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We compute the binding energy and angular momentum of a test particle at the last stable circular orbit
(LSO) on the equatorial plane around a general relativistic, rotating neutron star (NS). We present simple,
analytic, but accurate formulas for these quantities that fit the numerical results and which can be used in
several astrophysical applications. We demonstrate the accuracy of these formulas for three different
equations of state (EOS) based on nuclear relativistic mean-field theory models and argue that they should
remain still valid for any NS EOS that satisfy current astrophysical constraints. We compare and contrast
our numerical results with the corresponding ones for the Kerr metric characterized by the same mass and
angular momentum.
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I. INTRODUCTION

It is well known that the knowledge of the properties of
the circular orbits of test particles, e.g., energy and angular
momentum around compact objects such as neutron stars
(NSs) and black holes (BHs) are of paramount importance
for the understanding of several astrophysical scenarios
such as the accretion processes in binary x-ray sources [1].
The precise knowledge of NS properties is essential for

the correct description of the NS structure evolution during
the accretion process. This is particulary relevant in the
evolution of accreting NSs in x-ray binaries leading to the
NS spin-up and final formation of the millisecond recycled
pulsars [2]. It is by now clear that the inclusion in the
accretion process of subtle effects such as the NS binding
energy [3], and the precise energy and angular momentum
trasnferred to the NS including general relativistic effects
and the NS interior compression [4,5], can have an impact
in the determination of the correct evolutionary scenario
and therefore in the determination of the binary progenitors
of millisecond pulsars (see, e.g., Refs. [6–8]).
On the other hand, it has been shown that such an

information becomes also relevant within the induced
gravitational paradigm of gamma-ray bursts (GRBs),
where a hypercritical accretion process is triggered onto
a NS by the supernova explosion of a binary companion

carbon-oxygen core [9–13]. In contrast to binary x-ray
sources in which the NS accretes matter from a companion
at sub-Eddington rates _M≡dM=dt≲10−8 M⊙y−1, hence
evolving quietly on very long time scales tacc ≡M= _M≳
108 y, the aforementioned hypercritical accretion process
in GRBs leads to a NS which evolves in time scales as
short as tacc ¼ M= _M ∼ 102 s. In such a short time interval,
the NS can reach either the mass-shedding or the secular
axisymmetric instability with consequent gravitational
collapse to a BH (see, e.g., Refs. [10,11,13]).
It is clear that the description of processes similar to

the above one needs the knowledge of the properties of the
NS interior, of its exterior spacetime, and of the circular
orbits around it. The aim of this article is to provide these
ingredients.
Uniformly rotating NS equilibrium configurations

form a two-parameter family of solutions characterized
by baryonic mass Mb and angular momentum J. We can
write the evolution of a uniformly rotating NS gravitational
mass M as:

_M ¼
� ∂M
∂Mb

�
J

_Mb þ
�∂M
∂J

�
Mb

_J; ð1Þ

where _Mb and _J are the amount of baryonic mass and
angular momentum being transferred to the NS per-unit-
time, namely the mass accretion rate and torque acting onto
the NS. The two above partial derivatives have to be
obtained from the relation MðMb; JÞ which is obtained
numerically. We have recently found in Ref. [14] that,
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independent on the nuclear equation of state (EOS), such a
relation for uniformly rotating NSs is well fitted by

Mb

M⊙
¼ M

M⊙
þ 13

200

�
M
M⊙

�
2
�
1 −

1

130
j1.7

�
; ð2Þ

where j≡ cJ=ðGM2⊙Þ. This relation has been shown to be
very accurate also in the description of the binding energy
of other nuclear EOS models including hyperonic and
hybrid ones [15].
The total energy released in an accretion process is given

by the amount of gravitational energy gained by the
material in its way to the NS surface and that is not spent
in increasing the gravitational binding energy of the NS,
namely (see, e.g., [11,16]):

Lacc ¼ ð _Mb − _MÞc2

¼ _Mbc2
�
1 −

�∂M
∂J

�
Mb

_J
_Mb

−
� ∂M
∂Mb

�
J

�
; ð3Þ

where we have used Eq. (1).
If the accretion of matter comes from a disk-like

structure, such a total radiated energy Lacc is given by
the sum of the energy radiated in the disk, Ldisk, and the
energy radiated at the NS surface when the material is
incorporated to the star, Ls, i.e.

