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Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have
played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel
type of ladder operators, which map a scalar field onto another massive scalar field. We construct such
operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci
tensor. As an example, we explicitly construct these objects in anti—de Sitter (AdSS) spacetime and show that
they exist for masses above the Breitenlohner-Freedman bound. Starting from a regular seed solution of the
massive Klein-Gordon equation, mass ladder operators in AdS allow one to build a variety of regular
solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the
context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called

Aretakis constants in an extremal black hole.
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I. INTRODUCTION

Exactly solvable systems play a crucial role in under-
standing the physical content of a given theory and on
isolating the main features of certain solutions. Some of
such “golden” systems, like the hydrogen atom in quantum
mechanics are well-known cornerstones in mathematics,
physics and chemistry. In some cases, it is even possible to
relate families of solutions of a given problem without a
detailed knowledge of any of its solutions. One such
remarkable technique, in the context of the Schrodinger
equation, consists in using ladder operators. These enable
one to construct algebraically all, or part of, the energy
eigenvalues and eigenfunctions. However, finding ladder
operators is in general a challenging task, because their
relations to the symmetries of the system remain unclear—
usually, therefore, they are called a dynamical symmetry.

Such enterprise is specially relevant within general
relativity or the gauge-gravity approach to field theories.
In such a framework, test fields on curved spacetimes have
been repeatedly studied and found—at least at linearized
level—to inherit the background symmetries; they are thus
helpful in providing a geometric picture of spacetime.
Conversely, some techniques were developed which make
explicit use of spacetime symmetries to handle these fields.
For example, test fields can be conveniently separated by
means of harmonic functions, on spacetimes which are
maximally symmetric or contain a maximally symmetric
subspace. We will focus our attention on the prototypical
example of the Klein-Gordon equation (KGE),

(0= m?)® =0, (1)
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where [ = ¢**V,V, is the d’ Alembertian and m is a mass
parameter.

In this paper, we report that if a background spacetime
has a particular conformal symmetry (whose precise con-
ditions will be stated below), there exists a differential
operator D, called a mass ladder operator, which maps a
solution to the KGE with mass squared m? into another
solution with different mass squared m?> + ém?, i.e.,

(O = (m* + 6m?))D® = 0, (2)

where 6m? is the variation of the mass squared. Hence, we
provide a geometric interpretation to ladder operators in
terms of the symmetry of a background spacetime.

Our formulation can be useful in Riemannian geometry,
where the KGE is replaced by the Helmholtz-like equation,
i.e., the eigenvalue equation for the Laplacian,

(A—2)® =0, (3)

where A = ¢V, V, is the Laplacian and 4 is the eigen-
value of the Laplacian. For example, when we consider the
Laplacian on S?, we obtain ladder operators which change
the azimuthal quantum number [1,2]. The reason why such
ladder operators exist on S> has never been explained in
terms of conformal symmetry. In our formulation, we can
explicitly construct the ladder operators from conformal
Killing vectors on S2.

I1I. MASS LADDER OPERATORS FOR SCALARS

Conformal symmetry of an n-dimensional spacetime
(M., g,,) is defined by the invariance for a metric g, under
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the conformal transformation g,, — g, = exp(2Q)g,,.
where Q is a function on M. The infinitesimal trans-
formation is described by the conformal Killing equation

vyé:u + vyé‘ﬂ = 2quw Q = %vﬂéﬂ’ (4)
where {* is known as a conformal Killing vector, and Q is
called the associated function. In particular, a conformal
Killing vector is said to be closed if it satisfies the condition
VLuCu] = 0. Hence, ¢* is a closed conformal Killing vector
(CCKYV) if it satisfies the equation

1

vugu = Qg;wv 0= ;V”é’l“ (5)
Using this equation, we obtain the following result: (the
detailed derivation is shown in the next section).

Suppose that an n-dimensional spacetime (M, g,,)
admits a CCKV (¢* satisfying (5). If {* is an eigenvector
of the Ricci tensor with a constant eigenvalue, R*, (¥ =
x(n—1){#, then there exists a one-parameter family of
mass ladder operators

where L denotes the Lie derivative with respect to ¢,
such that the commutation relation with the d’ Alembertian
0= VKV, is given by

[0.Dy] = x(2k + n=2)Dy +2Q(0 + yk(k +n — 1)),
(7)

where k is a parameter, and the commutator is considered as
acting on a scalar field.

Since the action of the commutator on a scalar field ®
leads to

(0= (m* 4+ 6m?))D® = D (0 — m>)®,  (8)

together with m?> = —yk(k+n—1) and ém? = y(2k +
n—2), D, maps a solution @ to the KGE with mass
squared m? into another solution D;® with mass squared
m? 4+ 6m* = —y(k —1)(k+n—2)." Thus, D, are mass
ladder operators which connect massive solutions to the
KGE from the mass squared m? to m?+ 6m2.* This
corresponds in terms of k to shifting k to k — 1. It is also
found that D_;_, ., maps a solution to the KGE into a
solution from the mass squared m? = —y(k—1)(k+n—2)

'If @ is a solution to the KGE with a source term S, i.e.,
(O - m?)® = S, one has (O — (m*> + 6m?))D,® = D;_,S.

