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In this paper we explain how four-dimensional general relativity and, in particular, the Einstein equation,
emerge from the spin-foam amplitude in loop quantum gravity. We propose a new limit that couples both the
semiclassical limit and continuum limit of spin-foamamplitudes. The continuumEinstein equation emerges in
this limit. Solutions of the Einstein equation can be approached by dominant configurations in spin-foam
amplitudes. A running scale is naturally associated to the sequence of refined triangulations. The continuum
limit corresponds to the infrared limit of the running scale. An important ingredient in the derivation is a
regularization for the sumover spins,which is necessary for the semiclassical continuum limit.We also explain
in this paper the role played by the so-called flatness in spin-foam formulation, and how to take advantage of it.
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I. INTRODUCTION

Loop quantum gravity (LQG) is an attempt to move
toward the nonperturbative and background independent
quantum theory of gravity [1–3]. The covariant approach of
LQG is known as the spin-foam formulation [4,5], in which
the quantum spacetime is understood by the spin-foam
amplitude describing the transition between quantum
spatial geometries.
This paper focuses on the semiclassical behavior of the

covariant LQG. A consistent quantum theory of gravity
must reproduce general relativity (GR) as its semiclassical
limit. In this paper, we explain how GR and the Einstein
equation emerge from the covariant LQG.
The analysis and results in this paper evolve from the

recent extensive studies of spin-foam asymptotics (briefly
reviewed in Sec. II; see also, e.g., [6–10]). It has been
shown that if one does not consider the spin sum, but
considers the spin-foam (partial) amplitude with fixed
spins, the large spin asymptotics of the amplitude give
the Regge action of gravity, being a discretization of the
Einstein-Hilbert action on the triangulation.
However, the discussion on carrying out the sum over

spins and its semiclassical limit has been insufficient in the
literature, the reason for which is explained in a moment.
There has been a proposal of carrying out the spin sum
semiclassically in asymptotically large spins while sending
the Barbero-Immirzi parameter γ to 0 at the same time [11].
This proposal produces the Regge equation (equation of
motion from Regge action) from the spin-foam amplitude.
The idea of this type of limit has also been used in the
graviton propagator computation from spin foams [12–16].
The present work considers the semiclassical behavior

of the spin-foam amplitude with an arbitrarily fixed
Barbero-Immirzi parameter, and takes into account the

sum over spins. The semiclassical limit in this situation
turns out to have more interesting consequences. The
reason why this situation was not sufficiently studied is
because of the question about the flatness in spin-foam
amplitudes. It was observed in [17–19] that when one takes
into account the sum over spins and studies the semi-
classical limit, the spin-foam amplitude is dominant by the
flat Regge geometry with all deficit angles vanishing.1

There has been worry in the LQG community that the
flatness might be the obstruction of the spin-foam ampli-
tude having a consistent semiclassical limit. However it has
been suggested in [20] that the flatness, if treated properly,
is a good property of the spin-foam amplitude, which
makes spin foams well behaved near the classical curvature
singularity. Moreover, it has also been suggested in [19,21]
that the flatness should relate to the continuum limit of spin
foams, since deficit angles of discrete geometries indeed
approach 0 in the continuum limit. Namely, the flatness
means that for spin-foam amplitude, the semiclassical limit
should be taken together with the continuum limit.2

The last point of view is one of the motivations of the
present work.
The situation is similar to the subtlety of interchanging

limits in mathematical physics. We have two limits
involved here: (1) deficit angles εf → 0 and (2) the refine-
ment limit of triangulations. εf → 0 relates to the lattice
spacing l → 0 in Regge geometries since εf ∼ l2=ρ2

where ρ is the curvature scale of the geometry approxi-
mated by Regge geometries [22]. If one takes first the limit

1More precisely, the dominant geometries there have
deficit angles vanishing modulo 4πZ.

2[21] mentioned this limit as an analog of the hydrodynamical
limit.
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(1) then the limit (2), one only obtains the flat geometry on
the continuum. However if both limits are coupled and
taken at the same time, instead of one after the other, we can
recover arbitrary curved geometry by the limit [23]. In the
derivation of the flatness [17–19], the treatment of spin sum
effectively leads to εf → 0 on a fixed triangulation (before
the refinement limit). In order to implement the proper
limit, taking (1) and (2) at the same time, the spin sum has
to be treated differently, which should open a window of
small but nonvanishing εf, to let εf → 0 couple nontrivially
to the refinement limit.
The desired window can be given by the treatment in

[20], where a damping factor is inserted in the sum over
spins. The damping factor regularizes the spin sum by
suppressing the contribution from spins far away from a
given spin configuration J0. The damping is turned off
together with the large J0 limit. The regularization
procedure indeed produces a small window of nonvanish-
ing deficit angle. Then the authors are able to show that
the effective action at J0 from spin-foam amplitude
approximates the Einstein-Hilbert action, when J0 corre-
sponds to a set of geometrical triangle areas on the
triangulation.
In this paper we propose an improved regularization

scheme in Sec. III, which is more suitable in analyzing the
sum over contributions from different spin configurations.
It is based on the following observations: The spin-foam
asymptotics (with fixed spins) reproduce Regge geometries
and the Regge action when the fixed spins are Regge-like,
i.e., the spins J⃗ðlÞ that can be expressed as triangle areas in
terms of a set of edge lengths flg on the triangulation (the
spins only need to be close to Regge-like in order to
produce the Regge geometry and the Regge action). Regge-
like spins locate in a submanifoldMRegge in the space of all
spin configurations. Motivated by this property, we decom-
pose the sum over spins in the spin-foam amplitude into a
sum over Regge-like spins along MRegge and a sum along
transverse directions that contains non-Regge-like spins.
As an equivalent way to understand the flatness, its origin is
the fact that non-Regge-like spins in transverse directions
contribute nontrivially to the amplitude in the large spin
asymptotics. Based on the above observations, we propose
to only regularize the spin sum in transverse directions
instead of the regularization in all directions as in [20]. The
regularization is made by inserting a Gaussian distribution
with width δ−1=2 in the transverse spin sum. The Gaussian
produces the damping at the infinity in transverse direc-
tions. The regulator is removed by δ → 0 in the end
together with the continuum limit.
The regularized sum in transverse directions can be

computed explicitly, which produces a Gaussian of width
δ1=2 peaked at a submanifold in the space of spin-foam
variables. After carrying out the transverse spin sum, we are
only left with the sum over Regge-like spins. Schematically
the spin-foam amplitude reduces to be the following type,

Z ¼
X
JðlÞ

Z
dμðXÞeS½JðlÞ;X�Dδðl; XÞ; ð1Þ

where X labels spin-foam variables in addition to spins in
the integral representation of Z. S is the spin-foam action
used in the asymptotical analysis.Dδ contains the Gaussian
of width δ1=2 mentioned above.
The action S in Eq. (1) only involves Regge-like spins.

So the results of large spin asymptotics can be immediately
applied to the semiclassical analysis in Sec. IV. We consider
the spin-foam state sum in the semiclassical regime.
Namely, we focus on a neighborhood N Regge ⊂ MRegge

such that the spins within N Regge are uniformly large. We
introduce a parameter λ ≫ 1 as a typical value of spin in
N Regge. The spin sum in Eq. (1) is performed in N Regge.
Then the entire domain of the spin sum including transverse
directions is denoted by N . The spin-foam amplitude is
denoted by ZN ;δðKÞ depending on three types of para-
meters: the spin sum domain N of large spins J ∼ λ, the
regulator δ, and the triangulation K. An interesting regime
where ZN ;δðKÞ exhibits desired semiclassical behavior is

λ ≫ δ−1 ≫ 1: ð2Þ

In this regime, ZN ;δðKÞ is dominated by the critical points
of S½JðlÞ; X�, which has been extensively studied in the
literature [6–8,24,25]. With respect to

R
dμðXÞ, the critical

points give Regge geometries onK, taking into account thatP
JðlÞ reduce the critical points to the ones corresponding

to geometries satisfying the Regge equation (the equation
of motion of the Regge action). Because of Eq. (2), the
leading contributions are computed by evaluating Dδ at
the critical points. Then the Gaussian in Dδ together with
the Regge equation constrains the deficit angles εf to be
small (but nonvanishing)

jγεfj ≤ δ1=2: ð3Þ

γ is a fixedOð1Þ parameter throughout our discussion. Note
that there exist some discrete ambiguities of the above
constraint, due to the periodicity of the integrand in Eq. (1).
But the ambiguities can be removed by suitably choosing
N Regge. The regime where the Regge equation and the
constraint Eq. (3) emerge from the spin-foam amplitude is
referred to as the Einstein-Regge (ER) regime in Sec. V.
As promised, the regularization of the spin sum opens a

small window for nontrivial εf. Small εf relates to the
continuum limit of Regge geometries, because jεfj ∼ l2=ρ2

[22] where ρ is the typical curvature radius of the
smooth geometry approximated by the Regge geometry.
jεfj ≪ 1 relates to l ≪ ρ:δ behaves as the bound of
error in approximating smooth geometries by Regge
geometries. The emerging smooth geometries have non-
trivial curvatures.
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In the ER regime, the configurations contributing domi-
nantly the spin-foam amplitude contain the Regge geom-
etries satisfying the Regge equation, and approximating
(curved) smooth geometries. Regge geometries failing to
approximate any smooth geometry are suppressed by the
amplitude.
Equation (3) indicates that the regulator δ relates to the

continuum limit. The window of nontrivial εf allows us to
couple εf → 0 to the refinement limit of the triangulation.
The continuum limit at the semiclassical level is discussed
in Sec. VI. We consider an infinite sequence of triangu-
lations given by the refinement, such that all vertices of
triangulations form a dense set in the 4-manifold where
triangulations are embedded. A sequence of spin-foam
amplitudes ZN ;δðKÞ is defined on the sequence of trian-
gulations. We let the limit δ → 0 couple to the refinement;
i.e., δ → 0 is taken together with the continuum limit.
On the other hand, the typical spin value λ has to increase

in refining the triangulation. Refining the triangulation
increases the number of degrees of freedom in the spin-
foam amplitude. It then requires a larger λ to suppress the
quantum correction, so that the semiclassical behavior
stands out as the leading order (see Sec. VI).
The semiclassical continuum limit involves taking simul-

taneously three limits: the triangulation refinement limit,
λ → ∞, and δ → 0. The limits are implemented to the
sequence of ZN ;δðKÞ. At each ZN ;δðKÞ in the sequence,
Eq. (2) has to be satisfied, in order to keep a nontrivial ER
regime. As a result, we obtain sequences of Regge
geometries approaching smooth geometries in the limit.
Each Regge geometry in each sequence (a) satisfies the
Regge equation, (b) satisfies small deficit angle constraint
Eq. (3), and (c) contributes dominantly to the correspond-
ing ZN ;δðKÞ. We are able to achieve (a)–(c) because each
Regge geometry in each sequence is inside the ER regime
of the corresponding ZN ;δðKÞ.
At first sight, λ → ∞ might seem to contradict the

continuum limit, by the LQG relation a ¼ γλl2
P for the

triangle areas. There is no contradiction because a is a
dimensionful quantity, and the continuum limit corre-
sponds to zoom out to a larger length unit, such that the
numerical value of l2

