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Recently proposed Born-Infeld (BI) theories of gravity assume a constant BI parameter (κ). However, no
clear consensus exists on the sign and value of κ. Recalling the Brans-Dicke (BD) approach, where a scalar
field was used to generate the gravitational constantG, we suggest an extension of Born-Infeld gravity with
a similar Brans-Dicke flavor. Thus, a new action, with κ elevated to a spacetime dependent real scalar field,
is proposed. We illustrate this new theory in a cosmological setting with pressureless dust and radiation as
matter. Assuming a functional form of κðtÞ, we numerically obtain the scale factor evolution and other
details of the background cosmology. It is known that BI gravity differs from general relativity (GR) in the
strong-field regime but reduces to GR for intermediate and weak fields. Our studies in cosmology
demonstrate how, with this new, scalar-tensor BI gravity, deviations from GR, as well as usual BI gravity,
may arise in the weak-field regime too. For example, we note a late-time acceleration without any dark
energy contribution. Apart from such qualitative differences, we note that fixing the sign and value of κ is
no longer a necessity in this theory, though the origin of the BD scalar does remain an open question.
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I. INTRODUCTION

General relativity (GR) is surely successful as a classical
theory of gravity, and more so, with the recent detection of
gravitational waves [1]. Over the years, it has passed
through several precision tests without any significant sign
of failure. However, most of these tests [2] are either in
vacuum or in the weak-field regime. They largely verify the
Einstein equivalence principle and set constraints on
weak-field deviations from GR, as encoded through the
parametrized post-Newtonian formalism.
On the other hand, the occurrence of spacetime singular-

ities under very reasonable assumptions on causal structure
and matter stress energy has been shown many years ago in
the work of Hawking and Penrose [3,4]. Singularities
(cosmological, black hole, or naked) are thus unavoidable.
Therefore, a resolution of singularities and/or an under-
standing about the consequences of their existence is highly
desirable.
It is also a fact that, despite immense theoretical efforts,

an explanation of the origin of dark matter or dark energy
does not seem to exist within the framework of GR. The
need of an understanding/solution to the dark matter and
dark energy problems stem from the fact that both of them
arose from observations. For recent reviews on dark energy
and dark matter see [5,6].
In order to address some of these problems, it is not

unusual to construct classical theories which deviate from
GR, particularly in the strong-field regime. Thus, we have

various proposals on modified gravity [7,8] at the classical
level, apart from the intense pursuit of quantum gravity
[9,10]. A modified gravity model must necessarily have a
gravitational action which is different from the standard
Einstein-Hilbert action. It is also true that there are, within
GR, several models (particularly for dark energy [5]) which
assume various types of rather nonstandard matter stress
energy. Wewill, however focus here on modifications in the
gravity sector only.
One such modified gravity model is inspired by

Born-Infeld (BI) electrodynamics where the infinity in
the electric field at the location of a point charge is
regularized [11]. With a similar determinantal structure
ð½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðgμν þ κRμνÞ
p �Þ in the action, a gravity theory in

the metric formulation was first suggested by Deser and
Gibbons [12]. In fact, a determinantal form of the gravity
action existed in Eddington’s affine reformulation of GR
for de Sitter spacetime [13], though matter coupling
remained a problem in the Eddington approach.
Much later, Vollick [14] introduced the Palatini formu-

lation of Born-Infeld gravity and worked on various related
aspects. Unlike metric variation, where the connection is
assumed to be related to the metric, in a Palatini variation,
both the metric and connection are varied independently.
Consequences of these two approaches regarding the
existence of additional propagating degrees of freedom
(in the metric approach), absent in the Palatini formulation,
as well as a general review on the Palatini approach in
modified gravity can be found in [15].
Vollick also introduced a nontrivial and somewhat

artificial way of coupling matter in his theory [16,17]. More
recently, Bańados and Ferreira [18] have come up with a
formulation where matter coupling is different and simpler
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compared to Vollick’s proposal. We focus here on the
theory proposed in Ref. [18] and refer to it as Eddington-
inspired Born-Infeld (EiBI) gravity, for obvious reasons.
The EiBI theory reduces to GR in vacuum. It also falls
within the class of bimetric theories of gravity (bigravity)
[19–22].
Let us first briefly recall EiBI gravity. The central feature

here is the existence of a physical metric which couples to
matter and another auxiliary metric which is not used for
matter couplings. One needs to solve for both metrics
through the field equations. The action for the theory
developed in Ref. [18] is given as