I x = 0, D, maps massless solutions to massless ones. In that
case, we have other ladder operators. See Appendix C for other
constructions of ladder operators.
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to m? + 6m?> = —yk(k + n — 1). This corresponds to shift-
ing k — 1 to k.> Since Dy is surjective (or onto) every k, all
the solutions with mass squared m? + ém> can be con-
structed from the solutions with mass squared m” (see
Appendix B). It should be noted that the operators have the
index k and its value must be chosen appropriately depend-
ing on the mass of a solution to act.

When D, connects solutions to the KGE with two real
mass squared m? and m? + ém?, k is required to be real,
and the following inequalities must be satisfied:

)ﬁ(n— 1)? < m?,

2
m- <
4

x <0 or (n=1)2, x>0,

©)

where the equality is attained for k = —(n — 1)/2. Thus,
mass ladder operators can exist only when the value of the
mass squared m? satisfies the above inequalities. We also
notice that for a fixed m?, there are two mass ladder
operators Dy, where

ENGEN

:l—n:t\/(n—l)z—4m2/;(

k
* 2

(10)

These two operators become a mass raising or mass
lowering operator, depending on the value of the mass
squared m?. For a negative y, if m?> > yn(n —2)/4 they
correspond to mass raising and lowering operators, respec-
tively, and otherwise both become mass raising operators.
For positive y, the roles are reversed.

Generally, multiples of the ladder operators can be
considered. Since we have [cf. (8)]

(O—=(k=s)(k+s—=1))Dj_y -+ Dy D;®
=Dy_y Dy 3Dy (0= k(k +1))®,

the multiple operator D;_; - - - D;_; D; can shift the mass
squared labeled by k to the one by k — s.

Physically important examples are maximally symmetric
spacetimes. Actually, we can construct mass ladder oper-
ators for the KGEs in such spacetimes.4 If we consider the
n-dimensional anti-de Sitter spacetime (AdS,) with a
cosmological constant A = y(n — 1) < 0, the first inequal-
ity in Eq. (9) coincides with the condition for the mass
above Breitenlohner-Freedman (BF) bound [4,5]. This
means we can define mass ladder operator for the massive
scalar with the mass above BF bound. In the n-dimensional

3Taking the adjoint of Eq. (8), (see discussion in Ref. [3]), we
obtain D} (0 — (m? + 6m?))t = (O — m?)" (D; + 2Q)" where +
means the adjoint operator. Since (1 — m? and O — (m? + 6m?)
are self-adjoint operators, we can see that (D, +2Q)" =
—D__, 1> shifts mass from m? + 6m? to m>.

General spacetimes admitting mass ladder operators are
discussed in Appendix A.
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de Sitter spacetime (dS,) with a cosmological constant
A =y(n—1) > 0, the second inequality in Eq. (9) is the
condition for that the solution of KGE does not have
oscillation solution for long wave limit (see, e.g., [6]).

III. DERIVATION OF MASS
LADDER OPERATORS

In n>2 dimensions, one can show the following
commutation relation when acting on a scalar:

(0. L] =200 - (n = 2)(VFQ)V,, (11)

where {* is a conformal Killing vector satisfying Eq. (4). If
¢* is a CCKYV, it satisfies Eq. (5). Differentiating this
equation, we obtain

1
va :mRyygu' (12)

Assuming in addition that {¥ is an eigenvector of the Ricci
tensor,

Rt = x(n—1)¢", (13)

where y is constant,5 we arrive at the condition that the
gradient of the function Q is proportional to ¥,

V.0 = ¢, (14)
Under this condition, Eq. (11) is
(O, L] =200+ y(n—2) L. (15)
Furthermore, since Eq. (14) leads to
o +ynQ =0, (16)
we obtain

[0, Q] = =2x¢L; — ny Q. (17)

Given Egs. (15) and (17), it is easy to calculate the
commutation relation between the d’Alembertian and D,
given by Eq. (6) and then obtain Eq. (7).

Suppose there are more than one ladder operators D, ; =
Ly —kQ, (@=1,2,....N) for the KGE with mass
squared m> = —yk(k +n —1). Then it would be natural
to compute the commutation relations between them
because one expects that they form a Lie algebra. First,
it is important to see that the commutator of CCKVs R

’If a spacetime admits two CCKVs ¢ and 4 which are
respectively eigenvectors of the Ricci tensor with eigenvalues y,
and y,, a linear combination is also CCKYV, but it is not an
eigenvector of the Ricci tensor unless y; = y5.
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fgb = [4’07 Cb]ﬂ = gzquﬁ - Q”ZVDCZ, (18)

becomes a Killing vector, which satisfies the Killing
equation V#&, —I—V”f’;b = 0. Here, we have used the
condition that £, are eigenvectors of the Ricci tensor.
Hence we have

[Hkaa,k] :X(zk—’_n_z)Da,k"’_zQaﬁk (19)
[Hy. Le,] =0, (20)

where A, = [+ yk(k + n —1). The first relation shows
that, since Q, is a function, D, ; becomes a ladder operator
only for particular scalar fields ®; obeying the equation
H,®, = 0. Since we have H,.,(D,;®;) =0, one can
construct N solutions to the equation 1 Pryy = O0froma
single ®@,. The second relation shows that the Lie derivative
along the Killing vector &, acts on any solution to the

equation H,® = 0 as symmetry. Since it is also shown that

_)(d(CaﬂC’Z) = d(QaQb)7 (21)

we find

_ZCapCZ = Qa Qb + Cab (22)

with a constant C,,. Thus the commutation relations
between the ladder operators D, and the Killing vectors
#, constructed from CCKVs are calculated as

[Das:Doi| = L, (23)
[Da.k1 ‘C:f;,(.] = Cach,k - CacDb,k’ (24)

[Le,,. Le.)) = Caale, — CraLe,,
- CaC’C-fdb + Cbcﬁéda’ (25)

which form a Lie algebra. This implies that solutions to the
equation H,®, = 0 become the representation of this Lie
group. As seen later, this is conformal group in a maximally
symmetric spacetime.