P measured by the unit shrinks at a
faster rate than λ → ∞. This observation motivates us to
associate each triangulation and ZN ;δðKÞ a mass scale μ
whose μ−1 is a length unit. The refinement limit is labeled
by the infrared (IR) limit μ → 0. All parameters of ZN ;δðKÞ
have nontrivial running with μ, i.e.,

K ¼ Kμ; λ ¼ λðμÞ;
δ ¼ δðμÞ; ZN ;δðKÞ ¼ ZN ðμÞ;δðμÞðKμÞ: ð4Þ

Here λðμÞ increase monotonically as μ → 0 while δðμÞ
decrease monotonically. Equation (2) is satisfied at each μ.
The dependence of λ on μ displays that the semiclassical

limit is coupled to the continuum limit. Given the running
scale μ, on each Kμ, the area is expressed as

aðμÞ ¼ γλðμÞl2
P ¼ aðμÞμ−2: ð5Þ

The area in the μ−2 unit, aðμÞ, shrinks and approaches 0 in
the IR limit μ → 0. In Regge geometries, the value of
typical edge length aðμÞ1=2 in the μ−1 unit approaches 0 as
the refinement limit, which orders the sequence of Regge
geometries to approach the smooth geometry at the IR.
Smooth geometries living at the IR are associated with the
largest length unit μ−1 → ∞.
The above discussion exhibits how scales and a renorm-

alization-group-like behavior emerge from the spin-foam
formulation that originally is scale independent. Possible
ways of associating scales μ to triangulations Kμ are
classified in Sec. VII.
We have obtained from the spin-foam amplitude sequen-

ces of Regge geometries solving Regge equations, which
converge to smooth geometries in the semiclassical con-
tinuum limit. Generically the resulting smooth geometries
are solutions of the continuum Einstein equation. Although
the general mathematical proof for the convergence of
Regge solutions to Einstein equation solutions is not
available in the literature, extensive studies of the Regge
calculus provide many analytical and numerical results,
which all support the convergence, and demonstrate the
Regge calculus as a useful tool in numerical relativity (see,
e.g., [26,27] for reviews). Among the results, there has been
a rigorous proof of the convergence in the linearized Regge
calculus and linearized Einstein equation [28–30]. Results
in the nonlinear regime include, e.g., the Kasner universe,
Brill waves, binary black holes, Friedmann-Lemaître-
Robertson-Walker (FLRW) universe, etc. [27,31–34].
There has also been the convergence result by a certain
average of Regge equations [35].
A key observation in all convergence results is that the

deviation of the Regge calculus from general relativity is
essentially the noncommutativity of rotations in the discrete
theory, while the error from the noncommutativity is of
higher order in edge lengths [36].3

We conclude that for any sequence of Regge solutions
converging to the solution of the Einstein equation, the
Regge solutions can be produced from the sequence of
spin-foam amplitudes ZN ðμÞ;δðμÞðKμÞ as dominant configu-
rations in the semiclassical approximation. The solution of
the continuum Einstein equation lives at the IR limit μ → 0.
The convergence to gravitational waves of the linearized
Einstein equation in [28] leads to a mathematically rigorous
example for the emergence of Einstein equation from the
spin-foam amplitude.
There is a different argument for the emergence of the

Einstein equation from the spin-foam amplitude, by the

3The author thanks Warner Miller for pointing this out.
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convergence of effective actions (see Sec. VI). The analysis
in this paper proposes a different regularization scheme
from the one in [20]. However the results of the effective
action in [20] and [37–39] can be reproduced here. The
effective action relates to S½JðlÞ; X� in Eq. (1) evaluated at
critical points of

R
dμðXÞ as λ ≫ 1 (before carrying outP

JðlÞ). S½JðlÞ; X� at critical points gives Regge actions
evaluated at Regge geometries with small εf by Eq. (3),
when we consider the sequence ZN ðμÞ;δðμÞðKμÞ and take the
semiclassical continuum limit. Regge actions converge to
the Einstein-Hilbert action on the continuum, when
Regge geometries converge to the smooth geometry
[23,40]. Translating the known convergence result to our
context uses the length unit μ−1. We apply Eq. (5) to
the Regge action 1

l2P

P
f afðμÞεfðμÞ from S½JðlÞ; X� in

ZN ðμÞ;δðμÞðKμÞ,4

1

μ2l2
P

X
f

afðμÞεfðμÞ →
1

μ2l2
P

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð6Þ

where the convergence happens as the edge length
aðμÞ1=2 → 0 at the IR.5 Smooth geometries andR
d4x

ffiffiffiffiffiffi−gp
R live in the IR limit μ → 0.

P
JðlÞ (or

P
l)

in Eq. (1) sums all convergence sequences of Regge
geometries, and thus equivalently sums all smooth geom-
etries in the limit. The spin-foam amplitude becomes a
functional integral of Einstein-Hilbert action in the con-
tinuum (see Sec. VI for details). Then μ → 0 in Eq. (6)
leads to the continuum vacuum Einstein equation

Rμν ¼ 0 ð7Þ

by the variational principle.
The quantum behavior of spin foams near a classical

curvature singularity derived in [20] can be reproduced in
the present regularization scheme. Large J and Eq. (3)
show that the semiclassical approximation is valid only in
the regime that (l2 ∼ af)

lP ≪ l ≪ ρ: ð8Þ

However a large curvature may violate lP ≪ ρ, and lead to
the incompatibility between l ≪ ρ and large J. Therefore
the semiclassical analysis in this paper is not valid near the
curvature singularity. Similar to [20], spin foams near the
singularity are of small spins, in order that the amplitudes
are not suppressed. It shows that the classical singularity
corresponds to the quantum regime of spin foams, where

the theory is well defined but with large quantum
fluctuations.
As a key ingredient in the argument, Eq. (3) comes from

the regularized flatness. It shows that the flatness is a good
property of the spin-foam amplitude, which guarantees that
spin foams behave correctly near a classical singularity.
We remark that the presentation in this paper uses the

spin-foam models of Engle-Pereira-Rovelli-Livine/Freidel-
Krasnov (EPRL/FK), both in Lorentzian and Euclidean
signatures [41,42]. But the discussion and results are valid
for any other spin-foam models that have both the correct
large spin asymptotics, and the flatness (e.g., the model
with timelike tetrahedra [43] and its recent asymptotical
analysis [10]).
The architecture of this paper is as follows: Sec. II

provides a review on the recent development of the spin-
foam large spin asymptotics. Section III discusses the
regularization of the spin sum along directions transverse
to the submanifoldMRegge of Regge-like spins. Section IV
analyzes the semiclassical approximation of the regularized
spin-foam amplitude, which gives the Regge equation and
small deficit angle constraint Eq. (3). Section IV defines the
Einstein-Regge regime of the spin-foam amplitude, in
which the amplitude exhibits the desired semiclassical
property. Section VI discusses the semiclassical continuum
limit of sequences of spin-foam amplitudes, which
approaches the continuum Einstein equation. Section VII
classifies possible runnings of scales μ associated to
triangulations.

II. LARGE-J ASYMPTOTICS
OF SPIN-FOAM AMPLITUDE

We consider the EPRL/FK spin-foam amplitude ZðKÞ
defined on a triangulation K. ZðKÞ has the following
integral representation [25]:

ZðKÞ ¼
X
Jf

Y
f

dimðJfÞAJfðKÞ

¼
X
Jf

Y
f

dimðJfÞ
Z
SLð2;CÞ

Y
ðv;eÞ

dgve

×
Z
CP1

Y
v∈∂f

dzvfeS½Jf;gve;zvf �: ð9Þ

v, e, and f label the 4-simplices, tetrahedra, and triangles.
They equivalently label the vertices, dual edges, and faces
in the dual complex K�. Jf ∈ Zþ=2 are SU(2) spins
associated to triangles f. gve ∈ SLð2;CÞ are associated
to half-edges ðv; eÞ in K� where v is an end point of e. zvf
are 2-spinors modulo complex rescaling. The spin-foam
action S½Jf; gve; zvf� reads

4afðμÞ ¼ γJfðμÞl2
P ¼ afðμÞμ−2.

5The convergence requires the fatness of simplices to be
bounded away from 0 in addition to shrinking edge lengths;
see [23,40] for details.
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S½Jf; gve; zvf� ¼
X
f

JfFf½gve; zvf�;

Ff½gve; zvf� ¼ ln
Y
e⊂∂f

hg†vezvf; g†v0ezv0fi2
hg†vezvf; g†vezvfihg†v0ezv0f; g†v0ezv0fi

þ iγ ln
Y
e⊂∂f

hg†vezvf; g†vezvfi
hg†v0ezv0f; g†v0ezv0fi

: ð10Þ

Here h; i is an SU(2) invariant Hermitian inner product
between 2-spinors. S is defined modulo 2πiZ because of
J ∈ Z=2, while Ff is defined modulo 4πiZ. The Barbero-
Immirzi parameter γ ∈ R is treated as a constant ofOð1Þ in
this paper. It is straightforward to show that the real part of
Ff is nonpositive ReFf ≤ 0 by using Cauchy-Schwarz
inequality [25].
ZðKÞ is the spin-foam amplitude in Lorentzian signature.