Lacc ¼ Ls þ Ldisk: ð4Þ

In the case when the magnetic field effects can be
neglected, the inner boundary of an accretion disk around
a compact object is assumed to be given by the radius of the
last stable circular orbit (hereafter LSO) of a test particle of
mass μ ≪ M. Thus, the knowledge of the energy and
angular momentum of a test particle at the LSO is essential
for the determination of the evolution of the NS during the
accretion process. We denote hereafter by ~E≡ E=μ and
~L≡ L=ðGμM=cÞ the energy per-unit-mass and dimension-
less angular momentum of a particle at the LSO.
From energy and angular momentum conservation we

have that the mass-energy and angular momentum trans-
ferred to the NS from a particle infalling from the LSO are
(see, e.g., Ref. [16]):

_Mc2 ¼ ~E _Mbc2 − Ls ð5Þ

_J ¼ _Mb
~L
GM
c

: ð6Þ

Equations (1)–(6) lead, therefore, to the surface luminosity,

Ls ¼ _Mbc2
�
~E −

�∂M
∂J

�
Mb

~L
GM
c

−
� ∂M
∂Mb

�
J

�
; ð7Þ

and to the disk luminosity

Ldisk ≡ Lacc − Ls ¼ _Mbc2ð1 − ~EÞ: ð8Þ

From Eqs. (1)–(6), one can compute the time evolution
of the mass and angular momentum of the NS in an
accretion process, providing we know how ~E and ~L depend
on the gravitational (or on the baryonic mass) and angular
momentum of the NS. At the same time, Eqs. (7) and (8)
give us, respectively, the surface and disk luminosities
which are important from the observational point of view. It
is worth to mention that the contribution of Ls and Ldisk to
the total radiated energy can be comparable depending on
the angular momentum [16].
In this article we present simple but accurate fitting

formulas of ~EðM; JÞ and ~LðM; JÞ both for corotating and
counter-rotating orbits around rotating NS and are valid for
any rotation ratewithin theNS region of stability boundedby
mass-shedding and secular axisymmetric instability limits.
We show below that the aforementioned formulas for

~EðM; JÞ and ~LðM; JÞ are shown to be the same for three
different nuclear EOS based on relativistic mean-field
theory, suggesting a possible universal character. We
elaborate on this concept and show that current astrophysi-
cal constraints imply that, indeed, our formulas should
remain valid for other astrophysically relevant set of EOS
and for the relevant NS masses leading to an LSO located
outside the NS surface.
Despite the complexity of NSs and the still debated EOS

governing their interior physics, there have been discovered
features which seem to be EOS-independent such as the
relation between the moment of inertia, Love number and
quadrupole moment, i.e. the I-Love-Q relation [17,18], and
the NS binding energy shown in Eq. (2) [14]. We show in
this work that indeed also the energy and angular momen-
tum of the LSO around rotating NSs are very weakly EOS-
dependent properties in the limits established by current
astrophysical constraints. All the above allow the con-
struction of a set of analytic and/or semianalytic set of NS
properties that can be used in a variety of NS astrophysical
scenarios as the accretion process exemplified above.
The article is organized as follows. In Sec. II, we compute

the interior and exterior spacetime geometry of uniformly
rotating NSs. The general formulation of the problem of
circular orbits is recalled in Sec. III. Then, in Sec. IV, we
compute the configurations for which there exists a LSO
outside the NS surface. In Sec. V, we focus on those
configurations and compute the binding energy and angular
momentum of the LSO. Finally, we shall present simple but
very accurate fitting formulas for these quantities.

II. NEUTRON STAR STRUCTURE AND
SPACETIME GEOMETRY

We first compute the interior and exterior spacetime
of uniformly rotating NSs in order to derive the equations
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of motion for the test particle. Following [14], we
consider the stationary axisymmetric spacetime metric
in quasi-isotropic coordinates and in geometric units
c ¼ G ¼ 1 [19],

ds2 ¼ −eγþρdt2 þ eγ−ρr2sin2θðdϕ − ωdtÞ2
þ e2λðdr2 þ r2dθ2Þ; ð9Þ

where γ, ρ, ω and λ depend only on variables r
and θ.