IV. MASS LADDER OPERATORS IN ADS

The metric of AdS,, in Poincaré coordinate is

d 2 n—-2
ds? = r_r2 +2 Y papditda®, (26)

A,B=0

where 1,5 = diag[-1, 1, ..., 1] is the metric on the n — 1
dimensional Minkowski spacetime M”~!, and A, B run over
0,1,...,n—2. The massive KGE on this spacetime is
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(r?02 + nrd, + r 2Oy — m?)® = 0, (27)

where [, is d’Alembertian on M"~'. In the AdS,
spacetime, there are n+1 CCKVs ¢, which satisfy
V.lar = Qu9u» Where a runs over —1,0,1,....n—1.
Since the Ricci curvature satisfies R, = —(n—1)g,,,
we have y = —1, and all the CCKVs are eigenvectors of
the Ricci tensor. Thus, from (6), we obtain n 4+ 1 mass
ladder operators6

D—l,k - r28, - kr, (28)

Dy = x47%0, +r‘1ZnABaB—kxAr (29)

n—2 n—2
Dﬂ—l,k: ( 1+7'2 Z nABxAx )8 +27_IZXA8A

A,B=0

n—2
- k<r‘l +r Z nABxAxB>. (30)

A,B=0

Using global coordinates, we can confirm that these mass
ladder operators are regular beyond the Poincaré horizon.
Hence, a regular solution to the KGE can be mapped
into another regular solution with different mass (see
Appendix D).

For simplicity, we discuss how the mass ladder operators
act on the solution to the KGE under separation of
variables, ® = a(x?)®(r). Then the KGE reduces to

(Oypt — LY)a = 0, (31)

0? o) L] -
— —- D(r) =0, 32

[rar +nr3r m+r} (r) (32)
where L? is the separation constant. Solving Eq. (32)
around spatial infinity, we obtain the asymptotic behavior
of the solution as

(@)

ANl
+r ;7 (33)
where A, = £(1—n++/(n—1)*+4m?)/2 and cg =

(_1)iL2iC(i()> H§:1((iAi +n=2j—1)(+A, —2j)—m?)~!

for i > 1 and cgg) are constant. The two modes with the

leading terms r+, 772~ are called non-normalizable and
normalizable modes, respectively. From (10), we can see
A, = +k, for the above ladder operators. Acting the
ladder operators on @, a non-normalizable mode is mapped

®The map between k = 1 and k = 0 in AdS, case was partially
discussed in [7].
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into a non-normalizable mode, and a normalizable mode is
mapped into a normalizable mode unless m?> or m> + 5m?>
is between m3, and m%, + 1, where my :== —(n — 1)*/4
is the BF bound mass. If the mass is between the above
region then two modes are normalizable. Note that the
ladder operators do not necessarily keep the form of
separation of variables due to the derivative with respect
to x”.

In particular, D, __,+2D,, x maps a solution of KGE to
another solution of the same KGE, we can obtain variety of
solutions from a single seed solution. Since the ladder
operators are regular everywhere, if a seed solution ® is
regular, D, _i_, 42D, (@ is also regular. From the point of
view of AdS/CFT correspondence the ratio of the coef-
ficients between normalizable and non-normalizable modes
is the expectation value of the operator. If the asymptotic
behavior of D, _i_,12D,, @ is different from @, this
corresponds to different physical situation. If we use D_;,
we can show D_j _;_,,D_; @ = —L*® for a solution

with the separation of variables form ® = a(x*)®(r). If we
use other ladder operators, D, _x_,12D,, (@ is different
from O.

We comment on massless scalar fields in AdSs x S°. The
massless KGE in AdSs x $° reduces to the effective
massive KGE in AdS;

(Hags, = A(€ +4))@ = 0, (34)

where ¢ denotes the different Kaluza-Klein modes. The
mass spectrum corresponds to the masses which can be
mapped from massless scalar fields in AdSs by using the
mass ladder operators. This implies that there is a duality
among the zero mode and Kaluza-Klein modes on massless
scalar fields in AdSs x S°.

V. LADDER OPERATORS IN SPHERE AND
SPHERICAL HARMONICS

By applying our formulation to the 2-dimensional sphere
52, we obtain three ladder operators

Dy, = cochosqﬁ% lerrll(gaagb + ksinOcos¢  (35)
3}
D_y; = cos@sinqﬁ% Cs?rij&‘a(ﬁ + ksinfOsing  (36)
D *sineg—kcose (37)
o o0 ’

where 6 and ¢ are spherical coordinates on S? in which the
metric is given by ds, = d6” + sin*0d¢*. The ladder
operators map solutions of the eigenvalue equation for
the Laplacian Ay with eigenvalues 1 = —k(k + 1),
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(Ag — 1)@ = 0, (38)

into solutions with eigenvalues A = —k(k — 1). It should be
noted that & is not necessarily integer. If k is an integer 7,
spherical harmonics’ Y, = P! (cos )¢ are the eigen-
functions for Agp with A= —#(¢+ 1), and the ladder
operators change the quantum number #, while the usual
ladder operators L. constructed from the spherical sym-
metry change the quantum number m. Introducing
D.;=D;xiD_j;, we can reproduce the relations
in [1,2]

DJrfo,m = Yf—l,m+17 (39)
D_Yrp=—C+m(+m—1)Ys . (40)

DosYpp=—(C+m)Ys (41)

and
Dy Yerm=Yemsr: (42)
D__Yrym==-m)(&—m+1)Ys,1.  (43)
Do_¢Yrym=(£=m)Ys,. (44)

These are useful relations to obtain the entire spectrum of
the Laplacian on S2. Their relation to geometry of S> had
never been uncovered; we stress that the conformal
symmetry of S? is crucial for the existence of such ladder
operators. We should note that we can also apply our
formalism to higher dimensional spheres S”.

