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Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have
played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel
type of ladder operators, which map a scalar field onto another massive scalar field. We construct such
operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci
tensor. As an example, we explicitly construct these objects in anti–de Sitter (AdS) spacetime and show that
they exist for masses above the Breitenlohner-Freedman bound. Starting from a regular seed solution of the
massive Klein-Gordon equation, mass ladder operators in AdS allow one to build a variety of regular
solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the
context of spherical harmonics, and the relation between supersymmetric quantummechanics and so-called
Aretakis constants in an extremal black hole.
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I. INTRODUCTION

Exactly solvable systems play a crucial role in under-
standing the physical content of a given theory and on
isolating the main features of certain solutions. Some of
such “golden” systems, like the hydrogen atom in quantum
mechanics are well-known cornerstones in mathematics,
physics and chemistry. In some cases, it is even possible to
relate families of solutions of a given problem without a
detailed knowledge of any of its solutions. One such
remarkable technique, in the context of the Schrödinger
equation, consists in using ladder operators. These enable
one to construct algebraically all, or part of, the energy
eigenvalues and eigenfunctions. However, finding ladder
operators is in general a challenging task, because their
relations to the symmetries of the system remain unclear—
usually, therefore, they are called a dynamical symmetry.
Such enterprise is specially relevant within general

relativity or the gauge-gravity approach to field theories.
In such a framework, test fields on curved spacetimes have
been repeatedly studied and found—at least at linearized
level—to inherit the background symmetries; they are thus
helpful in providing a geometric picture of spacetime.
Conversely, some techniques were developed which make
explicit use of spacetime symmetries to handle these fields.
For example, test fields can be conveniently separated by
means of harmonic functions, on spacetimes which are
maximally symmetric or contain a maximally symmetric
subspace. We will focus our attention on the prototypical
example of the Klein-Gordon equation (KGE),

ð□ −m2ÞΦ ¼ 0; ð1Þ

where □≡ gμν∇μ∇ν is the d’Alembertian and m is a mass
parameter.
In this paper, we report that if a background spacetime

has a particular conformal symmetry (whose precise con-
ditions will be stated below), there exists a differential
operator D, called a mass ladder operator, which maps a
solution to the KGE with mass squared m2 into another
solution with different mass squared m2 þ δm2, i.e.,

ð□ − ðm2 þ δm2ÞÞDΦ ¼ 0; ð2Þ
where δm2 is the variation of the mass squared. Hence, we
provide a geometric interpretation to ladder operators in
terms of the symmetry of a background spacetime.
Our formulation can be useful in Riemannian geometry,

where the KGE is replaced by the Helmholtz-like equation,
i.e., the eigenvalue equation for the Laplacian,

ðΔ − λÞΦ ¼ 0; ð3Þ
where Δ≡ gμν∇μ∇ν is the Laplacian and λ is the eigen-
value of the Laplacian. For example, when we consider the
Laplacian on S2, we obtain ladder operators which change
the azimuthal quantum number [1,2]. The reason why such
ladder operators exist on S2 has never been explained in
terms of conformal symmetry. In our formulation, we can
explicitly construct the ladder operators from conformal
Killing vectors on S2.

II. MASS LADDER OPERATORS FOR SCALARS

Conformal symmetry of an n-dimensional spacetime
ðM; gμνÞ is defined by the invariance for a metric gμν under
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the conformal transformation gμν → g0μν ¼ expð2QÞgμν,
where Q is a function on M. The infinitesimal trans-
formation is described by the conformal Killing equation

∇μζν þ∇νζμ ¼ 2Qgμν; Q ¼ 1

n
∇μζ

μ; ð4Þ

where ζμ is known as a conformal Killing vector, and Q is
called the associated function. In particular, a conformal
Killing vector is said to be closed if it satisfies the condition
∇½μζν� ¼ 0. Hence, ζμ is a closed conformal Killing vector
(CCKV) if it satisfies the equation

∇μζν ¼ Qgμν; Q ¼ 1

n
∇μζ

μ: ð5Þ

Using this equation, we obtain the following result: (the
detailed derivation is shown in the next section).
Suppose that an n-dimensional spacetime ðM; gμνÞ

admits a CCKV ζμ satisfying (5). If ζμ is an eigenvector
of the Ricci tensor with a constant eigenvalue, Rμ

νζ
ν ¼

χðn − 1Þζμ, then there exists a one-parameter family of
mass ladder operators

Dk ≡ Lζ − kQ; ð6Þ

where Lζ denotes the Lie derivative with respect to ζμ,
such that the commutation relation with the d’Alembertian
□≡∇μ∇μ is given by

½□; Dk� ¼ χð2kþ n − 2ÞDk þ 2Qð□þ χkðkþ n − 1ÞÞ;
ð7Þ

where k is a parameter, and the commutator is considered as
acting on a scalar field.
Since the action of the commutator on a scalar field Φ

leads to

ð□ − ðm2 þ δm2ÞÞDkΦ ¼ Dk−2ð□ −m2ÞΦ; ð8Þ

together with m2 ¼ −χkðkþ n − 1Þ and δm2 ¼ χð2kþ
n − 2Þ, Dk maps a solution Φ to the KGE with mass
squared m2 into another solution DkΦ with mass squared
m2 þ δm2 ¼ −χðk − 1Þðkþ n − 2Þ.1 Thus, Dk are mass
ladder operators which connect massive solutions to the
KGE from the mass squared m2 to m2 þ δm2.2 This
corresponds in terms of k to shifting k to k − 1. It is also
found that D−k−nþ2 maps a solution to the KGE into a
solution from the mass squared m2 ¼−χðk−1Þðkþn−2Þ

to m2 þ δm2 ¼ −χkðkþ n − 1Þ. This corresponds to shift-
ing k − 1 to k.3 Since Dk is surjective (or onto) every k, all
the solutions with mass squared m2 þ δm2 can be con-
structed from the solutions with mass squared m2 (see
Appendix B). It should be noted that the operators have the
index k and its value must be chosen appropriately depend-
ing on the mass of a solution to act.
When Dk connects solutions to the KGE with two real

mass squared m2 and m2 þ δm2, k is required to be real,
and the following inequalities must be satisfied:

χ

4
ðn − 1Þ2 ≤ m2; χ < 0 or m2 ≤

χ

4
ðn − 1Þ2; χ > 0;

ð9Þ

where the equality is attained for k ¼ −ðn − 1Þ=2. Thus,
mass ladder operators can exist only when the value of the
mass squared m2 satisfies the above inequalities. We also
notice that for a fixed m2, there are two mass ladder
operators Dk� , where

k� ¼ 1 − n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2 − 4m2=χ

p
2

: ð10Þ

These two operators become a mass raising or mass
lowering operator, depending on the value of the mass
squared m2. For a negative χ, if m2 > χnðn − 2Þ=4 they
correspond to mass raising and lowering operators, respec-
tively, and otherwise both become mass raising operators.
For positive χ, the roles are reversed.
Generally, multiples of the ladder operators can be

considered. Since we have [cf. (8)]