It is useful to introduce the variable eψ ¼ r sinðθÞBe−ν,
being again B ¼ Bðr; θÞ. The energy-momentum tensor of
the NS interior is given by

Tαβ ¼ ðεþ PÞuαuβ þ Pgαβ; ð10Þ

where ε and P denote the energy density and pressure
of the fluid, and uα is the fluid 4-velocity. Thus, with the
metric given by equation (9) and the above energy-
momentum tensor, one can write the field equations as
(setting ζ ¼ λþ ν):

∇ · ðB∇νÞ ¼ 1

2
r2sin2θB3e−4ν∇ω ·∇ωþ 4πBe2ζ−2ν

�ðεþ PÞð1þ v2Þ
1 − v2

þ 2P

�
; ð11aÞ

∇ · ðr2 sin2 θB3e−4ν∇ωÞ ¼ −16πr sin θB2e2ζ−4ν
ðεþ PÞv
1 − v2

; ð11bÞ

∇ · ðr sinðθÞ∇BÞ ¼ 16πr sin θBe2ζ−2νP; ð11cÞ

ζ;μ ¼ −
�
ð1 − μ2Þ

�
1þ r

B;r

B

�
2

þ
�
μ − ð1 − μ2ÞB;r

B

�
2
�

−1
�
1

2
B−1fr2B;rr − ½ð1 − μ2ÞB;μ�;μ − 2μB;μg

×

�
−μþ ð1 − μ2ÞB;μ

B

�
þ r

B;r

B

�
1

2
μþ μr
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B
þ 1

2
ð1 − μ2ÞB;μ

B

�
þ 3

2

B;μ

B

�
−μ2 þ μð1 − μ2ÞB;μ

B

�

− ð1 − μ2Þr B;μr

B

�
1þ r

B;r

B

�
− μr2ðν;rÞ2 − 2ð1 − μ2Þrν;μν;r þ μð1 − μ2Þðν;μÞ2 − 2ð1 − μ2Þr2B−1B;rν;μν;r

þ ð1 − μ2ÞB−1B;μ½r2ðν;rÞ2 − ð1 − μ2Þðν;μÞ2� þ ð1 − μ2ÞB2e−4ν
�
1

4
μr4ðω;rÞ2 þ

1

2
ð1 − μ2Þr3ω;μω;r

−
1

4
μð1 − μ2Þr2ðω;μÞ2 þ

1

2
ð1 − μ2Þr4B−1B;rω;μω;r −

1

4
ð1 − μ2Þr2B−1B;μ½r2ðω;rÞ2 − ð−μ2Þðω;μÞ2�

��
; ð11dÞ

where, in the equation for ζ;μ, we introduced μ≡ cosðθÞ.
The NS interior is made of a core and a crust. The core of

the star has densities higher than the nuclear value,
ρnuc ≈ 3 × 1014 g cm−3, and it is composed by a degenerate
gas of baryons (e.g. neutrons, protons, hyperons) and
leptons (e.g. electrons and muons). The crust, in its outer
region (ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3), is composed of
ions and electrons, and in the so-called inner crust
(ρdrip < ρ < ρnuc), there are also free neutrons that drip
out from the nuclei. For the crust, we adopt the Baym-
Pethick-Sutherland (BPS) EOS [20]. For the core, we adopt
instead the relativistic mean-field (RMF) theory models
within the extension of the formulation of Boguta and
Bodmer [21] with massive scalar and vector meson
mediators (σ, ω, and ρ mesons). In this work, we present
results for NSs constructed using the NL3 [22], TM1 [23]
and GM1 [24,25] EOS.
Our preference for EOS based on RMF models is

because they satisfy important properties such as Lorentz

covariance, they are self-consistent relativistic models and
therefore they do not violate causality, and they are
successful in providing an intrinsic inclusion of spin as
well as a simple mechanism of saturation of nuclear matter.
We refer to Refs. [26,27] for recent extensive studies of
RMF models both from the nuclear experiments point of
view and from the astrophysical one. The above three
representative models that we use in this work satisfy the
astrophysical constraint of producing nonrotating, stable
NSs up to masses larger than the most massive NS
observed, PSR J0348þ0432, with M ¼ 2.01� 0.04 M⊙
[28]. The mass-radius relation for nonrotating models
obtained with these three EOS is shown in Fig. 1.
With the knowledge of the EOS we can compute

equilibrium configurations integrating the above Einstein
equations for suitable initial conditions, e.g. central density
and angular momentum (or angular velocity) of the star.
Then the properties of the NS such as the total gravitational
mass, the total baryon mass, polar and equatorial radii,
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moment of inertia, quadrupole moment, etc, can be
obtained as a function of the central density and angular
momentum.
The equilibrium configurations are limited by the