The amplitude in Euclidean signature is written in a similar
manner. Differences from Eq. (9) contain that integrals over
SLð2;CÞ are replaced by integrals over ðgþve; g−veÞ ∈ SOð4Þ,
and integrals over zvf are replaced by integrals over 2-
spinors ξef [one for each pair ðe; fÞ with e ⊂ f in K�],
where ξef is normalized by the Hermitian inner product on
C2. Ff for Euclidean amplitude reads [6,24,44]

Ff½g�ve; ξef� ¼
X
�

X
v∈f

1� γ

2
jf ln hξefjðg�veÞ−1g�ve0 jξe0fi:

ð11Þ

The above presents the expression of the Euclidean
amplitude with γ < 1. The expression for γ > 1 can be
found in [44].
In the following we often present the analysis in the

notation of Lorentzian amplitude. The same analysis can be
applied to Euclidean amplitude. The result is valid for both
signatures.
The asymptotical analysis of the partial amplitude

AJfðKÞ as Jf uniformly large has been well developed
by the recent progress [6–8,24,25,38]. Since S is linear to
Jf, as Jf is uniformly large, AJfðKÞ is dominated by
contributions from the critical points of the action

S½Jf; gve; zvf�, i.e., configurations ðJ∘f; g∘ve; z∘vfÞ satisfying
ReS ¼ 0 and ∂gS ¼ ∂zS ¼ 0. Importantly, the critical
points can be interpreted as simplicial geometries (Regge
geometries) on the four-dimensional triangulation. The

spins J
∘
f are interpreted as triangle areas a

∘
f ¼ γJ

∘
fl2

P.
When the triangulation is sufficiently refined, the critical
points can approximate arbitrary geometries on a four-
dimensional manifold.
It is shown in [8,25] that at a critical point ðJ∘f; g∘ve; z∘vfÞ

corresponding to a nondegenerate Regge geometry with
global orientation and global time orientation, its leading
contribution to AJfðKÞ gives the Regge action

AJfðKÞ ∼ exp

�
i
l2
P

X
f

a
∘
fε
∘
f þ

i
l2
P

X
f⊂∂K

a
∘
fΘ
∘
f þ � � �

�
; ð12Þ

where ε
∘
f;Θ

∘
f are the bulk deficit angle and boundary

dihedral angle from the geometrical interpretation of

ðJ∘f; g∘ve; z∘vfÞ. The asymptotic formula of AJfðKÞ is given
by a sum over critical points weighted by the contribution
from each critical point.
Note that it is possible to have time-nonoriented geom-

etries from critical points. In this case, ε
∘
f is replaced by

ε
∘
f � γ−1π in Eq. (12). See [8] for details.
Equation (12) holds for Regge-like spins Jf. Namely, it

requires that spins J
∘
f can be expressed as areas in terms of

edge lengths l from a Regge geometry on the triangulation.

γJ̃fðlÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2

ijl
2
jk þ l2

ikl
2
jk þ l2

ijl
2
ikÞ− l4

ij − l4
ik − l4

jk

q
;

ð13Þ

where l’s are the edge lengths (in Planck units) of the
triangle f. Regge-like spins span a subspace in the space of
all spins.6

The situation of non-Regge-like spins is subtle. Non-
Regge-like spins Jf do not lead to any solution to the
critical equations ReS ¼ ∂S ¼ 0. Especially ReS < 0 for
any solution to ∂S ¼ 0

7 with non-Regge-like Jf. Although
critical equations are not satisfied, the contribution to the
spin-foam spin sum is non-negligible [18,20,38]. Indeed,
by the stationary phase approximation (see theorems 7.7.5
and 7.7.1 in [45]), in case there is no critical point in the
region of integral

R
K eλSdμ,

����
Z
K
eλSðxÞdμðxÞ

���� ≤ C

�
1

λ

�
k
sup
K

1

ðjS0j2 þ ReðSÞÞk ; ð14Þ

the integral decays faster than ð1=λÞk for all k ∈ Zþ,
provided that supð½jS0j2 þ ReðSÞ�−kÞ is finite [i.e., does
not cancel the ð1=λÞk behavior in front]. But for the non-
Regge-like Jf, the corresponding AJfðKÞ may not decay

faster than ð1=λÞk for all k ∈ Zþ. It happens for non-Regge-
like spins close to Regge-like Jf ¼ λjf (λ ≫ 1) with the
small gap Δjf ∼ 1

2λ. In this case, supð½jS0j2 þ ReðSÞ�−kÞ is
likely to be large and cancel the ð1=λÞk behavior. Therefore,
the non-Regge-like spins have nontrivial contribution to the
spin-foam spin sum.

6In general for nondegenerate simplicial four-dimensional
manifolds the number of triangles is greater than the number
of edges.

7To study the asymptotics with non-Regge-like spins, the
equation of motion should be replaced by ∂S ¼ 0, where S is the
analytic continuation of S. See [37,38] for detail.
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III. REGULARIZING THE
NON-REGGE-LIKE SPIN SUM

In order to understand the contribution from non-Regge-
like spins, we split the spin sum into a sum over Regge-like
spins and a sum over non-Regge-like spins in the following
analysis. Then the non-Regge-like spin sum is carried out
explicitly,with a regulator inserted,while theRegge-like spin-
sum is treated by the usual stationary phase approximation.
The space of internal spins Jf, LJ, is a cubic lattice in the

smooth spaceMJ ≃RNf (Jf at different f can be regarded
as independent in the spin sum; see Appendix A for an
explanation). We define the submanifold MRegge to be the
image of the smooth embedding inEq. (13) from the space of
edge lengthsMl intoMJ.We denote by J̃fðlÞ the image of
the embedding from a given flg. J̃fðlÞ is a smooth function
defined by Eq. (13), and may not be a half-integer.
Given a compact neighborhood N Regge in MRegge that

contains J̃fðlÞ all satisfying J̃fðlÞ ≫ 1,8 we define local
coordinates ðl; t̃Þ in MJ, where edge lengths l are
coordinates in MRegge; ft̃igMi¼1 are transverse coordinates
to MRegge. We denote the coordinate basis for t̃i by
êi ¼ ððêiÞfÞf, and choose N to be the coordinate chart.
êi (i ¼ 1;…;M) may be assumed as constant vectors in
RNf , so that the coordinate axes of ti are straight lines in
RNf . The transverse submanifolds coordinatized by ti are
parallel planesRM ↪ RNf . This assumption can always be
achieved locally in a compact neighborhood N Regge.
The transverse plane located at flg is denoted by
MNRðlÞ≃RM.
For any set of internal spins J⃗ ∈ N , it is expressed in the

ðl; t̃Þ coordinate, in which l’s give a unique ⃗J̃ðlÞ∈N Regge.

So J⃗ is written as

J⃗ ¼ ⃗J̃ðlÞ þ
XM
i¼1

t̃iêi; with JfðlÞ ≫ 1: ð15Þ

Recall that ⃗J̃ðlÞ are in general not spins. We define J⃗ðlÞ to
be a set of spins in the transverse plane MNRðlÞ, at the
same flg as the ones determining ⃗J̃ðlÞ, and require that

J⃗ðlÞ has the shortest distance to ⃗J̃ðlÞ measured in RNf .
J⃗ðlÞ defined in this way might not be unique. But when
there are multiple choices, we make an arbitrary choice of
J⃗ðlÞ. The resulting J⃗ðlÞ is a representative of
⃗J̃ðlÞ ∈ N Regge. Obviously the spins J⃗ can also be written

as J⃗ ¼ J⃗ðlÞ þP
M
i¼1 t̃iê

i using the representative. Given
that both J⃗; J⃗ðlÞ are spins, thenPM

i¼1 tiê
i are half-integers,

so that J⃗ðlÞ þ n
P

M
i¼1 t̃iê

i are also spins when n ∈ Z.
Spins in MNRðlÞ form an M-dimensional periodic lattice
LNRðlÞ, whose lattice basis is denoted by fêiðlÞgMi¼1.
Therefore, any internal spins J⃗ ∈ N can be expressed as

J⃗ ¼ J⃗ðlÞ þ
XM
i¼1

tiêiðlÞ; with JfðlÞ ≫ 1; ð16Þ

where ti ∈ Z.
That LNRðlÞ is a periodic lattice equivalent to the

existence of parallel M-dimensional lattice planes in LJ
intersecting N Regge transversely, which is always true
locally (see Appendix B for an explanation). The local
property is sufficient for the present discussion.
J⃗ðlÞ in Eq. (16) is a representative of Regge-like spins,

although it might not be precisely located at N Regge. Its
distance to N Regge is at most of Oð1Þ.9 The large-J
asymptotics of AJðlÞ is the same as the situation of Regge-
like spins in Eq. (12) by the argument at the end of the last
section (see also [38]). Non-Regge-like spins with ti ≠ 0 in
each LNRðlÞ is going to be summed explicitly under certain
regularization, before the stationary phase approximation.
If we denote by h; i the Euclidean inner product in RNf ,

the spin-foam action is written asX
f

JfFf ≡ hJ⃗; F⃗i ¼ hJ⃗ðlÞ; F⃗i þ
X
i

tihêiðlÞ; F⃗i: ð17Þ

We define the spin-foam state sum in the coordinate chart
N by restricting the spin sum in N ,

ZN ðKÞ ¼
X
J⃗∈N

Y
f

dimðJfÞ
Z

dgvedzvfehJ⃗;F⃗i

¼
X
J⃗ðlÞ

X
ti∈Z

μðl; tÞ
Z

dgvedzvfe
hJ⃗ðlÞ;F⃗iþ

P
i
tihêiðlÞ;F⃗i;

ð18Þ
where μðl; tÞ≡ 2Nf

Q
f ðJfðlÞ þ

P
M
i¼1 tiðêiÞfðlÞÞ. The

spin sum only involves spins in the bulk. Boundary spins
are set to be Regge-like Jf ¼ JfðlÞ, f ∈ ∂K, as the
boundary condition.
We perform a regularization (or deformation) of

P
ti∈Z

by inserting a Gaussian weight
X
ti∈Z

→
X
ti∈Z

e−
δ
4

P
M
i¼1

titi : ð19Þ

The regulators δ ≪ 1, which are turned off appropriately by
δ → 0 in the end. The amplitude with the insertion

e−
δ
4

P
M
i¼1

titi is denoted by ZN ;δðKÞ, which is a deformation

8MRegge may have self-intersections, but N Regge is always
obtained as the smooth image of a neighborhood of l’s in the
space of edge lengths.

9J⃗ðlÞ generically satisfy the triangle inequality everywhere on

K since ⃗J̃ðlÞ do.