SBIðg;Γ;ΨÞ ¼
c3

8πGκ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνðΓÞj

q
− λ

ffiffiffiffiffiffi
−g

p i

þ SMðg;ΨÞ; ð1Þ

where λ ¼ κΛþ 1, with Λ being the cosmological con-
stant. A Palatini variation with respect to gμν and Γ, using
the auxiliary metric qμν ¼ gμν þ κRμνðΓÞ and assuming Rμν

symmetric, gives the field equations for this theory.
In order to obtain solutions, we need to assume a gμν and

a qμν with unknown functions, as well as a matter stress
energy (Tμν). Thereafter, we write down the field equations
and obtain solutions using some additional assumptions
about the metric functions and the stress energy.
A lot of work on various fronts has been carried out

on diverse aspects of this theory in the last few years.
Astrophysical scenarios have been widely discussed
[23–31]. Spherically symmetric solutions of various types
have been obtained [18,32–38]. A domain wall brane in a
higher-dimensional generalization of EiBI theory was ana-
lyzed inRef. [39]. Generic features of the paradigmofmatter-
gravity couplings were analyzed in [40]. Further, in [41], the
authors showed that EiBI theory admits a nongravitating
matter distribution, which is not allowed in GR. Some
interesting cosmological and circularly symmetric solutions
in 2þ 1 dimensions are obtained in [42]. In [43], a problem in
the context of stellar physics, related to surface singularities
in EiBI gravity, was noticed. Gravitational backreaction was
suggested as a cure in [44]. A modification of EiBI theory,
through a functional extension similar to fðRÞ theory, was
proposed in [45]. Recently, in [46] a new route to matter
coupling was suggested via the use of the Kaluza ansatz in a
five-dimensional EiBI action (in a metric formulation) and
subsequent compactification to four-dimensional gravity
coupled nonlinearly to electromagnetism. Generalization of
the EiBI theory by adding a pure trace term in the determi-
nantal action was suggested in [47] and some interesting
cosmological solutionswere found, such as a de Sitter stage in
a radiation dominated Universe.
A lot of the recent work on EiBI gravity is devoted to

cosmology. In [18,20,48], the nonsingularity of the
Universe filled by any ordinary matter was demonstrated.
Linear perturbations have been studied in the background

of homogeneous and isotropic spacetimes in the Eddington
regime [49,50]. Bouncing cosmology in EiBI gravity
was emphasized as an alternative to inflation in [51].
The authors in [52], studied a model described by a scalar
field with a quadratic potential, which results in a non-
singular initial state of the Universe leading naturally to
inflation. They also investigated the stability of tensor
perturbations in this inflationary model [53], whereas the
scalar perturbations were studied in [54]. Large-scale
structure formation in the Universe and the integrated
Sachs-Wolfe effect were discussed in [55]. Quantum effects
near the late-time abrupt events were studied in the EiBI
model by proposing an effective Wheeler-DeWitt equation
[56,57] and it was shown that these events are expected to
be avoided when quantum effects are under consideration.
Other relevant work has been reported in [58–69]. For a
very recent review on Born-Infeld gravity, see [70] and the
references therein.
The theory parameter κ in EiBI gravity is a constant

though we have no way to know whether it is universal.
The sign of κ governs the nature of solutions and its value
determines the scale at which corrections to GR dynamics
cannot be neglected. There are some upper bounds on the
value of κ from astrophysical and cosmological observa-
tions [23–25,71]. For example, the existence of self-
gravitating compact objects like neutron stars strongly
constrains the theory with κ > 0 and κ ≲ 5 × 108 m2

[23]. Stellar equilibrium and evolution of the Sun puts a
constraint jκj≲ 2 × 1014 m2 [24]. Primordial nucleosyn-
thesis leads to κ ≲ 106 m2 [25] where it is assumed that
κ > 0. From nuclear physics constraints (i.e. requiring the
electromagnetic force as dominant over the gravitational
force, at the subatomic scale) one gets jκj≲ 6 × 105 m2

[71]. All the numbers (for κ) mentioned above are in the
unit of m2, whereas, in most of the literature, the unit used
(for κ0 ¼ 8πGκ) is kg−1m5 s−2. In summary, no consensus
exists on the sign and value of κ.
In our work here, we address this issue by suggesting

the possibility of κ being a nonconstant, real scalar field.
The advantage with κ being a scalar field is that it can take
on different functional forms in different scenarios (say,
cosmology, black holes, stars, etc.) and a universal sign or
value is not a necessity. However, one still needs to address
the issue of the origin of κ.
It is known that EiBI theory differs from GR in the high

energy regime. With a scalar κ a new theory of gravity
emerges, which reduces to GR only in the intermediate
energy scale, but may differ in the high as well as the low
energy regimes. Our aim here is to formulate this theory
with a scalar κ and explore its consequences. This is carried
out in the subsequent sections.