Keplerian, mass-shedding, or maximally rotating sequence,
and by the secular axisymmetric instability. At the
Keplerian sequence the dimensionless angular momentum
a=M≡ cJ=ðGM2Þ, where a ¼ J=M is the angular mom-
entum per-unit-mass, reaches a maximum value of
amax=M ≈ 0.7, independently on the EOS [14]. This value
is lower than the maximum dimensionless angular momen-
tum parameter of a rotating BH given by the extreme Kerr
solution, i.e. amax;BH=MBH ¼ 1.
The secular axisymmetric instability sequence separates

stable from unstable stars against axisymmetric perturba-
tions. The turning-point method [29] gives a sufficient
condition for the onset of this instability. Such a sequence,
for the present EOS, is well fitted by

Mcrit
NS ¼ MJ¼0

crit ð1þ kjpNSÞ; ð12Þ

with a maximum error of 0.45% [14]. The parameters k and
p and MJ¼0

crit depend of the nuclear EOS (see Table I). The
latter, the critical NS mass in the nonrotating case, is as
expeceted below the upper bound to the critical mass by
Rhoades and Ruffini, 3.2 M⊙ [30].

III. LAST STABLE CIRCULAR ORBIT

We are interested in circular orbits of particles on the
equatorial plane of the NS, that is to fix θ ¼ π

2
(see [31]).

It is well known that a practical way to analyze the problem
of the circular orbits is through the effective potential
Vðr; ~E; ~LÞ (see, e.g., Ruffini and Wheeler 1969 in Sec. 104
in [32]; see also Refs. [33,34]), whose turning points give
us the radii of the circular orbits. For the metric given by
Eq. (9), one can express the effective potential Vðr; ~E; ~LÞ as
follows [19]:

Vðr; ~E; ~LÞ ¼ e2λþγ

�
dr
dτ

�
2

¼ e−ρð ~E − ω ~LÞ2 − eγ −
eρ

r2
~L2; ð13Þ

where τ is the proper time of the free particle. In order to
obtain a circular orbit, one should impose the conditions

V ¼ V;r ¼ 0; ð14Þ

and from equations (13) and (14), one obtains

~E ¼ ~ve
γþρ
2

ð1 − ~v2Þ12 þ ω ~L; ð15Þ

~L ¼ ~vre
γ−ρ
2

ð1 − ~v2Þ12 ; ð16Þ

with ~v the velocity as measured by the zero angular
momentum observer (ZAMO):

~v ¼ 1

2þ rðγ;r − ρ;rÞ
fe−ρr2ω;r � ½e−2ρr4ω;r

2þ

þ 2rðγ;r þ ρ;rÞ þ r2ðγ;r2 − ρ;r
2Þ�12g; ð17Þ

where the upper (plus) sign is for corotating particles and
the lower (minus) sign is for counter-rotating particles.
Stable orbits are those for which the above equations are

satisfied and, in addition, V;rr ≥ 0, where the equality
corresponds to the LSO. We shall denote the radius of the
LSO to as rlso. Depending upon the mass and angular
momentum of the NS, we have situations in which
rlso > req, being req the coordinate equatorial radius of
the star, and situations in which stable circular orbits exist
down to the stellar surface, namely rlso ¼ req.

A. Location of the last stable circular orbit

We now check the conditions under which the LSO
actually resides outside the NS. It is then clear that the
condition of the LSO to lie outside the NS, i.e. the condition
rlso ≥ req, establishes a minimummass (for a given value of
the angular momentum), or conversely, a maximum angular

FIG. 1. Mass-radius relation for nonrotating NSs for the three
EOS NL3 (green solid curve), TM1 (red dashed curve) and GM1
(blue dotted-dashed curve) used in this work. The gray dashed
horizontal line shows the mass of the heaviest NS observed, PSR
J0348þ 0432, M ¼ 2.01� 0.04 M⊙ [28].

TABLE I. Parameters needed to compute the secular axisym-
metric instability sequence as given by Eq. (12).