Solutions of (38) which are not spherical harmonics will
have a singular behavior. However, it is possible that the
ladder operator can map such singular solution to a regular
one.® For example, if we consider ® = el / tan @ which
satisfies Ag® = 0 and is singular at the pole, we can
show DO._ICD = Y]].

VI. RELATION WITH SUPERSYMMETRIC
QUANTUM MECHANICS

The concept of ladder operators was developed in the
context of exactly solvable systems in quantum mechanics.
One is thus naturally led to inquire whether mass ladder
operators can be framed in this context as well. In fact, one
can obtain shape invariant potentials [8] in supersymmetric

"The normalized spherical harmonics are
\/ng + 1)/4n /(€ = m)!/(€ + m)'Y ;..

Here, we call a local solution regular if the domain of the
solution can be extended to the whole of §?; otherwise singular,
that is, the domain of the solution cannot be extended to the whole
of S2.

given by
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quantum mechanics from the KGE,” where our ladder
operators are regarded as supercharges [12]. We make a
conformal transformation g,, = ngﬂy with an appropriate
conformal factor Q such that a CCKV (¥ for g,, is
transformed into a Killing vector for g,,. Then, the massive
KGE (O — m?)® = 0 for g,, is written in terms of g, as

02+ 0= V(A,m?)]® =0, (45)

where & = Q2/2®, 9; = ¢#9, is a Killing vector and
O is the Laplacian (or d’Alembertian) on an (n — 1)-
dimensional space (or spacetime). Thus, with the separation
of variables ® = y(1)®(x), we obtain the Schrodinger
equation in one dimension,

[—02 + V(4. m?)ly = Ey. (46)

where E is the separation constant. The potential V is given,

up to a constant, by 1/cos?4, 1/cosh?2 or 1/4%. These are
known as shape invariant potentials in supersymmetric
quantum mechanics, the mass ladder operators being
regarded as supercharges (see Appendix E for details).

VII. ARETAKIS CONSTANTS

Mass ladder operators also appear naturally in black hole
physics. In Refs. [13-15], it has been shown that an
extreme Reissner-Nordstrom black hole is linearly unsta-
ble. In their analysis, a certain quantity (“Aretakis con-
stant”’), conserved only on the horizon, plays an important
role. We now show that such constants can be constructed
from our ladder operator, in four-dimensional extreme
Reissner-Nordstrom black holes (more details can be found
in Appendix F).

The near horizon geometry of extreme Reissner-
Nordstrom black holes is described by AdS, x S, and
massless scalar fields on this spacetime behave as a massive
scalar field on AdS, with an effective mass m> = £(£ + 1)
where ¢ is azimuthal quantum number of the spherical
harmonics. Thus, we focus on the KGE equation on AdS,
with this mass. The metric of AdS, in ingoing Eddington-
Finkelstein coordinate is

ds* = —r’dv? + 2dvdr. (47)

Take solutions @ of the KGE, ([0 — m?)® = 0, with m?> =
£(¢+1),(¢£=0,1,...) on this spacetime. Then, one can
show that

81/‘8f+1q>|r:0 =0. (48)

In a series of works Refs. [9-11] the relation between a
quantum mechanics system with a shape invariant potential and
the KGE in AdS spacetime was shown, and the structure of the
hidden symmetry of them was also discussed
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Thus, the quantities 9%+ ®|,_,, are constant on the Poincaré
horizon r = 0. This is the Aretakis constant in AdS, [15].
While the quantity 92+!'® is not constant outside of
r = 0, since AdS, is maximally symmetric, we may expect
the existence of quantities which are constants on every
outgoing null hypersurface. In fact, we can show

2 2(£+1)
(a,; +%a,) [(%+ 1) achD] —0. (49)

Since 8, + (r*/2)d, is an outgoing null vector field,

2(£+1)
A, = (% + 1) ARk (50)

is indeed constant on every outgoing null hypersurface,
and A, coincides with the Aretakis constant on r = 0.
In this sense, A, is a generalization of the Aretakis
constant.

In AdS,, the operator D, changes the mass squared from
k(k+1) into (k—1)k. So, D\D,---Ds,_D, maps a
massive scalar field with m? = #(Z + 1) into massless
scalar field. Since we can solve the two-dimensional
massless KGE, we can write

D]Dz"'Df_lqu): F(x+)+G(x_), (51)

where we used the double null coordinates (x*, x™). Thus
0,-D\D,---D,_D,® = G'(x7) is constant on every out-
going null hypersurface x~ = const. In fact this coincides
with A, up to a function of x~. Note that the choice of
CCKVs ¢_q,p, ¢ does not affect this conclusion. If we
consider Reissner-Nordstrom black hole spacetime without
taking near horizon limit, we can still derive the Aretakis
constant on the horizon in a similar way. Since there is a
relation between Aretakis constant and Newman-Penrose
constant [16], the present analysis suggests that Newman-
Penrose constant also can be constructed from our ladder
operator.