ð□ − ðk − sÞðkþ s − 1ÞÞDk−s � � �Dk−1DkΦ

¼ Dk−s−2 � � �Dk−3Dk−2ð□ − kðkþ 1ÞÞΦ;

the multiple operator Dk−s � � �Dk−1Dk can shift the mass
squared labeled by k to the one by k − s.
Physically important examples are maximally symmetric

spacetimes. Actually, we can construct mass ladder oper-
ators for the KGEs in such spacetimes.4 If we consider the
n-dimensional anti-de Sitter spacetime (AdSn) with a
cosmological constant Λ ¼ χðn − 1Þ < 0, the first inequal-
ity in Eq. (9) coincides with the condition for the mass
above Breitenlohner-Freedman (BF) bound [4,5]. This
means we can define mass ladder operator for the massive
scalar with the mass above BF bound. In the n-dimensional

1If Φ is a solution to the KGE with a source term S, i.e.,
ð□ −m2ÞΦ ¼ S, one has ð□ − ðm2 þ δm2ÞÞDkΦ ¼ Dk−2S.

2If χ ¼ 0,Dk maps massless solutions to massless ones. In that
case, we have other ladder operators. See Appendix C for other
constructions of ladder operators.

3Taking the adjoint of Eq. (8), (see discussion in Ref. [3]), we
obtain D†

kð□ − ðm2 þ δm2ÞÞ† ¼ ð□ −m2Þ†ðDk þ 2QÞ† where †
means the adjoint operator. Since □ −m2 and □ − ðm2 þ δm2Þ
are self-adjoint operators, we can see that ðDk þ 2QÞ† ¼
−D−k−nþ2 shifts mass from m2 þ δm2 to m2.

4General spacetimes admitting mass ladder operators are
discussed in Appendix A.
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de Sitter spacetime (dSn) with a cosmological constant
Λ ¼ χðn − 1Þ > 0, the second inequality in Eq. (9) is the
condition for that the solution of KGE does not have
oscillation solution for long wave limit (see, e.g., [6]).

III. DERIVATION OF MASS
LADDER OPERATORS

In n ≥ 2 dimensions, one can show the following
commutation relation when acting on a scalar:

½□;Lζ� ¼ 2Q□ − ðn − 2Þð∇μQÞ∇μ; ð11Þ

where ζμ is a conformal Killing vector satisfying Eq. (4). If
ζμ is a CCKV, it satisfies Eq. (5). Differentiating this
equation, we obtain

∇μQ ¼ 1

1 − n
Rμ

νζν: ð12Þ

Assuming in addition that ζμ is an eigenvector of the Ricci
tensor,

Rμ
νζ

ν ¼ χðn − 1Þζμ; ð13Þ

where χ is constant,5 we arrive at the condition that the
gradient of the function Q is proportional to ζμ,

∇μQ ¼ −χζμ: ð14Þ

Under this condition, Eq. (11) is

½□;Lζ� ¼ 2Q□þ χðn − 2ÞLζ: ð15Þ

Furthermore, since Eq. (14) leads to

□Qþ χnQ ¼ 0; ð16Þ

we obtain

½□; Q� ¼ −2χLζ − nχQ: ð17Þ

Given Eqs. (15) and (17), it is easy to calculate the
commutation relation between the d’Alembertian and Dk
given by Eq. (6) and then obtain Eq. (7).
Suppose there are more than one ladder operatorsDa;k ¼

Lζa − kQa (a ¼ 1; 2;…; N) for the KGE with mass
squared m2 ¼ −χkðkþ n − 1Þ. Then it would be natural
to compute the commutation relations between them
because one expects that they form a Lie algebra. First,
it is important to see that the commutator of CCKVs ζμa,

ξμab ≡ ½ζa; ζb�μ ¼ ζνa∇νζ
μ
b − ζνb∇νζ

μ
a; ð18Þ

becomes a Killing vector, which satisfies the Killing
equation ∇μξνab þ∇νξμab ¼ 0. Here, we have used the
condition that ζa are eigenvectors of the Ricci tensor.
Hence we have

½Ĥk; Da;k� ¼ χð2kþ n − 2ÞDa;k þ 2QaĤk ð19Þ

½Ĥk;Lξab � ¼ 0; ð20Þ

where Ĥk ≡□þ χkðkþ n − 1Þ. The first relation shows
that, since Qa is a function, Da;k becomes a ladder operator
only for particular scalar fields Φk obeying the equation
ĤkΦk ¼ 0. Since we have Ĥkþ1ðDa;kΦkÞ ¼ 0, one can
constructN solutions to the equation Ĥkþ1Φkþ1 ¼ 0 from a
singleΦk. The second relation shows that the Lie derivative
along the Killing vector ξμab acts on any solution to the
equation ĤkΦ ¼ 0 as symmetry. Since it is also shown that

−χdðζaμζμbÞ ¼ dðQaQbÞ; ð21Þ

we find

−χζaμζ
μ
b ¼ QaQb þ Cab ð22Þ

with a constant Cab. Thus the commutation relations
between the ladder operators Da;k and the Killing vectors
ξμab constructed from CCKVs are calculated as

½Da;k; Db;k� ¼ Lξab ; ð23Þ

½Da;k;Lξbc � ¼ CabDc;k − CacDb;k; ð24Þ

½Lξab ;Lξcd � ¼ CadLξcb − CbdLξca

− CacLξdb þ CbcLξda ; ð25Þ

which form a Lie algebra. This implies that solutions to the
equation ĤkΦk ¼ 0 become the representation of this Lie
group. As seen later, this is conformal group in a maximally
symmetric spacetime.