II. THE EiBI ACTION WITH κ AS A REAL
SCALAR FIELD

Let us begin by proposing a new action given as
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SBIκðg;Γ; κ;ΨÞ ¼
Z �

1

κ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgαβ þ κRαβðΓÞj

q
−

ffiffiffiffiffiffi
−g

p �

−
ffiffiffiffiffiffi
−g

p
~ωðκÞgμν∂μκ∂νκ

�
dDxþ SMðg;ΨÞ;

ð2Þ

where κðt; x⃗Þ is a scalar field and ~ωðκÞ is a coupling
function, reminiscent of scalar-tensor (Brans-Dicke) mod-
ifications of GR [72]. We assume c ¼ 1, 8πG ¼ 1, and
spacetime of dimensionD. We also assume the Ricci tensor
(Rαβ) to be symmetric. For a constant κ we recover the
standard EiBI theory of gravity [18]. If κ is constant and
small in value, the action reduces to the known Einstein-
Hilbert one (with cosmological constant Λ ¼ 0). Variation
of the action [Eq. (2)] with respect to Γ yields the earlier
definition of the auxiliary metric field,

qαβ ¼ gαβ þ κRαβðqÞ; ð3Þ
where the Γ’s are computed using the following relation:

Γα
μν ¼

1

2
qαβð∂νqβμ þ ∂μqνβ − ∂βqμνÞ; ð4Þ

as the connection satisfies the standard metric-connection
compatibility with the metric qμν, i.e. ~∇μð ffiffiffiffiffiffi−qp

qαβÞ ¼ 0.
However variation with respect to gαβ yields

ffiffiffiffiffiffi
−q

p
qαβ −

ffiffiffiffiffiffi
−g

p
gαβ ¼ −κ

ffiffiffiffiffiffi
−g

p
Tαβ
eff ; ð5Þ

where

Tαβ
eff ¼ Tαβ − ~ωgαβgμν∂μκ∂νκ þ 2 ~ωgμαgνβ∂μκ∂νκ: ð6Þ

Tαβ is the usual stress-energy tensor. Variation with respect
to κ gives

2κ ~ωðκÞ∇μ∇μκ þ κ ~ω0ðκÞ∇μκ∇μκ þ 1

κ

þ
ffiffiffiffiffiffi−qp
ffiffiffiffiffiffi−gp

�
1

2
qαβRαβðqÞ −

1

κ

�
¼ 0; ð7Þ

where the covariant derivatives are defined with respect to
the physical metric (g) and ~ω0ðκÞ is a derivative of ~ω with
respect to κ.
Using the abovementioned field equations, one can

verify that the stress-energy tensor (Tμν) is conserved, i.e.

∇μTμν ¼ 0: ð8Þ

It is important to check whether the above equations are
consistent with the solutions for constant κ—particularly
Eq. (7). In vacuum, from Eq. (5), we have

ffiffiffiffiffiffi−qp
qαβ ¼ffiffiffiffiffiffi−gp

gαβ which implies qμν ¼ gμν. Using this in Eq. (3),

Rαβ ¼ 0. Hence, Eq. (7) is satisfied. Now, to check the
consistency in the presence of a matter distribution
(Tαβ ≠ 0), we take the example of a three-dimensional
(D ¼ 3) cosmological solution in EiBI gravity for a dust-
filled (P ¼ 0) Universe [42]. The physical Friedmann-
Robertson-Walker (FRW) spacetime is given by ds2 ¼
−dt2 þ a2ðtÞ½dr2 þ r2dθ2�, where a2ðtÞ¼ρ0ðt2−κÞ for
κ > 0 and κ < 0 as well, and ρ0 is the present day energy
density of the Universe. The corresponding auxiliary line
element is ds2q ¼−dt2þb2ðtÞ½dr2þ r2dθ2�, where b2ðtÞ ¼
ρ0t2. Then, RðqÞ¼ 2ð _b2b2þ2 b̈

bÞ¼ 2=t2. Using these relations,
it is now easy to verify that Eq. (7) is consistent for a
constant κ.
The nonrelativistic limit of the theory is different from

that in EiBI gravity [18]. For a time-independent physical
metric ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdx⃗ · dx⃗ and an
energy-momentum tensor Tμν ¼ ρuμuν, the full set of
linearized field equations are given by the following two
equations:

∇2Φ ¼ ρ

2
þ 1

4
∇2ðκρÞ þ 1

2
~ωð∇⃗κÞ2 þ 1

4
∇2ðκ ~ωð∇⃗κÞ2Þ; ð9Þ

2 ~ω∇2κ þ ~ω0ð∇⃗κÞ2 þ 1

4
ðρþ ~ωð∇⃗κÞ2Þ2 ¼ 0; ð10Þ

where Φ, ρ, and κ depend only on x⃗. Equation (9) is the
modified Poisson equation in the new theory. For a constant
κ it reduces to the Poisson equation in the original EiBI
theory.
We also mention that a study of gravitational waves in

vacuum as well as vacuum exact solutions in this theory
will be different (unlike standard EiBI gravity [18]) from
usual GR because of the presence of the scalar field κ.

III. COSMOLOGY

As an application of the new theory, we now study
cosmology in the (3þ 1)-dimensional version of the new
theory. We assume a spatially flat FRW ansatz for the
physical line element:

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð11Þ
and choose an ansatz for the auxiliary line element,

ds2q ¼ −Udt2 þ Va2½dx2 þ dy2 þ dz2�: ð12Þ

Let us consider a Universe driven by a perfect fluid with the
stress-energy tensor,

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð13Þ

where p and ρ are pressure and energy density respectively,
and uμ ¼ diag:f1; 0; 0; 0g. Using Eqs. (11) and (12), the 00
(temporal) and ii (spatial; i ¼ 1, 2, 3) components of Tμν

eff
[Eq. (6)] become
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T00
eff ¼ ρþ ~ω_κ2 and Tii

eff ¼ ðpþ ~ω_κ2Þ=a2: ð14Þ
Further use of Eq. (5) leads to expressions for U and V

given by

U ¼ ð2 − y − κωρÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ κρ

p ; ð15Þ

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ κρÞð2 − y − κωρÞ

p
; ð16Þ

where we have defined a new variable y ¼ 1þ κ ~ω_κ2 and
used the equation of state p ¼ ωρ, with ω being a constant.
The 00 and 11 equations resulting from Γ variation lead to

ä
a
þ V̈
2V

−
_V2

4V2
þ _a
a

_V
V
−

_U
2U

�
_a
a
þ

_V
2V

�
¼ U − 1

3κ
; ð17Þ

ä
a
þ V̈
2V

þ
_V2

4V2
þ 3

_a
a

_V
V
−

_U
2U

�
_a
a
þ

_V
2V

�
þ 2

�
_a
a

�
2

¼ 1

κ

�
U −

U
V

�
: ð18Þ

Subtracting Eq. (17) from Eq. (18) we obtain

�
_a
a
þ

_V
2V

�2

¼ 1

6κ

�
1þ 2U − 3

U
V

�
: ð19Þ

The κ-variation equation (7) becomes

_yþ 6ðy − 1Þ _a
a
¼ _κ

�
1

2κ
ðyþ κρÞ

�
1þ 2U − 3

U
V

�
− ρ

�
:

ð20Þ

Finally, conservation of the stress-energy tensor leads to

_ρþ 3ðωþ 1Þρ _a
a
¼ 0; ð21Þ

which yields the same GR relation between ρ and a.
Thus, we have five independent equations [Eqs. (15),

(16), (19), (20), and (21)] to solve for six unknown
functions (a, U, V, κ, ρ, and y). Hence we have the
freedom to choose a form of κðtÞ, which we assume as

κðtÞ ¼ κ0 þ ϵ expðμtÞ; ð22Þ

with κ0, ϵ, and μ being constants. For μ > 0, κ → κ0 at
t → −∞ and, for μ < 0, κ → κ0 at t → ∞. In limiting
situations, where jκ0j ≫ jϵ expðμtÞj, we expect to recover
the known EiBI gravity (for a constant κ) and, in the other
regime, there may be deviations from EiBI gravity. In the
following subsections, we investigate possible deviations
for the three cases: (i) vacuum, (ii) dust (p ¼ 0), and
(iii) radiation (p ¼ ρ=3).