EOS MJ¼0
crit (M⊙) p k

NL3 2.81 1.68 0.006
GM1 2.39 1.69 0.011
TM1 2.20 1.61 0.017
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momentum (for a given mass), over which this condition is
satisfied. In the case J ¼ 0, namely for nonrotating stars, it
is known that the LSO is located at rJ¼0

lso ¼ 6GM=c2, and
therefore the minimum mass to have this orbit outside the
star is obtained for the configuration with radius R ¼ rJ¼0

lso .
For the NL3, TM1 and GM1 EOS, in the case of corotating
particles this minimum mass is ½1.68; 1.61; 1.57� M⊙,
respectively. On the other hand, for counter-rotating par-
ticles, this minimum mass is given for the maximally
rotating (Keplerian) configuration and for the NL3, TM1
and GM1 EOS is ½1.42; 1.41; 1.34� M⊙.
Fig. 2 shows the results in the rotating case for the GM1

EOS and for corotating and counter-rotating orbits. The
stable NS models reside in the interior region bounded by
the static (solid red curve), Keplerian (solid green curve),
and secular instability (solid black curve) sequences. The
configurations along the dashed curve have the radius of
the LSO equal to the NS equatorial radius, i.e. rlso ¼ Req.
Only the configurations on the right side of this curve have

rlso > Req. The configurations on the left side of the curve
have stable circular orbits down to the NS surface. The
dashed-dotted curve is the analogous limit for orbits of
counter-rotating particles, thus the configurations under
this curve have stable circular orbits down to the NS
surface, while the configurations above it have rlso > Req.
For the corotating case we can obtain a fitting function of

the minimumNSmass,Mmin, for which given a value of the
angular momentum one has rLSO ≥ Req. For the selected
EOS such a function is:

Mmin

M⊙
¼ Mj¼0

min

M⊙
þ c1jc2 ; ð18Þ

where Mj¼0
min , c1 and c2 are dimensionless constants that

depend on the EOS. We report the values of these fitting
parameters in Table II together the maximum relative error
and the values of NS mass for which this maximum error is
obtained. Clearly, the above fitting formula is valid up to
the configuration that intersects the Keplerian sequence,
namely where the dashed black curve intersects the solid
green curve in Fig. 2. The value of the dimensionless
angular momentum of that configuration, which we denote
here to as jmax, is reported in Table II. It can be easily
checked that introducing the value of jmax given in Table II
into the Eq. (18), one obtains the correct value of the mass
of this precise configuration on the Keplerian sequence.
It is important to stress that Eq. (18) is not EOS-

independent and it is here presented with the only purpose
of providing the reader a complete set of analytic formulas
that simplify the analysis of several astrophysical scenarios.
The information provided by Eq. (18) is therefore com-
plementary to the one recalled in Sec. I on the NS binding
energy and accretion luminosity, and the one on the LSO
energy and angular momentum that is obtained in the
next Sec. V.

B. Orbital binding energy and angular momentum

We now focus on the properties of the LSO, therefore we
deal with NS configurations with rLSO ≥ Req. We here
present the numerical results obtained through integrations
performed with RNS public code (http://www.gravity.phys
.uwm.edu/rns/) for NSs considering mass-constant sequen-
ces within the region of stability bounded by the spherical
symmetric case (nonrotating), by the Keplerian sequence

FIG. 2. Mass versus central density of uniformly rotating NSs
with the GM1 EOS. The region of stability is bounded by the
nonrotating sequence (solid red curve), the maximally rotating
models (solid green curve), namely the mass-shedding limit or
Keplerian sequence, and the secular axisymmetric stability limit
(solid black curve). The dashed curve corresponds to configu-
rations for which the LSO of corotating particles equals the NS
equatorial radius: configurations on the right side of it possess an
LSO exterior to their surface while configurations on the left side
of the curve, have stable circular orbits down to the NS surface.
Analogously, the dashed-dotted curve corresponds to configura-
tions for which the LSO of counter-rotating particles equals the
NS equatorial radius: configurations above it possess an LSO
exterior to their surface while, configurations below it, have
stable circular orbits down to the NS surface.

TABLE II. Parameters of the fitting formulas given by Eq. (18)
for the three EOS used, together with maximum relative errors.