IV. MASS LADDER OPERATORS IN ADS

The metric of AdSn in Poincaré coordinate is

ds2 ¼ dr2

r2
þ r2

Xn−2
A;B¼0

ηABdxAdxB; ð26Þ

where ηAB ¼ diag½−1; 1;…; 1� is the metric on the n − 1

dimensional Minkowski spacetimeMn−1, and A, B run over
0; 1;…; n − 2. The massive KGE on this spacetime is

5If a spacetime admits two CCKVs ζμ1 and ζμ2 which are
respectively eigenvectors of the Ricci tensor with eigenvalues χ1
and χ2, a linear combination is also CCKV, but it is not an
eigenvector of the Ricci tensor unless χ1 ¼ χ2.
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ðr2∂2
r þ nr∂r þ r−2□Mn−1 −m2ÞΦ ¼ 0; ð27Þ

where □Mn−1 is d’Alembertian on Mn−1. In the AdSn
spacetime, there are nþ 1 CCKVs ζμa which satisfy
∇μζa;ν ¼ Qagμν, where a runs over −1; 0; 1;…; n − 1.
Since the Ricci curvature satisfies Rμν ¼ −ðn − 1Þgμν,
we have χ ¼ −1, and all the CCKVs are eigenvectors of
the Ricci tensor. Thus, from (6), we obtain nþ 1 mass
ladder operators6

D−1;k ¼ r2∂r − kr; ð28Þ

DA;k ¼ xAr2∂r þ r−1
Xn−2
B¼0

ηAB∂B − kxAr; ð29Þ

Dn−1;k ¼
�
−1þ r2

Xn−2
A;B¼0

ηABxAxB
�
∂r þ 2r−1

Xn−2
A¼0

xA∂A

− k

�
r−1 þ r

Xn−2
A;B¼0

ηABxAxB
�
: ð30Þ

Using global coordinates, we can confirm that these mass
ladder operators are regular beyond the Poincaré horizon.
Hence, a regular solution to the KGE can be mapped
into another regular solution with different mass (see
Appendix D).
For simplicity, we discuss how the mass ladder operators

act on the solution to the KGE under separation of
variables, Φ ¼ αðxAÞ ~ΦðrÞ. Then the KGE reduces to

ð□Mn−1 − L2Þα ¼ 0; ð31Þ
�
r2

∂2

∂r2 þ nr
∂
∂r −m2 þ L2

r2

�
~ΦðrÞ ¼ 0; ð32Þ

where L2 is the separation constant. Solving Eq. (32)
around spatial infinity, we obtain the asymptotic behavior
of the solution as

~ΦðrÞ ¼ rΔþ
X
i¼0

cðiÞþ
r2i

þ r−Δ−
X
i¼0

cðiÞ−
r2i

; ð33Þ

where Δ� ¼ �ð1 − n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2 þ 4m2

p
Þ=2 and cðiÞ� ¼

ð−1ÞiL2icð0Þ�
Q

i
j¼1ðð�Δ�þn−2j−1Þð�Δ�−2jÞ−m2Þ−1

for i ≥ 1 and cð0Þ� are constant. The two modes with the
leading terms rΔþ ; r−Δ− are called non-normalizable and
normalizable modes, respectively. From (10), we can see
Δ� ¼ �k� for the above ladder operators. Acting the
ladder operators onΦ, a non-normalizable mode is mapped

into a non-normalizable mode, and a normalizable mode is
mapped into a normalizable mode unless m2 or m2 þ δm2

is between m2
BF and m2

BF þ 1, where m2
BF ≔ −ðn − 1Þ2=4

is the BF bound mass. If the mass is between the above
region then two modes are normalizable. Note that the
ladder operators do not necessarily keep the form of
separation of variables due to the derivative with respect
to xA.
In particular, Da1;−k−nþ2Da2;k maps a solution of KGE to

another solution of the same KGE, we can obtain variety of
solutions from a single seed solution. Since the ladder
operators are regular everywhere, if a seed solution Φ is
regular, Da1;−k−nþ2Da2;kΦ is also regular. From the point of
view of AdS=CFT correspondence the ratio of the coef-
ficients between normalizable and non-normalizable modes
is the expectation value of the operator. If the asymptotic
behavior of Da1;−k−nþ2Da2;kΦ is different from Φ, this
corresponds to different physical situation. If we use D−1,
we can show D−1;−k−nþ2D−1;kΦ ¼ −L2Φ for a solution
with the separation of variables formΦ ¼ αðxAÞ ~ΦðrÞ. If we
use other ladder operators, Da1;−k−nþ2Da2;kΦ is different
from Φ.
We comment on massless scalar fields in AdS5 × S5. The

massless KGE in AdS5 × S5 reduces to the effective
massive KGE in AdS5

ð□AdS5 − Λlðlþ 4ÞÞΦ ¼ 0; ð34Þ

where l denotes the different Kaluza-Klein modes. The
mass spectrum corresponds to the masses which can be
mapped from massless scalar fields in AdS5 by using the
mass ladder operators. This implies that there is a duality
among the zero mode and Kaluza-Klein modes on massless
scalar fields in AdS5 × S5.

V. LADDER OPERATORS IN SPHERE AND
SPHERICAL HARMONICS

By applying our formulation to the 2-dimensional sphere
S2, we obtain three ladder operators

D1;k ¼ cos θ cosϕ
∂
∂θ −

sinϕ
sin θ

∂
∂ϕþ k sin θ cosϕ ð35Þ

D−1;k ¼ cos θ sinϕ
∂
∂θ þ

cosϕ
sin θ

∂
∂ϕþ k sin θ sinϕ ð36Þ

D0;k ¼ sin θ
∂
∂θ − k cos θ; ð37Þ

where θ and ϕ are spherical coordinates on S2 in which the
metric is given by ds2S2 ¼ dθ2 þ sin2θdϕ2. The ladder
operators map solutions of the eigenvalue equation for
the Laplacian ΔS2 with eigenvalues λ ¼ −kðkþ 1Þ,

6The map between k ¼ 1 and k ¼ 0 in AdS2 case was partially
discussed in [7].
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ðΔS2 − λÞΦ ¼ 0; ð38Þ

into solutions with eigenvalues λ ¼ −kðk − 1Þ. It should be
noted that k is not necessarily integer. If k is an integer l,
spherical harmonics7 Yl;m ¼ Pm

l ðcos θÞeimϕ are the eigen-
functions for ΔS2 with λ ¼ −lðlþ 1Þ, and the ladder
operators change the quantum number l, while the usual
ladder operators L� constructed from the spherical sym-
metry change the quantum number m. Introducing
D�;k ¼ D1;k � iD−1;k, we can reproduce the relations
in [1,2]

Dþ;lYl;m ¼ Yl−1;mþ1; ð39Þ

D−;lYl;m ¼ −ðlþmÞðlþm − 1ÞYl−1;m−1; ð40Þ

D0;lYl;m ¼ −ðlþmÞYl−1;m; ð41Þ

and

Dþ;−lYl−1;m ¼ Yl;mþ1; ð42Þ

D−;−lYl−1;m ¼ −ðl −mÞðl −mþ 1ÞYl;m−1; ð43Þ

D0;−lYl−1;m ¼ðl −mÞYl;m: ð44Þ

These are useful relations to obtain the entire spectrum of
the Laplacian on S2. Their relation to geometry of S2 had
never been uncovered; we stress that the conformal
symmetry of S2 is crucial for the existence of such ladder
operators. We should note that we can also apply our
formalism to higher dimensional spheres Sn.
Solutions of (38) which are not spherical harmonics will

have a singular behavior. However, it is possible that the
ladder operator can map such singular solution to a regular
one.8 For example, if we consider Φ ¼ eiϕ= tan θ which
satisfies ΔS2Φ ¼ 0 and is singular at the pole, we can
show D0;−1Φ ¼ Y11.

