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We consider a particle collision with a high center-of-mass energy near a Bañados-Teitelboim-Zanelli
(BTZ) black hole. We obtain the center-of-mass energy of two general colliding geodesic particles in the
BTZ black hole spacetime. We show that the center-of-mass energy of two ingoing particles can be
arbitrarily large on an event horizon if either of the two particles has a critical angular momentum and the
other has a noncritical angular momentum. We also show that the motion of a particle with a subcritical
angular momentum is allowed near an extremal rotating BTZ black hole and that a center-of-mass energy
for a tail-on collision at a point can be arbitrarily large in a critical angular momentum limit.
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I. INTRODUCTION

Recently, LIGO reported three gravitational-wave events
GW150914 [1], GW151226 [2], and GW170104 [3], and
they showed that stellar-mass black holes exist in nature.
Phenomena in a strong gravitational field near black
holes become a more important topic not only in general
relativity but also in astronomy and astrophysics. The black
holes in nature will be described well as the Kerr black hole
solution which is the vacuum solution of the Einstein
equations.
In 2009, Bañados, Silk, andWest refound that the center-

of-mass energy of two colliding particles near an event
horizon can be arbitrarily large in the extremal Kerr black
hole spacetime if either of the two ingoing particles has a
critical angular momentum and the other does not have the
critical angular momentum [4]. The particle collision is
often called Bañados-Silk-West (BSW) collision or BSW
process but we should mention that the particle collision
with the infinite center-of-mass energy was pointed out by
Piran, Shaham, and Katz in 1975 [5]. In Ref. [4] an on-
equatorial-plane collision was considered but collisions
with an arbitrarily high center-of-mass energy occur also
off the equatorial plane [6]. The effect of a weak electro-
magnetic field on the BSW collision [7] and the BSW
collision in the near-horizon geometry of the extremal Kerr
black hole spacetime were discussed [8]. Two ingoing
neutral particle collide with an arbitrarily large center-of-
mass energy in a near horizon limit not only in the extremal
Kerr black hole spacetime but also in the Kerr-Newmann
spacetime [9], in the Kerr naked singularity spacetime [10]
in the Kerr-de Sitter black hole spacetime [11], in higher

dimensional black hole spacetimes [12,13], and in lower
dimensional black hole spacetimes [14–17].
After rediscovering of the BSW process, several aspects

of the BSW process were criticized by several authors
[18,19]. For the infinite center-of-mass energy, the angular
momentum of either of two particles must be fine-tuned to
be a critical value. The particle with the critical angular
momentum rotates around the extremal Kerr black hole
infinite times and then reach an event horizon in infinite
proper time. Even if extremal Kerr black holes exist in
nature, the backreaction of gravitational waves will sig-
nificantly affect the BSW process.
The high center-of-mass energy of two colliding par-

ticles near an event horizon does not mean that observers at
infinity obtain high energy particles or massive particles.
Creations after the BSW collision near the event horizon
are strongly redshifted and the escape fraction can be
diminished [20]. On the other hand, the BSW collision
stimulates to reconsider the details of a collisional Penrose
process which is a process of extraction of energy from a
rotating Kerr black hole after a particle collision [21–30].
In Ref. [31], Zaslavskii found the electromagnetic

counterpart of the BSW collision in the extremal
Reissner-Nordström black hole spacetime. A particle col-
lision with an arbitrarily high center-of-mass energy occurs
when either of two ingoing particles has a critical charge
and when the other does not have the critical charge. The
critical charged particle reaches in arbitrarily long proper
time to an extremal event horizon. The electromagnetic
counterpart of the BSW collision was also found in a
higher-dimensional extremal charged black hole spacetime
[13]. The BSW effect will be a universal phenomena in
near-extremal and extremal spacetimes with and without an
event horizon. Simple kinematic explanations of the BSW
collision were given in Refs. [18,32]. In Ref. [13], a tight
link between the BSW collision and a test-field instability
of an extremal horizon in asymptotically flat and extremal

*tsukamoto@rikkyo.ac.jp
†k.ogasawara@rikkyo.ac.jp
‡yggong@hust.edu.cn

PHYSICAL REVIEW D 96, 024042 (2017)

2470-0010=2017=96(2)=024042(8) 024042-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.024042
https://doi.org/10.1103/PhysRevD.96.024042
https://doi.org/10.1103/PhysRevD.96.024042
https://doi.org/10.1103/PhysRevD.96.024042


black hole spacetimes [33–40] was pointed out. See a
review [41] for the more details of the BSW process.
The treatment of gravity generated by colliding particles

is a problem of the BSW collision [42]. Since particles near
an extremal event horizon have a large energy, the gravity
of the particles will affect on the geodesic motion. Thus, the
effect of self-gravity of particles on the BSW collision
cannot be neglected. The analytical treatment of the
self-gravity of the particles in the Kerr spacetime is a
challenging problem because of low symmetry of the
spacetime. If we treat analytically fast rotating thin shells
in the Kerr spacetime, we can estimate the effect of the self-
gravity on the BSW collision. The analytical description of
fast rotating thin shells in the Kerr spacetime, however, is
also a difficult problem to solve [43–45].
Considering collisions of two charged thin shells includ-