EOS Mj¼0
min [M⊙] c1 c2 Max rel errð%Þ jmax

NL3 1.68 0.225 0.94 1.71 6.31
TM1 1.61 0.238 0.94 1.68 4.47
GM1 1.57 0.242 0.94 1.66 4.98
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(mass-shedding) and by the secular axisymmetric insta-
bility limit. We shall refer to as supramassive NSs
those with a mass larger than the critical mass of non-
rotating NSs, i.e. configurations without a stable non-
rotating counterpart.
We show in Figs. 3–6 the results of our computations

for corotating and counter-rotating orbits around NSs
obeying the GM1 EOS. The results for the other EOS

FIG. 3. Binding energy (Ebind=μ≡ 1 − ~E) of corotating test
particles in the LSO for constant mass sequences of NS
configurations versus the dimensionless angular momentum
a=M ¼ cJ=ðGM2Þ. We compare and contrast our results with
the values given by the Schwarzschild and Kerr solutions. In this
example the NSs obey the GM1 EOS.

FIG. 4. Dimensionless angular momentum (jLj=ðμMÞ) of
corotating test particles in the LSO for constant mass sequences
of NS configurations versus the dimensionless angular momen-
tum a=M ¼ cJ=ðGM2Þ. We compare and contrast our results
with the values given by the Schwarzschild and Kerr solutions. In
this example the NSs obey the GM1 EOS.

FIG. 5. Same as Fig. 3 but for counter-rotating orbits.

FIG. 6. Same as Fig. 6 but for counter-rotating orbits.
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are analogous. Fig. 3 shows the binding energy per-unit-
mass, Ebind=μ ¼ 1 − ~E, as a function of the dimensionless
angular momentum parameter, a=M ¼ cJ=ðGM2Þ, for
selected constant mass-sequences in case of corotating
particles. Fig. 5 shows the results for counter-rotating
particles. Fig. 4 shows the modulus of the dimensionless
angular momentum of particles in the LSO, jLj=ðGμM=cÞ,
as a function of a=M ¼ cJ=ðGM2Þ for the same constant
mass sequences in case of corotating particles. Fig. 6
shows the results for counter-rotating particles.

It can be seen that the sequences are bounded by the
Keplerian (mass-shedding) sequence, i.e. a=M ≈ 0.7, by
the limit rLSO ¼ Req, by the secular axisymmetric insta-
bility and by the nonrotating limit at a=M ¼ 0 (except
the supramassive sequences which have no static counter-
part), for which the LSO properties have the well-known
results of the Schwarzschild exterior solution. We recall
that j ¼ cJ=ðGM2⊙Þ ¼ ða=MÞðM=M⊙Þ2. We compare and
contrast our results with the corresponding values given by
the Kerr metric [34]. Deviations from the behavior given by

FIG. 7. Maximum error (in percentage) of Eqs. (19) and (20) with respect to the numerical value of ~E and ~L for the sequences of
constant gravitational mass in the range 2–3.4 M⊙. The results for corotating orbits are shown in the left upper and lower panels and for
counter-rotating ones in the right upper and lower ones.
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the Kerr solution are evident at almost any value of the
dimensionless angular momentum, except for the region of
very slow rotation a=M ≪ 1.
As one can note from Figs. 3, 4, 5 and 6, the binding

energy and the angular momentum of particles orbiting
rotating NSs seem to be power-law functions of the mass
and the dimensionless angular momentum. Indeed, we find
that the following relations

~E − ~E0 ¼∓ 0.0132

�
j

M=M⊙

�
0.85

; ð19Þ

j ~Lj − ~L0 ¼∓ 0.37

�
j

M=M⊙

�
0.85

; ð20Þ

where the upper(lower) sign corresponds to co(counter)-
rotating orbits, hold for the three studied EOS. This leads to
the conjecture that these relations might be universal. The
values ~E0 ¼

ffiffiffiffiffiffiffiffi
8=9

p
and ~L0 ¼ 2

ffiffiffi
3

p
are the well-known

values of the Schwarzschild solution, hence our formulas
recover the correct values in the nonrotating case. We note
that in the slow rotation regime, a=M ≪ 1, the Kerr
solution seems to approach this behavior (see Figs. 3
and 4, for the corotating case). The above fitting formula
for ~E is accurate with a maximum error of 1% and the one
for ~L has a maximum error of 0.3%. It is interesting to note
that we obtain that the same fitting formulas apply to both
co- and counter-rotating orbits.
We have shown in Figs. 3–6 the results for the GM1

EOS. For the other EOS similar plots are obtained. Indeed,
the formulas (19) and (20) perform with similar accuracy in
the case of the TM1 and NL3 EOS. In Fig. 7 we show the
details of the performance of formulas (19) and (20) as a
function of the NS mass for the three EOS. Specifically, for
each sequence of fixed gravitational mass we compute the
maximum error (in percentage) of Eqs. (19) and (20) with
respect to the values of ~E and ~L obtained from the numerical
integration. Fig. 7 shows the results for the range of mass
2–3.4 M⊙ for co- and counter-rotating orbits.