VI. RELATION WITH SUPERSYMMETRIC
QUANTUM MECHANICS

The concept of ladder operators was developed in the
context of exactly solvable systems in quantum mechanics.
One is thus naturally led to inquire whether mass ladder
operators can be framed in this context as well. In fact, one
can obtain shape invariant potentials [8] in supersymmetric

quantum mechanics from the KGE,9 where our ladder
operators are regarded as supercharges [12]. We make a
conformal transformation ḡμν ¼ Ω2gμν with an appropriate
conformal factor Ω such that a CCKV ζμ for gμν is
transformed into a Killing vector for ḡμν. Then, the massive
KGE ð□ −m2ÞΦ ¼ 0 for gμν is written in terms of ḡμν as

½∂2
λ̄
þ ~□ − Vðλ̄; m2Þ�Φ̄ ¼ 0; ð45Þ

where Φ̄ ¼ Ωð2−nÞ=2Φ, ∂ λ̄ ¼ ζμ∂μ is a Killing vector and
~□ is the Laplacian (or d’Alembertian) on an (n − 1)-
dimensional space (or spacetime). Thus, with the separation
of variables Φ̄ ¼ ψðλ̄ÞΘðxiÞ, we obtain the Schrödinger
equation in one dimension,

½−∂2
λ̄
þ Vðλ̄; m2Þ�ψ ¼ Eψ ; ð46Þ

where E is the separation constant. The potential V is given,
up to a constant, by 1=cos2λ̄, 1=cosh2λ̄ or 1=λ̄2. These are
known as shape invariant potentials in supersymmetric
quantum mechanics, the mass ladder operators being
regarded as supercharges (see Appendix E for details).

VII. ARETAKIS CONSTANTS

Mass ladder operators also appear naturally in black hole
physics. In Refs. [13–15], it has been shown that an
extreme Reissner-Nordström black hole is linearly unsta-
ble. In their analysis, a certain quantity (“Aretakis con-
stant”), conserved only on the horizon, plays an important
role. We now show that such constants can be constructed
from our ladder operator, in four-dimensional extreme
Reissner-Nordström black holes (more details can be found
in Appendix F).
The near horizon geometry of extreme Reissner-

Nordström black holes is described by AdS2 × S2, and
massless scalar fields on this spacetime behave as a massive
scalar field on AdS2 with an effective mass m2 ¼ lðlþ 1Þ
where l is azimuthal quantum number of the spherical
harmonics. Thus, we focus on the KGE equation on AdS2
with this mass. The metric of AdS2 in ingoing Eddington-
Finkelstein coordinate is

ds2 ¼ −r2dv2 þ 2dvdr: ð47Þ

Take solutions Φ of the KGE, ð□ −m2ÞΦ ¼ 0, with m2 ¼
lðlþ 1Þ; ðl ¼ 0; 1;…Þ on this spacetime. Then, one can
show that

∂v∂lþ1
r Φjr¼0 ¼ 0: ð48Þ

7The normalized spherical harmonics are given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4πp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl −mÞ!=ðlþmÞ!p
Yl;m.

8Here, we call a local solution regular if the domain of the
solution can be extended to the whole of S2; otherwise singular,
that is, the domain of the solution cannot be extended to the whole
of S2.

9In a series of works Refs. [9–11] the relation between a
quantum mechanics system with a shape invariant potential and
the KGE in AdS spacetime was shown, and the structure of the
hidden symmetry of them was also discussed
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Thus, the quantities ∂lþ1
r Φjr¼0 are constant on the Poincaré

horizon r ¼ 0. This is the Aretakis constant in AdS2 [15].
While the quantity ∂lþ1

r Φ is not constant outside of
r ¼ 0, since AdS2 is maximally symmetric, we may expect
the existence of quantities which are constants on every
outgoing null hypersurface. In fact, we can show

�
∂v þ

r2

2
∂r

���
vr
2
þ 1

�
2ðlþ1Þ∂lþ1

r Φ
�
¼ 0: ð49Þ

Since ∂v þ ðr2=2Þ∂r is an outgoing null vector field,

Al ≡
�
vr
2
þ 1

�
2ðlþ1Þ∂lþ1

r Φ ð50Þ

is indeed constant on every outgoing null hypersurface,
and Al coincides with the Aretakis constant on r ¼ 0.
In this sense, Al is a generalization of the Aretakis
constant.
In AdS2, the operator Dk changes the mass squared from

kðkþ 1Þ into ðk − 1Þk. So, D1D2 � � �Dl−1Dl maps a
massive scalar field with m2 ¼ lðlþ 1Þ into massless
scalar field. Since we can solve the two-dimensional
massless KGE, we can write

D1D2 � � �Dl−1DlΦ ¼ FðxþÞ þGðx−Þ; ð51Þ

where we used the double null coordinates ðxþ; x−Þ. Thus
∂x−D1D2 � � �Dl−1DlΦ ¼ G0ðx−Þ is constant on every out-
going null hypersurface x− ¼ const. In fact this coincides
with Al up to a function of x−. Note that the choice of
CCKVs ζ−1; ζ0; ζ1 does not affect this conclusion. If we
consider Reissner-Nordström black hole spacetime without
taking near horizon limit, we can still derive the Aretakis
constant on the horizon in a similar way. Since there is a
relation between Aretakis constant and Newman-Penrose
constant [16], the present analysis suggests that Newman-
Penrose constant also can be constructed from our ladder
operator.