VIII. DISCUSSION

We developed a mass ladder operator formalism for the
massive KGE and explicitly constructed the operators for
AdS, and S?. It is possible, and we showed that this
happens on $2, that the ladder operator maps a singular to a
regular solution even if CCKVs and the associated func-
tions are regular. Naturally, in the context of AdS/CFT
correspondence regular solutions are preferred objects.
However, the property above might help in providing a
physical interpretation to singular solutions.

The ladder operators on S? were originally obtained by
embedding S into three-dimensional Euclid space E> [2]
or sphere S3 [1]. The harmonic functions on E3 are known
as regular and irregular solid harmonics. According to [2],
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taking the covariant derivatives of the solid harmonics
along d,, 0, and 9., yields differential recurrence relations
between the solid harmonics with different azimuthal and
magnetic quantum numbers. By restricting the recurrence
relations onto S2, we obtain the ladder relations for the
spherical harmonics. Higuchi [1] also constructed the
symmetric tensor harmonics on S” in the reductive con-
struction, where S” is embedded into S"*!. This suggests
the existence of the ladder operators for vector or tensor
fields on S” and also maximally symmetric spacetimes.

Another interesting direction is to consider higher-order
operators. For symmetry of the Laplace equation or KGE in
a curved spacetime, they have been studied by many
authors [17-20]. While our formulation in this paper
focused on first-order mass ladder operators, it would be
of great interest to consider higher-order mass ladder
operators if there exists a curved spacetime which admits
a crucial higher-order operator not reducible to first-order
operators.

We also showed the relation between these operators and
supersymmetric quantum mechanics potentials having shift
shape invariance. If we start from generic 1-dimensional
supersymmetric quantum mechanics potential, we can
expect to obtain a class of scalar fields with potential
which has a ladder structure.

As an application, we constructed Aretakis constant from
mass ladder operators on AdS,. If we consider Reissner-
Nordstrom spacetimes without taking the near horizon
limit, the Aretakis constant on the horizon can be derived
in a similar way. This suggests the intriguing possibility of
mass ladder operators being useful constructs also for less
symmetric spacetimes, with only approximate conformal
symmetry.

In Minkowski spacetime, the existence of mass ladder
operators (shown in Appendix C) is not surprising, as there is
no scale in the problem other than the mass parameter in the
massive KGE. In curved spacetimes however, the different
hierarchy (as compared to curvature scale) in the mass of
scalar fields is expected to play a fundamental role.
Notwithstanding, if we consider the curved spacetimes
which admit mass ladder operators (including the maximally
symmetric spacetimes), solutions of KGE between different
masses are connected. Furthermore, the map induced by the
ladder operator is surjective (or onto), so all the solutions
with mass squared m? + m? can be constructed from the
solutions with mass squared m?. This suggests that the
physical properties of KGE with different masses, which are
connected by the ladder operator, are very similar contrary to
the naive expectation.
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APPENDIX A: EXPLICIT METRIC FORM
ADMITTING A MASS LADDER OPERATOR

In [21], all canonical forms for metrics admitting a
CCKYV, denoted by (¥, were investigated in arbitrary
dimensions. In Lorentzian signature, they are classified
according to whether ¢* is null or not. In the null case, {#
becomes a covariantly constant null vector, so that Q =0
and R¥,{¥ = 0. Hence, the operator does not become a
ladder operator for the d’ Alembertian. In the non-null case,
it is possible to introduce a function 4, called the potential
of ¢#, such that di is the 1-form dual to {¥. Using the
potential as a coordinate, we can choose a local coordinate
system (x*) = (4,x"). Then, a metric in the case in n
dimensions is written as

1 - o
ds?* = g, dx'dx" = md/lz + f(4)g:j(x)dx"dx’,

where f(4) is an arbitrary function and g;; is an (n — 1)-
dimensional metric.'® This metric admits a CCKV"!

(A1)

10r¢ ¢{# is timelike, i.e., f < 0, —g;; should be a positive definite
metric so that the metric g,, has [—, 4+, +, -+, +] signature.

Mtis possible to show that, in addition to (A3), the metric (A1)
can admit a CCKV if g;; admits a CCKV. Actually, the CCKV
equation Vﬂé’u = Qg,, for the metric (A1) can be solved by

0, 0 1 - 0
C*—Z*)?f(ﬂ) f(@a*w( PR

(A2)

where ¢’ is a CCKV for Gij» @,Z_,- = QZ;,-_,-. The associated function
Q of ¢ is given by Q = (1/7)\/FT A0,
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0
=f(1)=. A3
¢ = 10), (A3)
If we impose the condition (13) for this spacetime, f
takes the form
f(A) = = 2> + ¢1A+ o, (A4)
where ¢( and ¢, are constant. With f(1) given by (A4), the
ladder operator is

De = 113, =5 /2. (A5)

APPENDIX B: SURJECTIVITY AND KERNEL

We can show that Dy is a surjective (onto) map, i.e., for
arbitrary solution of ((J — m? — ém?)® = 0, we can find a
solution of the equations

D@ = ® (B1)
(O=m)d =0, (B2)
where m? and ém? are given by m? = —yk(k+n—1),

m* +6m? = —y(k — 1)(k +n—2). The general solution
of (B1) is

® = k2 </ dAf~\K2D 4 P(xf)>, (B3)

where P(x') is arbitrary function of x’. After a straightfor-
ward calculation, we obtain

(00— m?)®
k(k+n—2)

— 2|0
priwm|E 4

(6 + 4eun)| P2
where we used Eq. (A4). For P = 0 we recover Eq. (B2),
showing that D, is a surjective map.

