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We investigate some important physical aspects of a recently presented interior solution for the Kerr
metric. It is shown that, as in the spherically symmetric case, there is a specific limit for the maximal value
of the surface potential (degree of compactness), beyond which unacceptable physical anomalies appear.
Such a bound is related to the appearance of negative (repulsive) gravitational acceleration that is
accompanied by the appearance of negative values of the pressure. A detailed discussion on this effect is
presented. We also study the possibility of a fragmentation scenario, assuming that the source leaves the
equilibrium, and we bring out the differences with the spherically symmetric case.
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I. INTRODUCTION

In a recent paper [1], we have proposed an interior
solution for the Kerr metric [2], satisfying the matching
conditions on the boundary surface of the matter distribu-
tion and endowed with reasonable physical properties, at
least for a range of values of the parameters, which includes
values considered in the existing literature to describe
realistic models of rotating neutron stars and white dwarfs.
For these reasons, after decades of intense theoretical

work (see [3–19] and references therein), the solution
presented in [1] may be reasonably regarded as a satisfac-
tory solution to the problem of constructing a physically
viable source for the Kerr metric. It is the purpose of
this work to study some important physical properties of
this source.
We shall first establish a bound on the degree of

compactness (surface gravitational potential), which of
course implies a bound on the gravitational surface redshift
of spectral lines from the surface of our source, similar to
the limit existing for spherically symmetric sources [20,21].
Two points deserve to be emphasized here:

(i) Our source is generated by an anisotropic fluid.
(ii) In the spherically symmetric case, there is a well-

established link between the maximal values of the
surface redshift and the local anisotropy of pressure
(see [22–32] and references therein). The great
interest aroused on this issue is easily justified if
we recall that the surface redshift is an observable

variable, thereby entitled to provide relevant infor-
mation about the structure of the source.

In the spherically symmetric case, the bound on the
degree of compactness expresses itself through the appear-
ance of different kinds of physical anomalies which render
the fluid distribution physically inviable (e.g. singularities
of the physical variables, negative energy density, etc.).
In this manuscript, we shall relate the above-mentioned

limit to the appearance of repulsive gravitational acceler-
ation, described by means of the acceleration tensor
recently introduced by Maluf [33]. This tensor gives the
values of the inertial (i.e., nongravitational) accelerations
that are necessary to maintain the frame in a given inertial
state (stationary in our case). If the frame is maintained
stationary in spacetime, then the inertial acceleration is
exactly minus the gravitational acceleration imparted to the
frame. Obviously, once the acceleration tensor becomes
negative, for any piece of the material, the system becomes
unstable and leaves the stationary state.
We shall investigate, in detail, the maximal degree of

compactness, which excludes the appearance of negative
gravitational acceleration for a range of values of the
angular momentum of the source. We shall also see that
the appearance of negative gravitational accelerations is
always accompanied by the appearance of negative pres-
sure of the fluid distribution and a singularity of the
pressure at the center of the fluid distribution for exactly
the same values of the parameters.
Next, we shall consider our source as the initial state of a

fluid distribution which is assumed to leave the equilibrium
regime. We shall then evaluate the system on a time scale
that is smaller than the hydrostatic time scale. Doing so, we
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shall be able to detect possible scenarios of fragmentation
(cracking) of the source, which are absent in the spherically
symmetric limit of our source.

II. A SOURCE FOR THE EXTERIOR
KERR SOLUTION

In [1], we provided a general method to construct global
models of self-gravitating stationary sources. As a particu-
lar example, we considered a source for the Kerr metric.
The present study concerns this last fluid distribution. In
what follows, we shall very briefly summarize the basic
equations and the main properties of the solution. We refer
the reader to [1] for the details and some intermediate
calculations. At this point, we would like to call attention to
two misprints in [1] that have been corrected here, namely,
Eq. (11) below is the right version of the corresponding
Eq. (36) appearing in [1], and a misprint appearing
in Eq. (40) in [1] has been corrected in the last of the
forthcoming Eqs. (26). It is worth emphasizing, however,
that such misprints are irrelevant for the discussion pre-
sented in [1] since all the calculations in that reference were
carried out using the right expressions, written down here.