VIII. DISCUSSION

We developed a mass ladder operator formalism for the
massive KGE and explicitly constructed the operators for
AdSn and S2. It is possible, and we showed that this
happens on S2, that the ladder operator maps a singular to a
regular solution even if CCKVs and the associated func-
tions are regular. Naturally, in the context of AdS=CFT
correspondence regular solutions are preferred objects.
However, the property above might help in providing a
physical interpretation to singular solutions.
The ladder operators on S2 were originally obtained by

embedding S2 into three-dimensional Euclid space E3 [2]
or sphere S3 [1]. The harmonic functions on E3 are known
as regular and irregular solid harmonics. According to [2],

taking the covariant derivatives of the solid harmonics
along ∂x, ∂y and ∂z, yields differential recurrence relations
between the solid harmonics with different azimuthal and
magnetic quantum numbers. By restricting the recurrence
relations onto S2, we obtain the ladder relations for the
spherical harmonics. Higuchi [1] also constructed the
symmetric tensor harmonics on Sn in the reductive con-
struction, where Sn is embedded into Snþ1. This suggests
the existence of the ladder operators for vector or tensor
fields on Sn and also maximally symmetric spacetimes.
Another interesting direction is to consider higher-order

operators. For symmetry of the Laplace equation or KGE in
a curved spacetime, they have been studied by many
authors [17–20]. While our formulation in this paper
focused on first-order mass ladder operators, it would be
of great interest to consider higher-order mass ladder
operators if there exists a curved spacetime which admits
a crucial higher-order operator not reducible to first-order
operators.
We also showed the relation between these operators and

supersymmetric quantum mechanics potentials having shift
shape invariance. If we start from generic 1-dimensional
supersymmetric quantum mechanics potential, we can
expect to obtain a class of scalar fields with potential
which has a ladder structure.
As an application, we constructed Aretakis constant from

mass ladder operators on AdS2. If we consider Reissner-
Nordström spacetimes without taking the near horizon
limit, the Aretakis constant on the horizon can be derived
in a similar way. This suggests the intriguing possibility of
mass ladder operators being useful constructs also for less
symmetric spacetimes, with only approximate conformal
symmetry.
In Minkowski spacetime, the existence of mass ladder

operators (shown in Appendix C) is not surprising, as there is
no scale in the problem other than the mass parameter in the
massive KGE. In curved spacetimes however, the different
hierarchy (as compared to curvature scale) in the mass of
scalar fields is expected to play a fundamental role.
Notwithstanding, if we consider the curved spacetimes
which admit mass ladder operators (including the maximally
symmetric spacetimes), solutions of KGE between different
masses are connected. Furthermore, the map induced by the
ladder operator is surjective (or onto), so all the solutions
with mass squared m2 þ δm2 can be constructed from the
solutions with mass squared m2. This suggests that the
physical properties of KGE with different masses, which are
connected by the ladder operator, are very similar contrary to
the naive expectation.
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APPENDIX A: EXPLICIT METRIC FORM
ADMITTING A MASS LADDER OPERATOR

In [21], all canonical forms for metrics admitting a
CCKV, denoted by ζμ, were investigated in arbitrary
dimensions. In Lorentzian signature, they are classified
according to whether ζμ is null or not. In the null case, ζμ

becomes a covariantly constant null vector, so that Q ¼ 0
and Rμ

νζ
ν ¼ 0. Hence, the operator does not become a

ladder operator for the d’Alembertian. In the non-null case,
it is possible to introduce a function λ, called the potential
of ζμ, such that dλ is the 1-form dual to ζμ. Using the
potential as a coordinate, we can choose a local coordinate
system ðxμÞ ¼ ðλ; xiÞ. Then, a metric in the case in n
dimensions is written as

ds2 ¼ gμνdxμdxν ¼
1

fðλÞ dλ
2 þ fðλÞ~gijðxÞdxidxj; ðA1Þ

where fðλÞ is an arbitrary function and ~gij is an (n − 1)-
dimensional metric.10 This metric admits a CCKV11

ζ ¼ fðλÞ ∂
∂λ : ðA3Þ

If we impose the condition (13) for this spacetime, f
takes the form

fðλÞ ¼ −χλ2 þ c1λþ c0; ðA4Þ

where c0 and c1 are constant. With fðλÞ given by (A4), the
ladder operator is

Dk ¼ fðλÞ∂λ −
k
2
f0ðλÞ: ðA5Þ

APPENDIX B: SURJECTIVITY AND KERNEL

We can show that Dk is a surjective (onto) map, i.e., for
arbitrary solution of ð□ −m2 − δm2ÞΦ̄ ¼ 0, we can find a
solution of the equations

DkΦ ¼ Φ̄ ðB1Þ

ð□ −m2ÞΦ ¼ 0; ðB2Þ

where m2 and δm2 are given by m2 ¼ −χkðkþ n − 1Þ;
m2 þ δm2 ¼ −χðk − 1Þðkþ n − 2Þ. The general solution
of (B1) is

Φ ¼ fk=2
�Z

dλf−1−k=2Φ̄þ PðxiÞ
�
; ðB3Þ

where PðxiÞ is arbitrary function of xi. After a straightfor-
ward calculation, we obtain

ð□ −m2ÞΦ

¼ f−1þk=2

�
~□þ kðkþ n − 2Þ

4
ðc21 þ 4c0χÞ

�
PðxiÞ;

where we used Eq. (A4). For P ¼ 0 we recover Eq. (B2),
showing that Dk is a surjective map.
If there exists a nontrivial solution of the equation

½ ~□þ kðkþ n − 2Þðc21 þ 4c0χÞ=4�PðxiÞ ¼ 0, such func-
tional degrees of freedom correspond to the kernel of
Dk, i.e., the solutions of both DkΦ ¼ 0 and
ð□ −m2ÞΦ ¼ 0. In particular, if c1 ¼ c0 ¼ 0, P ¼ const
is a nontrivial solution, then Φ ¼ Cfk=2 becomes a kernel
of Dk.

APPENDIX C: ANOTHER LADDER OPERATOR
FOR χ = 0, Q= const CASE

The operator Dk relates scalars of different mass if the
eigenvalue of the Ricci tensor χ is not zero. However,
for constant Q a ladder operator can be defined even for
χ ¼ 0 case, albeit in a modified way. If Q ¼ c ¼ const, the

10If ζμ is timelike, i.e., f < 0, −~gij should be a positive definite
metric so that the metric gμν has ½−;þ;þ; � � � ;þ� signature.

11It is possible to show that, in addition to (A3), the metric (A1)
can admit a CCKV if ~gij admits a CCKV. Actually, the CCKV
equation ∇μζν ¼ Qgμν for the metric (A1) can be solved by

ζ ¼ −
~Q
2~χ

f0ðλÞ
ffiffiffiffiffiffiffiffiffi
fðλÞ

p ∂
∂λþ

1ffiffiffiffiffiffiffiffiffi
fðλÞp ~ζi

∂
∂xi ; ðA2Þ

where ~ζi is a CCKV for ~gij, ~∇i
~ζj ¼ ~Q~gij. The associated function

Q of ζμ is given by Q ¼ ðχ=~χÞ ffiffiffiffiffiffiffiffiffi
fðλÞp

~Q.
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conformal Killing Eq. (4) becomes the homothetic Killing
equation