A. Vacuum

Unlike GR or standard EiBI gravity, in this new theory,
we do have nontrivial vacuum FRW solutions generated
primarily by the time-dependent scalar field κðtÞ. For μ > 0
[see Eq. (22)], nonsingular solutions with accelerated
expansion at late times are found for both positive and
negative values of κ0 and ϵ. As an illustration, plots of
the scale factor aðtÞ and the corresponding κðtÞ for κ0 > 0
and ϵ < 0 are shown in Figs. 1(a) and 1(b). From Figs. 1(c)
and 1(d), we note that y → 0 and _y → 0 at late times.
During this phase, _a

a ≃ _κ
2κ [from Eq. (20)]. As a result,

a ∝
ffiffiffiffiffijκjp

, or a ∝ expðμt=2Þ, since jϵ expðμtÞj ≫ jκ0j at
large t for μ > 0. For ϵ > 0, y → 2 and _y → 0, and
therefore a ∝ expðμt=6Þ at large t. Thus the scale factor
approaches de Sitter expansion stage at late times for μ > 0.
As we will see later, for ϵ < 0, a similar reasoning applies
to the Universe filled with dust or radiation, which also
approaches the de Sitter expansion stage at late times when
jκρj ∼ 0. This becomes clear from the numerical plots
shown later. Although we get an expression for asymptotic
behavior of aðtÞ at late times, we need to solve the system
of equations numerically to obtain the full solution.

B. p = 0, dust

For dust (p ¼ 0), ρ ¼ ρ0=a3, where ρ0 is a constant.
Thus, U and V become

U ¼ ð2 − yÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ κρ

p and V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ κρÞð2 − yÞ

p
: ð23Þ

We define two new functions,

F1 ≔ 1þ 2U − 3
U
V

¼ 1þ 2ð2 − yÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ κρ

p −
3ð2 − yÞ
yþ κρ

; ð24Þ

and

β ≔
_a
a
þ

_V
2V

¼ 1

4ðyþ κρÞ
�
_yð2 − 2y − κρÞ

2 − y
þ _a
a
ð4yþ κρÞ

þ μðκ − κ0Þρ
�
; ð25Þ

where we have used the Eq. (22). Using Eqs. (20), (24), and
(25), we get

_a
a
¼ ðyþ κρÞ½4βð2 − yÞ þ μðκ − κ0Þfð2yþκρ−2ÞF1

2κ − ρg�
4ð2y2 − 4yþ 3Þ þ κρð5y − 4Þ

≡Hða; κ; y; βÞ; ð26Þ
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and

_y ¼ −6ðy − 1ÞH þ μðκ − κ0Þ
�ðyþ κρÞF1

2κ
− ρ

�

≡ Fyða; κ; y; βÞ: ð27Þ
Furthermore, making use of Eq. (19) we get

_β ¼ 1

12β

d
dt

�
F1

κ

�

≡ Fβða; κ; y; βÞ: ð28Þ

Using Eq. (24), we compute

Fβ ¼
1

12βκ

�∂F1

∂y Fy − 3ρ
∂F1

∂ρ H þ μðκ − κ0Þ
�∂F1

∂κ −
F1

κ

��
;

ð29Þ

where H and Fy are given by the rhs of Eqs. (26) and (27).
We solve numerically the system of first order ordinary
differential equations (ODEs) (26), (27), and (28) along with
Eq. (22). We need only three initial conditions, að0Þ, yð0Þ,
and κð0Þ. Then βð0Þ is fixed, βð0Þ ¼ �β0, where β20 ¼
ðF1=6κÞjfað0Þ;yð0Þ;κð0Þg. However, in our solution, we choose
an appropriate sign for βð0Þ such that Hð0Þ > 0. We also

choose κð0Þ ∼ κ0 and yð0Þ ∼ 1 so that we start from an EiBI
regime of the solution.