ing their self-gravity in the Reissner-Nordström spacetime
helps us to estimate the effect of gravity generated by
colliding particles on the BSW collision [42,46]. Kimura
et al. showed that the center-of-mass energy of the BSW
collision of the two charged shells cannot be arbitrarily
large [42].
Investigating the BSW collision in 2þ 1 dimension can

be another good approach to estimate the effect of self-
gravity of particles on the BSW collision since the collision
of fast rotating dust thin shells in 2þ 1 dimension is more
tractable than in the Kerr spacetime [43,47].
In this paper, we consider a particle collision in the

Bañados-Teitelboim-Zanelli (BTZ) black hole spacetime
with an angular momentum and a negative cosmological
constant [48,49] motivated by further investigations for the
backreaction effect of the self-gravity of particles on the
BSW collision [50]. The BTZ black hole is considered as a
typical black hole in 2þ 1 dimension because of the
existence of a no-go theorem for asymptotically flat and
stationary black holes satisfying the dominant energy
condition in 2þ 1 dimensions in Einstein gravity [51].
One may suspect that the negative cosmological constant

affects on the particle collision, and it is very different from
the BSW collision in the Kerr spacetime. The effect of the
negative cosmological constant on the BSW collision will
be negligible since the collision with a high center-of-mass
energy occurs near an extremal event horizon.
We concentrate on the collision of two particles on an

event horizon and outside of the BTZ black hole in this
paper while a particle collision was considered on the event
horizon and inside the BTZ black hole [14,15] motivated
by the internal instability of black holes.
This paper is organized as follows. In Sec. II, we

consider a particle motion and the center-of-mass energy
of the collision of two particles in the BTZ black hole
spacetime. In Sec. III, we investigate the motion of particles
with critical and subcritical angular momenta near the BTZ
black hole. In Sec. IV, we investigate a tail-on collision of
two particles with subcritical angular momentums near an

extremal BTZ black hole. In Sec. V, we summarize our
result. In this paper we use the units in which the light
speed is unity.

II. CENTER-OF-MASS ENERGY
FOR PARTICLE COLLISION IN THE

BTZ BLACK HOLE SPACETIME

In this section, we review a particle motion and inves-
tigate the center-of-mass energy of the collision of two
particles in the BTZ black hole spacetime.

A. Line element

The line element in the BTZ black hole spacetime is
given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dϕ −

4GJ
r2

dt

�
2

; ð2:1Þ

where

fðrÞ ¼ −8GM þ r2

l2
þ 16G2J2

r2
; ð2:2Þ

G is a gravitational constant, M and J are the Arnowitt-
Deser-Misner (ADM) mass and the angular momentum of a
BTZ black hole, respectively, and l is the radius of the
curvature related to a negative cosmological constant
Λ < 0 by

l≡
ffiffiffiffiffiffiffi
1

−Λ

r
: ð2:3Þ

If a condition

M ≥
jJj
l

ð2:4Þ

is satisfied, outer and inner horizons exist at r ¼ rþ and
r ¼ r−, respectively, where r� is defined as

r� ¼ 2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

M2l2

s �vuut
: ð2:5Þ

Please notice that rþ ≥ r− is satisfied and that the outer
horizon is an event horizon. BTZ black holes with the
maximal angular momentum jJj ¼ Ml are said to be
extremal. When the BTZ black hole is extremal, the outer
and inner horizons are coincide,

rþ ¼ r− ¼ 2l
ffiffiffiffiffiffiffiffi
GM

p
: ð2:6Þ

There are time translational and axial Killing vectors,
tμ∂μ ¼ ∂t and ϕμ∂μ ¼ ∂ϕ, because of stationarity and axial
symmetry of the spacetime, respectively.
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Using the radii of the outer and inner horizons r�, the
line element, the function fðrÞ, the ADM mass M, and the
angular momentum J are expressed as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dϕ −

rþr−
lr2

dt

�
2

; ð2:7Þ

fðrÞ ¼ ðr2 − r2þÞðr2 − r2−Þ
l2r2

; ð2:8Þ

M ¼ r2þ þ r2−
8Gl2

; ð2:9Þ

and

J ¼ rþr−
4Gl

; ð2:10Þ

respectively.