∇μζν þ∇νζμ ¼ 2cgμν: ðC1Þ

The commutation relation (7) with k ¼ 0 is

½□;Lζ� ¼ χðn − 2ÞLζ þ 2c□: ðC2Þ

If χ is zero, we can define another ladder operator
~Dλ ≔ eλLζ ¼ P∞

j¼0ðj!Þ−1ðλLζÞj with a parameter λ, which
satisfies the commutation relation12

½□; ~Dλ� ¼ ðe2λc − 1Þ ~Dλ□: ðC3Þ

Acting on a scalar field Φ, we obtain

□ ~DλΦ − e2λc ~Dλ□Φ ¼ 0: ðC4Þ

If Φ satisfies a massive KGE, then (C4) becomes

ð□ − e2λcm2Þ ~DλΦ ¼ 0: ðC5Þ

This shows that ~Dλ maps a scalar field with m2 to that with
e2λcm2. Since the parameter λ is an arbitrary number, ~Dλ

can change the mass continuously. Note that ~Dλ cannot
change the signature of the mass squared, but can change
the absolute value. In Minkowski spacetime gμν ¼ ημν,
we can explicitly construct the ladder operator as
~Dλ ¼ eλðxμ∂μþξμ∂μÞ, where ξμ is an arbitrary Killing vector
on ημν.

APPENDIX D: REGULARITY OF
LADDER OPERATORS

To see the regularity of the ladder operator on AdSn
beyond the Poincaré horizon, introduce global coordinates

r ¼ cos τ −Ωn−1 sin ρ
cos ρ

; ðD1Þ

t ¼ sin τ
cos τ − Ωn−1 sin ρ

; ðD2Þ

xi ¼ Ωi sin ρ
cos τ − Ωn−1 sin ρ

; ði ¼ 1; 2;…; n − 2Þ; ðD3Þ

where Ωi satisfy the relation
P

n−1
i¼1 Ω2

i ¼ 1. In this coor-
dinate system, the metric becomes

ds2 ¼ 1

cos2ρ

�
−dτ2 þ dρ2 þ sin2ρ

Xn−1
i¼1

dΩ2
i

�
: ðD4Þ

Spatial infinity corresponds to ρ ¼ �π=2. Note thatP
n−1
i¼1 dΩ2

i is the metric of a (n − 2)-dimensional unit
sphere. The associated functions of CCKVs Qa, ða ¼
−1; 0; 1; : � � � ; n − 1Þ in these coordinates are

Q−1 ¼
cos τ − Ωn−1 sin ρ

cos ρ
; ðD5Þ

Q0 ¼
sin τ
cos ρ

; ðD6Þ

Qi ¼
Ωi sin ρ
cos ρ

; ði ¼ 1; 2;…; n − 2Þ ðD7Þ

Qn−1 ¼
cos τ þΩn−1 sin ρ

cos ρ
: ðD8Þ

Thus,Qa is finite except at spatial infinity. Since the 1-form
dΩn−1 is regular (except at the sphere’s pole), the 1-forms
dQa are also regular in −π=2 < ρ < π=2. In AdSn, dQa ¼
ζa;μdxμ, so CCKVs ζμa and the ladder operators Da;k are
regular in −π=2 < ρ < π=2.

APPENDIX E: CONFORMAL
TRANSFORMATION AND

SUPERSYMMETRIC QUANTUM
MECHANICS

Given a CKV ζμ for a metric gμν, we can make a
conformal transformation ḡμν ¼ Ω2gμν under which ζμ is a
Killing vector. We have already seen that if a spacetime
admits a CCKV ζμ, the metric and CCKV have the forms
(A1) and (A3), respectively. Hence, by setting Ω ¼ 1=

ffiffiffi
f

p
,

the CCKV ζμ for gμν becomes a Killing vector for ḡμν.
Under this conformal transformation, we have

ð□ −m2ÞΦ ¼ Ωðnþ2Þ=2ð□̄ − Vðλ; m2ÞÞΦ̄; ðE1Þ

where Φ̄ ¼ Ωð2−nÞ=2Φ and

Vðλ; m2Þ ¼ ð16m2f þ ðn − 2Þ2ðf0Þ2 þ 4ðn − 2Þff00Þ=16:
ðE2Þ

Hence, massive KGE on gμν, ð□ −m2ÞΦ ¼ 0 leads to

□̄ Φ̄−Vðλ; m2ÞΦ̄ ¼ 0; ðE3Þ

where □̄ is the d’Alembertian on ḡμν. In addition, if we
assume the function fðλÞ is given by (A4), the potential V
becomes a quadratic polynomial of λ,

12We can show this relation by using the equation
½□; ðLζÞn� ¼ ðð2cþ LζÞn − ðLζÞnÞ□, where n is a positive
integer.
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V ¼ s0 þ s1λþ s2λ2 ðE4Þ

with the coefficients

s0 ¼ c21ðn − 2Þ2=16þ c0ðm2 þ χð1 − n=2ÞÞ; ðE5Þ

s1 ¼ c1ðm2 − ðn − 2Þnχ=4Þ; ðE6Þ

s2 ¼ χð−4m2 þ ðn − 2ÞnχÞ=4: ðE7Þ

Furthermore, we introduce the coordinate λ̄ as ∂ λ̄ ¼
ζμ∂μ ¼ f∂λ. Since □̄ Φ̄ ¼ f∂λ½f∂λΦ̄� þ ~□ Φ̄, (E3) is

∂2

∂λ̄2 Φ̄þ ~□ Φ̄þðc21 þ 4c0χÞ
16χ

×

�
4m2 − nðn − 2Þχ

cos2ðλ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c21 − 4c0χ

p
=2Þ þ ðn − 2Þ2χ

�
Φ̄ ¼ 0

ðE8Þ

where ~□ is the d’Alembertian on an (n − 1)-dimensional
spacetime. Imposing ½ ~□; ∂ λ̄� ¼ 0 and ½ ~□; Q� ¼ 0, the
separation of variables Φ̄ ¼ ψðλ̄ÞΘðxiÞ leads to the
Schrödinger equation in one dimension

Hðm2Þψ ≡
�
−

d2

dz2
þ Vðm2; zÞ

�
ψ ¼ Eψ ; ðE9Þ

where we have introduced the coordinate z ¼
λ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðc21 þ 4c0χÞ

p
=2, in which the potential is given by

Vðm2; zÞ ¼ m2=χ − nðn − 2Þ=4
cos2z

þ ðn − 2Þ2
4

; ðE10Þ

and E is a separation constant. This is known as a shape
invariant potential in supersymmetric quantum mechanics.
This form of potential changes to 1= cosh2 z if the signature
of −c21 − 4c0χ is negative. We have assumed that either c0
or c1 are nonvanishing. When c0 ¼ c1 ¼ 0, the potential
becomes a quadratic polynomial of 1=λ̄, as in the problem
of the hydrogen atom.
The present conformal transformation transforms the

ladder operator Dk for □ into the ladder operator D̄k ¼
Ωð2−nÞ=2DkΩ−ð2−nÞ=2 for □̄. To be explicit, it is written in
the coordinate z as

D̄k ¼
d
dz

−
�
k −

2 − n
2

�
tan zþ const: ðE11Þ

In supersymmetric quantum mechanics, the HamiltonianH
and supercharge Q are related via Q2 ¼ H. In the present
case, this can be realized by setting

H ¼
�
Hðm2Þ 0

0 Hðm2 þ δm2Þ

�
; ðE12Þ

Q ¼
�

0 −D̄−k−nþ2

D̄k 0

�
: ðE13Þ

Thus, our ladder operator corresponds to the supercharge in
supersymmetric quantum mechanics.