1. μ > 0 case

For μ > 0, we may choose κ0 and ϵ as either positive or
negative. From the analysis of our numerical solutions, we
found that the solutions are nonsingular only for ϵ < 0.
For κ0 > 0 and ϵ < 0, κ decreases with the increase in time,
changes sign from positive to negative, and becomes more
and more negative with time [see Fig. 2(a)]. In this case, the
early Universe undergoes a loitering phase [see Fig. 2(b)].
This is similar to the case of a constant positive κ in EiBI
gravity [18,48]. However, we note that the scale factor aðtÞ
never goes to zero unlike the case in EiBI gravity, where
a → 0 as t → −∞ for a dust-filled Universe [48]. This is
demonstrated in the inset of Fig. 2(b), where the dashed
curve denotes the κ ¼ κ0 case and the solid curve denotes
the κðtÞ case. The plot also demonstrates the accelerated
expansion of the Universe at late times. This feature is
absent in EiBI theory and GR, where we see deceleration of
the Universe at late times for p ¼ 0. Figure 2(c) shows the
plot of the deceleration parameter q. We know that, in GR,
for a matter (dust-) dominated Universe, aðtÞ ∝ t2=3 and,
consequently, q ¼ 0.5. In the plot of q [Fig. 2(c)], we see
that there are large variations from the value in GR, both at
early and late times. In the intermediate range of time scale
(t ∼ 0–100), we see a GR-like phase. We also note that the
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FIG. 1. Plot of (a) aðtÞ, (b) κðtÞ, (c) yðtÞ, and (d) _yðtÞ for a vacuum (ρ ¼ 0 and p ¼ 0) solution for κ0 > 0, ϵ < 0, and μ > 0.
The parameters used are κ0 ¼ 1, μ ¼ 0.1. We choose að0Þ ¼ 1, yð0Þ ¼ 1.001, κð0Þ ¼ 0.999 for the numerical solution.
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Universe asymptotically approaches a de Sitter expansion
phase (q → −1) at late times (for t > 200 in the plot).
This fact is also evident from Fig. 2(d), where the Hubble
function H becomes almost a constant at late times.
Figure 2(d) shows that there is a finite maximum energy
density or, conversely, a nonzero minimum scale factor.
This is unlike the case in EiBI gravity, where ρ → ∞ as
t → −∞ for the p ¼ 0 case [48]. From Fig. 2(f), we note
that U ∼ 1 and V ∼ 1 during the GR-like phase (i.e.
t ∼ 0–100) but varies largely at both the early (t < 0)
and late times (t > 100).
For κ0 < 0 and ϵ < 0, κ is always negative and, with

increase in time, jκj increases [see Fig. 3(a)]. In this case,

the Universe undergoes a bounce instead of a loitering
phase at early times. This is similar to EiBI gravity. Late-
time accelerated expansion of the Universe occurs after a
deceleration which immediately follows the bounce. This
feature is understood through the plots of the scale factor aðtÞ
in Fig. 3(b) and the deceleration parameter q in Fig. 3(c).
Here also, the Universe reaches, asymptotically, a de Sitter
expansion at late times (t > 280 in the plots for q and H).
The case ϵ > 0 is not shown here through plots. We have

checked that our numerical solutions reveal an early loitering
phase for κ0 > 0 and a bounce for κ0 < 0, as expected
(κ approaches the constant value κ0 at early times, i.e :κ → κ0
as t → −∞). Thus, the early Universe is still nonsingular.
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FIG. 2. Plot of (a) κðtÞ, (b) aðtÞ, (c) qðtÞ, (d) HðtÞ, (e) ρðtÞ, and (f) UðtÞ (dotted line), VðtÞ (dashed line) for κ0 > 0, ϵ < 0, and μ > 0.
The parameters used are κ0 ¼ 1, μ ¼ 0.1, and ρ0 ¼ 0.1. We choose að0Þ ¼ 1, yð0Þ ¼ 1.001, κð0Þ ¼ 0.999 for the numerical solution.
The dashed black curve in (b) corresponds to the EiBI solution with κ ¼ κ0 (constant). Equation of state (EOS), p ¼ 0.
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However, in both the cases, for ϵ > 0, a singularity appears at
a finite future time tfwhereH diverges (H → −∞ as t → tf).
The scale factor aðtÞ and the energy density ρðtÞ though
remain finite at tf. This is a type-III (big freeze) singularity
according to the classification given in [73,74] and it yields a
geodesically complete spacetime that does not necessarily
crush/destroy physical observers [75].

2. μ < 0 case

For μ < 0, κ approaches κ0 asymptotically as t → ∞.
Thus, the solutions tend to the EiBI solutions for constant κ0,
at large t. In this case also, a nonsingular Universe is found
for ϵ < 0. However, we do not see a loitering early stage

for κ0 > 0. A bounce occurs for both κ0 > 0 and κ0 < 0.
We note that an accelerated contraction precedes the decel-
erated contraction, before the bounce occurs. These features
are shown in Figs. 4 and 5. Figures 4(c) and 5(c) show that
q → −1 as t → −∞:H approaches a constant negative value
during this period [see the inset of Fig. 4(d) and Fig. 5(d)].
Also, we see that q ∼ 0.5 in between the bounce and the
accelerated contraction phase, and throughout the future
time after the bounce. Thus, evolution of the scale factor is
GR-like during these periods. Itmay also be noted thatU ∼ 1