B. Particle motion

We consider the motion of a particle with a three
momentum pμ and a rest mass m in the BTZ black hole
spacetime. The conserved energy of the particle

E≡ −gμνtμpν ¼ −gtνpν ð2:11Þ
and the conserved angular momentum of the particle

L≡ gμνϕμpν ¼ gϕνpν ð2:12Þ
are constant along a geodesic. We assume that E is positive.
From the condition pμpμ ¼ −m2 and Eqs. (2.11) and
(2.12), the components of the three momentum pμ are
obtained as

ptðrÞ ¼ SðrÞ
fðrÞ ; ð2:13Þ

prðrÞ ¼ σ
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð2:14Þ

pϕðrÞ ¼ rþr−SðrÞ
lfðrÞr2 þ L

r2
; ð2:15Þ

where RðrÞ and SðrÞ are defined as

RðrÞ≡ S2ðrÞ −
�
m2 þ L2

r2

�
fðrÞ ð2:16Þ

and

SðrÞ≡ E −
rþr−L
lr2

; ð2:17Þ

respectively, and where σ ¼ �1 is chosen as þ1 for an
outgoing particle and −1 for an ingoing particle. We
assume a forward-in-time condition ptðrÞ ≥ 0, i.e.,

SðrÞ ≥ 0, for r ≥ rþ. We define critical angular momentum
Lc of a particle as Lc ≡ rþlE=r−. A particle with the
critical angular momentum L ¼ Lc satisfies a condition
SðrþÞ ¼ 0. A particle rotates in the ϕ direction (−ϕ
direction) when pϕ ≥ 0 (pϕ < 0) is satisfied.
Using pμ ¼ dxμ=dλ, where λ is the parameter of the

geodesic, and using Eq. (2.13), we obtain the equation of
the motion in the radial direction of a particle as

1

2

�
dr
dλ

�
2

þ VðrÞ ¼ 0; ð2:18Þ

where VðrÞ is an effective potential in the radial direction of
the particle defined by VðrÞ≡ −RðrÞ=2. The motion of the
particle is allowed in regions where VðrÞ ≤ 0 or RðrÞ ≥ 0
while it is prohibited in regions where VðrÞ > 0 or
RðrÞ < 0. The particle can exist on the event horizon
r ¼ rþ because of RðrþÞ ¼ S2ðrþÞ ≥ 0.
If a particle has a mass, it cannot exist at infinity

because of

lim
r→∞

RðrÞ ¼ lim
r→∞

−
m2r2

l2
< 0: ð2:19Þ

For a massless particle, we obtain RðrÞ as

RðrÞ ¼ E2 −
L2

l2
þ L
lr2

�
−2Erþr− þ L

l
ðr2þ þ r2−Þ

�
: ð2:20Þ

If −El ≤ L ≤ El is satisfied, RðrÞ is non-negative in the
range of rþ ≤ r. If L < −El or El < L ≤ Lc is satisfied,
RðrÞ is non-negative in the range of rþ ≤ r ≤ r0 andRðrÞ is
negative in the range of r0 < r, where r0 is given by

r0 ≡ rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

l2S2ðrþÞ
E2l2 − L2

s
: ð2:21Þ

Notice rþ < r0 for L < −El or El < L ≤ Lc.

C. Static limit, ergo region, and Penrose process

The ðt; tÞ component of the metric tensor in the BTZ
black hole spacetime becomes nonpositive, i.e., gttðrÞ ≤ 0,
for a region between the event horizon r ¼ rþ and a radius
r ¼ rsl, where rsl is defined as

rsl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2−

q
: ð2:22Þ

Since the time translational Killing vector tμ is spacelike
in the region rþ ≤ r ≤ rsl, static observers with a three
velocity proportional to the time translational Killing vector
cannot exist in there. We call the radius r ¼ rsl static limit
and call the region ergo region. Inside of the ergo region,
the conserved energy E of a particle can be nonpositive.
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Consider a particle with a positive conserved energy
comes from infinity and enters into an ergo region and
decays into two particles in there. A production with a
negative conserved energy falls into the rotating black hole
and another production with a larger conserved energy than
the conserved energy of the incident particle escapes
infinity. This is a Penrose process known as the process
of the extraction of an energy from a rotating black hole
[52]. Cruz et al. considered the Penrose process in BTZ
black hole spacetime [53]. They concluded that the Penrose
process does not occur if the emitted particle has a mass
because it cannot reach into infinity and that the Penrose
process does occur if a massless particle is emitted.

D. Center-of-mass energy for a particle collision

We consider the collision of two particles which are
named particle 1 and 2 in the BTZ black hole spacetime.
We obtain the formula of the center-of-mass energy ECMðrÞ
of the two general geodesic particles at a collisional point in
the BTZ black hole spacetime as

E2
CMðrÞ≡ −ðpμ

1ðrÞ þ pμ
2ðrÞÞðp1μðrÞ þ p2μðrÞÞ

¼ m2
1 þm2

2 þ 2
S1ðrÞS2ðrÞ − σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrÞR2ðrÞ

p
fðrÞ

− 2
L1L2

r2
; ð2:23Þ

where RkðrÞ and SkðrÞ are defined by

RkðrÞ≡ S2kðrÞ −
�
m2

k þ
L2
k

r2

�
fðrÞ ð2:24Þ

and

SkðrÞ≡ Ek −
rþr−Lk

lr2
; ð2:25Þ

respectively, and where pμ
k, mk, Ek, Lk, and σk denote pμ,

m, E, L, and σ of particle k, respectively, where k ¼ 1
and 2.1

We consider the collision of two ingoing particles. In this
case, we should set σ1 ¼ σ2 ¼ −1. The center-of-mass
energy of the tail-on collision is given by

