen is

½haμ� ¼

0
BBB@

AðtÞ 0 0 0

0 BðtÞ 0 0

0 0 t 0

0 0 0 t sin θ

1
CCCA: ð2:21Þ

The results here are rather similar to the static spherically
symmetric case so we only summarize briefly. The result-
ing inertial spin connection is given by3

ωt̂ θ̂
θ ¼ −ωθ̂ t̂

θ ¼ −1;

ωt̂ φ̂
φ ¼ −ωφ̂ t̂

φ ¼ − sin θ;

ωθ̂ φ̂
φ ¼ −ωφ̂ θ̂

φ ¼ cos θ: ð2:22Þ

The junctions of interest in “T-domains” correspond to
t ¼ const. hypersurfaces so that the unit normal points in
the t direction and the relevant components of the super-
potential are

Sθ̂
tθ ¼ AðtÞBðtÞ − B;tðtÞt − BðtÞ

A2ðtÞBðtÞt2 ; ð2:23aÞ

Sφ̂tφ ¼ AðtÞBðtÞ − B;tðtÞt − BðtÞ
A2ðtÞBðtÞt2 sinðθÞ ; ð2:23bÞ

Sŷty ¼ 2
AðtÞ − 1

A2ðtÞBðtÞt ; ð2:23cÞ

and the torsion scalar is given by

T ¼ 2ð1 − AðtÞÞðAðtÞBðtÞ − 2B;tðtÞt − BðtÞÞ
A2ðtÞBðtÞt2 : ð2:24Þ

As before, noting that the continuity of the tetrad holds,
demanding the continuity of (2.23a)–(2.23c) and of (2.24)
yields the residual condition that the following first derivative
must be continuous:

½B;tðtÞ�� ¼ 0: ð2:25Þ

The Synge condition (2.16) in this case implies that the t − t
equation ofmotionmust be continuous andwewish to check
if this condition holds in theFðTÞ case. The relevant equation
of motion here is2As an example, the Schwarzschild interior in this chart would

correspond to the line element

ds2Schw ¼ dt2
2M
t − 1

−
�
2M
t

− 1

�
dy2 − t2dθ2 − t2 sin2 θdφ2;

with 0 < t < 2M.

3In the G → 0 limit it may be the case that the t coordinate
becomes spacelike and the y coordinate timelike, but we retain
the labels t and y for notational compatibility with the rest of the
calculations in this section.
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−
½4tðA − 2ÞB;t þ 4BðA − 1Þ� dFðTÞdT − FðTÞt2A2B

2t2A2B
¼ 4πT t

t;

ð2:26Þ

and the extended extrinsic curvature is

Kμν ¼

2
6666664

0 0 0 0

0 − B;tðtÞ
2

ffiffiffiffiffiffi
AðtÞ

p 0 0

0 0 − tffiffiffiffiffiffi
AðtÞ

p 0

0 0 0 − t sin2ðθÞffiffiffiffiffiffi
AðtÞ

p

3
7777775
jt¼t0

: ð2:27Þ

Note that (2.25) implies the continuity of both (2.26) and
(2.27) and hence again in this case the FðTÞ junction
conditions turn out to be similar to the Synge and ISLD
conditions of general relativity. A similar conclusion can be
drawn utilizing the non-Lorentz-covariant theory without
spin connection and the T-domain rotated tetrad of [50].

3. Case III: FLRW cosmology

We now turn our attention to the interesting arena of
Friedmann-Lemaître-Robertson-Walker cosmology. The
line element of interest is of the following well-known
form:

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sin2θdφ2

�
;

ð2:28Þ

admitting a tetrad of

½haμ� ¼

0
BBB@

1 0 0 0

0
aðtÞffiffiffiffiffiffiffiffiffi
1−kr2

p 0 0

0 0 aðtÞr 0

0 0 0 aðtÞr sin θ

1
CCCA: ð2:29Þ

The inertial spin connection components in this case are

ωr̂ θ̂
θ ¼ −ωθ̂ r̂

θ ¼ 1; ωr̂ φ̂
φ ¼ −ωφ̂ r̂

φ ¼ sin θ;

ωθ̂ φ̂
φ ¼ −ωφ̂ θ̂

φ ¼ cos θ; ð2:30Þ

[in the absence of gravity k must be set to zero and we set
aðtÞ ¼ 1]. The torsion scalar is

T ¼ −
2kþ ð4=r2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
− 1Þ þ 6a2;tðtÞ

a2ðtÞ : ð2:31Þ

For a timelike unit vector adapted to the time coordinate of
(2.28), the relevant superpotential components are

Sr̂tr ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p a;tðtÞ
a2ðtÞ ; ð2:32aÞ

Sθ̂
tθ ¼ −

2

r
a;tðtÞ
a2ðtÞ ; ð2:32bÞ

Sφ̂tφ ¼ −
2

r sin θ
a;tðtÞ
a2ðtÞ : ð2:32cÞ

With continuous tetrad (2.29), demanding the continuity of
(2.31) and (2.32a)–(2.32c) requires the residual condition