If there exists a nontrivial solution of the equation
[0+ k(k +n —2)(c2 + 4coy) /4]P(x)) = 0, such func-
tional degrees of freedom correspond to the kernel of
D;, i.e., the solutions of both D,®=0 and
(0 —m?)® = 0. In particular, if ¢; = ¢y = 0, P = const
is a nontrivial solution, then ® = Cf*/? becomes a kernel
of D,.

APPENDIX C: ANOTHER LADDER OPERATOR
FOR x =0, Q=const CASE

The operator D, relates scalars of different mass if the
eigenvalue of the Ricci tensor y is not zero. However,
for constant Q a ladder operator can be defined even for
x = 0 case, albeit in a modified way. If Q = ¢ = const, the
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conformal Killing Eq. (4) becomes the homothetic Killing
equation

v[,{Cl/ + vvgﬂ = 2Cg/w‘ <C1)
The commutation relation (7) with k = 0 is
O, L] = x(n=2)Lr + 2¢O (C2)

If y is zero, we can define another ladder operator
D, =M =372 (j!) 7 (AL;) with a parameter 4, which
satisfies the commutation relation'®

[0, D;] = (e —1)D, . (C3)
Acting on a scalar field @, we obtain
OD,® — 2D, = 0. (C4)
If @ satisfies a massive KGE, then (C4) becomes
(O - e¥m?)D,;® = 0. (C5)

This shows that D, maps a scalar field with m? to that with
e*m?. Since the parameter A is an arbitrary number, D,
can change the mass continuously. Note that D,l cannot
change the signature of the mass squared, but can change
the absolute value. In Minkowski spacetime g,, = 7,,,
we can explicitly construct the ladder operator as
D, = /@089, where & is an arbitrary Killing vector
on 1,,.

APPENDIX D: REGULARITY OF
LADDER OPERATORS

To see the regularity of the ladder operator on AdS,
beyond the Poincaré horizon, introduce global coordinates

cost—Q,_;sinp

= , D1
" cosp (D1)
sint
t= , D2
cost—Q,_;sinp (D2)
) Q; si
xi= iSIp (i=12..n-2), (D3)

cost—Q,_;sinp’

where Q; satisfy the relation > "= Q? = 1. In this coor-
dinate system, the metric becomes

"We can show this relation by using the equation
O, (Le)"] = ((2c + Lg)" = (Lg)")O, where n is a positive
integer.
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1 n—1
ds* = — <—d12 + dp? + sin?p § d9,2>. (D4)
cosp —

Spatial infinity corresponds to p = +x/2. Note that
Son=ldQ? is the metric of a (n — 2)-dimensional unit
sphere. The associated functions of CCKVs Q,, (a =

—1,0,1,.---,n—1) in these coordinates are
—Q i
0, - CcoST 1 SINp (D5)
cos p
sint
QO = ’ (D6)
cosp
O si
0,=MP i_12..n-2) (D7)
cos p
cost+ Q,_;sinp
Oyt = . (D8)

cosp

Thus, Q, is finite except at spatial infinity. Since the 1-form
dQ,_; is regular (except at the sphere’s pole), the 1-forms
dQ, are also regular in —z/2 < p < z/2. In AdS,, dQ, =
Capdxt, so CCKVs {% and the ladder operators D, are
regular in —z/2 < p < n/2.

APPENDIX E: CONFORMAL
TRANSFORMATION AND
SUPERSYMMETRIC QUANTUM
MECHANICS

Given a CKV ¢* for a metric g,,, we can make a
conformal transformation g,, = Q2 gy under which ¥ is a
Killing vector. We have already seen that if a spacetime
admits a CCKV ¢# the metric and CCKV have the forms
(A1) and (A3), respectively. Hence, by setting Q = 1/+/F,
the CCKV (¥ for g,, becomes a Killing vector for g,,.
Under this conformal transformation, we have

(0= m?)® = QU2 - v, m?)d,  (El)

where ® = Q2@ and

V(A m?) = (16m>f + (n = 2)*(f)* + 4(n = 2)ff")/16.
(E2)
Hence, massive KGE on g,,, (O — m?)® = 0 leads to
O®-V(4,m?)® =0, (E3)

where [ is the d’Alembertian on Gu- In addition, if we
assume the function f(4) is given by (A4), the potential V
becomes a quadratic polynomial of 4,
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V =5+ 514+ 5,47 (E4)

with the coefficients
so = ¢i(n=2)?/16 + co(m* + (1 - n/2)),  (ES)
51 = ¢ (m? = (n=2)ny/4), (E6)
sy = y(=4m* + (n — 2)ny) /4. (E7)

Furthermore, we introduce the coordinate A as 0; =
$#9, = f0,. Since O® = £9,[f0,®] + U, (E3) is

0 - = (¢t +dceyy)

— o+ 0041 2

7 R T
4m? —n(n—2)y

X - + (n
cos?(A/=ci —4dcoy /2)

(E8)

where [ is the d’Alembertian on an (n — 1)-dimensional
spacetime. Imposing [(,9;] =0 and [J,Q] =0, the
separation of variables ® =y (1)@(x') leads to the
Schrodinger equation in one dimension

Hiwy = [~ + V) v = B (B9)

where we have introduced the coordinate z =

YRV, —(c? +4coy) /2, in which the potential is given by

m?/y—nn-2)/4 (n-2)>
cos’z * 4

V(m?,z) = . (E10)

and E is a separation constant. This is known as a shape
invariant potential in supersymmetric quantum mechanics.
This form of potential changes to 1/ cosh? z if the signature
of —c? — 4cgy is negative. We have assumed that either ¢
or ¢; are nonvanishing. When ¢, = ¢; = 0, the potential
becomes a quadratic polynomial of 1/, as in the problem
of the hydrogen atom.