E2
CMðrÞ ¼ m2

1 þm2
2 þ 2

S1ðrÞS2ðrÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrÞR2ðrÞ

p
fðrÞ

− 2
L1L2

r2
: ð2:26Þ

Both the numerator and the denominator of the third term
vanish in the near horizon limit r → rþ. Using l’Hopital’s
rule with respect to r, the third term becomes in the near
horizon limit r → rþ

lim
r→rþ

2
S1ðrÞS2ðrÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrÞR2ðrÞ

p
fðrÞ

¼ S2ðrþÞ
S1ðrþÞ

�
L2
1

r2þ
þm2

1

�
þ S1ðrþÞ
S2ðrþÞ

�
L2
2

r2þ
þm2

2

�
: ð2:27Þ

Thus, the center-of-mass energy of the two ingoing
particles in the near horizon limit r → rþ is obtained as

lim
r→rþ

E2
CMðrÞ ¼ m2

1 þm2
2 þ

S2ðrþÞ
S1ðrþÞ

�
L2
1

r2þ
þm2

1

�

þ S1ðrþÞ
S2ðrþÞ

�
L2
2

r2þ
þm2

2

�
− 2

L1L2

r2þ
: ð2:28Þ

This shows that the center-of-mass energy of the tail-on
collision in the near horizon limit r → rþ in the BTZ black
hole spacetime can be arbitrarily large if and only if the one
of the particles has the critical angular momentum L ¼ Lc
and the other has a noncritical angular momentum.
If both the two particles have the critical angular

momentum, i.e., L1 ¼ Lc1 and L2 ¼ Lc2, where Lc1 and
Lc2 are the critical angular momenta for particle 1 and 2,
respectively, the center-of-mass energy in the near horizon
limit r → rþ becomes

lim
r→rþ

E2
CMðrÞ ¼

�
1þ E2

E1

�
m2

1 þ
�
1þ E1

E2

�
m2

2: ð2:29Þ

III. MOTION OF A PARTICLE WITH THE
CRITICAL AND SUBCRITICAL

ANGULAR MOMENTUM

In this section, we show that a particle with the critical
angular momentum cannot exist on the outside of the BTZ
black hole while a particle with a subcritical angular
momentum can exist on the event horizon and outside
of the BTZ black hole.

A. Motion of a particle with the
critical angular momentum

We investigate the motion of a particle with the critical
angular momentum. The components of the three momen-
tum of the particle with critical angular momentum are
given by

ptðrÞ ¼ El2

r2 − r2−
; ð3:1Þ

prðrÞ ¼ σ
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð3:2Þ

1In Refs. [14,15,54], an equal mass m1 ¼ m2 was assumed
while it is not assumed in this paper. In Ref. [54], L1 ¼ L2 ¼ 0
was also assumed.
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pϕðrÞ ¼ Elrþ
ðr2 − r2−Þr−

; ð3:3Þ

where

RðrÞ ¼ RcðrÞ

≡ −
r2 − r2þ

r2

�
E2ðr2þ − r2−Þ

r2−
þm2ðr2 − r2−Þ

l2

�
: ð3:4Þ

Equation (3.4) shows that RcðrÞ vanishes on the event
horizon r ¼ rþ and that RcðrÞ is negative outside of the
event horizon r > rþ. Thus, the particle with the critical
angular momentum cannot exist outside of the event
horizon r > rþ.
The derivative of RcðrÞ with respective to r is given by

R0
cðrÞ¼−

2m2r
l2

þ 2r2þ
r3r2−l2

½−E2l2ðr2þ− r2−Þþ r4−m2�; ð3:5Þ

where 0 denotes the differentiation with respect to r and it
becomes, on the event horizon r ¼ rþ,

R0
cðrþÞ ¼ −

2ðr2þ − r2−Þðl2E2 þ r2−m2Þ
rþr2−l2

≤ 0: ð3:6Þ

In the extremal case, i.e., rþ ¼ r−, we obtain

RcðrÞ ¼ −
m2ðr2 − r2þÞ2

r2l2
ð3:7Þ

and

R0
cðrÞ ¼ −

2m2ðr2 − r2þÞðr2 þ r2þÞ
r3l2

: ð3:8Þ

Thus, we get RcðrþÞ ¼ R0
cðrþÞ ¼ 0 on the event horizon.