IV. DISCUSSION

We have shown that expressions for ~E and ~L
remain rather accurate for the three EOS used in this work.
One is therefore brought to conjecture on the possible
“universality” of such equations, namely that such simple
relations would remain valid for a broader set of NS EOS.
Below, through a set of logically connected statements, we
shall conclude that this should be indeed the case.

1. There is a firm observational lower limit to the NS
critical mass: it must be larger than the mass of the
heaviest NS observed, 2.01� 0.04 M⊙, of PSR
J0348þ 0432 [28].

2. The above point constraints the nuclear EOS to be
stiff. These EOS with sound velocity approaching,
but not exceeding, the speed of light (see, e.g., [35]),

have a very narrow critical mass domain of depend-
ence [30,36].

3. For such stiff EOS, the condition for the existence of
an LSO, namely that the radius of the NS is smaller
than the LSO radius, is satisfied only for heavy NSs.
In the specific cases studied in this work we have
shown that this condition implies M ≳ 1.7 M⊙. For
details we refer to Sec. III A, specifically to Eq. (18)
with the aid of Table II.

4. In Ref. [37], it was presented a general expansion of
the LSO energy ~E and angular momentum ~L in
terms of α≡ a=M ¼ J=M2, the NS dimensionless
angular momentum parameter, and in terms of the
dimensionless quadrupole moment q≡Q=M3.
Such an expansion shows that the dependence of
~E and ~L on the EOS occurs first at linear order in q.

5. On the other hand, it has been shown that the
dimensionless quadrupole moment of NSs can be
written as q ¼ kðEOS;MÞα2, where the coefficient
kðEOS;MÞ depends on the NS mass and the EOS
(see, e.g., Ref. [38]). The dependence q ∝ α2 is
satisfied by both slow and fast rotating NSs. Typ-
ically k > 1 but the larger the NS mass, the more k
approaches unity, namely the quadrupole moment of
massive NSs approaches the one of the Kerr solution
(see Refs. [14,39] for more details).

6. The above points 4 and 5 imply that the dependence
~E and ~L on the EOS occurs only at order α2 through
the k and, since for NSs α < 0.7 [14], such EOS
dependence is expected to be weak.

7. Following Ref. [37], we can write up to second order
in α (and first order in q):

~E − ~E0 ¼ −0.032αþ δEðkÞα2 þOðα3Þ ð21Þ
~L − ~L0 ¼ −0.943αþ δJðkÞα2 þOðα3Þ ð22Þ

where δEðkÞ¼0.008k−0.022 and δJðkÞ ¼ 0.189k−
0.258. For values of k of the order of unity as the
ones expected for the aforementioned massive NSs
of points 1–3, both δEðkÞ and δJðkÞ imply a very
small deviation of the ~E and ~L from a linear
dependence α1. To be more precise, the values of k
are such that δEðkÞ and δJðkÞ are slightly positive and
therefore the contribution at second order has
opposite sign with respect to the one at first order
and thus when trying a fit with a sole power of α we
should expect a power smaller than unity. Indeed, our
results summarized by Eqs. (19) and (20) show
~E − ~E0 ∝ α0.85 and ~L − ~L0 ∝ α0.85.

8. At such linear order in α, the LSO energy and angular
momentum are indeed “universal” since they have no
EOS dependence up to this order. The dependence on
the EOS should be evident only when the contribu-
tions of δEðkÞ and δJðkÞ are non-negligible. This
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happens for instancewhen k ∼ 10which is the case of
NSs with M ≲ 1.4 M⊙. However, such NSs do not
satisfy condition imposedbypoint 3unless theEOS is
very soft, but in the latter case from the points 1 and 2
such EOS are not of astrophysical relevance.