and V ∼ 1 in these phases.
The solutions are singular for ϵ > 0. Therefore, we only

mention the results, but do not show the plots. For κ0 > 0
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FIG. 3. Plot of (a) κðtÞ, (b) aðtÞ, (c) qðtÞ, (d)HðtÞ, (e) ρðtÞ, and (f)UðtÞ and VðtÞ for κ0 < 0, ϵ < 0, and μ > 0. The parameters used are
κ0 ¼ −1, μ ¼ 0.1, and ρ0 ¼ 0.01. We choose að0Þ ¼ ð−κ0ρ0Þ1=3, yð0Þ ¼ 0.9999, κð0Þ ¼ −1.00001 for the numerical solution. EOS,
p ¼ 0. Evolution of aðtÞ and HðtÞ near the bounce are shown in the insets of (b) and (d). q and U diverge at the bounce.
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and ϵ > 0, there may exist a big-bang singularity. The
Universe may also begin with a singularity at t ¼ −tf
where H diverges [Hð−tfÞ → ∞], but a and ρ are finite.
The last kind of singularity always occurs for κ0 < 0 and
ϵ > 0. This is similar to the type-III singularity mentioned
earlier [73,74]. However, future singularities do not occur
unlike the case μ > 0 and ϵ > 0.

C. p= ρ=3 case

We now turn to a Universe filled with the radiation
(p ¼ ρ=3). We have ρ ¼ ρ0=a4, and

U ¼ ð2 − y − κρ=3Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþ κρ

p and

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ κρÞð2 − y − κρ=3Þ

p
: ð30Þ

Thus, F1, H, and Fβ are now given as

F1 ¼
4y − 6þ 2κρþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ κρÞð2 − y − κρ=3Þ3

p
yþ κρ

;

ð31Þ
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FIG. 4. Plot of (a) κðtÞ, (b) aðtÞ, (c) qðtÞ, (d)HðtÞ, (e) ρðtÞ, and (f)UðtÞ and VðtÞ for κ0 > 0, ϵ < 0, and μ < 0. The parameters used are
κ0 ¼ 1, μ ¼ −0.1, and ρ0 ¼ 0.1. We choose að0Þ ¼ 1, yð0Þ ¼ 0.99, κð0Þ ¼ 0.99 for the numerical solution. EOS, p ¼ 0. Evolution of
aðtÞ about the bounce is shown clearly in inset of (b). The inset of (d) shows thatHðtÞ approaches a constant negative value as t → −∞:q
diverges to −∞ at bounce.
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H ¼ ðyþ κρÞ½4βð2 − y − κρ
3
Þ þ μðκ − κ0ÞfF1

κ ðyþ 2κρ
3
− 1Þ − 2ρ

3
g�

4½ð2y2 − 4yþ 3Þ þ 2κρðy − 1Þ þ κ2ρ2

3
�

; ð32Þ

Fβ ¼
1

12βκ

�∂F1

∂y Fy − 4ρ
∂F1

∂ρ H þ μðκ − κ0Þ
�∂F1

∂κ −
F1

κ

��
:

ð33Þ

The expression of Fy remains unchanged (27). We solve
the system of ODEs, _a ¼ aH, _y ¼ Fy, _β ¼ Fβ, and _κ ¼
μðκ − κ0Þ numerically.

In the solutions, we note, qualitatively, the same
features as seen in the p ¼ 0 case. A notable difference
is that during the GR-like phases, q ∼ 1. This is due to the
fact that, in GR, for a radiation filled Universe, aðtÞ ∝ t1=2.
Here also, the nonsingular solutions are found for ϵ < 0,
irrespective of the sign of μ and κ0. We illustrate some of
the nonsingular scale factors through the plots in Figs. 6
and 7.
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FIG. 5. Plot of (a) κðtÞ, (b) aðtÞ, (c) qðtÞ, (d)HðtÞ, (e) ρðtÞ, and (f)UðtÞ and VðtÞ for κ0 < 0, ϵ < 0, and μ < 0. The parameters used are
κ0 ¼ −1, μ ¼ −0.1, and ρ0 ¼ 0.01. We choose að0Þ ¼ 1, yð0Þ ¼ 1.001, κð0Þ ¼ −1.001 for the numerical solution. EOS, p ¼ 0. q
diverges to −∞ at bounce.
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Apart from dust and radiation, we have also looked at
the vacuum case. It turns out that for κ0 > 0; ϵ < 0; μ > 0,
the solution for the scale factor is qualitatively the same as in
the p ¼ 0 or p ¼ ρ

3
cases. However, with κ0 < 0;ϵ< 0;μ> 0

we do not obtain a bounce but a big-bang singularity.