B. Motion of a particle with a subcritical
angular momentum

We consider the motion of a particle with a subcritical
angular momentum L ¼ Lc − rþlδ=r− ¼ rþlðE − δÞ=r−,
where δ is a positive constant. From Eq. (2.16), RðrÞ is
obtained as

RðrÞ ¼ RcðrÞ þ
r2þδ½2ðr2 − r2þÞEþ ð−r2 þ r2þ þ r2−Þδ�

r2−r2
:

ð3:9Þ

The particle with the subcritical angular momentum can
exist on the event horizon and nearly outside of the black
hole since

RðrþÞ ¼ δ2 > 0: ð3:10Þ

The derivative of RðrÞ with respective to r is obtained as

R0ðrÞ ¼ R0
cðrÞ þ

2r2þδ½2r2þE − ðr2þ þ r2−Þδ�
r2−r3

; ð3:11Þ

and it becomes, on the horizon,

R0ðrþÞ ¼ R0
cðrþÞ þ

4r2þEδ − 2ðr2þ þ r2−Þδ2
r2−rþ

: ð3:12Þ

From Eqs. (3.6) and (3.12), R0ðrþÞ is a quadratic
equation with respect to δ. After some straightforward
calculation, we obtain the following results. When the
conserved energy E is smaller than Em defined as

Em ≡m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ − r4−

p
lr−

; ð3:13Þ

R0ðrþÞ is negative. When the conserved energy E is larger
than or is equal with Em, R0ðrþÞ is non-negative if and only
if δL ≤ δ ≤ δR is satisfied. Here δL and δR are defined as

δL ≡ r2þEl − r−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−E2l2 − ðr4þ − r4−Þm2

p
lðr2þ þ r2−Þ

ð3:14Þ

and

δR ≡ r2þElþ r−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−E2l2 − ðr4þ − r4−Þm2

p
lðr2þ þ r2−Þ

; ð3:15Þ

respectively. We notice that an inequality 0 ≤ δL ≤ δR ≤ E
is satisfied from the definitions. Figure 1 shows the
effective potential VðrÞ ¼ −RðrÞ=2 of the radial motion

FIG. 1. The examples of the effective potential VðrÞ ¼
−RðrÞ=2 of the radial motion of a particle with m ¼ E ¼ 1

and δ ¼ 10−2 in the BTZ black hole spacetime with rþ ¼ l ¼ 1.
The solid (red), dashed (green), and dotted (blue) curves denote
the effective potential in the cases I (r− ¼ 0.99; V 0ðrþÞ > 0), II
(r− ¼ 0.999; V 0ðrþÞ < 0), and III (r− ¼ 1; V 0ðrþÞ < 0), respec-
tively. Notice that the spacetime is not extremal in the cases I and
II and it is extremal in the case III.
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of the particle with the subcritical angular momentum in the
BTZ black hole spacetime.
If E ≥ Em and δL ≤ δ ≤ δR are satisfied, R0ðrÞ ¼ 0 has

only two real solutions. Either of the two solutions is
positive and the other solution is negative. The positive
solution is given by r ¼ rm, where

rm ≡
�
1þ R0ðrþÞl2

2rþm2

�1
4

rþ ≥ rþ: ð3:16Þ

Since RðrÞ is continuous in the range of r ≥ rþ and
since RðrþÞ ¼ δ2 > 0, R0ðrþÞ ≥ 0, limr→∞RðrÞ < 0, and
limr→∞R0ðrÞ < 0, RðrmÞ gives the maximal value of RðrÞ
in the range of r ≥ rþ. The maximal value RðrmÞ is larger
than δ2. Please notice that the effective potential VðrÞ ¼
−RðrÞ=2 of the radial motion of the particle with the
subcritical angular momentum takes a minimal value at
r ¼ rm in the range of r ≥ rþ.
Figure 2 shows the effective potential VðrÞ ¼ −RðrÞ=2

in the extremal spacetime, i.e., rþ ¼ r−. In the extremal
case, we obtain Em ¼ 0, δL ¼ 0, and δR ¼ E.
In the critical angular momentum limit δ → 0, we obtain

rm → rþ, RðrmÞ → 0, and R0ðrmÞ → 0 in the extremal BTZ
black hole spacetime.

IV. A PARTICLE COLLISION NEAR AN
EXTREMAL BTZ BLACK HOLE AND ITS
CRITICAL ANGULAR MOMENTUM LIMIT

Let us assume that a BTZ black hole is extremal, that
particle 1 has a subcritical angular momentum L1¼
lðE1−δ1Þ≤Lc1, that δ1 satisfies 0 ¼ Em1 ¼ δL1 ≤ δ1 ≤
δR1 ¼ E1, and that particle 2 has a subcritical angular
momentum L2 ≤ Lc2. Here δ1, Em1, δL1, and δR1 are δ, Em,

