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We show that, contrary to what is usually claimed in the literature, the zero mass limit of Kerr spacetime
is not flat Minkowski space but a spacetime whose geometry is only locally flat. This limiting spacetime, as
the Kerr spacetime itself, contains two asymptotic regions and hence cannot be topologically trivial. It also
contains a curvature singularity, because the power-law singularity of the Weyl tensor vanishes in the limit
but there remains a distributional contribution of the Ricci tensor. This spacetime can be interpreted as a
wormhole sourced by a negative tension ring. We also extend the discussion to similarly interpret the zero
mass limit of the Kerr–(anti–)de Sitter spacetime.
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I. INTRODUCTION

In recent work [1,2] we studied wormholes obtainable
from vacuumWeyl metrics via duality rotations. One of our
findingswaswormholeswith locally flat geometry described
by the line element (2.4) below [where r ∈ ð−∞;∞Þ] and
sourced by singular rings of negative tension. Such solutions
can be viewed as a particular case of the “loop-based
wormholes” obtained by surgeries and identifications per-
formed on Minkowski space [3]. In this paper we show that
the same solutions can also be obtained by taking the zero
mass limit of the Kerr spacetime.
It is usually argued in the literature (see for example [4,5])

that taking the Kerr black hole mass M to zero reduces the
curvature to zero hence yielding flat Minkowski space.
Indeed, the Kerr geometry becomes locally flat in this limit.
However, it cannot be globally flat and topologically trivial
because it inherits from the original Kerr geometry the
nontrivial topology with two asymptotic regions. At the
technical level, this means that the radial coordinate in
the metric spans a line and not a half-line. It follows that,
although the Weyl part of the curvature vanishes when
M → 0, the curvature also contains a distributional Ricci
part supported by the ring which does not vanish in the limit.
This can be interpreted as an effect of the matter source—a
ring made of a cosmic string with a negative tension. The
geometry outside the ring is locally flat and has two
asymptotic regions connected by a throat—the disk encircled
by the ring.
In what follows we first describe how the locally flat

wormholes can be obtained via analytic continuation and
then discuss the relation to the Kerr metric.

II. FLAT SPACE IN OBLATE SPHEROIDAL
COORDINATES

Let us consider the Minkowski metric,

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; ð2:1Þ

and pass first to the cylindrical coordinates with
x ¼ ρ cosφ, y ¼ ρ sinφ, so that

ds2 ¼ −dt2 þ dρ2 þ ρ2dφþ dz2; ð2:2Þ

and then further transform to the oblate spheroidal coor-
dinates by setting

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sinϑ; z ¼ r cosϑ; ð2:3Þ

where r ∈ ½0;þ∞Þ, ϑ ∈ ½0; π�. This gives

ds2 ¼ −dt2 þ r2 þ a2 cos2 ϑ
r2 þ a2

½dr2 þ ðr2 þ a2Þdϑ2�
þ ðr2 þ a2Þ sin2 ϑdφ2: ð2:4Þ

The Jacobean of the coordinate transformation

���� Dðx; y; zÞ
Dðr; ϑ;φÞ

���� ¼ ðr2 þ a2cos2ϑÞ sinϑ ð2:5Þ

vanishes at r ¼ cosϑ ¼ 0, hence for

ρ2 ≡ x2 þ y2 ¼ a2; z ¼ 0: ð2:6Þ

This corresponds to a ring of radius a in the equatorial
plane. As a result, the ðr; ϑ;φÞ coordinates cover the
whole of Minkowski space, excluding the z-axis and the
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ring. The coordinate singularity on the axis may be treated
in the standard way and we shall discuss it no further. Let us
consider the coordinate singularity at the ring. One has

ρ2

r2 þ a2
þ z2

r2
¼ 1; ð2:7Þ

hence lines of constant r are oblate (half-)ellipses in the
ðρ; zÞ plane, and orthogonal to them are hyperbolas of
constant ϑ (see Fig. 1). In the r → 0 limit the ellipses shrink
to the segment of the ρ-axis,

I ¼ fρ ∈ ½0; a�; z ¼ 0g; ð2:8Þ

whereas the ϑ coordinate is discontinuous across the
segment since

lim
z→�0

cosϑ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2=a2

q
if ρ ≤ a;

lim
z→0

cosϑ ¼ 0 if ρ ≥ a: ð2:9Þ

This can be understood as follows. The inverse coordinate
transformation ðρ; zÞ → ðr; ϑÞ,

rþ ia cosϑ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ iaÞ2

q
; ð2:10Þ

has a branch point at ðρ; zÞ ¼ ða; 0Þ and the segment (2.8)
corresponds to the branch cut position. Choosing only one
branch of the square root, its real part r is non-negative but
the imaginary part a cosϑ is then necessarily discontinuous
across the cut.