A. The exterior metric

The line element for a vacuum stationary and axially
symmetric spacetime, in Weyl canonical coordinates, may
be written as

ds2E ¼ −e2ψðdt − wdϕÞ2 þ e−2ψþ2Γðdρ2 þ dz2Þ
þ e−2ψρ2dϕ2; ð1Þ

where ψ ¼ ψðρ; zÞ, Γ ¼ Γðρ; zÞ and w ¼ wðρ; zÞ are func-
tions of their arguments.
For vacuum spacetimes, Einstein’s field equations imply

for the metric functions

fðf;ρρ þ ρ−1f;ρ þ f;zzÞ − f2;ρ − f2;z

þ ρ−2f4ðw2
;ρ þ w2

;zÞ ¼ 0; ð2Þ

fðw;ρρ þ ρ−1w;ρ þ w;zzÞ þ 2f;ρw;ρ þ 2f;zw;z ¼ 0; ð3Þ

with f ≡ e2ψ and

Γ;ρ ¼
1

4
ρf−2ðf2;ρ − f2;zÞ −

1

4
ρ−1f2ðw2

;ρ − w2
;zÞ

Γ;z ¼
1

2
ρf−2f;ρf;z −

1

2
ρ−1f2w;ρw;z: ð4Þ

It will be useful to introduce the Erez-Rosen [34] or
standard Schwarzschild-type coordinates fr; y≡ cos θg or
in spheroidal prolate coordinates fx≡ r−M

M ; yg [35],

ρ2 ¼ rðr − 2MÞð1 − y2Þ; z ¼ ðr −MÞy; ð5Þ

where M is a constant which will be identified later.
In terms of the above coordinates, the line element (1)

may be written as

ds2E ¼ −e2ψðr;yÞðdt − wdϕÞ2 þ e−2ψþ2½Γðr;yÞ−Γs�dr2

þ e−2½ψ−ψ s�þ2½Γðr;yÞ−Γs�r2dθ2

þ e−2½ψ−ψ s�r2sin2θdϕ2; ð6Þ

where ψ s and Γs are the metric functions corresponding to
the Schwarzschild solution, namely,

ψ s ¼ 1

2
ln

�
r − 2M

r

�
Γs ¼ −

1

2
ln

�ðr −MÞ2 − y2M2

rðr − 2MÞ
�
;

ð7Þ

where the parameter M is easily identified as the
Schwarzschild mass.
For the specific case of the Kerr metric, in Weyl

coordinates, we have the following expressions for the
metric functions,

f¼ ðr1þ r2Þ2ð1− j2Þ− 4M2ð1− j2Þþ j2ðr1− r2Þ2
ðr1þ r2þ 2MÞ2ð1− j2Þþ j2ðr1− r2Þ2

; ð8Þ

e2Γ ¼ ðr1 þ r2Þ2ð1 − j2Þ − 4M2ð1 − j2Þ þ j2ðr1 − r2Þ2
4r1r2ð1 − j2Þ ;

ð9Þ

w ¼ jð2M þ r1 þ r2Þð4M2ð1 − j2Þ − ðr1 − r2Þ2Þ
ðr1 þ r2Þ2ð1 − j2Þ − 4M2ð1 − j2Þ þ j2ðr1 − r2Þ2

;

ð10Þ

where j≡ J
M2 ¼ a=M denotes the dimensionless parameter

representing the angular momentum of the source and is
related to the rotation parameter a of the Kerr metric in its
well-known Boyer-Lindquist representation.

Also, r1;2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz�M

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
Þ2

q
, which in the

Erez-Rosen coordinates become

r21;2 ¼
h
ðr −MÞ �My

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

q i2
−M2j2ð1 − y2Þ: ð11Þ

From the study of the relativistic multipole moments
(RMM) [36–41] of the Kerr solution, it follows that

mk ¼ Mk ¼ MðiaÞk; ð12Þ
where (mk) are the expansion coefficients of the Ernst
potential on the axis of symmetry.
Also, we have that the massive RMM (even orders) and

the rotational RMM (odd orders) can be expressed as
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M2l ¼ ð−1ÞlM2lþ1j2l;

M2lþ1 ¼ ið−1ÞlM2lþ2j2lþ1: ð13Þ

From the above, it follows that the rotation of the
object leads to a negative quadrupole massive moment,
q≡ M2

M3 ¼ −j2, i.e. all the possible sources of the Kerr
solution are oblate (see [1] for details).