δL, and δR for particle 1, respectively. We consider the
collision of the two ingoing particles at r ¼ rm where is
the point of the minimum of the effective potential for the
radial motion of particle 1 in the range of r ≥ rþ. The
center-of-mass energy of the tail-on collision at r ¼ rm in
the critical angular momentum limit δ1 → 0 is given by

lim
δ1→0

E2
CMðrmÞ ¼ m2

1 þm2
2 þ T −

2lE1L2

r2þ
; ð4:1Þ

where T is defined by

T ≡ lim
δ1→0

2
S1ðrmÞS2ðrmÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrmÞR2ðrmÞ

p
fðrmÞ

: ð4:2Þ

The numerator and the denominator of T vanish in the
critical angular momentum limit δ1 → 0. Using l’Hopital’s
rule with respect to δ1, T is expressed as

T ¼ lim
δ1→0

S2ðrmÞ
_fðrmÞ

�
2_S1ðrmÞ −

_R1ðrmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrmÞ

p
�
; ð4:3Þ

where · denotes the differentiation with respect to
δ1. Since the numerator and the denominator of
limδ1→0

_R1ðrmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrmÞ

p
vanish, we use l’Hopital’s rule

with respect to δ1 and we obtain, after a straightforward
calculation,

lim
δ1→0

_R1ðrmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðrmÞ

p ¼ lim
δ1→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R̈1ðrmÞ

q
¼ lim

δ1→0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_S1ðrmÞ

q
; ð4:4Þ

where

lim
δ1→0

_S1ðrmÞ ¼ 1þ l2E2
1

m2
1r

2þ
: ð4:5Þ

Thus, T is obtained as

T ¼ lim
δ1→0

S2ðrmÞ
�
_S1ðrmÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_S1ðrmÞ

q �
m4

1r
2þ

l2E2
1δ1

: ð4:6Þ

Therefore, the center-of-mass energy ECMðrmÞ of the tail-
on collision diverges at the point r ¼ rm in the critical
angular momentum limit δ1 → 0.

V. SUMMARY

In this paper, we have investigated a collision of two
particles in the BTZ black hole spacetime with an angular
momentum and a negative cosmological constant in 2þ 1
dimension. We have obtained a general formula for the
center-of-mass energy of two geodesic particles in the BTZ

FIG. 2. The examples of the effective potential VðrÞ ¼
−RðrÞ=2 in the extremal case. The solid (red), dashed (green),
dotted (blue) and dash-dotted (purple) curves denote the effective
potential for the particle with a subcritical angular momentum
with δ ¼ 10−2 in the cases I (rþ ¼ r− ¼ E ¼ m ¼ l ¼ 1), II
(rþ ¼ r− ¼ m ¼ l ¼ 1 and E ¼ 1.1), III (rþ ¼ r− ¼ E ¼ l ¼ 1
and m ¼ 1.1), and IV (rþ ¼ r− ¼ E ¼ m ¼ 1 and l ¼ 1.1),
respectively.
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black hole spacetime. We have showed that the center-of-
mass energy of two ingoing particles in the near horizon
limit can be arbitrarily large if either of the two particles has
a critical angular momentum and the other has a noncritical
angular momentum. We have showed that the motion of a
particle with a subcritical angular momentum is allowed
near an extremal rotating BTZ black hole and that the
center-of-mass energy for a tail-on collision at a point near
the extremal BTZ black hole can be arbitrarily large in the
critical angular momentum limit.
Since colliding particles near an event horizon have large

energy, the self-gravity of the particles affects on the
collision. The center-of-mass energy of the particle colli-
sion is suppressed to be a finite value but the analytical
treatment is very difficult. Since the collision of fast
rotating dust thin shells including the self-gravity in the
BTZ black hole is more tractable than in the Kerr spacetime
[43], we can estimate the backreaction effect of the gravity
produced by particles on the BSW collision in the BTZ
black hole spacetime from the collision of thin shells. The

collision of two rotating dust thin shells will be developed
in a follow-up publication [50].

ACKNOWLEDGMENTS

The authors would like to show our greatest appreciation
to Norihiro Tanahashi for valuable comments and discus-
sions. They also thank Masashi Kimura, Jorge V. Rocha,
Takafumi Kokubu, Ibrar Hussain, Alexei Deriglazov,
Shaoqi Hou, Rio Saitou, and Kumar Shwetketu
Virbhadra for valuable comments and discussions. This
research was supported in part by the National Natural
Science Foundation of China under Grant No. 11475065,
the Major Program of the National Natural Science
Foundation of China under Grant No. 11690021. N. T.
and K. O. thank the Yukawa Institute for Theoretical
Physics at Kyoto University, where this work was initiated
during the YITP-X-16-10 on “Workshop on gravity and
cosmology for young researchers” supported by the MEXT
KAKENHI Grant No. 15H05888.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific and VIRGO Collabo-
rations), Phys. Rev. Lett. 118, 221101 (2017).

[4] M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103,
111102 (2009).

[5] T. Piran, J. Shaham, and J. Katz, Astrophys. J. 196, L107
(1975).