As a result, the ðr;ϑÞ coordinates are discontinuous at the
disk of radius a in the equatorial plane. A timelike geodesic
along the z-axis, which is simply a straight line in the ðx; y; zÞ
coordinates, is described in the ðr; ϑÞ coordinates by

dr
ds

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − μ2

q
;

dϑ
ds

∼ sinϑ ¼ 0; ð2:11Þ

where E, μ, s are the particle energy, mass, and proper time,
respectively. Since r should be non-negative, one is bound to
choose opposite signs in front of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − μ2

p
and also different

values of ϑ (either 0 or π for this geodesic) at the opposite
sides of the disk. As a result, rðsÞ is not smooth while ϑðsÞ is
discontinuous across the disk.

III. WORMHOLE VIA ANALYTIC EXTENSION

The metric (2.4) can be geodesically extended to
negative values of r. Indeed, if r is allowed to become
negative, then there is no need to change sign in front offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − μ2

p
in (2.11) across the disc; hence rðsÞ is smooth.

As we shall see in a moment, there is no need either to
require that ϑðsÞ jumps. Therefore, the geodesics analyti-
cally continue from r > 0 to the r < 0 region. This applies
not only to geodesics along the z-axis but to all geodesics
which do not hit the ring ðρ; zÞ ¼ ða; 0Þ. As a result, the
metric in (2.4) naturally extends to r ∈ ð−∞;þ∞Þ.
When expressed in the ðρ; zÞ coordinates, the metric is

still manifestly flat and is given by (2.2), but the speciality
now is that the coordinate transformation (2.3) is no longer
bijective. Since ðr; ϑÞ and ð−r; π − ϑÞ map to the same
ðρ; zÞ, it follows that when r and ϑ span all their values, ρ
and z will span all their values twice. Therefore, one needs
two ðρ; zÞ charts to cover the spacetime; let us call them
ðρþ; zþÞ and ðρ−; z−Þ. In each chart the metric has the form
(2.2), but one has

rþ ia cosϑ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2� þ ðz� þ iaÞ2

q
: ð3:1Þ

Hence one chart spans the Riemann sheet where r > 0, the
other chart spans the sheet where r < 0, and together they
span the whole of the Riemann surface. Each Riemann
sheet has a branch cut along the segment (2.8) and the two
sheets are glued to each other along the cuts by identifying
the upper side of one cut with the lower side of the other
and vice versa (see Fig. 1). The ϑ-coordinate then changes
continuously when passing from one chart to the other
while the r-coordinate simply passes through zero and
changes sign.
As a result, the spacetime actually consists of two copies

of R4 glued together through the disk; hence this is a
wormhole with two asymptotic regions. The geometry is
locally flat and the curvature is locally zero, but not
globally since the ring at ðρ�; z�Þ ¼ ða; 0Þ now supports
a physical singularity of the curvature. To see this one

FIG. 1. Two charts ðρþ; zþÞ and ðρ−; z−Þ needed to cover the
geometry (2.4) with r ∈ ð−∞;∞Þ. Each chart has a branch cut
along the ½0; a� segment of the ρ-axis. Lines of constant r are
oblate (half-)ellipses, orthogonal to them are hyperbolas of
constant ϑ. The r, ϑ coordinates are discontinuous through the
cut on each individual chart, but they smoothly continue from one
chart to the other if the upper edge of one cut is glued to the lower
edge of the other and vice versa as shown. A contour around the
branch point ða; 0Þ then performs one revolution in the ðρþ; zþÞ
chart, followed by a second revolution in the ðρ−; z−Þ chart, and
only after that closes.
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notices that a contour around the branch point ða; 0Þ in the
ðρþ; zþÞ chart does not close after a revolution of 2π but
continues to the ðρ−; z−Þ chart and only after a second
revolution of 2π returns to the original chart to close. As a
result, the total angle increment is 4π; therefore there is a
negative angle deficit of 2π − 4π ¼ −2π and hence the
conical singularity of the curvature at the ring.
One arrives at the same conclusion using the ðr; ϑÞ