B. The interior metric

Following the procedure sketched in [1], the following
line element is assumed at the interior:

ds2I ¼ −e2âZðrÞ2ðdt −ΩdϕÞ2 þ e2ĝ−2â

AðrÞ dr2 þ e2ĝ−2âr2dθ2

þ e−2âr2sin2θdϕ2; ð14Þ

with

â≡ aðr; θÞ − asðrÞ; ĝ≡ gðr; θÞ − gsðr; θÞ; ð15Þ

where Ω ¼ Ωðr; θÞ, and asðrÞ and gsðr; θÞ are functions
that, on the boundary surface, equal the metric functions
corresponding to the Schwarzschild solution (7), i.e.
asðrΣÞ ¼ ψ s

Σ and gsðrΣÞ ¼ Γs
Σ. Also, AðrÞ≡ 1 − pr2 and

Z≡ 3
2

ffiffiffiffiffiffiffiffiffiffiffiffi
AðrΣÞ

p
− 1

2

ffiffiffiffiffiffiffiffiffi
AðrÞp

, where p is an arbitrary constant
and the boundary surface of the source is defined
by r ¼ rΣ ¼ const.
The case w ¼ 0, ĝ ¼ â ¼ 0 corresponds to a spherically

symmetric distribution, more specifically, to the well-
known incompressible (homogeneous energy density) per-
fect fluid sphere, and hence the matching of (14) with the
Schwarzschild solution implies p ¼ 2M

r3Σ
. The simple con-

dition w ¼ 0 recovers, of course, the static case.
It should be noticed that, for simplicity, we consider here

only matching surfaces of the form r ¼ rΣ ¼ const. In
particular, this choice simplifies considerably the treatment
of the matching conditions (see below). Besides, this type
of boundary surface allows us to describe quite appropri-
ately the shape that we expect for a relativistic rotating
body. Of course, more general surfaces with axial sym-
metry, of the form r ¼ rΣðθÞ, could be considered as well.
In order to satisfy the matching (Darmois) conditions

[42], the following equations have to be satisfied,

aΣ ¼ ψΣ; a0Σ ¼ ψ 0
Σ; gΣ ¼ ΓΣ; g0Σ ¼ Γ0

Σ;

asΣ ¼ ψ s
Σ; ðasÞ0Σ ¼ ðψ sÞ0Σ;

gsΣ ¼ Γs
Σ; ðgsÞ0Σ ¼ ðΓsÞ0Σ;

ΩΣ ¼ wΣ; Ω0
Σ ¼ w0

Σ; ð16Þ

where prime denotes partial derivativewith respect to r, and
subscript Σ indicates that the quantity is evaluated on the
boundary surface. It is important to keep in mind that we

are using global coordinates fr; θg on both sides of the
boundary.
Indeed, the Darmois matching conditions require the

continuity of the first and the second fundamental form
across the boundary surface of the source.
The first fundamental form is just the induced metric on

the boundary surface. Therefore, the first set of Darmois
conditions requires

ðds2EÞΣ − ðds2I ÞΣ ≡ ½ds2�¼Σ 0; ð17Þ

where ds2E and ds2I are given by (6) and (14), respectively,
and the square bracket denotes the discontinuity of any
enclosed quantity, across the boundary surface of the
source. Now, since the matching surface considered is
r ¼ rΣ ¼ const, the first fundamental form is continuous
on that surface whenever aΣ ¼ ψΣ, gΣ ¼ ΓΣ and ΩΣ ¼ wΣ.
Next, we have to require the continuity of the second

fundamental form, which implies that the extrinsic curva-
ture evaluated on both sides of the matching surface must
be equal.
This second fundamental form (II) evaluated on the

boundary surface is defined by

II ¼ −ðnμ;νdxνdxμÞΣ ≡ ðKabdxadxbÞΣ; ð18Þ

where the indexes a,b stand for ft; θ;ϕg, and nμ denotes
the unit, normal vector to the boundary surface.
In our case, the boundary surface equation is given by