The present conformal transformation transforms the
ladder operator D, for [J into the ladder operator D; =
QC-1/2p, Q-(2=1/2 for [J. To be explicit, it is written in
the coordinate z as

_ d 2 -
Dy =—-— (k—Tn> tanz + const.  (E11)
In supersymmetric quantum mechanics, the Hamiltonian H
and supercharge Q are related via Q> = H. In the present
case, this can be realized by setting
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1= ("0 )

Q _ < _0 _D—k—n+2>.
D, 0

Thus, our ladder operator corresponds to the supercharge in
supersymmetric quantum mechanics.

(E12)

(E13)

APPENDIX F: ARETAKIS CONSTANTS
1. Mass ladder operators in AdS,

In double null coordinates, AdS, metric is given by

4[A|

dsigs, = = sdxtdx™, (F1)

(xt —x

where 1/4/|A| is the AdS radius. Setting A = 1, the KGE
(1) is given by

—(xT = x7)?0,.0_® = m*®. (F2)

There are an infinite number of CKVs on AdS,, described
by two copies of the Witt algebras. Since the Witt algebra
contains SO(2,1) subalgebra, there are six CKVs as
generators for the SO(2,2) = SO(2,1) x SO(2, 1) subal-
gebra. Three of them are KVs,

E4=0,+0_, (F3)
o =xT0, +x70_, (F4)
& =(x*)?0, + (x7)0., (F5)

and the other ones are CCKVs, which are given by

= 8+ -0, (F6)
Co=xT0, —x70_, (F7)
1 =(x")?0, = (x7)%0_. (F8)

Since AdS, admits three CCKVs, we are able to construct
three one-parameter families of mass ladder operators

2k
D_l.k:5+—3_+x+_x_, (Fg)
_ k(x™ 4+ x7)
Do’k:x+a+—x a_+ﬁ, (FIO)
B 2kxTx™
Dy = (40, = (o4 2 ()
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where k is a real parameter. D; ; map a solution to the KGE
on AdS, with mass squared k(k + 1) into another solution
with mass squared k(k — 1).

It should be emphasized that for any solution satisfying
the BF bound, m? > —1/4, two operators D ; . exist for
each i = —1, 0, 1. For a fixed m?, the corresponding two
values for k are given by

-1 EV1+4m?

k
* 2

(F12)

Especially in the range 0 < m?, one of the two operators
is a mass raising and the other a mass lowering
operator. If —1/4 < m? <0, both become mass raising
operators.

If k is a natural number, then m? is shifted by D; _; and
D, as follows:

Diji Dy D D;s Dy Dj
2 k) 2 h-Dk = . Ee=2=20.

Di_(is1) Dj_i Di_(x-1) Di 3 D;, D,
(F13)

By acting the mass lowering operators repeatedly on a
massive scalar field of m? = k(k + 1), we can annihilate
the mass. Hence, we obtain the operator

p®

Q1,0 i

=D 1Dy, 1Dj 1> (F14)

which map a scalar field with mass k(k + 1) into a massless
@ ’ in Eq. (F14), we can con-

[FRZTR Y

scalar field. By using D

struct conserved quantities on every outgoing null hyper-
@)

surface. Since DI-M.2

i, P satisfies a two-dimensional

massless KGE, we can write D"} . &, = ¢, (x*) +

1,00, iy
¢_(x7), where ¢, (x*) are arbitrary functions of x*,
respectively. Taking the derivative with respect to x~ of

NG

.

i, Pz, the quantity

o DY)

Lpslnseeny lf¢f = 8_¢_(x_) (Fls)

is constant on outgoing null hypersurfaces x™ = const.

2. Aretakis constants in AdS,

In ingoing Eddington-Finkelstein coordinates, AdS,
metric is written in the form

ds* = —r*dv? + 2dvdr, (F16)

where the AdS radius has been already taken to be unit. The
Poincaré horizon is located at » = 0, which is an outgoing
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null hypersurface. In the present coordinates, the KGE with
m>=¢(¢+1),(¢£=0,1,...) is given by

20,0,®, + a,(rza,cbf) -+ 1)D,=0. (F17)
From this equation, it follows that
0,001 @y, = 0. (F18)

where @, is a solution for m> = £(¢ + 1). The quantities
H, = 0."'®,|,_, are known as Aretakis constants [15].
The quantities 927'®, are constants on the Poincaré
horizon, but not outside. However, since AdS, is maximally
symmetric, we expect the existence of quantities which are
constants on every outgoing null hypersurface. In fact,
(F18) can extend to the outside of the Poincaré horizon, and
we obtain

2 2(£+1)
<ay +r28,> K”zrjt 1> afﬂcbf] =0. (F19)