coordinates. Introducing x1 ¼ r=a and x2 ¼ cosϑ, the
metric (2.4) reduces for small x1, x2 to

ds2 ¼ −dt2 þ ðx21 þ x22Þ½dx21 þ dx22� þ a2dφ2

¼ −dt2 þ dx2 þ x2dθ2 þ a2dφ2; ð3:2Þ

where ðx1 þ ix2Þ2 ¼ ð2=aÞx expfiθg. Since θ ∈ ½0; 4πÞ,
the metric contains a conical singularity at x ¼ 0 stretching
along the azimuthal φ-direction (see [6] for an account of
“bent” conical singularities). This curvature singularity can
be interpreted as that corresponding to a matter source—a
ring made of an infinitely thin cosmic string with negative
tension [1,2]

T ¼ −
c4

4G
: ð3:3Þ

The ring “cuts a hole” in spacetime and acts as a “gate”
connecting the r > 0 universe and the r < 0 universe.
To create a ring wormhole of 1-meter radius one needs a
negative energy equivalent to the mass of Jupiter (see [1,2]
for further details).

IV. ZERO MASS LIMIT OF KERR SPACETIME

To summarize the above discussion, depending on the
choice of range of the radial coordinate, the same metric
(2.4) describes either flat Minkowski space or the worm-
hole with locally flat geometry. Let us now see that the
latter can also be obtained from the Kerr spacetime by
taking the black hole mass to zero.
Consider the Kerr metric [7] expressed in Boyer-

Lindquist coordinates [8],

ds2 ¼ −dt2 þ 2Mr
Σ

ðdt − asin2ϑdφÞ2 þ Σ
�
dr2

Δ
þ dϑ2

�

þ ðr2 þ a2Þsin2ϑdφ2;

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2ϑ: ð4:1Þ

As is well known [9], the radial coordinate here can be
both positive or negative, r ∈ ð−∞;∞Þ, and there are two
asymptotic regions corresponding to r → �∞ (see [10–12]
for recent reviews of the Kerr metric). The black hole mass
has opposite signs when viewed from these two regions.
The curvature invariant

RμναβRμναβ ¼ CμναβCμναβ

¼ 48M2ð2r2 − ΣÞðΣ2 − 16r2a2 cos2 ϑÞ
Σ6

ð4:2Þ

diverges at Σ ¼ 0, that is at r ¼ cosϑ ¼ 0, which corre-
sponds to a ring in the equatorial plane. The singularity
is shielded by the horizon if M2 > a2 and is naked if
M2 < a2.
The geodesics which do not belong to the equatorial

plane miss the ring singularity and pass from the r > 0
region to the r < 0 region. For example, a timelike
geodesic along the symmetry axis is described by

1

μ2

�
dr
ds

�
2

þ VðrÞ ¼ E with VðrÞ ¼ −
2Mr

r2 þ a2
ð4:3Þ

where E ¼ E2=μ2 − 1. The potential VðrÞ is attractive for
r > a and repulsive for r < −a and is perfectly regular at
r ¼ 0 (see Fig. 2). If E is larger than the maximal value of
the potential, Vmax ¼ M=a, then rðsÞ interpolates over the
whole range, r ∈ ð−∞;þ∞Þ.
Let us fix a ≠ 0 and take the limit M → 0. The potential

VðrÞ then uniformly tends to zero letting the particle move
freely in the interval r ∈ ð−∞;þ∞Þ. The Kerr metric (4.1)
reduces in this limit precisely to (2.4) and describes, since
r ∈ ð−∞;þ∞Þ, the locally flat wormhole and not flat
Minkowski space as is usually assumed in the literature.
A remark is in order here. As was discussed above, the

geometry (2.4) is locally flat, but this fact alone is not
sufficient to determine its global structure and one needs in
addition to specify the range of the radial coordinate r.
If one is interested in a local geometry in an open set, for
example for r ∈ ð0;∞Þ, then it is correct to say that the
M → 0 limit of the Kerr metric is flat. However, one is not
free to choose the spacetime topology when one takes the

FIG. 2. Potential VðrÞ in the geodesic equation (4.3) for two
values of the black hole mass, M1 > M2. When M → 0 the
potential vanishes letting the particle freely move in the interval
r ∈ ð−∞;þ∞Þ.