f ≡ r − rΣ ¼ 0; rΣ ¼ constant; ð19Þ

implying that the unit vector, normal to the boundary
surface, is defined by

nμ ¼
∂μfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂αf∂βfgαβ
q : ð20Þ

From (19) and (20), it follows that Kab ¼ −ϒ1
ab, where

ϒi
jk, denote the Christoffel symbols of the corresponding

(interior or exterior) metric. Then, after some simple
calculations, we obtain

0¼Σ ½Ktt� ⇒ e4â−2ĝAðâ0Z2 þ ZZ0Þ¼Σ e4ψ−2Γ̂ðψ 0Þ;
0¼Σ ½Kθθ� ⇒ Aððĝ0 − â0Þr2 þ rÞ¼Σ e2ψsððΓ̂0 − ψ̂ 0Þr2 þ rÞ;
0¼Σ ½Kϕϕ� ⇒ ð−ψ̂ 0r2 þ rÞsin2θe−2ψ̂ − ðψ 0w2 þ ww0Þe−2ψ¼Σ

× ð−â0r2 þ rÞsin2θe−2â
− ðâ0Z2Ω2 þ ZZ0Ω2 þ Z2ΩΩ0Þe2â;

0¼Σ ½Kϕt� ⇒ 2ψ 0wþ w0¼Σ ð2â0Z2Ωþ 2ZZ0Ωþ Z2Ω0Þe−2ψ s
;

ð21Þ
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where ψ̂ ≡ ψ − ψ s, Γ̂≡ Γ − Γs and the square bracket
denotes the discontinuity of any enclosed quantity, across
the boundary surface of the source. From the above
expressions, it follows at once that the continuity of Ktt
requires that â0Σ ¼ ψ̂ 0

Σ. The continuity of Kθθ implies that
ĝ0Σ ¼ Γ̂0

Σ, and finally the continuity of Kϕϕ and Kϕt

imposses that Ω0
Σ ¼ w0

Σ. These conditions, together with
those obtained from the continuity of the first fundamental
form, are exactly conditions (16).
In the spherically symmetric case, we have â ¼ ĝ ¼ 0,

and the physical variables are obtained from the field
equations for a perfect fluid, the result is well known and
reads (in relativistic units)

−T0
0 ≡ μ ¼ 3p

8π
;

T1
1 ¼ T2

2 ¼ T3
3 ≡ P ¼ μ

� ffiffiffiffi
A

p
−

ffiffiffiffiffiffi
AΣ

p

3
ffiffiffiffiffiffi
AΣ

p
−

ffiffiffiffi
A

p
�
; ð22Þ

with A ¼ 1 − 2mðrÞ
r ¼ 1 − pr2 ¼ 1 − 2Mr2

r3Σ
, where μ and P

denote the energy density and the isotropic pressure,
respectively, and for the mass function mðrÞ, we have

mðrÞ ¼ −4π
Z

r

0

r2T0
0dr; ð23Þ

implying

M ≡mðrΣÞ ¼ −4π
Z

rΣ

0

r2T0
0dr ¼

pr3Σ
2

: ð24Þ

This model, which describes the well-known incom-
pressible perfect fluid sphere, is further restricted by the
requirement that the pressure be regular and positive
everywhere within the fluid distribution, which implies
τ≡ rΣ

M > 9
4
, where τ measures the inverse of the degree of

compactness. As is evident from (22), the pressure vanishes
at the boundary surface.
We shall now proceed to consider the general, non-

spherical case. In [1], we provided a general procedure to
choose the interior metric functions â, ĝ and Ω producing
physically meaningful models. With this aim, besides the
fulfilment of the junction conditions (16), we required that
all physical variables be regular within the fluid distribution
and the energy density be positive. Following this pro-
cedure, we have, for the interior of the Kerr metric,

âðr; θÞ ¼ ψ̂Σs2ð3 − 2sÞ þ rΣψ̂ 0
Σs

2ðs − 1Þ;
ĝðr; θÞ ¼ Γ̂Σs3ð4 − 3sÞ þ rΣΓ̂0

Σs
3ðs − 1Þ;