½a;tðtÞ�� ¼ 0 ð2:33Þ

at the junction hypersurface. One could have perhaps
guessed this condition in this case as it is the only nontrivial
first derivative for FLRW cosmology. Since every nonzero
component of the extrinsic curvature on a t ¼ const.
surface of the FLRW spacetime involves the metric
functions and the first derivative of aðtÞ, the ISLD con-
ditions are again implied by the FðTÞ junction conditions.
One may also utilize a rotated tetrad and the non-

covariant theory, without the spin connection. This tetrad
is given by [16]

½haμ� ¼

0
BBB@

1 0 0 0

0 aðtÞcosφsinθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
aðtÞsinθ sinφ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
aðtÞcosθ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p

0 aðtÞrð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
rcosθcosφ− rsinφÞ aðtÞrðrcosφþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− kr2

p
cosθ sinφÞ −aðtÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
sinθ

0 −aðtÞrsinθðrcosθ cosφ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
sinφÞ aðtÞrsinθð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kr2

p
cosφ− rcosθ sinφÞ −aðtÞr2sin2θ

1
CCCA:

ð2:34Þ

The superpotential components are rather complicated in
this case but it can be verified that the only derivative
present in Satσ is the first derivative of aðtÞ as is true for the
torsion scalar. Hence the same result as above is implied
with this tetrad.

4. More general cases

Assuming a continuous tetrad, the general junction
condition derived here requires the continuity of T as well
as Saρσn̂ρ. If these conditions are met then one has a well-
posed variationally motivated physical solution. In the
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special cases above it was shown that these junction
conditions imply the well-known junction conditions of
Synge as well as those of Israel, Sen, Lanczos and Darmois
that arise in general relativity. In a more general setting the
Synge and ISLD conditions in general relativity are usually
not equivalent. It is of interest to see what the FðTÞ junction
conditions imply with respect to the general relativity
conditions in a more generic setting, such as relaxing
the spherically symmetric tetrad of (2.8) to one where the
functions A and B depend on both radius and time.4 It is
natural in this case to consider junctions whose hyper-
surfaces reside on the level curve r ¼ hðtÞ (the problem is
still of codimension 1). This is applicable, for example, in
the scenario of collapsing stars. Some of the expressions are
slightly lengthy so for this case we summarize the follow-
ing observations:

(i) The torsion scalar T contains the derivative
A;rðr; tÞr¼hðtÞ and hence this derivative must be
continuous. [In fact, T has the same form as (2.14),
save for the extra time dependence in the functions.]

(ii) The relevant quantities of Saρσn̂ρ (specifically the
components Satσ andSarσ) contain bothA;rðr; tÞr¼hðtÞ
and B;tðr; tÞr¼hðtÞ. Therefore B;tðr; tÞr¼hðtÞ is also
required to be continuous.

(iii) To compare with the ISLD conditions of general
relativity, we note that the extrinsic curvature of an
r ¼ hðtÞ hypersurface possesses r and t derivatives
of both Aðr; tÞ and Bðr; tÞ. Therefore the ISLD
conditions are not implied.

(iv) To compare with the Synge conditions of general
relativity we note that the t − t field equation and the
r − r field equation contain A;rðr; tÞ and B;rðr; tÞ and
the t − r and r − t field equations contain derivatives
with respect to t and r (or mixed), up to second order.
Therefore the Synge condition is not implied.

We note here a peculiarity in this case: even in the Lorentz
covariant version of the theory as calculated here, the
equations of motion seem to contain a pathology for the

case when both r and t dependence are present in the tetrad
functions A and B, in that they imply that T tr ≠ T rt when
FðTÞ ≠ T. This is reminiscent of the issue in non-Lorentz-
covariant FðTÞ gravity when one chooses a “bad” tetrad
[15]. As we are not aware of any good tetrad in the
literature for the case of Aðr; tÞ and Bðr; tÞ we cannot
comment further and this requires further study. We should
mention though that this has no effect on the form of the
general junction condition (2.7) whose continuity remains a
valid set of conditions for FðTÞ gravity.
In even more general cases one cannot say that the FðTÞ

junction conditions, requiring the continuity of T and
Saρσn̂ρ, yield the same junction conditions as in general
relativity. This, of course, is to be expected since FðTÞ
gravity theory is not general relativity, and even TEGR
differs from Einstein theory by boundary terms.

III. CONCLUDING REMARKS

By demanding uniqueness of the variational problem we
derived a set of general junction conditions for FðTÞ gravity
(traditional as well as the covariant version of [9]) for the
problemof codimension 1. These junction conditions require
the continuity of the integral (2.7). Under mild assumptions,
a very general set of conditions which can enforce this
continuity is the continuity of the torsion scalar and con-
tinuity of Saρσn̂ρ, where n̂ is the unit (outward) pointing
normal to the junction hypersurface. It is interesting that in
certain cases these conditions forFðTÞ gravity are analogous
to the Synge and the Israel-Sen-Lanczos-Darmois conditions
of general relativity. Several physically important special
cases were studied where this equivalence holds or partially
holds. In general this equality is not the case but the results of
[18], where FðTÞ junction conditions were studied for the
first time from demanding the avoidance of bulk thin shells
in the non-Lorentz-covariant version of the theory, make up
an interesting subset of conditions which may satisfy the
continuity of (2.7).
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