ZERO MASS LIMIT OF KERR SPACETIME IS A WORMHOLE PHYSICAL REVIEW D 96, 024053 (2017)

024053-3



limit. The original Kerr spacetime contains two asymptotic
regions and the geodesics interpolating between them
sweep the total interval, r ∈ ð−∞;∞Þ. These properties
should hold also for M → 0; hence the topology is non-
trivial in this limit and corresponds to the wormhole
described above. This spacetime still contains a curvature
singularity.
In fact, the existence of the curvature singularity for

M → 0 was emphasized already by Carter in [9] [between
Eqs. (4), (5) of that paper] by saying that in the special case
where M vanishes “there must still be a curvature singu-
larity at Σ ¼ 0, although the metric is then flat everywhere
else.” Specifically, the curvature consists of the Weyl part
and Ricci part. The Weyl part vanishes as M → 0 as seen
from (4.2), while the Ricci tensor is zero outside the
singularity since the metric is vacuum. However, the
Ricci tensor is still allowed to have a nonzero value at
the singularity, even in theM → 0 limit. Indeed, as we have
seen above, the metric (2.4) has the conical singularity at
the ring; hence the Ricci tensor has a delta-function
structure with the support at the ring. This is the descendant
of the black hole ring singularity for M → 0.
Another way to illustrate the same thing is to return to a

finite value ofM and express the Kerr metric in Kerr-Schild
coordinates T, x, y, z [13] related to Boyer-Lindquist
coordinates t; r; θ;φ in (4.1) via

x ¼ ρ cosϕ; y ¼ ρ sinϕ;

z ¼ r cos ϑ; T ¼ tþ
Z

2Mr
Δ

dr; ð4:4Þ

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; ϕ ¼ φþ

Z
2Mar
ΣΔ

dr; ð4:5Þ

which yields

ds2 ¼ −dT2 þ dx2 þ dy2 þ dz2

þ 2Mr3

r4 þ a2z2

�
rðxdxþ ydyÞ

r2 þ a2
þ aðydx − xdyÞ

r2 þ a2

þ z
r
dzþ dT

�
2

: ð4:6Þ

One notices that ðρ; zÞ in these formulas are related to ðr; ϑÞ
precisely as in (2.3); therefore the discussion of Sec. III
applies literally. It follows that, since r ∈ ð−∞;þ∞Þ, one
needs two Kerr-Schild charts ðρþ; zþÞ and ðρ−; z−Þ to cover
the manifold. Each chart has a branch cut at ρ ∈ ½0; a�,
z ¼ 0, and to analytically continue from one chart to the
other one identifies the upper side of one cut with the lower
side of the other and vice versa. These facts are identical to
those described in Sec. III, but they are described also in
Sec. 5.6 of the Hawking-Ellis book [14] that discusses the

structure of the supercritical ða2 > M2Þ Kerr spacetime.
Figure 27 in that book shows how the two charts are glued
through the cuts, and it is precisely the same as our Fig. 1.
This shows that the conical singularity is present already

for M ≠ 0. Indeed, a contour around the core of the ring
singularity passes from one Kerr-Schild chart to the other
and then back to close; hence the total angle increment is 4π
[the terms in the second line in (4.6) do not influence this
result if the contour is vanishingly small]. Therefore, the
ring source of the Kerr metric supports, apart from the
power-law singularity of the Weyl part of the curvature,
also the distributional singularity of the Ricci part of the
curvature. The former disappears in theM → 0 limit but the
latter remains. The part of the Kerr source that vanishes for
M → 0 was computed in [15], while the nonvanishing part
corresponds to the negative tension ring.
Finally we recall that the Kerr spacetime with M2 < a2

contains closed timelike curves (CTC) [9]. This is a conse-
quence of the fact that the gφφ component of the metric (4.1),

gφφ ¼
�
r2 þ a2 þ 2Ma2r

Σ2
sin2 ϑ

�
sin2 ϑ; ð4:7Þ

becomes negative in the r < 0 region close to the ring; hence
closed orbits of the vector ∂=∂φ become timelike. These
CTC’s can be deformed to pass through any point of the
spacetime [9]. However, if M → 0 then gφφ is positive and
the problem does not arise.