Ωðr; θÞ ¼ wΣs4ð5 − 4sÞ þ rΣw0
Σs

4ðs − 1Þ; ð25Þ

with s≡ r=rΣ ∈ ½0; 1�, and

ψ̂Σ≡ψΣ−ψ s
Σ ¼

1

2
ln

×

�
τ

τ−2

Nþ rΣ1r
Σ
2 ð2j2−1Þ

Nþ rΣ1r
Σ
2 ð2j2−1Þ−2ð1− j2ÞðrΣ1 þ rΣ2 þ2Þ

�
;

Γ̂Σ≡ΓΣ−Γs
Σ ¼

1

2
ln
�ðτ−1Þ2−y2

τðτ−2Þ
Nþ rΣ1r

Σ
2 ð2j2−1Þ

2rΣ1r
Σ
2 ðj2−1Þ

�
;

wΣ ¼Mj
ðNþ rΣ1r

Σ
2 Þð2þ rΣ1 þ rΣ2 Þ

−Nþ rΣ1r
Σ
2 ð1−2j2Þ ; ð26Þ

with

rΣ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ − 1� y

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

q
Þ2 − j2ð1 − y2Þ

r
: ð27Þ

N ≡ −τðτ − 2Þ þ ð1 − y2Þ − j2: ð28Þ

The metric functions so obtained satisfy the junction
conditions (16) and produce physical variables (Eqs. (17)–
(21) in [1]), which are regular within the fluid distribution.
Furthermore, the vanishing of ĝ on the axis of symmetry, as
required by the regularity conditions, necessary to ensure
elementary flatness in the vicinity of the axis of symmetry
and, in particular, at the center [43–45], is assured by the
fact that Γ̂Σ and Γ̂0

Σ vanish on the axis of symmetry. Also,
the good behavior of the functionΩ on the symmetry axis is
fulfilled since wΣ and w0

Σ vanish when y ¼ �1.

III. BOUND ON THE SURFACE REDSHIFT
AND THE ACCELERATION TENSOR

We shall now proceed to establish the limit on the degree
of compactness of our source. In doing so, we shall make
use of the concept of the acceleration tensor introduced
in [33].
The acceleration tensor gives the values of the inertial

(i.e., nongravitational) accelerations that are necessary to
maintain the frame adapted to a field of observers in
spacetime in a given inertial state. If the frame is maintained
static (stationary) in spacetime, then the inertial acceler-
ation is exactly minus the gravitational acceleration
imparted to the frame.
Thus, we may write

a⃗ ¼ 1

2ð−g00Þ3=2
�∂1g00ffiffiffiffiffiffi

g11
p r⃗þ ∂2g00ffiffiffiffiffiffi

g22
p θ⃗

�
; ð29Þ

with a⃗≡ arr⃗þ aθθ⃗.
In our case, the following expression verifies

g00 ¼ −
e−2â

Z2
þ e2â

Ω2

r2sin2θ
; ð30Þ

then the radial component of the acceleration (the only one
we need for our discussion) reads
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ar ¼
e−ĝðs;yÞ

ffiffiffiffi
A

p

rΣð−g00Þ3=2
�
e−âðs;yÞ

ZðsÞ3
�
ZðsÞ∂sâðs; yÞ

þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τðτ − 2s2Þ

p
�
þ e3âðs;yÞ

×
Ω̂2

s2sin2θ

�
∂sâþ ∂sΩ̂

Ω̂
−
1

s

��
; ð31Þ

where s≡ r=rΣ ∈ ½0; 1�, and Ω̂≡Ωðs; yÞ ¼ Ωðr; yÞ=rΣ.
As we have already mentioned, for the spherically

symmetric incompressible fluid, we have a bound for the
degree of compactness (surface gravitational potential)
given by τ≡ rΣ

M > 9
4
. Usually, such a limit is related to

the appearance of a singularity of the pressure at the center
of the distribution.
We shall start our study by imposing only the positivity

of the energy density and the absence of singularities in the
physical variables. Doing so, the evaluation of (31)
produces the following results:

(i) The change of sign in ar (from positive to negative),
occurs always for a critical value of τc,
(τc ¼ 9=4 ¼ 2.25). A specific example is depicted
in Fig. 1, for a given value of the parameter j and a
given value of the angular coordinate θ. The con-
tinuous line corresponds to a value of τ > τc. As is
apparent from this figure, the range of values of the
radial coordinate s, for which the acceleration is
negative, depends on the values of τ. Figure 2 is a
plot of the acceleration as function of s and τ for a
given value of y. Again the negative values of the
acceleration are clearly exhibited

(ii) The behavior of ar depends, although very slightly,
on the angular coordinate y. This is shown in the
Fig. 3, for very small values of τ (very compact
objects), for the value of the radial coordinate
s ¼ 0.3. Observe the smaller (in absolute value)
values of ar, close to the axis of symmetry. This can

also be appreciated in the Fig. 4, for a value
of τ ¼ 2.1.