MUXIN HAN PHYSICAL REVIEW D 96, 024047 (2017)

024047-6



from the original amplitude. When δ → 0, ZN ;δðKÞ returns
to the spin-foam amplitude restricted to the domain N of
spins. The deformation turns out to be crucial in opening a
small window of nontrivial curvature. The exponentially

damping behavior of e−
δ
4

P
M
i¼1

titi at t → ∞ also justifies the
Poisson resummation in the following.
We treat the sum over ti via the Poisson resummation

(see Appendix C for some discussions about the sum),X
ti∈Z

μðl; tÞe−δ
4

P
M
i¼1

titiþ
P

i
tihêiðlÞ;F⃗i

¼
X
kj∈Z

Z
dtiμðl; tÞe−

δ
4

P
M
i¼1

titiþ
P

i
tihêiðlÞ;F⃗þ2πi

P
j
kjê�j ðlÞi;

ð20Þ
where ê�jðlÞ is the lattice vector of the lattice L�

NRðlÞ dual
to LNRðlÞ, satisfying hêiðlÞ; ê�jðlÞi ¼ δij.
We make a shorthand notation by�

êi; F⃗ þ 2πi
X
j

kjê�j

�
≡Φi

ðkÞ ≡ iψ i
ðkÞe

iϕi
ðkÞ ; ð21Þ

where ψ i
ðkÞ∈R;ϕi

ðkÞ∈ ½0;2πÞ. The quantitiesΦi
ðkÞ;ψ

i
ðkÞ;ϕ

i
ðkÞ

depend on l; gve; zvf. We perform the Gaussian integral of t,
Z

dtiμðl; tÞe−
δ
4

P
M
i¼1

titiþ
P

M
i¼1

tiΦi
ðkÞ

¼ 2Nf

�
4π

δ

�M
2
Y
f

�
JfðlÞ þ

XM
i¼1

ðêiÞf
∂

∂Φi
ðkÞ

�
e
P

M
i¼1

1
δΦ

i
ðkÞΦ

i
ðkÞ

¼ 2Nf

�
4π

δ

�M
2Y

f

�
JfðlÞ þ

XM
i¼1

2

δ
Φi

ðkÞðêiÞf
�
e
P

M
i¼1

1
δΦ

i
ðkÞΦ

i
ðkÞ

≡DðkÞ
δ ðl; gve; zvfÞ: ð22Þ

The spin-foam amplitude now reads

ZN ;δ ¼
X
J⃗ðlÞ

Z
dgvedzvfehJ⃗ðlÞ;F⃗i

X
fkjg∈ZM

DðkÞ
δ ðl; gve; zvfÞ:

ð23Þ
The regulator δ defines a deformation from the original spin-
foam amplitude ZN .
As it becomes clear in the next section, when Ff is

restricted to be purely imaginary, Φi
ðkÞ ¼ iψ i

ðkÞ ∈ iR. Then

DðkÞ
δ reduces to

DðkÞ
δ ðl; gve; zvfÞ ¼

�
4π

δ

�M
2

e−
1
δ

P
M
i¼1

ψ i
ðkÞψ

i
ðkÞ

× 2Nf

Y
f

�
JfðlÞ þ

2i
δ

XM
i¼1

ψ i
ðkÞðêiÞf

�
:

ð24Þ

As δ → 0,DðkÞ
δ contains a Gaussian peaked at ψ i

ðkÞ ¼ 0with

width
ffiffiffi
δ

p
. Its center ψ i

ðkÞ ¼ 0 means

�
êi; F⃗ þ 2πi

X
j

kjê�j

�
¼ hêi; F⃗i þ 2πiki ¼ 0: ð25Þ

The sum over fkjg ∈ ZM in Eq. (23) reflects that ZN is

periodic in Ff → Ff þ 4πi. The above peakedness of DðkÞ
δ

and the sum over fkjg is a consequence of the periodicity.

IV. REGGE EQUATION AND SMALL
DEFICIT ANGLE

The amplitude ZN ;δ depends on two independent scales
ðλ; δÞ, where (1) λ is the mean value of J̃f ≡ λjf in

N Regge ⊂ N , and (2) δ is the regulator inDðkÞ
δ for regulating

the transverse t⃗ sum of non-Regge-like spins. Here λ ≫ 1
since we are interested in the large-J regime, while δ ≪ 1
since the regulator should be turned off in the end. However
we may let two scaling limits λ → ∞ and δ → 0 compete,
to find a physically interesting regime.
λ relates to the length scale where the semiclassical

expansion of the spin-foam amplitude is defined, since the
typical lattice spacing is l ∼ ðλγl2

PÞ1=2 for geometries inN .
It turns out that the other parameter δ relates to the
continuum limit in refining the lattice. δ provides a bound
to ensure the lattice spacing l is always much smaller than
the typical curvature radius ρ in all geometries emergent
from the spin-foam amplitude. It guarantees that the
simplicial geometries approach the continuum in the lattice
refinement.
It turns out that an interesting way of arranging limits is

to first take λ → ∞, then δ → 0. In other words, the
interesting regime is that λ ≫ 1=δ ≫ 1
When we first take the asymptotical limit λ → ∞, Dδ

does not oscillate or suppress, and thus does not affect
critical equations from hJ⃗ðlÞ; F⃗i. When J⃗ðlÞ ¼ λj⃗ðlÞ
represents Regge-like spins, there always exist solutions
to critical equations,

ReF⃗ ¼ ∂ghj⃗ðlÞ; F⃗i ¼ ∂zhj⃗ðlÞ; F⃗i ¼ 0: ð26Þ

Solutions ðjfðlÞ; gveðlÞ; zvfðlÞÞ correspond to nondegen-
erate Regge geometries on K, parametrized by the edge
lengths l, which relate J⃗ by Eq. (13). There may not be a
unique set of l corresponding to a given Regge-like J⃗. If it
happens, critical solutions contain different Regge geo-
metries with different sets of edge lengths.
Note that when J⃗ðlÞ is a representative away from

N Regge with Oð1Þ distance, ðjfðlÞ; gveðlÞ; zvfðlÞÞ are
approximate solutions to the critical equations with
Oð1=λÞ errors.
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Given a set of edge lengths l⃗ of a nondegenerate Regge
geometry, in principle, it corresponds to2Nσ critical solutions
(Nσ is the number of 4-simplices), which have indefinite
local four-dimensional orientations at each 4-simplex σ
[7,8].10 Within 2Nσ solutions, there are two solutions
corresponding to two different global orientations. Here
we are only concerned about the sector of critical solutions
corresponding to globally oriented Regge geometries. Small
perturbations do not flip the 4-simplex orientation, and thus
do not relate solutions from different sectors.11We are going
to determine whether the critical solutions in the sector give
dominant contribution to the spin-foam amplitude in the
regime λ ≫ 1=δ ≫ 1. It turns out that a subset of critical
solutions indeed gives the leading contribution to the
amplitude. As is shown in the following, among critical
solutions in this sector, the dominant contribution of spin-
foam amplitude comes from the critical solutions whose
corresponding Regge geometries are of small deficit angle
εf ≪ 1 and satisfying the Regge equation.
At critical solutions with global orientation, the asymp-

totical limit λ → ∞ gives12

ZN ;δ∼
X
l

e
i
l2
P
SRegge½l�þ��� X

fkjg∈ZM

DðkÞ
δ ðl;gveðlÞ;zvfðlÞÞ: ð28Þ

We have replaced
P

J⃗ðlÞ by
P

l, since critical solutions

contain all possible l relating to J⃗. SRegge is the Regge
action

SRegge½l� ¼
X
f

afεf þ
X
f⊂∂K

afΘf; af ¼ γ ~JfðlÞl2
P;

ð29Þ

where J̃fðlÞ ∈ N Regge has been represented by its nearest
neighbor JfðlÞ. Here � � � stands for the subleading correc-
tions in large J.
In the above asymptotical behavior, SRegge½l� is obtained

by evaluation of h ⃗J̃ðlÞ; F⃗i at the critical solution corre-
sponding to the Regge geometry flg. Ff evaluated at the
critical solution gives iγεf at each internal f and gives iγΘf

at each boundary f, where εf and Θf are the bulk deficit
angle and boundary dihedral angle in the Regge geometry.
See [8] for the detailed derivation.
At the leading order, DðkÞ

δ takes a value at the critical
solution gveðlÞ; zvfðlÞ. At each critical point, ReF⃗ ¼ 0,
and Ff ¼ iγεf for each internal f. Thus Φi

ðkÞ ∈ iR, and

DðkÞ
δ ðl; gveðlÞ; zvfðlÞÞ

¼
�
4π

δ

�M
2

e−
1
δ

P
M
i¼1

ψ i
ðkÞðlÞψ i

ðkÞðlÞ

× 22Nf

Y
f

�
JfðlÞ þ

2i
δ

XM
i¼1

ψ i
ðkÞðlÞðêiÞfðlÞ

�
; ð30Þ

where

ψ i
ðkÞðlÞ ¼ γhêi; ε⃗i þ 2πki: ð31Þ

Because of the Gaussian e−
1
δ

P
M
i¼1

ψ i
ðkÞψ

i
ðkÞ with small δ, each

DðkÞ
δ is essentially supported within a small neighborhood

of size
ffiffiffi
δ

p
at ψ i

ðkÞ ¼ 0. As δ ≪ 1, each Dδ effectively

suppresses the contributions from configurations with large
ψ i
ðkÞ, and picks out the configurations with small ψ i

ðkÞ.
As the large-J limit λ → ∞ gives l2

P ≪ af, from the
variational principle (see Appendix C), the leading con-
tribution of Eq. (28) is given by the flg configurations
satisfying Regge equation

X
f

∂af
∂l εf ¼ 0; or γ

�∂J⃗
∂l ; ε⃗

�
¼ 0: ð32Þ

Each solution of the Regge equation gives the leading order
contribution to ZN ;δ, which is proportional to

10This result is valid for the Lorentzian spin-foam amplitude.
The Euclidean amplitude gives 4Nσ critical solutions instead of
2Nσ . There are four solutions ðgve; g0veÞ, ðg0ve; gveÞ, ðgve; gveÞ,ðg0ve; g0veÞ in each 4-simplex. But different critical solutions are
still understood as belonging to different well-separated sectors,
as in the Lorentzian case. Again we only consider the sector of
gþve ≠ g−ve with a global orientation.

11The 4-simplex orientation only takes discrete values �1 [8].
Small deformations among critical solutions do not affect the
value of orientation.

12Note that at each flg inPl in Eq. (28), the critical solutions
beyond the above sector may contribute some exponentials in
addition to eiSRegge½l�=l2Pþ���. If we denote by σ all possible
assignment of orientations to simplices (σ also includes the
solutions with gþve ¼ g−ve in the Euclidean amplitude), the asymp-
totical behavior Eq. (28) of ZN ;δ may be more properly written as

X
σ

X
l

e
i

l2
P
Sσ ½l�þ��� X

fkjg∈ZM

DðkÞ
δ;σðl; gveðlÞ; zvfðlÞÞ: ð27Þ

Each iSσ ½l�=l2
P is the spin-foam action evaluated at the critical

solution with orientations σ in simplices. Equation (28) corre-
sponds to the term where σ endows K with a global orientation.
The leading contributions to ZN ;δ in Eq. (27) have been organized
into disjoint sectors associated to different σ. Each sector σ has its
own partition function

P
l e

iSσ=l2Pþ��� P
kj D

ðkÞ
δ;σ . Small perturba-

tions do not relate critical solutions from different sectors. In
other words, those critical solutions without global orientation
only give nonperturbative corrections to Eq. (28). In this paper,
we focus on the sector in Eq. (27) with a global orientation,
and study the geometries making leading contributions to the
amplitude.
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e
i
l2
P