V. LOCALLY (ANTI-)DE SITTER WORMHOLES

As an application, we consider the generalization of the
above analysis for a nonvanishing cosmological constant.
For Λ ≠ 0 one cannot use the Weyl formulation originally
applied in [1,2] to construct wormholes. However, one can
consider the M → 0 limit of the Kerr–(anti–)de Sitter
[(A)dS] metric [16] expressed in oblate spheroidal coor-
dinates similar to those used in (2.4) [17],

ds2 ¼ −
Δθ

Ξ
Ddt2 þ r2 þ a2cos2ϑ

r2 þ a2

�
dr2

D
þ r2 þ a2

Δθ
dϑ2

�

þ r2 þ a2

Ξ
sin2ϑdφ2;

D ¼ 1 −
Λr2

3
; Δθ ¼ 1þ Λa2

3
cos2ϑ;

Ξ ¼ 1þ Λa2

3
; ð5:1Þ

assuming thatΞ > 0. ForΛ → 0 this metric reduces to (2.4).
ForΛ ≠ 0 it is singular at the ring r ¼ cos ϑ ¼ 0, similarly to
(2.4). The metric is regular everywhere else (away from
the symmetry axis) if Λ ∈ ð−3=a2; 0�, while for Λ > 0 it is
regular (and static) only for r2 < 3=Λ. The coordinate
transformation ðr; ϑÞ → ðR;ΘÞ with
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R2 ¼ 1

Ξ
ðr2Δθ þ a2sin2ϑÞ; R cosΘ ¼ r cos ϑ ð5:2Þ

brings the metric to the standard (A)dS form,

ds2 ¼ −
�
1 −

ΛR2

3

�
dt2 þ dR2

1 − ΛR2=3

þ R2ðdΘ2 þ sin2Θdφ2Þ: ð5:3Þ

If the radial coordinate r in (5.1) changed in the interval
½0;∞Þ then the coordinate transformation (5.2) would be
bijective and the geometry (5.1) would be globally (A)dS.
The ring at r ¼ cos ϑ ¼ 0 would then correspond to a
coordinate singularity. However, the geometry (5.1) inherits
the global structure of the original Kerr-(A)dS geometry;
hence r ∈ ð−∞;∞Þ. As a result, the geometry is only locally
(A)dS and interpolates between two (A)dS regions con-
nected through the throat—the disk encircled by the ring at
r ¼ cos ϑ ¼ 0. The ring itself supports a curvature singu-
larity whose existence is revealed by considering a closed
contour in the plane spanned by x1 ¼ r=a and x2 ¼ cosϑ.
The arguments similar to those used around (3.2) show that
thewinding angle increases up to 4π; hence there is a conical
singularity of the Ricci tensor. This can be interpreted as a
cosmic string loop with the negative tensionT ¼ −c4=ð4GÞ.
In summary, the zero mass limit of the Kerr-(A)dS metric

(5.1) describes a wormhole supported by a negative tension
ring whose geometry is locally (A)dS. For Λ ¼ 0 it reduces
to the locally flat wormhole (2.4). Below we describe some
properties of the geometry (5.1).

A. Structure of wormholes with Λ= 0 and Λ < 0

The global structure of wormholes is simple for Λ ¼ 0 or
Λ < 0. They connect through the disk either two copies of
Minkowski space or two copies of AdS space, respectively.
Considering for simplicity geodesics following the sym-
metry axes with ϑðsÞ ¼ 0, the conformal diagrams of
subspaces spanned by these geodesics are shown in
Fig. 3. The diagram of the Λ ¼ 0 solution is made of two
copies of the Minkowski space conformal diagram, one for
r > 0 and the other for r < 0. The copies are joined across
the history of the disk at r ¼ 0 (the disk is represented by one
point, r ¼ ϑ ¼ 0). Similarly, the diagram for the AdS
wormhole consists of two copies of the AdS diagram with
the timelike boundary J .