It is important to stress that, in general, the energy and
angular momentum of the LSO depend on the details of
the EOS, however, the above points 1–8 imply that our
Eqs. (19) and (20) should remain valid for a wide set of
EOS, providing they are of astrophysical relevance in the
sense of the points 1 and 2. It is only under these conditions
that we can consider these formulas as universal.
Although the knowledge of the quadrupole moment

appear to be relevant for the determination of several NS
properties such as the angular velocity and the LSO radius
(see, e.g., Ref. [40]), our results show that its role in the
determination of the energy and angular momentum of the
LSO can be much less important. Themain reason for this is
that, besides being the contribution of order α2 naturally
small by itself (because α < 0.7) with respect to the leading
order, the contribution of the quadrupole moment via the
coefficients δEðkÞ and δJðkÞ, is of opposite signwith respect
to the one given by the centrifugal potential, almost cancel-
ing each other for the relevant NS masses. This effect
confirms for the LSO the results of Ref. [41] on the circular
orbits around rotating NSs where this feature had been
already noticed.
In Sec. III B, we have compared and contrasted our

results for ~E and ~L with the ones of the LSO in the Kerr
background characterized with the same mass and angular
momentum. We have seen how the properties of the LSO
given by the Kerr metric deviate from the ones of NSs
except in the slow rotation regime α ¼ a=M ≫ 1. This is
indeed in agreement with the above discussion on the
almost linear dependence in α obtained for ~E and ~L. Indeed,
the expansion of these quantities for small α for the Kerr
metric coincide at the linear level (see, e.g, Eqs. (B3) and
(B4) in Ref. [40]) with the above expansion (21). Thus, ~E
and ~L for rotating NSs are relatively well represented by the
corresponding values of the Kerr metric kept only at linear
order in α. However, if more terms of the expansion in the
Kerr metric (or the full solution) are taken into account, the
predictions of the Kerr solution deviate considerably from
the realistic NS values as it is shown in Figs. 3–6.

V. CONCLUDING REMARKS

We have computed the binding energy and angular
momentum of test particles orbiting on the equatorial plane
of uniformly rotating NSs. The NS equilibrium configu-
rations were constructed for up-to-date nuclear EOS by
integrating the Einstein equations in the axially symmetric
case. Our study was limited to stable NSs with respect to
the mass-shedding (Keplerian) limit and the secular axi-
symmetric instability. Our conclusions are as follows.

(i) There is a limiting configuration for which the
radius of the LSO equals the equatorial radius of
the NS (see, e.g., Fig. 2). As an example, we have
obtained the fitting function (18) that connects the
mass and angular momentum of such a limiting
configuration in the case of corotating orbits, for the
three EOS used in this work. Thus, given a NS mass
(angular momentum), Eq. (18) gives the maximum
(minimum) angular momentum(mass) for which
rlso > Req. It is important to recall that Eq. (18) is
not a universal, i.e. EOS-independent equation, and
thus it must be computed for every EOS. For more
details see Sec. III A.

(ii) We obtained simple formulas for the energy and
angular momentum of the LSO of co- and counter-
rotating test particles as a function of the NS mass
and angular momentum [see, respectively, Eqs. (19)
and (20)]. We have obtained these formulas for the
three EOS studied in this work (NL3, TM1 and
GM1) and are valid for any rotation rate within the
established stability limits.

(iii) We have argued that such formulas will remain valid
for other nuclear EOS which satisfy the astrophysical
request of having a critical NS mass larger than 2 M⊙
[28]. The EOS-dependent contributions to ~E and ~L
appear at higher powers of the dimensionless angular
momentumparameter α ¼ a=M and are due to theNS
mass quadrupole moment. However, such a contri-
bution becomes negligible for massive NSs which are
the ones that possess an LSO exterior to their surface.
See Sec. IV for details on this discussion.

(iv) The simplicity and high accuracy of these formulas,
which show a maximum error of 1% and 0.3%
respectively for the energy and angular momentum
of corotating orbits (see Fig. 7), makes them particu-
larly suitable for astrophysical applications where
taking into due account general relativistic effects of
rotatingNSs are important, e.g. the accretionprocesses
in x-ray binaries (see, e.g., Refs. [3–5]) or hypercritical
accretion in GRBs (see, e.g., Refs. [11,13]).

(v) Our results are qualitatively and quantitatively
different from the corresponding ones obtained in
the Kerr geometry, except in the slow rotation
regime a=M ≪ 1.
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