(iii) In all the examples analyzed, the positive energy
condition (P.E.D.) is always satisfied (−T0

0 > 0), at
least for j < 0.1. This is clearly indicated in the
Table I, where minimal values of τ (maximal degree
of compactness), compatible with P.E.D., are given
for different values of j. As is apparent in this table,
for values j < 0.1 the minimal value of τ preserving
the P.D.E., is smaller than τc ¼ 2.25, thereby in-
dicating that negative accelerations are compatible
with positive energy density.

(iv) Although, the value of j affects the value of ar when
it is positive, the former neither affects the value of
ar when it is negative, nor does it affect the value of s
for which the acceleration changes of sign. This is
clearly shown in the Fig. 5. It is worth noting that
this behavior also holds for j ¼ 0, as it is apparent
from the corresponding curve in Fig. 5. The general
behavior is always the same: negative acceleration
appears in the inner part of the source, whereas it is

FIG. 1. Graphics of ar as function of s, for different values of τ,
with j ¼ 0.1, y≡ cos θ ¼ 0.5.

FIG. 2. Plot of ar as function of s and τ, for j ¼ 0.1, y ¼ 0.2.

FIG. 3. Plot of ar as function of τ and y, with j ¼ 0.1, s ¼ 0.3.
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positive at the outer one, and there is no range of
values of τ and/or j, for which this behavior inverts.

(v) The issue mentioned in the point above, suggests
that the change of sign in ar and the existence of a
critical value τc, should be related with restrictions
already appearing in the spherically symmetric case.
This is indeed the case. In fact, below τc, the radial
pressure becomes negative in some regions of the
source and becomes singular at the origin. Further-
more, the range of the radial coordinate for which
the acceleration becomes negative (s ∈ ½0; sc�),
where the value of sc depends on τ but not on j,
is exactly the same range for which the radial
pressure becomes negative.

(vi) The exact value of sc, can be determined by
evaluating the radial pressure (expression (19) in
[1]). There is however a much simpler way of doing
that. Indeed, as it can be seen from (22), the pressure
P (in the spherically symmetric case) is always
positive, unless the denominator in that expression
becomes negative. On the other hand, the small
corrections to the radial pressure introduced by the
nonsphericity in the source under consideration, do
not affect the conclusion above, since they are
smaller than P in their absolute value (see fig 3 in
([1]). In other words the radial pressure is negative
only if P < 0.

(vii) In Fig. 6 we plot the denominator of (22) as a
function of s, for different values of τ. The roots of
these curves define the range s ∈ ½0; sc� for which
the acceleration and the radial pressure become
negative. Finally, in Table II, we show some values
of sc for different values of τ.

FIG. 4. Plot of ar, as function of s and y, with j ¼ 0.1, τ ¼ 2.1.
FIG. 5. Curves depicting ar as function of s, for different values
of the rotation parameter j, with τ ¼ 2.24, y ¼ 0.5.

FIG. 6. Curves delimiting the range of values of s, for which the
radial pressure is negative, (the curves cut the axis at sc), for
different values of τ.

TABLE I. τmin denotes the minimal value of the inverse
compactness factor compatible with the positive energy density
condition Positive Energy Density (P.E.D.) (−T0

0 > 0).

P.E.D. (−T0
0 > 0)

j τmin

0.1 2.27
0.01 2.07
0.005 2.05
0.001 2.03

TABLE II. sc denotes the value of the dimensionless radial
coordinate s, enclosing the region where negative radial pressure
appears; this coincides with the region within which the radial
acceleration ar becomes negative.