B. Structure of wormhole with Λ > 0

The global structure of the Λ > 0 wormhole is more
complex. The wormhole then connects through the disk at
r ¼ 0 de Sitter regions with r > 0 and with cosmological
horizon at r ¼ rH to those with r < 0 and with cosmo-
logical horizons at r ¼ −rH. As shown in Fig. 4, this gives
rise to an infinite sequence of alternating r > 0 and r < 0
regions. This diagram can be obtained by considering the
Kruskal extension; however, one can apply a much simpler
method just to see that the diagram is periodic.
Restricting to the region(s) where r2 ≤ 3=Λ and setting

r ¼
ffiffiffiffi
3

Λ

r
sin χ; t ¼

ffiffiffiffi
3

Λ

r
~t; ζ2 ¼ Λa2

3
; ð5:4Þ

the metric (5.1) becomes

ds2 ¼ 3

Λ

�
−
1þ ζ2cos2ϑ

1þ ζ2
cos2χd~t2 þ sin2χ þ ζ2 cosϑ

sin2χ þ ζ2
dχ2

þ sin2χ þ ζ2cos2ϑ
1þ ζ2cos2ϑ

dϑ2 þ sin2χ þ ζ2

1þ ζ2
sin2ϑdφ2

�
:

ð5:5Þ

The wormhole throat is placed where sin χ ¼ 0 while the
cosmological horizon is at cos χ ¼ 0. The advantage of this
parametrization is that the range of the radial coordinate χ
can be analytically extended to the whole line ð−∞;∞Þ, the

FIG. 3. Conformal diagrams of wormholes with Λ ¼ 0 and
Λ < 0.

FIG. 4. Conformal diagram of wormhole with Λ > 0.
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metric coefficients then becoming periodic functions of χ.
This explains the periodicity of the spacetime diagram in
Fig. 4 containing an infinite sequence of wormhole throats
at χ ¼ πk and “Einstein-Rosen bridges” at χ ¼ πðkþ 1=2Þ.
However, the coordinates used in (5.5) are not global and
cover only the interior of the diamonds in Fig. 4.

C. Separation of variables in the wave equation

As a last remark, returning to (5.1), we notice that
coordinates used in this metric allow one to separate the
variables in the Klein-Gordon equation

ð□ − μ2ÞΦ ¼ 0: ð5:6Þ

For Λ → 0 this is not surprising since the variables in the
wave equation (and in the Hamilton-Jacobi equation [18])
separate in flat space expressed in the spheroidal coordi-
nates. The variables separate also for Λ ≠ 0 if the metric is
expressed in Boyer-Lindquist coordinates [19,20], but it is
not immediately obvious that they separate in spheroidal
coordinates. However, setting Φ ¼ FðrÞGðϑÞ expfiωtþ
imφg we find that (5.6) reduces to

ððr2 þ a2ÞDF0ðrÞÞ0

þ
�
3Ξω2

ΛD
− μ2r2 þ m2a2Ξ

r2 þ a2
þ λ

�
FðrÞ ¼ 0;

1

sinϑ
ðsin ϑΔϑG0ðϑÞÞ0

−
�
3Ξω2

ΛΔϑ
þ μ2a2 cos2 ϑþ m2Ξ

sin2 ϑ
þ λ

�
GðϑÞ ¼ 0; ð5:7Þ

where λ is the separation constant determined by the
condition of regularity of GðϑÞ.

VI. CONCLUSIONS

To summarize, we have shown that the zero mass limit of
the Kerr spacetime is not flat Minkowski space as is usually
assumed but a locally flat static wormhole spacetime
containing a conical singularity of the Ricci tensor along
a ring. This singularity can be interpreted as an effect of a
singular matter source—a negative tension cosmic string
loop. Similarly, the zero mass limit of the Kerr-AdS or
Kerr–de Sitter spacetime is a locally (A)dS wormhole
supported by a negative tension ring. This yields probably
the simplest way to construct wormholes—by taking limits
of the known metrics.
As a final remark, we notice that the Kerr spacetime

can be “mutilated” and restricted to the r ≥ 0 region by
introducing an additional matter source distributed over the
disk encircled by the ring singularity [21]. TheM → 0 limit
of such “mutilated” spacetime would be flat Minkowski
space. The M → 0 limit of the full Kerr spacetime is the
wormhole.
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