P
f⊂∂KafΘf X

fkjg∈ZM

e−
1
δ

P
M
i¼1

ψ i
ðkÞðlÞψ i

ðkÞðlÞð� � �Þ: ð33Þ

Note that the bulk terms in SRegge½l� vanish at each solution
of the Regge equation. Now we take δ ≪ 1, the Gaussian

e−
1
δ

P
M
i¼1

ψ i
ðkÞψ

i
ðkÞ suppresses the amplitude contributed by the

solutions flg, which have relatively large ψ i
ðkÞðlÞ ¼

γhêi; ε⃗i þ 2πki; i.e., the essential contribution of the

spin-foam amplitude Zðk⃗¼0Þ
N ;δ comes from the solutions

flg satisfying

jγhêi; ε⃗ij ≤ δ1=2 ≪ 1 mod 2πki: ð34Þ

Let us temporarily ignore the terms with kj ≠ 0 in
Eq. (33). ∂J⃗=∂l are tangent vectors on the submanifold
MRegge of Regge-like spins. Thus ∂J⃗=∂l and êi form a
complete basis in N . The Regge equation Eq. (32) and the
requirement Eq. (34) at kj ¼ 0 combine and give that all
deficit angles have to be small,

jγεfj ≤ δ1=2 ≪ 1: ð35Þ

Namely, given a solution flg to the Regge equation, all its
deficit angles εf have to be small in order to provide a
nonsuppressed contribution to the spin-foam amplitude at
kj ¼ 0. The Barbero-Immirzi parameter γ is a fixed Oð1Þ
parameter in our discussion. If γ was not fixed and sent to 0
combining the semiclassical limit, Eq. (35) would allow
large deficit angle in the semiclassical Regge geometries,
which reproduced the result in [39,46].
When the simplicial triangulation is refined, given a

Regge geometry flg that approximates a smooth geom-
etry,13 the deficit angle relates to the typical lattice spacing
l of the Regge geometry and the typical curvature radius ρ
of the smooth geometry by [22]14

ε ∼
l2

ρ2

�
1þO

�
l2

ρ2

�	
: ð36Þ

The Regge geometry has to satisfy l2 ≪ ρ2 in order to
approximate the smooth geometry, since the ratio between
l and a geodesic length ls of the smooth geometry is
l=ls ¼ 1þOðl2=ρ2Þ. Note that the smooth limit of Regge
geometry also requires that the fatness of simplices is
bounded away from 0, to avoid any degenerate simplex.
See, e.g., [23,40,47] for details.
When the lattice is sufficiently refined, and when δ is

sent to be small, Regge geometries sufficiently approxi-
mating smooth geometries all satisfy Eq. (35) and survive
as dominant contribution to ZN ;δ at kj ¼ 0. Regge geom-
etries suppressed byDδ are the ones that fail to approximate
any smooth geometry. The regulator δ behaves similarly as
the bound of error in the piecewise linear approximation of
smooth metric

jl=ls − 1j≃Oðl2=ρ2Þ ≤ δ1=2: ð37Þ

The leading contribution to the semiclassical spin-foam
amplitude must satisfy both Regge equation (32) and
Eq. (35). Therefore, the solutions of the Regge equation
that approximate smooth geometries all give dominant
contributions to the spin-foam amplitude.
The terms with kj ≠ 0 add discrete ambiguities to the

constraint Eq. (35). However, different kj correspond to
disjoint sectors of discrete geometries satisfying Eq. (34).
Geometries in sectors of kj ≠ 0 do not approximate any
smooth geometry. Small perturbations cannot relate two
geometries satisfying Eq. (34) with different kj.
The geometries in sectors with kj ≠ 0 may have non-

suppressed contributions to the semiclassical spin-foam
amplitude (as has been pointed out in [37,38]). However
the sectors are sensitive to the choice of the neighborhood
N Regge in defining ZN ;δ. For example, we assume the
neighborhood N Regge, which contains the physical Regge
geometries only with relatively small deficit angles; i.e.,
γhêi; ε⃗i is not close to any 2πki with ki ≠ 0. Then the terms
with kj ≠ 0 in Eq. (33) only have negligible contribution to
ZN ;δ. The dominant contribution to ZN ;δ comes from the
geometries with small deficit angles. The kj ¼ 0 sector is
physically most relevant because it is the only sector
containing discrete geometries approaching the continuum
as the simplicial lattice being refined.
It is mentioned in Sec. II that critical points in the spin-

foam action contain time-nonoriented geometries [25],
which gives Fg ¼ iðγεf � πÞ. Within this type of critical
point, the equation of motion Eq. (32), the constraint
Eq. (34) or Eq. (35), is modified by the replacement
γεf → γεf � π. The constraint then leads to γεf being
close to �π. These critical points form two disjoint sectors
away from the ones discussed above. Geometries in this
sector do not approximate any smooth geometry, and can
be treated in the same way as the kj ≠ 0 sectors. Some

13If we embed the Regge geometry in RN , N > 4, the
corresponding smooth geometry is a smooth enveloping surface
S of the Regge geometry, where all vertices (end points of l’s) in
the Regge geometry are located in S. S is required to satisfy
ρ ≫ l everywhere. Once a S is chosen, the Regge geometry is a
piecewise linear approximation to S satisfying jl=ls − 1j≃
Oðl2=ρ2Þ where ls is the geodesic length connecting the end
points of l [22].

14Given a small 2-face f embedded in a smooth geometry, the
loop holonomy of spin connection along ∂f gives eεX̂ , where X̂ is
the bivector tangent to f. As f is small, the holonomy gives
1þ R

f F≃ 1þ εX̂, which implies ε≃ l2=ρ2 since F is the
curvature 2-form of the spin connection. Typical spacings of
K and K� are of similar scales.
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discussion of the Euclidean amplitude is given in
Appendix D.

V. EINSTEIN-REGGE REGIME

We refer to the regime of the spin-foam model, where the
Regge equation emerges together with the constraint
γεf ≤ δ1=2, as the ER regime. The ER regime is defined
by considering the deformed spin-foam amplitude
ZN ;δðKÞ, and imposing the following requirements on
the parameters K, N , δ:

(i) The neighborhood N contains a submanifold
N Regge ⊂ N . All J̃fðlÞ in N Regge are large
J̃fðlÞ≫1. The mean value of J̃fðlÞ in N Regge is
denoted by λ. Parameters λ and δ satisfy λ≫ δ−1≫ 1.

(ii) The neighborhood N of the spin-foam spin sum has
to be compatible with the triangulation K. Namely,
Regge geometries flg in the neighborhood
N Regge ⊂ N all have relatively small deficit
angles εf (e.g., requiring γεf < π). N Regge should
contain Regge geometries that approximate smooth
geometries.

In the ER regime specified by the above requirements,
the spin-foam amplitude obtains dominant contributions
from Regge geometries inN , which satisfy both the Regge
equation (32) and the bound εf ≤ γ−1δ1=2. These Regge
geometries contain the ones approximating smooth geom-
etries by Eq. (37). They satisfy the following (approximate)
bound by Eq. (36):

ρ2 ≥
γλl2

Pffiffiffi
δ

p ≫ l2 ≫ l2
P: ð38Þ

The inequality l2
P ≪ l2 ≪ ρ2, satisfied by the dominant

configurations, is the condition that the discrete geometry is
semiclassical (l2 ≫ l2

P), as well as approaching the con-
tinuum limit (l2 ≪ ρ2) [20,37,48].
It is anticipated that geometries both satisfying the Regge

equation and approximating the continuum should approxi-
mate the smooth solution to the continuum Einstein
equation. We come back to this point in the next section.
Note that in this work, we limit ourselves to under-

standing the dominance in the spin-foam amplitude from
classical geometries with a global orientation. As it has
been mentioned in the last section, geometries without
global orientation live in other well-separated sectors. They
may provide nonpertrubative corrections to the contribution
studied above, although they do not affect the perturbative
expansion at any classical geometry.

VI. SEMICLASSICAL CONTINUUM LIMIT

So far the discussion is based on a fixed triangulation.
We may change our viewpoint and consider a sequence of
triangulations Kn, where each Knþ1 is a refinement of Kn.

The vertices of all Kn’s are a dense set in the manifold
where the triangulations are embedded. The sequence of
Kn defines a sequence of spin-foam amplitudes ZN ;δðKnÞ.
The smooth geometry can be understood as the limit of a
sequence of discrete geometries flng on the sequence of
triangulations Kn, where the discrete geometries approach
l2=ρ2 → 0. When each of the discrete geometries flng in
the sequence satisfies the Regge equation on Kn, it gives
the nonsuppressed contribution to the spin-foam amplitude
ZN ;δ on Kn.
Let us describe more detailed behavior of geometries

flng and amplitudes ZN ;δ on the sequence of triangulations
Kn. Generically on a more refined triangulation, the large
system size requires a larger λ to obtain the semiclassical
behavior as the leading order in the spin-foam amplitude.
Indeed in the 1=λ quantum correction of the amplitude, the
coefficient of 1=λs is a sum over all gve; zvf degrees of
freedom on the triangulation (see, e.g., [25]).

i−s
X
l−m¼s

X
2l≥3m

2−l

l!m!

�X
a;b
H−1

abðx0Þ
∂2

∂xa∂xb
	
l

gx0ðx0Þm;

ð39Þ

where x0 is a critical point, HðxÞ ¼ S00ðxÞ denotes the
Hessian matrix, and gx0ðxÞ is given by

gx0ðxÞ ¼ SðxÞ − Sðx0Þ −
1

2
Habðx0Þðx − x0Þaðx − x0Þb:

ð40Þ

Here a, b label all degrees of freedom on the triangulation.
A refined triangulation carries a larger number of degrees of
freedom, thus generically producing a larger coefficient. It
requires a smaller 1=λ to suppress the quantum correction
and let the semiclassical behavior stand out. Therefore, the
discrete geometry flng on Kn has larger and larger λ as Kn
becomes more and more refined. Even if it happens that the
above generic behavior is violated in a certain situation, i.e.,
the coefficient of 1=λ does not increase in refining the
lattice, tuning λ larger still suppresses the quantum cor-
rection. So λ can in general be set to be monotonically
increasing in refining the lattice.
Naively it might sound unexpected to have λ be larger in

the refinement since the triangle area l2 ∼ a ¼ γλl2
P.