[6] T. Harada and M. Kimura, Phys. Rev. D 83, 084041 (2011).
[7] T. Igata, T. Harada, and M. Kimura, Phys. Rev. D 85,

104028 (2012).
[8] A. Galajinsky, Phys. Rev. D 88, 027505 (2013).
[9] S. W. Wei, Y. X. Liu, H. Guo, and C. E. Fu, Phys. Rev. D 82,

103005 (2010).
[10] M. Patil and P. S. Joshi, Classical Quantum Gravity 28,

235012 (2011).
[11] Y. Li, J. Yang, Y. L. Li, S. W. Wei, and Y. X. Liu, Classical

Quantum Gravity 28, 225006 (2011).
[12] A. Abdujabbarov, N. Dadhich, B. Ahmedov, and H.

Eshkuvatov, Phys. Rev. D 88, 084036 (2013).
[13] N. Tsukamoto, M. Kimura, and T. Harada, Phys. Rev. D 89,

024020 (2014).
[14] K. Lake, Phys. Rev. Lett. 104, 211102 (2010); 104, 259903

(E) (2010).
[15] J. Yang, Y. L. Li, Y. Li, S. W. Wei, and Y. X. Liu, Adv. High

Energy Phys. 2014, 204016 (2014).
[16] J. Sadeghi, B. Pourhassan, and H. Farahani, Commun.

Theor. Phys. 62, 358 (2014).
[17] S. Fernando, Mod. Phys. Lett. A 32, 1750074 (2017).

[18] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101
(2010).

[19] E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U.
Sperhake, Phys. Rev. Lett. 103, 239001 (2009).

[20] S. T. McWilliams, Phys. Rev. Lett. 110, 011102 (2013).
[21] T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977).
[22] M. Bejger, T. Piran, M. Abramowicz, and F. Hakanson,

Phys. Rev. Lett. 109, 121101 (2012).
[23] T. Harada, H. Nemoto, and U. Miyamoto, Phys. Rev. D 86,

024027 (2012); 86, 069902(E) (2012).
[24] J. D. Schnittman, Phys. Rev. Lett. 113, 261102 (2014).
[25] E. Berti, R. Brito, and V. Cardoso, Phys. Rev. Lett. 114,

251103 (2015).
[26] E. Leiderschneider and T. Piran, arXiv:1501.01984.
[27] E. Leiderschneider and T. Piran, Phys. Rev. D 93, 043015

(2016).
[28] K. Ogasawara, T. Harada, and U. Miyamoto, Phys. Rev. D

93, 044054 (2016).
[29] T. Harada, K. Ogasawara, and U. Miyamoto, Phys. Rev. D

94, 024038 (2016).
[30] K. Ogasawara, T. Harada, U. Miyamoto, and T. Igata, Phys.

Rev. D 95, 124019 (2017).
[31] O. B. Zaslavskii, Pis’ma Zh. Eksp. Teor. Fiz. 92, 635 (2010)

[JETP Lett. 92, 571 (2010)].
[32] O. B. Zaslavskii, Phys. Rev. D 84, 024007 (2011).
[33] S. Aretakis, Commun. Math. Phys. 307, 17 (2011).
[34] S. Aretakis, Ann. Inst. Henri Poincaré 12, 1491 (2011).
[35] S. Aretakis, J. Funct. Anal. 263, 2770 (2012).
[36] S. Aretakis, Classical Quantum Gravity 30, 095010 (2013).
[37] S. Aretakis, Phys. Rev. D 87, 084052 (2013).
[38] K. Murata, Classical Quantum Gravity 30, 075002 (2013).

PARTICLE COLLISION WITH AN ARBITRARILY HIGH … PHYSICAL REVIEW D 96, 024042 (2017)