P < 0, ar < 0, iff s ∈ ½0; sc�
τ sc

2.22 0.3464
2.23 0.2828
2.24 0.1999
2.25 0
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IV. THE FRAGMENTATION (CRACKING)
OF THE SOURCE

In this section, we shall tackle a different physical issue,
related to our source.
Let us consider our source as an initial configuration,

submitted to perturbations, under which it is a priori
unstable. Then we shall evaluate the source immediately
after leaving the equilibrium, where “immediately” means
at a time scale smaller than the hydrostatic time scale.
For this purpose, let us first calculate the kinematical

variables of the source, and the evolution equation for the
expansion scalar (Raychaudhuri equation).
Since we choose the fluid to be comoving in our

coordinates, we may write the four-velocity as

Vα ¼
�

1ffiffiffiffiffiffiffiffiffiffi−g00
p ; 0; 0; 0

�
;

Vα ¼
�
−

ffiffiffiffiffiffiffiffiffiffi
−g00

p
; 0; 0;

g30ffiffiffiffiffiffiffiffiffiffi−g00
p

�
; ð32Þ

whereas, for the vorticity vector, we have

ωα ¼
1

2
ηαβμνVβ;μVν ¼ 1

2
ηαβμνΩβμVν; ð33Þ

where Ωαβ ¼ V ½α;β� þ a½αVβ� and ηαβμν denote the vorticity
tensor and the Levi-Civita tensor, respectively.
For the covariant derivative of the four-velocity, we have

the well-known expression

Vα;β ¼ σαβ þ Ωαβ − aαVβ þ
1

3
hαβΘ; ð34Þ

where as usual, Θ, σαβ and aα denote the expansion scalar,
the shear tensor and the four-acceleration, respectively, and
are defined as

aα ¼ VβVα;β; Θ ¼ Vα
;α: ð35Þ

σαβ ¼ Vðα;βÞ þ aðαVβÞ −
1

3
Θhαβ; ð36Þ

where hαβ is the projector onto the hypersurface orthogonal
to the four-velocity.
Now, the Ricci identities for the vector Vα read

Rμ
αβνVμ ¼ Vα;β;ν − Vα;ν;β; ð37Þ

then using (36) we obtain

1

2
Rρ
αβμVρ ¼ aα;½βVμ� þ aαV ½μ;β� þ σα½β;μ� þ Ωα½β;μ�

þ 1

3
hα½βΘ;μ� þ

1

3
Θhα½β;μ�: ð38Þ

Contracting Eq. (38) with Vβgαμ, we find the Raychaudhuri
equation for the evolution of the expansion

Θ;αVα þ 1

3
Θ2 þ σαβσαβ − ΩαβΩαβ − aα;α ¼ −VρVβRρ

β:

ð39Þ
Let us now assume that our source is initially stationary

(at some t ¼ 0), implying that both the shear and the
expansion vanish. However, immediately after leaving the
equilibrium, these quantities are still negligible, but not so
their time derivatives, since as we have already mentioned,
“immediately” means on a time scale which is smaller than
the hydrostatic time scale.
Then, at the time scale under consideration, (39)

becomes

Θ;αVα −ΩαβΩαβ − aα;α ¼ −VρVβRρ
β: ð40Þ

In order to evaluate the time derivative of the expansion
scalar from (40), we need first to extract some information
from the conditions of the vanishing of the expansion scalar
and the shear tensor.
Thus, the condition Θ ¼ 0 produces

4A _̂g − 6A _̂a − _A ¼ 0; ð41Þ

where the dot over the functions denotes time derivative,
whereas σαβ ¼ 0 implies

A _̂g − _A ¼ 0

2A _̂gþ _A ¼ 0

4A _̂g − _A ¼ 0: ð42Þ
The above equations impose the constraints _̂a ¼ _̂g ¼

_A ¼ 0 on the metric functions; these conditions will be
used when we evaluate (40) as well as the Einstein
equations.
Then the time derivative of the expansion scalar immedi-

ately after the source leaves the equilibrium leads to

_Θ ¼ e−2â

Z2

�
−3 ̈â −

Ä
2A

þ 2 ̈ĝ
�
: ð43Þ

The calculation of the energy-momentum tensor from
the Einstein equations for the system out of equilibrium
may be written as the sum of the terms corresponding to the
equilibrium state Tβ