IV. CONCLUSIONS

In this article, we have explored the possibility of κ, the
Born-Infeld parameter in EiBI gravity, being a real scalar
field. In this way, we have proposed a new theory of gravity
by extending EiBI gravity in a manner similar to scalar-
tensor theories. The action, equations of motion, energy-
momentum conservation, and the Newtonian limit of the
theory have all been worked out.
In order to derive some of the consequences of this new

theory, we have studied cosmology as an example. After
choosing a specific form of κðtÞ, we have solved the field
equations numerically for spatially flat FRW spacetimes
with (i) dust (p ¼ 0) and (ii) radiation (p ¼ ρ=3) as matter.

In the case of the original EiBI theory (i.e. with a constant
κ), we know that the solutions lead to a nonsingular early
Universe, with a loitering phase for κ > 0 and a bounce for
κ < 0. Further, the solutions reduce to those in GR at late
times. In our work here, the choice of the scalar κðtÞ ¼
κ0 þ ϵ expðμtÞ (κ0, ϵ, and μ are constants) broadly leads to
qualitatively similar features for both p ¼ 0 and p ¼ ρ=3.
However there are important additional features which
arise. We summarize them pointwise below:
(a) Unlike the EiBI solutions, here, the solutions are not

always nonsingular. For ϵ < 0, the solutions are non-
singular irrespective of the signs of κ0 and μ. The
solutions with an early loitering phase of the Universe
were found for κ0 > 0, ϵ < 0, and μ > 0. All other
nonsingular solutions have a bounce in the early
Universe.

(b) In EiBI gravity, with p ¼ 0, the early Universe is de
Sitter when the constant κ > 0. Therefore, a → 0 at
t → −∞. Consequently, ρ → ∞ at t → −∞. In con-
trast, in our new theory, a never goes to zero for the
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FIG. 6. Plot of (a) κðtÞ and (b) aðtÞ for κ0 > 0, ϵ < 0, and μ > 0. The parameters used are κ0 ¼ 1, μ ¼ 0.1, and ρ0 ¼ 0.1. We choose
að0Þ ¼ 1, yð0Þ ¼ 1.001, κð0Þ ¼ 0.999 for the numerical solution. EOS, p ¼ ρ=3. The inset of (b) shows the loitering phase where aðtÞ
approaches a nonzero minimum value asymptotically in the past.
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solution with a loitering phase, and energy density
remains finite for all t.

(c) Late-time accelerated expansion of the Universe is an
outcome for μ > 0 and ϵ < 0. The Universe becomes
de Sitter (q ¼ −1) asymptotically at large t. Note that
this happens without any additional matter but only via
the nature of κðtÞ and the structure of the theory.

(d) In the vicinity of the minimum value of the scale
factor, or conversely at high energy densities, there is a
deviation in the time evolution of the scale factor from
that in GR. There are deviations at large values of the
scale factor or conversely, low energy densities, where
we have noted acceleration. For intermediate values of
the energy density, (or time scales), there exist GR-like
phases, as expected.

Our work here is a glimpse of the interesting possibilities
which may arise in this new theory. Much more work is
surely required to probe its feasibility. For example, we
would like to investigate whether there exists any nontrivial
vacuum (or nonvacuum) spherically symmetric, static
spacetimes in this new theory. This would be a major
difference with EiBI gravity where the vacuum solution is
the Schwarzschild solution of GR. A different vacuum

solution will affect the Solar System tests and put bounds
on the new parameters that are used in choosing κðtÞ.
Cosmological perturbation theory as well as the study of
gravitational waves in this theory might also be useful
avenues to pursue in the context of this modified theory
of gravity which encodes both a Born-Infeld structure and a
Brans-Dicke character in its formulation. For example,
the authors of [49] studied tensor perturbations about the
homogeneous and isotropic cosmological background
spacetimes of both bouncing and loitering nature, in EiBI
theory. They found instabilities in the overall evolution, even
though the background evolution is nonsingular andmore so
for the case of bouncing solutions as the background
spacetimes. Whether such instabilities arise in this new
theory too is an interesting question which requires detailed
study.
An important issue which must be dealt with is the origin

of the real scalar field κ. It is not appropriate to leave it as an
ad hoc entity. However, it is possible to speculate that such
a scalar may have a higher-dimensional origin following
work in the context of string theory and in braneworld
models.
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