However, the continuum limit is controlled by the ratio
l2=ρ2. The ratio becomes smaller when the curvature
radius ρ in Planck unit increases at a faster rate than λ,
or equivalently, when we zoom out to larger length units
such that the value of lP decreases at a faster rate. Zooming
out to larger length units is required by the semiclass-
ical limit.
Formally we associate each triangulation Kn with a mass

scale μn whose inverse μ−1n is a length unit. n becoming
larger is the refinement of Kn, while μn becomes smaller.
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The length unit μ−1n increases as a refinement of the
triangulation. Given the 1-to-1 correspondence between
Kn and μn, we may simply label the triangulation and
discrete geometry as Kμ and flμg by its associated scale
μ:Kμ is refined as μ going to the IR. On each Kμ, the
discrete geometry gives the triangle area aðμÞ

aðμÞ ¼ γλðμÞl2
P ¼ aðμÞμ−2: ð41Þ

Here the running of lP is not considered since we are in the
semiclassical limit. λðμÞ increases monotonically in the
refinement μ → 0 as discussed above. However we can
assign the scale μ to Kμ such that aðμÞ → 0 as μ → 0.15

Using the dimensionless length aðμÞ, we can define the
convergence of the sequence of geometries flμg [where
lμ ∼ aðμÞ1=2μ−1 for each geometry on Kμ converge to a
smooth geometry] by requiring limμ→0aðμÞ ¼ 0 and the
fatness bounded away from 0. The target smooth geometry
has the dimensionless curvature radius denoted by L, which
is the curvature evaluated at the IR unit μ → 0; i.e., the
dimensionful curvature radius is

ρðμÞ ¼ Lμ−1: ð42Þ

The sequence of discrete geometries flμg approaches the
smooth geometry because

aðμÞ
ρðμÞ2 ¼

aðμÞ
L2

→ 0; as μ → 0: ð43Þ

Note that since μ is of mass dimension, μ → 0 may be
understood more appropriately as μlP → 0.
The dependence of λ on μ shows that the semiclassical

limit is taken at the same time as the lattice refinement limit.
Possible assignments of scales μ to triangulations Kμ are
classified in Sec. VII.
As an illustration of the above idea, let us consider a

smooth sphere with a unit curvature radius L ¼ 1. It is
standard to define discrete geometries on a sequence of
refined triangulations of the sphere, which approaches the
smooth sphere in the continuum limit. We assign a mass
scale μ to label the triangulation Kμ such that the refine-

ment relates to μ → 0. On eachKμ, edge lengths are
ffiffiffiffiffiffiffiffiffi
aðμÞp

satisfying limμ→0aðμÞ ¼ 0.
ffiffiffiffiffiffiffiffiffi
aðμÞp

are understood as edge
lengths in the unit μ−1. The scale μ should be chosen such
that aðμÞμ−2=l2

P → ∞ as μ → 0, in order to have λðμÞ
increasing in the refinement. Geometries in the sequence
now associate with different scales μ. The smooth sphere

lives at the IR limit whose curvature radius L ¼ 1 is
measured at the IR unit μ−1 → ∞.
Let us turn to the semiclassical behavior of ZN ;δ on the

sequence of Kμ. Here N depends on μ since λ does. We
take N ðμÞ’s to satisfy the requirement of the ER regime.
Then N ðμÞ’s contain sequences of Regge geometries that
converge to smooth geometries, since aðμÞ → 0 as μ → 0,
and moreover, since λðμÞ increases as μ → 0. The existence
of the ER regime λðμÞ ≫ δ−1 ≫ 1 can be achieved by
smaller δ, if we make δ ¼ δðμÞ run with the scale. Namely,
we can make δðμÞ→ 0 as μ → 0, while λðμÞ ≫ δðμÞ−1 ≫ 1

is satisfied. For sequences of discrete geometries faðμÞ1=2g
converging to smooth geometries at the IR, they give
dominant contributions to ZN ðμÞ;δðμÞ at each μ, if they
satisfy the Regge equation on each Kμ and

γ
aðμÞ
L2

≤ δðμÞ12: ð44Þ

We may choose decreasing rates of δðμÞ1=2 and aðμÞ to be
the same, to keep all converging geometries contributing
dominantly. δðμÞ → 0 as μ → 0 means that the regulator δ
is removed in the continuum limit, where ZN ;δ goes back to
its original definition Eq. (9).
Spin-foam amplitudes give sequences of Regge geom-

etries converging to smooth geometries, where each geom-
etry satisfies the Regge equation on its lattice. It is thus
expected that each smooth geometry as the limit is a
solution of the continuum Einstein equation. However, due
to complexities of both the Regge equation and Einstein
equation, a general mathematical proof is unfortunately not
available in the literature as far as we know. However, there
have been extensive studies on the continuum limit of the
Regge calculus, which gives many analytic and numeric
examples (see [26,27] for summaries). In all the examples,
solutions of the Regge equation always converge to
smooth solutions to the Einstein equation. Among the
examples, there have been constructions of solutions of
linearized Regge equations in the Euclidean signature,
which converge to solutions to the linearized Einstein
equation [28–30]. In the nonlinear regime, there have been
numerical simulations of time evolutions in the Regge
calculus in the Lorentzian signature, as a tool of numerical
relativity. Nontrivial results include, e.g., the Kasner uni-
verse, Brill waves, binary black holes, and the FLRW
universe [27,31–34]. A key observation in the convergence
results is that the deviation of the Regge calculus from
general relativity is the noncommutativity of rotations in
the discrete theory, while the error from the noncommu-
tativity is of higher order in edge lengths [36]. There is also
the convergence result by a certain average of Regge
equations [35]. The existing results all demonstrate that
the Regge calculus is a consistent second order accurate
discretization of general relativity.

15Considering the gap ΔJf ¼ 1
2
, ΔafðμÞ ¼ γΔJfðμÞμ2l2

P ¼
1
2
γμ2l2

P → 0 as μ → 0.
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Given any sequence of solutions to the Regge equation
that converges to a solution to the continuum Einstein
equation, our analysis shows that each solution gives the
dominant contribution to the spin-foam amplitude on Kμ in
the semiclassical limit. The smooth solution to the Einstein
equation is the limit of a sequence of dominant configu-
rations from the spin-foam amplitude.
As an example, Euclidean spin-foam amplitudes on Kμ

can give a sequence of solutions to linearized Regge
equations, which coincide with the ones constructed in
[28]. Edge lengths used there should be identified withffiffiffiffiffiffiffiffiffi
aðμÞp

[more precisely, relate to aðμÞ by Eq. (13)]. The
sequence of geometries provides dominant contribution to
spin-foam amplitudes, and converges in the IR limit μ → 0
to smooth gravitational waves satisfying the linearized
Einstein equation.
There is another way to obtain the continuum

Einstein equation from the convergence of Regge
actions. Let us come back to Eq. (28) and consider the
sequence ZN ðμÞ;δðμÞðKμÞ. For each sequence of Regge
geometries converging to the smooth geometry as
μ → 0, Regge actions converge to the Einstein-Hilbert
action on the continuum, when Regge geometries converge
to the smooth geometry (the convergence again requires the
fatness of simplices to be bounded from 0 in addition to
shrinking edge lengths; see [23,40] for details). Translating
the known convergence result to our context uses the
length unit μ−1. We apply Eq. (41) to the Regge action
1
l2P

P
f afðμÞεfðμÞ,

1

μ2l2
P

X
f

afðμÞεfðμÞ¼
1

μ2l2
P

Z
d4x

ffiffiffiffiffiffi
−g

p
R½1þϵðμÞ�; ð45Þ

where ϵðμÞ satisfies limμ→0ϵðμÞ ¼ 0. The convergence
happens as the edge length aðμÞ1=2 → 0 at the IR.
Smooth geometries and

R
d4x

ffiffiffiffiffiffi−gp
R live at the IR limit

μ → 0. μ2l2
P is the numerical value of l2

P in the unit μ−2.
μ2l2

P tends to 0 when we zoom out to the larger unit.
Given a Regge geometry flg approximating the smooth

geometry, there is a smooth enveloping surface S whose
curvature satisfies ρ ≫ l everywhere, and jl=ls − 1j≃
Oðl2=ρ2Þ, as well as the fatness bounded away from 0.
Small perturbations at flg generically do not break the
above properties, so only lead to Regge geometries still
approximating smooth geometries.
Indeed, consider a small perturbation of both the Regge

geometry and correspondingly, its smooth enveloping
surface S0, i.e., jl0 − lj ≤ δ1 and jl0s − lsj ≤ δ2 with
0 < δ1;2 < l2 < l=2 (l denotes the edge length in unit
μ−1). In [23,40], the rigorous approximation criterion is
jl − lsj ≤ Cl2, which gives jl0 − l0sj ≤ Cl2 þ δ1 þ δ2 <
ðCþ 2Þl2 ≤ C0ðl− δ1Þ2 ≤ C0l02 for C0¼4ðCþ2Þ> Cþ2

ð1−δ1=lÞ2.

So the perturbed Regge geometry still satisfies the approxi-
mation criterion.
The vicinity of a Regge geometry approximating the

smooth geometry only covers Regge geometries that
approximate smooth geometries, so Eq. (45) is valid in
the vicinity. Considering the vicinity is sufficient for the
variational principle. The partition function Eq. (28) within
the vicinity (of each approximated smooth geometry)
behaves as

ZN ðμÞ;δðμÞðKμÞ≃
Z

½Dgμν�e
i

μ2l2
P

R
d4x

ffiffiffiffi−gp
R½1þϵðμÞ�

: ð46Þ

Moreover, Eq. (46) manifests that the IR limit μ → 0 leads
to the stationary phase approximation in Eq. (46), whose
variational principle gives the continuum vacuum Einstein
equation Rμν ¼ 0.
The above argument shows that the spin-foam amplitude

reduces to a partition function of Einstein-Hilbert action in
the semiclassical continuum limit.
We remark that in the above analysis, the regulator δ

plays an interesting role by opening a window to allow
small nonvanishing deficit angles εf for Regge geometries
approximating the continuum. Given a sequence of
Regge geometries approaching a smooth geometry with
nontrivial curvature, the small window of εf allows each
Regge geometry in the sequence to have dominant con-
tribution in their corresponding (regularized) spin-foam
amplitudes ZN ;δ.
The above result is achieved by taking an appropriate

limit combining λ → ∞ and δ → 0 with respect to the
requirement λ ≫ δ−1 ≫ 1 of the ER regime. However, if
the requirement was violated by sending δ → 0 before
λ → ∞, we would lose the window of nonvanishing
curvature for each Regge geometry in the sequence.
Then there would be no smooth curved geometry as the
limit from spin-foam amplitudes. This behavior was the
flatness observed in [17,18].

VII. RUNNING SCALE

In this section we classify all possible assignments of
scales μ to triangulations Kμ. In the above discussion, there
are two requirements relevant to assigning scales μ to
triangulations Kμ.

(i) λðμÞ always suppresses the growth of the coefficient
in (39) at arbitrary order s.

(ii) λðμÞμ2 ∝ aðμÞ monotonically decreases as μ → 0.
We denote the coefficient (39) at the order λ−s by

fsðμÞ, exhibiting its dependence on triangulation Kμ. It
is required that jfsðμÞj=λðμÞs should not blow up as μ → 0
for all s,

0 ≤
d
dμ

�jfsðμÞj
λðμÞs

�
¼ −

sjfsj
λsþ1

dλ
dμ

þ 1

λs
djfsj
dμ

; ð47Þ
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which gives

1

λ

dλ
dμ

≤
1

sjfsj
djfsj
dμ

: ð48Þ

On the other hand, monotonically decreasing λðμÞμ2 ∝
aðμÞ as μ → 0 implies

0 <
d
dμ

ðλðμÞμ2Þ ¼ μ2
dλ
dμ

þ 2μλ; ð49Þ

which gives

0 >
1

λ

dλ
dμ

> −
2

μ
: ð50Þ

Combining Eq. (48) gives

1

sjfsj
djfsj
dμ

> −
2

μ
: ð51Þ

Recall that μ is assigned to a sequence of triangulations
Kn ≡Kμn ≡Kμ. The variable μ≡ μn is actually discrete.
jfsðμÞj and λðμÞ have been assumed to be a differentiable
function that continues jfsðμnÞj and λðμnÞ.
Integrating Eq. (51),

Z
μn−1

μn

1

sjfsj
djfsj
dμ

dμ > −
Z

μn−1

μn

2

μ
dμ; ð52Þ

which gives

μn−1
μn

>

���� fsðμnÞ
fsðμn−1Þ

����
1
2s

: ð53Þ

Thus the assignment of μ depends on the behavior of
coefficients fsðμnÞ for all s. All possibilities are classified
as follows:
(1) The simplest situation is that all jfsðμÞj stop in-

creasing at finite μs > μ� > 0; then Eq. (53) does not
impose any constraint to μ when μ < μ�, since
μn−1=μn is always greater than 1. It is easy to find
λðμÞ to satisfy Eq. (50).