APPENDIX F: ARETAKIS CONSTANTS

1. Mass ladder operators in AdS2
In double null coordinates, AdS2 metric is given by

ds2AdS2 ¼ −
4jΛj

ðxþ − x−Þ2 dx
þdx−; ðF1Þ

where 1=
ffiffiffiffiffiffijΛjp

is the AdS radius. Setting Λ ¼ 1, the KGE
(1) is given by

−ðxþ − x−Þ2∂þ∂−Φ ¼ m2Φ: ðF2Þ

There are an infinite number of CKVs on AdS2, described
by two copies of the Witt algebras. Since the Witt algebra
contains SOð2; 1Þ subalgebra, there are six CKVs as
generators for the SOð2; 2Þ ¼ SOð2; 1Þ × SOð2; 1Þ subal-
gebra. Three of them are KVs,

ξ−1 ¼ ∂þ þ ∂−; ðF3Þ

ξ0 ¼ xþ∂þ þ x−∂−; ðF4Þ

ξ1 ¼ðxþÞ2∂þ þ ðx−Þ2∂−; ðF5Þ

and the other ones are CCKVs, which are given by

ζ−1 ¼ ∂þ − ∂−; ðF6Þ

ζ0 ¼ xþ∂þ − x−∂−; ðF7Þ

ζ1 ¼ðxþÞ2∂þ − ðx−Þ2∂−: ðF8Þ

Since AdS2 admits three CCKVs, we are able to construct
three one-parameter families of mass ladder operators

D−1;k ¼ ∂þ − ∂− þ 2k
xþ − x−

; ðF9Þ

D0;k ¼ xþ∂þ − x−∂− þ kðxþ þ x−Þ
xþ − x−

; ðF10Þ

D1;k ¼ ðxþÞ2∂þ − ðx−Þ2∂− þ 2kxþx−

xþ − x−
; ðF11Þ
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where k is a real parameter. Di;k map a solution to the KGE
on AdS2 with mass squared kðkþ 1Þ into another solution
with mass squared kðk − 1Þ.
It should be emphasized that for any solution satisfying

the BF bound, m2 ≥ −1=4, two operators Di;k� exist for
each i ¼ −1, 0, 1. For a fixed m2, the corresponding two
values for k are given by

k� ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p

2
: ðF12Þ

Especially in the range 0 ≤ m2, one of the two operators
is a mass raising and the other a mass lowering
operator. If − 1=4 ≤ m2 < 0, both become mass raising
operators.
If k is a natural number, then m2 is shifted by Di;−k and

Di;k as follows:

� � � ⇌
Di;kþ1

Di;−ðkþ1Þ
kðkþ 1Þ ⇌

Di;k

Di;−k

ðk − 1Þk ⇌
Di;k−1

Di;−ðk−1Þ
� � � ⇌

Di;3

Di;−3

6 ⇌
Di;2

Di;−2

2 ⇌
Di;1

Di;−1

0:

ðF13Þ

By acting the mass lowering operators repeatedly on a
massive scalar field of m2 ¼ kðkþ 1Þ, we can annihilate
the mass. Hence, we obtain the operator

DðkÞ
i1;i2;…;ik

¼ Dik;1 � � �Di2;k−1Di1;k; ðF14Þ

which map a scalar field with mass kðkþ 1Þ into a massless

scalar field. By using DðlÞ
i1;i2;…;il

in Eq. (F14), we can con-
struct conserved quantities on every outgoing null hyper-

surface. Since DðlÞ
i1;i2;…;il

Φl satisfies a two-dimensional

massless KGE, we can write DðlÞ
i1;i2;…;il

Φl ¼ ϕþðxþÞ þ
ϕ−ðx−Þ, where ϕ�ðx�Þ are arbitrary functions of x�,
respectively. Taking the derivative with respect to x− of

DðlÞ
i1;i2;…;il

Φl, the quantity

∂−D
ðlÞ
i1;i2;…;il

Φl ¼ ∂−ϕ−ðx−Þ ðF15Þ

is constant on outgoing null hypersurfaces xþ ¼ const.

2. Aretakis constants in AdS2
In ingoing Eddington-Finkelstein coordinates, AdS2

metric is written in the form

ds2 ¼ −r2dv2 þ 2dvdr; ðF16Þ

where the AdS radius has been already taken to be unit. The
Poincaré horizon is located at r ¼ 0, which is an outgoing

null hypersurface. In the present coordinates, the KGE with
m2 ¼ lðlþ 1Þ; ðl ¼ 0; 1;…Þ is given by

2∂v∂rΦl þ ∂rðr2∂rΦlÞ − lðlþ 1ÞΦl ¼ 0: ðF17Þ

From this equation, it follows that

∂v∂lþ1
r Φkjr¼0 ¼ 0; ðF18Þ

where Φl is a solution for m2 ¼ lðlþ 1Þ. The quantities
Hl ≡ ∂lþ1

r Φljr¼0 are known as Aretakis constants [15].
The quantities ∂lþ1

r Φl are constants on the Poincaré
horizon, but not outside. However, since AdS2 is maximally
symmetric, we expect the existence of quantities which are
constants on every outgoing null hypersurface. In fact,
(F18) can extend to the outside of the Poincaré horizon, and
we obtain

�
∂v þ

r2

2
∂r

���
vr
2
þ 1

�
2ðlþ1Þ∂lþ1

r Φl

�
¼ 0: ðF19Þ

Hence, we define the quantity

Al ≡
�
vr
2
þ 1

�
2ðlþ1Þ∂lþ1

r Φl; ðF20Þ

which coincides with the Aretakis constant Hl at the
Poincaré horizon. Since ∂v þ ðr2=2Þ∂r is an outgoing null
vector field, Al is indeed constant on every outgoing null
hypersurface. In what follows, we still call these Aretakis
constants. For the metric form (F16), we arrange the
coordinate transformation xþ ¼ v and x− ¼ vþ 2=r
and obtain the metric form (F1). Since we have ∂þ ¼
∂v þ ðr2=2Þ∂r and ∂− ¼ −ðr2=2Þ∂r, (F19) is