024042-7

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.103.111102
https://doi.org/10.1103/PhysRevLett.103.111102
https://doi.org/10.1086/181755
https://doi.org/10.1086/181755
https://doi.org/10.1103/PhysRevD.83.084041
https://doi.org/10.1103/PhysRevD.85.104028
https://doi.org/10.1103/PhysRevD.85.104028
https://doi.org/10.1103/PhysRevD.88.027505
https://doi.org/10.1103/PhysRevD.82.103005
https://doi.org/10.1103/PhysRevD.82.103005
https://doi.org/10.1088/0264-9381/28/23/235012
https://doi.org/10.1088/0264-9381/28/23/235012
https://doi.org/10.1088/0264-9381/28/22/225006
https://doi.org/10.1088/0264-9381/28/22/225006
https://doi.org/10.1103/PhysRevD.88.084036
https://doi.org/10.1103/PhysRevD.89.024020
https://doi.org/10.1103/PhysRevD.89.024020
https://doi.org/10.1103/PhysRevLett.104.211102
https://doi.org/10.1103/PhysRevLett.104.259903
https://doi.org/10.1103/PhysRevLett.104.259903
https://doi.org/10.1155/2014/204016
https://doi.org/10.1155/2014/204016
https://doi.org/10.1088/0253-6102/62/3/12
https://doi.org/10.1088/0253-6102/62/3/12
https://doi.org/10.1142/S0217732317500742
https://doi.org/10.1103/PhysRevLett.104.021101
https://doi.org/10.1103/PhysRevLett.104.021101
https://doi.org/10.1103/PhysRevLett.103.239001
https://doi.org/10.1103/PhysRevLett.110.011102
https://doi.org/10.1103/PhysRevD.16.1615
https://doi.org/10.1103/PhysRevLett.109.121101
https://doi.org/10.1103/PhysRevD.86.024027
https://doi.org/10.1103/PhysRevD.86.024027
https://doi.org/10.1103/PhysRevD.86.069902
https://doi.org/10.1103/PhysRevLett.113.261102
https://doi.org/10.1103/PhysRevLett.114.251103
https://doi.org/10.1103/PhysRevLett.114.251103
http://arXiv.org/abs/1501.01984
https://doi.org/10.1103/PhysRevD.93.043015
https://doi.org/10.1103/PhysRevD.93.043015
https://doi.org/10.1103/PhysRevD.93.044054
https://doi.org/10.1103/PhysRevD.93.044054
https://doi.org/10.1103/PhysRevD.94.024038
https://doi.org/10.1103/PhysRevD.94.024038
https://doi.org/10.1103/PhysRevD.95.124019
https://doi.org/10.1103/PhysRevD.95.124019
https://doi.org/10.1134/S0021364010210010
https://doi.org/10.1103/PhysRevD.84.024007
https://doi.org/10.1007/s00220-011-1254-5
https://doi.org/10.1016/j.jfa.2012.08.015
https://doi.org/10.1088/0264-9381/30/9/095010
https://doi.org/10.1103/PhysRevD.87.084052
https://doi.org/10.1088/0264-9381/30/7/075002


[39] K. Murata, H. S. Reall, and N. Tanahashi, Classical Quan-
tum Gravity 30, 235007 (2013).

[40] S. Aretakis, Adv. Theor. Math. Phys. 19, 507 (2015).
[41] T. Harada and M. Kimura, Classical Quantum Gravity 31,

243001 (2014).
[42] M. Kimura, K. i. Nakao, and H. Tagoshi, Phys. Rev. D 83,

044013 (2011).
[43] R. B. Mann, J. J. Oh, and M. I. Park, Phys. Rev. D 79,

064005 (2009).
[44] T. Delsate, J. V. Rocha, and R. Santarelli, Phys. Rev. D 89,

121501 (2014).
[45] J. V. Rocha, Int. J. Mod. Phys. D 24, 1542002 (2015).
[46] K. i. Nakao, M. Kimura, M. Patil, and P. S. Joshi, Phys. Rev.

D 87, 104033 (2013).

[47] J. V. Rocha and V. Cardoso, Phys. Rev. D 83, 104037
(2011).

[48] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.
69, 1849 (1992).

[49] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli,
Phys. Rev. D 48, 1506 (1993); 88, 069902(E) (2013).

[50] N. Tsukamoto, N. Tanahashi, and K. Ogasawara (to be
published).

[51] D. Ida, Phys. Rev. Lett. 85, 3758 (2000).
[52] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969); Gen.

Relativ. Gravit. 34, 1141 (2002).
[53] N. Cruz, C. Martinez, and L. Pena, Classical Quantum

Gravity 11, 2731 (1994).
[54] I. Hussain, Mod. Phys. Lett. A 27, 1250068 (2012).

TSUKAMOTO, OGASAWARA, and GONG PHYSICAL REVIEW D 96, 024042 (2017)

024042-8

https://doi.org/10.1088/0264-9381/30/23/235007
https://doi.org/10.1088/0264-9381/30/23/235007
https://doi.org/10.4310/ATMP.2015.v19.n3.a1
https://doi.org/10.1088/0264-9381/31/24/243001
https://doi.org/10.1088/0264-9381/31/24/243001
https://doi.org/10.1103/PhysRevD.83.044013
https://doi.org/10.1103/PhysRevD.83.044013
https://doi.org/10.1103/PhysRevD.79.064005
https://doi.org/10.1103/PhysRevD.79.064005
https://doi.org/10.1103/PhysRevD.89.121501
https://doi.org/10.1103/PhysRevD.89.121501
https://doi.org/10.1142/S021827181542002X
https://doi.org/10.1103/PhysRevD.87.104033
https://doi.org/10.1103/PhysRevD.87.104033
https://doi.org/10.1103/PhysRevD.83.104037
https://doi.org/10.1103/PhysRevD.83.104037
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevD.48.1506
https://doi.org/10.1103/PhysRevD.88.069902
https://doi.org/10.1103/PhysRevLett.85.3758
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1088/0264-9381/11/11/014
https://doi.org/10.1088/0264-9381/11/11/014
https://doi.org/10.1142/S021773231250068X