(2) If there are finitely many s ≥ 1 whose jfsðμÞj
increase monotonically as μ → 0, finitely many
j fsðμnÞ
fsðμn−1Þ j > 1 impose a nontrivial lower bound to

μn−1=μn. Because the number of increasing jfsðμÞj is
finite, there is a bounded Bn at each n,

���� fsðμnÞ
fsðμn−1Þ

����
1
2s

≤ max
s≥1

���� fsðμnÞ
fsðμn−1Þ

����
1
2s ≡ Bn: ð54Þ

We can choose μn−1
μn

> Bn at each n, so that Eq. (53) is
satisfied uniformly to all orders s.

(3) If there are infinitely many jfsðμÞj increasing mono-
tonically as μ → 0, and if the rate j fsðμnÞ

fsðμn−1Þ j ≤ AneCns

(for certain constants An, Cn > 0) bounded by
exponentially growing when going to higher orders

s, then there is an upper bound Bn at each n (A
1
2s
n is

bounded in s ≥ 1),

���� fsðμnÞ
fsðμn−1Þ

����
1
2s

≤ A
1
2s
n eCn=2 ≤ Bn: ð55Þ

We can again choose μn−1
μn

> Bn at each n, so that
Eq. (53) is satisfied uniformly to all orders s.

(4) If j fsðμnÞ
fsðμn−1Þ j

1
2s is not bounded from above as s → ∞

at any n, Eq. (53) can only be satisfied at any
truncation of the λ−1 asymptotic expansion. At any

truncation up to λ−s0 order, j fsðμnÞ
fsðμn−1Þ j

1
2s at each n is

bounded from above within finitely many
1 ≤ s ≤ s0. The bound changes for different s0.
Then the rate μn−1

μn
has to be justified order by order.

We conjecture that the third situation should be most
relevant. fs in quantum mechanics and quantum field
theories have the following generic behavior as s → ∞
(see, e.g., [49–51]),

jfsj≃ ηs!sαβsð1þ ϵðsÞÞs; lim
s→∞

ϵðsÞ ¼ 0; ð56Þ

where constants η, α, β may depend on different theories
and different numbers of degrees of freedom. This behavior
leads to

���� fsðμnÞ
fsðμn−1Þ

����
1
2s ≃

�
ηn
ηn−1

� 1
2s

s
1
2sðαn−αn−1Þ

�
βn
βn−1

�1
2½1þ ϵðsÞ�12;

ð57Þ

bounded from above for large s.

VIII. CONCLUSION AND OUTLOOK

The discussion of this paper explains the emergence of
the Einstein equation from the spin-foam amplitudes in the
semiclassical continuum limit. However, the spin-foam
amplitude seems to contain more solutions than the
Einstein equation does. The analysis here mainly focuses
on the sector of critical points in the spin-foam amplitude
that corresponds to nondegenerate geometries with a global
orientation. Solutions to the Einstein equation emerge
within this sector. There exist other well-separated sectors
where the spin-foam amplitude gives the degenerate geo-
metry and geometries without a global orientation [7,8].
Those geometries may not satisfy the Einstein equation,
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and their physical meaning remains open (see, e.g., [52] for
some discussion). Note that there exists the spin-foam
model (the proper vertex) whose asymptotics give a single
orientation to each 4-simplex [53]. The discussion in this
paper is also valid in this model.
A key step in the discussion is the regularization of the

non-Regge-like spin sum in Eq. (19), which is a deforma-
tion of the spin-foam amplitude. We take the point of view
that the spin-foam amplitude defined on a triangulation
might be an effective theory from a complete LQG theory
as the continuum limit of the spin foam. As the level of
effective theory, the deformation has to be implemented in
the spin-foam amplitude to reproduce the desired semi-
classical limit. As is shown in Sec. VI, the deformation is
turned off in the continuum limit. It suggests that the spin-
foam amplitudes, with or without the deformation, should
have the same continuum limit. The amplitude with the
deformation is one effective description of the complete
LQG theory, whose advantage is the correct semiclassical
behavior.
Although the regularization includes a Gaussian damp-

ing factor in the non-Regge-like spin sum, it is not allowed
to completely remove non-Regge-like spins in the spin
sum. Removing all non-Regge-like spins would be an
ad hoc modification of the model, which modified the
continuum limit. The modification would remove the
small-εf constraint (3) or (35) and break the desired
behavior of the spin-foam amplitude near a classical
curvature singularity in [20] (reviewed briefly at the end
of Sec. I). In our opinion, the existence of non-Regge-like
spins and its consequence, the flatness, are nice properties
of spin-foam amplitude, when treated properly.
There has been recent progress on the spin-foam

amplitude with cosmological constant [9,54–59].
Research is being undergone to apply the present analysis
to the formalism with cosmological constant. Another
possible future direction is to apply the analysis to the
sum over triangulations in group field theory (GFT). The
method developed in this work might be helpful to under-
stand the emergence of classical geometries from GFT, and
the relation to phase transitions. Our results on the spin-
foam amplitude might also be applied to the tensor network
approach in the bulk-boundary duality [60,61], by the
relation between random tensor networks and spin-
networks [48]. The recent work in [62] applies discrete
three-dimensional bulk gravity to random tensor networks,
and reproduces correctly the holographic Rényi entropy of
two-dimensional CFT. The result here may be useful in the
generalization to four bulk dimensions.
Finally, we mention that there have been earlier studies

on the continuum limit in spin foams, e.g., [63–69]. There
are also some recent results on emerging classical space-
times from GFT, e.g., [70–72].
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APPENDIX A: SPIN SUM
IN SPIN-FOAM AMPLITUDE

In this section, we show that
P

Jf
in the spin-foam

amplitude Eq. (9) can be understood as a free spin sum,
where spins Jf from different f are independent.
The summand of

P
Jf can be written as [up to a factor of

dimðJfÞ] [25]

Z
dgve

X
fMefg

Y
ðv;fÞ

hJf; γJf;Jf;Mefjgevgve0 jJf; γJf;Jf;Me0fi:

ðA1Þ

The inner product takes place in the SLð2;CÞ unitary irrep
HðJ;γJÞ≃ ⊕∞

k¼J Vk, where Vk is the irrep of an SU(2)
subgroup of SLð2;CÞ. The canonical basis jJ; γJ; J;Mi
is a state in the lowest-level Vk¼J, where m is the magnetic
quantum number. Each of the inner products associates to a
triangle f and a vertex v of f. e, e0 label the edges adjacent
to v.
We pick a gve andmake a change of variable gve → gvehe,

he ∈ SUð2Þ, followed by an integration
R
SUð2Þ dhe. The

operation does not change the value of Eq. (A1) because
of the normalization of the Haar measure dhe on SU(2).
dðgveheÞ ¼ dgve because dgve is a Haar measure on
SLð2;CÞ. Thus the integral RSUð2Þ dhe operates as follows:

Z
SUð2Þ

dhe
Y
f;e⊂f

hejJf; γJf; Jf;Mefi: ðA2Þ

It only affects four states jJf; γJf; Jf;Mefiwhosef contains
the edge e. he leaves Vj invariant. hejJf; γJf; Jf;Mefi is
essentially the same as hejJf;Mefi. The integralR
SUð2Þ dhe

Q
f;e⊂f he is a projector onto the invariant sub-

space of the tensor product VJ1 ⊗ � � � ⊗ VJ4 . If four Jf’s
only give a trivial invariant subspace, the above integral
vanishes identically for all Mef. Indeed we consider the
matrix element
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Z
SUð2Þ

dh
Y4
i¼1

hJi; NijhjJi;Mii ¼
XJ1þJ2

J¼jJ1−J2j

XJ3þJ4

K¼jJ3−J4j
CJ1;J2;J
N1;N2;N1þN2

CJ1;J2;J
M1;M2;M1þM2

CJ3;J4;K
N3;N4;N3þN4

CJ3;J4;K
M3;M4;M3þM4

×
Z
SUð2Þ

dhhJ; N1 þ N2jhjJ;M1 þM2ihK;N3 þ N4jhjK;M3 þM4i

¼
XJ1þJ2

J¼jJ1−J2j

XJ3þJ4

K¼jJ3−J4j
CJ1;J2;J
N1;N2;N1þN2

CJ1;J2;J
M1;M2;M1þM2

CJ3;J4;K
N3;N4;N3þN4

CJ3;J4;K
M3;M4;M3þM4

×
XJþK

J̃¼jJ−Kj
CJ;K;J̃
N1þN2;N3þN4; ~N

CJ;K;J̃
M1þM2;M3þM4; ~M

Z
SUð2Þ

dhhJ̃; ~NjhjJ̃; ~Mi; ðA3Þ

where the last integral gives
R
SUð2Þ dhhJ̃; ~NjhjJ̃; ~Mi ¼

δJ̃;0δ ~M;0δ ~N;0. It constrains

J ¼ K; N1 þ N2 þ N3 þ N4 ¼ 0;

M1 þM2 þM3 þM4 ¼ 0: ðA4Þ

ðJ1; J2; JÞ, ðJ3; J4; KÞ satisfying triangle inequality and
J ¼ K implies that there is a nontrivial invariant subspace.
If J ≠ K the integral vanishes identically.
Note that in the above we have used the product formula

of representation matrices,

hJ1; N1jhjJ1;M1ihJ2; N2jhejJ2;M2i

¼
XJ1þJ2

J¼jJ1−J2j
CJ1;J2;J
N1;N2;N1þN2

CJ1;J2;J
M1;M2;M1þM2

× hJ; N1 þ N2jhjJ;M1 þM2i;
hJ3; N3jhjJ3;M3ihJ4; N4jhejJ4;M4i

¼
XJ3þJ4

K¼jJ3−J4j
CJ3;J4;K
N3;N4;N3þN4

CJ3;J4;K
M3;M4;M3þM4

× hK;N3 þ N4jhjK;M3 þM4i;

where CJ1;J2;J
M1;M2;M1þM2

is the Clebsch-Gordan coefficient.
We can understand the spin sum

P
Jf as a sum over

independent spins, while the integral in the summand
imposes the constraint that Jf’s should give nontrivial
invariant subspace for four f’s sharing the same edge e. For
spins in

P
Jf , which does not satisfy the constraint, their

contributions vanish.
What we have done in the main text is simply inter-

change the spin sum and integral. Schematically,

X
J

dimðJÞ
Z

dgdzeS½J;g;z�

¼
Z

dgdz
X
J

dimðJÞeS½J;g;z�: ðA5Þ

This interchange can be justified by understanding
P

J as a
finite sum, where a large-J cutoff is imposed. The cutoff
may relate to the cosmological constant. As another
independent justification of interchanging spin sum and
integral, we focus on the compact neighborhood N Regge in
the submanifold MRegge in the main discussion. N Regge

only has finitely many spins (representatives). The spin
sum in transverse directions has been regularized by a
Gaussian weight with regulator δ, which exponentially
decays at infinity as δ ≠ 0. It qualifies to interchange the
transverse spin sum with the integral.