Hence, we define the quantity

2e+1)
A, = <” n 1) oo, (F20)

2

which coincides with the Aretakis constant H, at the
Poincaré horizon. Since 9, + (r?/2)0, is an outgoing null
vector field, A, is indeed constant on every outgoing null
hypersurface. In what follows, we still call these Aretakis
constants. For the metric form (F16), we arrange the
coordinate transformation x™ =wv and x” =v+2/r
and obtain the metric form (F1). Since we have 0, =
9, + (r*/2)0, and 0_ = —(r*/2)0,, (F19) is

0.A, =0, (F21)

which means that A, is a solution to the massless KGE.
In double null coordinates, Eq. (F20) is written as

Ay = (x")2HNLE N, (F22)

where

1
+) = -
L* (x* _x—)z(ﬂl)

[(xF =x7)20_) . (F23)

Since there is symmetry between x* and x~, we can also

define an operator L(fH)

024044-10
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L@+ 1
+ (x+ _ x—)2(f+1)

(" =x7)20. )7 (F24)

which can give a conserved quantity Lfﬂ)

ingoing null hypersurface.13

We explicitly checked this quantity is equal to A, up to
some function of x~ for # = 0, 1, 2. We should note that
regardless of the choice of {;, this quantity provides an

Aretakis constant. We conjecture that G_Dgi)iz,_.’ifcbf is
related to the Aretakis constant via

®, on every

Ap =W .. if(x_)a—D('f)

1 00,...\ip

®,,  (F26)

where W, ;. (x7) is a function of x~.
We point out that L(fﬂ) are related to the mass

g in Eq. (F14) up to the

annihilation operator D; ; .
KGE. For example, Lf) are written as

1

Lif) = :l:aiD—l,l - W(DA‘!SZ - 2)
1 xt
== +0.Dy; — m (Oaas, —2)
1 xF)2
e {iaiDl,l - ﬁ (Daas, - 2)}

3. Aretakis constants in an extremal black hole

We now construct the Aretakis constant in an extreme
spacetime, with near horizon geometry described by
AdS, x §"2. We focus on a four-dimensional, extreme
Reissner-Nordstrom geometry with unit mass. In ingoing
Eddington-Finkelstein coordinates, we have

2
ds? = — (1 - —> dv? + 2dvdp + p*dQ?,
p

with dQ? = d6” + sin’0d¢?. Introducing r=p — 1,

2
ds? = — [rQ - (FI 1)} dv? + 2dvdr + (r + 1)2dQ?.
r

The ladder operators L(ik) can be written in the covariant form

3 g
LY =K, ,, -V (F25)

He

where K’(”i”)” “ are conformal Killing-Stikel tensors. In the

double null coordinates (x™,x™), the nonzero components are
given by I('(+++)”‘Jr =l and K"~ = 1. Although this fact might
be suggesting that our construction of the ladder operators can be
extended to a wider framework in which higher-rank conformal
Killing-Stikel tensors play an important role, we leave it as a
future problem.
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The leading term in v, r part is AdS, whose metric is
ds%,s, = —r*dv* + 2dvdr. By using spherical harmonics
on §2, the massless KGE on this spacetime is written as

[DAd32 - f(l/ﬁ + 1) + 61) + I’K]CD = 0, <F27)
where K is an operator written in the form
K = 10, + fo + rf30, + r* f497, (F28)

with certain functions f, f,, f3 and f, which are regular
on the horizon. In the near horizon limit, i.e., v - v/e,
r — er and € — 0, the equation describes a massive scalar
on AdS, with an effective mass £(Z + 1)
However, when using the ladder operator for this space-
time, we need to discuss}he subleading terms.
If we write ® = ¢~"/2®, then Eq. (F27) becomes
[Dags, = £( + 1) + rK]® = 0, (F30)
where K is an operator such that K® is regular on the

horizon like K in Eq. (F28). Next we introduce the operator
D= L; —kQ; where {; are the CCKVs on AdS,

D_i;=71r*0,+0,—kr,
Doy =r(14+vr)0, + v9, — k(1 + vr),
Dy = (v*r* + 2vr +2)0, + 1?0, — kv(2 + vr).

Then we can see that,

[Daas, = (€ = D]D; @ = Diy—2(Dags, = €(€ + 1))®.
(F31)

If the rhs of this equation vanishes, we can say that D, ; acts
as a ladder operator. However, since ® satisfies Eq. (F30),
the rhs of this equation does not vanish. By using Eq. (F30),
the rhs is

rhs = Dj;_>(—rK ®). (F32)
If we choose {_; or { for ¢;, the rhs vanishes at » = 0 for
regular ®. However, if we choose ¢ | for ¢;, the rhs does not
vanish on the horizon because {; contains 0, with finite
coefficient on the horizon. For this reason, only D_; ; and
Dy, can act as ladder operators.

Similar to the case of pure AdS,, acting the ladder
operator £ times, we can show
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Ouas,(Diy1Diyn - Dy, /D)

= Di,,—1Di2,0 T Dif,f—z(—ri( é)- (F33)

If we choose {_; or ¢, for {;, ths vanishes at » =0 for
regular ®. This implies
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0,D; \D; 5 -+ D,-ff(i)|,:0 = const (F34)
on the horizon because [, 5, o 9,0, at r = 0. If we define
Ay =0,D; D 5Dy, ;(e"*®), A, becomes constant
on the horizon.
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