∂þAl ¼ 0; ðF21Þ

which means that Al is a solution to the massless KGE.
In double null coordinates, Eq. (F20) is written as

Al ¼ ðx−Þ2ðlþ1ÞLðlþ1Þ
− Φl; ðF22Þ

where

Lðlþ1Þ
− ≡ 1

ðxþ − x−Þ2ðlþ1Þ ½ðxþ − x−Þ2∂−�lþ1: ðF23Þ

Since there is symmetry between xþ and x−, we can also

define an operator Lðlþ1Þ
þ

CARDOSO, HOURI, and KIMURA PHYSICAL REVIEW D 96, 024044 (2017)

024044-10



Lðlþ1Þ
þ ≡ 1

ðxþ − x−Þ2ðlþ1Þ ½ðxþ − x−Þ2∂þ�lþ1; ðF24Þ

which can give a conserved quantity Lðlþ1Þ
þ Φl on every

ingoing null hypersurface.13

We explicitly checked this quantity is equal to Al up to
some function of x− for l ¼ 0, 1, 2. We should note that
regardless of the choice of ζi, this quantity provides an

Aretakis constant. We conjecture that ∂−D
ðlÞ
i1;i2;…;il

Φl is
related to the Aretakis constant via

Al ¼ Wi1;i2;…;ilðx−Þ∂−D
ðlÞ
i1;i2;…;il

Φl; ðF26Þ

where Wi1;i2;…;ilðx−Þ is a function of x−.
We point out that Lðlþ1Þ

� are related to the mass

annihilation operator DðlÞ
i1;i2;…;il

in Eq. (F14) up to the

KGE. For example, Lð2Þ
� are written as

Lð2Þ
� ¼ �∂�D−1;1 −

1

ðxþ − x−Þ2 ð□AdS2 − 2Þ

¼ 1

x�

�
�∂�D0;1 −

x∓
ðxþ − x−Þ2 ð□AdS2 − 2Þ

�

¼ 1

ðx�Þ2
�
�∂�D1;1 −

ðx∓Þ2
ðxþ − x−Þ2 ð□AdS2 − 2Þ

�
:

3. Aretakis constants in an extremal black hole

We now construct the Aretakis constant in an extreme
spacetime, with near horizon geometry described by
AdS2 × Sn−2. We focus on a four-dimensional, extreme
Reissner-Nordström geometry with unit mass. In ingoing
Eddington-Finkelstein coordinates, we have

ds2 ¼ −
�
1 −

1

ρ

�
2

dv2 þ 2dvdρþ ρ2dΩ2;

with dΩ2 ¼ dθ2 þ sin2θdϕ2. Introducing r≡ ρ − 1,

ds2 ¼ −
�
r2 − r3

ðrþ 2Þ
rþ 1

�
dv2 þ 2dvdrþ ðrþ 1Þ2dΩ2:

The leading term in v, r part is AdS2 whose metric is
ds2AdS2 ¼ −r2dv2 þ 2dvdr. By using spherical harmonics
on S2, the massless KGE on this spacetime is written as

½□AdS2 − lðlþ 1Þ þ ∂v þ rK�Φ ¼ 0; ðF27Þ

where K is an operator written in the form

K ¼ f1∂v þ f2 þ rf3∂r þ r2f4∂2
r ; ðF28Þ

with certain functions f1, f2, f3 and f4 which are regular
on the horizon. In the near horizon limit, i.e., v → v=ϵ;
r → ϵr and ϵ → 0, the equation describes a massive scalar
on AdS2 with an effective mass lðlþ 1Þ

½□AdS2 − lðlþ 1Þ�Φ ¼ 0: ðF29Þ

However, when using the ladder operator for this space-
time, we need to discuss the subleading terms.
If we write Φ ¼ e−r=2 ~Φ, then Eq. (F27) becomes

½□AdS2 − lðlþ 1Þ þ r ~K� ~Φ ¼ 0; ðF30Þ

where ~K is an operator such that ~K ~Φ is regular on the
horizon like K in Eq. (F28). Next we introduce the operator
Di;k ≡ Lζi − kQi where ζi are the CCKVs on AdS2

D−1;k ¼ r2∂r þ ∂v − kr;

D0;k ¼ rð1þ vrÞ∂r þ v∂v − kð1þ vrÞ;
D1;k ¼ ðv2r2 þ 2vrþ 2Þ∂r þ v2∂v − kvð2þ vrÞ:

Then we can see that,

½□AdS2 − lðl − 1Þ�Di;k
~Φ ¼ Di;k−2ð□AdS2 − lðlþ 1ÞÞ ~Φ:

ðF31Þ

If the rhs of this equation vanishes, we can say thatDi;k acts
as a ladder operator. However, since ~Φ satisfies Eq. (F30),
the rhs of this equation does not vanish. By using Eq. (F30),
the rhs is

rhs ¼ Di;k−2ð−r ~K ~ΦÞ: ðF32Þ

If we choose ζ−1 or ζ0 for ζi, the rhs vanishes at r ¼ 0 for
regular ~Φ. However, if we choose ζ1 for ζi, the rhs does not
vanish on the horizon because ζ1 contains ∂r with finite
coefficient on the horizon. For this reason, only D−1;k and
D0;k can act as ladder operators.
Similar to the case of pure AdS2, acting the ladder

operator l times, we can show

13The ladder operators LðkÞ
� can be written in the covariant form

LðlÞ
� ¼ Kμ1μ2…μk

ð�Þ ∇μ1∇ν2 � � �∇μl ; ðF25Þ

where Kμ1μ2���μl
ð�Þ are conformal Killing-Stäkel tensors. In the

double null coordinates ðxþ; x−Þ, the nonzero components are
given by Kþþ���þ

ðþÞ ¼ 1 and K−−���−
ð−Þ ¼ 1. Although this fact might

be suggesting that our construction of the ladder operators can be
extended to a wider framework in which higher-rank conformal
Killing-Stäkel tensors play an important role, we leave it as a
future problem.
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□AdS2ðDi1;1Di2;2 � � �Dil;l
~ΦÞ

¼ Di1;−1Di2;0 � � �Dil;l−2ð−r ~K ~ΦÞ: ðF33Þ

If we choose ζ−1 or ζ0 for ζi, rhs vanishes at r ¼ 0 for
regular Φ. This implies

∂rDi1;1Di2;2 � � �Dil;l
~Φjr¼0 ¼ const ðF34Þ

on the horizon because□AdS2 ∝ ∂v∂r at r ¼ 0. If we define
Al ≡ ∂rDi1;1Di2;2 � � �Dil;lðer=2ΦÞ, Al becomes constant
on the horizon.
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