APPENDIX B: TRANSVERSE LATTICE PLANE

The lattice of all spins LJ is isomorphic to ZNf , where a

lattice basis can be chosen to be b⃗I ¼ ðbIfÞNf

f¼1

(I ¼ 1;…; Nf), where bIf ¼ δIf. We define a square

matrix B ¼ ðb⃗1;…; b⃗NfÞ and denote LJ ≃ ZNf ¼ LðBÞ.
Obviously B is an identity matrix.
A unimodular matrix is a matrix U ∈ ZNf × ZNf such

that detU ¼ 1. Unimordular matrices relate equivalent
lattice bases. Namely, columns of B0 ¼ BU are a basis
ofZNf equivalent to the standard basis b⃗I . Here B0 is simply
U since B is an identity matrix. Thus columns of B0 give a
basis of ZNf if and only if it is unimodular.
The basis from B0 is obtained from B via the following

operations on columns (unimodular transformation):
(1) adding the Ith column n times to the Jth column,
(2) interchanging two columns, and (3) flipping the sign of
a column.
The local neighborhoodN Regge ⊂ MRegge can be viewed

approximately as an ðNf −MÞ-dimensional plane in RNf .

Among the original basis vectors b⃗I , there should have been
a set of vectors b⃗K , say K ¼ 1;…;M0, M0 ≤ M, that
transverse nicely to N Regge; i.e., b⃗

K does not close to any

tangent vector of N Regge. If M0 < M and b⃗J is relatively

close to a tangent vector of N Regge, b⃗
J can be improved by

the unimodular transformation b⃗J → b⃗J þPM0

K¼1 nKb⃗
K ,
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nK ∈ Z, which gives a better transverse lattice vector.
Iterating this procedure leads to the M transverse lattice
vector, while the procedure corresponds to a unimodular
matrix U, such that B0 ¼ BU gives a new basis as its
columns. The new basis containsM transverse basis vectors
êi that span LNR.

APPENDIX C: POISSON RESUMMATION
AND EULER-MACLAURIN FORMULA

In the discussion of the spin sum in Sec. III, we have
used the Poisson resummation formula to carry out the sum
over t. The sum is of the following type,

X
t∈Z

e−δt
2þtΦ ¼

X
k∈Z

Z
R
e−δt

2þtðΦþ2πikÞdt; ðC1Þ

where the integral for each k is computed explicitly.
However, the sum can also be studied by the asymptotic

expansion using the Euler-Maclaurin formula

Xn
i¼m

fðiÞ ¼
Z

n

m
fðxÞdxþ fðnÞ þ fðmÞ

2

þ
X⌊p=2⌋
k¼1

B2k

ð2kÞ! ðf
ð2k−1ÞðnÞ − fð2k−1ÞðmÞÞ þ R;

ðC2Þ

where B2k is the kth Bernoulli number. The error term R
depends on n, m, p, and f,

R ¼ ð−1Þpþ1

Z
n

m
fðpÞðxÞPpðxÞ

p!
dx; ðC3Þ

where PpðxÞ is the periodic Bernoulli function. R satisfies
the following bound:

jRj ≤ 2ζðpÞ
ð2πÞp

Z
n

m
jfðpÞðxÞj: ðC4Þ

Letting fðtÞ¼e−δt
2þtΦ (exponentially decay at t → �∞),

we obtain

X
t∈Z

e−δt
2þtΦ ¼

Z
R
e−δt

2þtΦdtþ R: ðC5Þ

The first term is the same as the k ¼ 0 term in the Poisson
resummation. However, since fðpÞ ∼Φpe−δt

2þtΦ, the error
term R is not negligible unless Φ is small. R essentially
collects the sum of all k ≠ 0 contributions in the Poisson
resummation.
Viewing

P
t∈Z e−δt

2þtΦ as a function of Φ, it is clear that
replacing the sum by the integral is only a local approxi-
mation of the function (the meaning of asymptotic

expansion).
P

t∈Z e−δt
2þtΦ is periodic in Φ → Φþ 2πi,

while
R
e−δt

2þtΦdt breaks the periodicity. The periodicity is
not manifest in the Euler-Maclaurin expansion, but is
manifest in the Poisson resummation formula.
The small Φ relates to the small γεf in Sec. IV. Thus the

result with k ¼ 0 in Sec. IV can be reproduced by using the
Euler-Maclaurin expansion in the regime where R is
negligible. The ER regime essentially requires thatP

t∈Z e−δt
2þtΦ can be approximated by

R
e−δt

2þtΦdt.
Similarly when one consider the large-J spin sum in

spin-foam amplitude, one would like to rescale Jf ¼ λjf
where Δjf ¼ 1

2λ (λ ≫ 1) and understand the spin sum as the
Riemann sum, i.e., schematically,

X
j

eλjF ¼ 2λ
X
j

ΔjeλjF ∼ 2λ

Z
djeλjF ¼ 2

Z
dJeJF:

However, because of the Euler-Maclaurin expansion
Eq. (C2), we know that the above approximation may
be valid only in the regime of small F. In general the error
terms are not negligible. It can also be seen in the Euler-
Maclaurin expansion of

P
jΔjfðjÞ where fðjÞ ¼ eλjF.

The λ−n correction involves the nth derivative
fðnÞðjÞ ¼ λnFneλjF, which cancels λ−n.
In the discussion of the variational principle of Regge

action in Sec. IV, we have implicitly used the Euler-
Maclaurin expansion for Eq. (28),

X
l

e
i
l2
P
SRegge½l�þ��� ¼

Z
dle

i
l2
P
SRegge½l�þ��� þ error terms: ðC6Þ

In general the error terms are not negligible as far as the full
amplitude is concerned. However, as far as the equation of
motion is concerned, the variational principle is applied to
the first term, whose dominant contribution comes from
solutions of the Regge equation.

APPENDIX D: ACTION AND ANGLES
IN EUCLIDEAN EPRL AMPLITUDE

Considering an internal dual face f, at each large-J
critical point (of a globally oriented nondegenerate geom-
etry) in the Euclidean spin-foam amplitude, the loop
holonomy along ∂f made by g�ve’s is written as

G�
f ðvÞ≡ g�veg�evkg

�
vkek…g�e1v ¼ exp ðiΦ�

f X̂
�
f ðvÞÞ; ðD1Þ

where X̂fðvÞ ¼ ðX̂þ
f ðvÞ; X̂−

f ðvÞÞ is the normalized bivector
along the triangle f. Φ�

f ¼ P
v ϕ

�
eve0 where ϕ�

eve0 within
each 4-simplex satisfies [24,44]

ϕþ
eve0 − ϕ−

eve0 ¼ μðvÞΘfðvÞ ∈ ½−π; π�: ðD2Þ
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μðvÞ relates to the orientation of the 4-simplex v, which we
set to be globally μðvÞ ¼ −1 for globally oriented space-
time geometries.
The action contributed by f evaluated at the critical point

reads [6,24],

Sf ¼
X
�
2iJ�f Φ�

f ¼ iJfðΦþ
f þΦ−

f Þ þ iγJfðΦþ
f −Φ−

f Þ:

ðD3Þ

Each Φ�
f is defined modulo 2π: Φ�

f ∼Φ�
f þ 2π. So

Φþ
f �Φ−

f ∼Φþ
f �Φ−

f þ 4π. However, simultaneous trans-
formations Φþ

f �Φ−
f → Φþ

f �Φ−
f þ 2π do not change eSf

since ð1þ γÞjf ∈ Z. We can set the following range of
angles:

Φþ
f þΦ−

f ∈ ½−2π; 2π�; Φþ
f −Φ−

f ∈ ½−π; π�: ðD4Þ

Equation (D2) implies Φþ
f −Φ−

f ¼ −
P

v∈f ΘfðvÞ mod
4π. But simultaneous transformations can give

Φþ
f −Φ−

f ¼ 2π −
X
v∈f

ΘfðvÞ ¼ εf; ðD5Þ

when we set εf ∈ ½−π; π� to include Regge geometries
close to the continuum. εf ∈ ½−π; π� is made by choosing
suitable N Regge.
On the other hand, GfðeÞ represented in the vector

representation ĜfðeÞ reads [6,24]

ĜfðvÞ ¼ exp ð�X̂fðvÞθfÞ exp ðπηfX̂fðvÞÞ; ðD6Þ

where ηf ∈ f0; 1g labels two different types of critical
points.

Lifting ĜfðvÞ ∈ SOð4Þ to ðGþ
f ðvÞ; G−

f ðvÞÞ ∈ SUð2Þ ×
SUð2Þ evaluates Φ�

f ¼ 1
2
ðηfπ�θfÞ−kfπ, where kf∈f0;1g

label lift ambiguities.

εf ¼ Φþ
f −Φ−

f ¼ θf; Φþ
f þΦ−

f ¼ πηf − 2kfπ: ðD7Þ

Equation (D4) implies

ηf − 2kf ≡ nf ∈ f−1; 0; 1g: ðD8Þ

There is canonical lift with kf ¼ 0 corresponding to the lift
of SO(4) spin connection to SUð2Þ × SUð2Þ. ηf ¼ kf ¼ 0

indeed corresponds to a critical solution, which can be
constructed by the Regge geometry with the canonical
lift.16 Other lifts k� ≠ 0 and ηf ≠ 0 may correspond to
different critical solutions.17

The action is expressed as

Sf ¼ iJf½γεf þ nfπ�: ðD9Þ

Therefore, repeating the analysis in Sec. IV leads to the
replacement

γεf → γεf þ nfπ ðD10Þ

in Eqs. (32) and (35). After the replacement Eq. (35) gives
disjoint sectors of geometries whose γεf are close to −nfπ.
The only sector having geometries approximating the
continuum is the one with all nf ¼ 0. Other sectors are
suppressed in the amplitude by suitably choosing N Regge.
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