αðequiÞ and terms which correspond to the
system out of equilibrium (oeq); thus, we write

Tβ
α ¼ Tβ

αðeqÞ þ Tβ
αðoeqÞ: ð44Þ

The components of these last terms which contain second
time derivatives of the metric functions (that are not null)
read
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T3
0ðoeqÞ ¼

Ωe2â

8πr2sin2θ

�
−2 ̈â −

Ä
2A

þ 2 ̈ĝ
�

T3
3ðoeqÞ ¼

1

8π

�
−

Ω2e2â

r2sin2θ
þ e−2â

Z2

��
−2 ̈â −

Ä
2A

þ 2 ̈ĝ
�

T1
1ðoeqÞ ¼

e2â

8πr2sin2θ

�
−Ω2 ̈ĝ −

Ω2Ä

Z4
ffiffiffiffi
A

p −ΩΩ̈ − _Ω2

�

þ e−2â

8πZ2
ð ̈ĝ − 2 ̈âÞ: ð45Þ

It is easy to see from the equations above that

ΩT3
0ðoeqÞ þ T3

3ðoeqÞ ¼
1

8π
_Θþ e−2â

8πZ2
̈â; ð46Þ

and the terms from the stationary case lead to the identity

ΩT3
0ðeqÞ þ T3

3ðeqÞ ¼
e2â−2ĝ

8π
ð8πP − p̂zz þ δJþÞ ð47Þ

with the notation used in [1].
Let us now first consider the spherically symmetric case

(j ¼ 0). In such a case, the evolution equation for the
expansion scalar, immediately after leaving the equilib-
rium, reads

_Θ ¼ 1

Z2

�
−

Ä
2A

�
; ð48Þ

which, after using the Einstein equations, becomes

T3
3ðoeqÞ ¼

1

8π
_Θ: ð49Þ

We see from (49) that the sign of _Θ for any piece of
material is the sign of T3

3ðoeqÞ. Now, if we recall that in the
spherically symmetric case, T3

3ðeqÞ ¼ P, the physical
consequence of (49) is quite obvious: if the exit from
the equilibrium state of any piece of material is produced by
an increase (decrease) in the pressure, then that region will
tend to expand (contract). In other words, all fluid elements
in that region will experience an overall expansion (con-
traction) once the system leaves the equilibrium, while no
fragmentation (cracking) [46] will be observed.
This absence of cracking in the spherically symmetric

limit, with homogeneous energy density distribution, is
expected since it can be rigorously shown that changes in
the sign of _Θ are a necessary condition for the occurrence of
cracking (see [47]). Furthermore, as has been confirmed in

several numerical studies, cracking in spherically symmet-
ric configurations with homogeneous energy density
requires the perturbation of the pressure isotropy [48],
whereas the spherically symmetric limit of our source is
strictly isotropic in the pressure.
Let us now turn back to the situation under consideration

(nonspherical, rotating source). The corresponding equa-
tion for the time derivative of the expansion is (46). As is
apparent from this equation, now the sign of _Θ not only
depends on the variation of one of the diagonal pressure
terms, but also on T3

0ðoeqÞ and the value (and sign) of the
vorticity. This opens the way for a large number of
scenarios, for which the sign of _Θ changes within the
fluid distribution, giving rise to the possibility of the
fragmentation (cracking) [46] of the source.

V. DISCUSSION

We may summarize the results obtained in this work,
through the following points:

(i) There exists a bound for the maximal value of the
surface gravitational potential (minimal value of τ),
producing a bound in the maximal value of the
surface redshift, which can be observed from the
source discussed here.

(ii) The above-mentioned bound was established by
detecting the critical value of τ for which negative
acceleration appears, within the fluid distribution.

(iii) This critical value defines exactly the same range of
values as the radial coordinate, for which the radial
pressure becomes negative. This fact reinforces
further the physical relevance of the acceleration
tensor introduced in [33].

(iv) The source under consideration allows the possibil-
ity of fragmentation (cracking) once the equilibrium
state has been abandoned. This scenario depends
strictly on the nonspherical aspects of the source. In
particular, it emphasizes the physical relevance of
the T3

0 component of the energy-momentum tensor
which, as has been discussed in [1], represents a
distinct physical property of rotating fluids.
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