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We tried to average the Schwarzschild solution for the gravitational point source by analogy with the
same problem in Newtonian gravity or electrostatics. We expected to get a similar result, consisting of two
parts: the smoothed interior part being a sphere filled with some matter content and an empty exterior part
described by the original solution. We considered several variants of generally covariant averaging
schemes. The averaging of the connection in the spirit of Zalaletdinov’s macroscopic gravity gave
unsatisfactory results. With the transport operators proposed in the literature it did not give the expected
Schwarzschild solution in the exterior part of the averaged spacetime. We were able to construct a transport
operator that preserves the Newtonian analogy for the outward region but such an operator does not have a
clear geometrical meaning. In contrast, using the curvature as the primary averaged object instead of the
connection does give the desired result for the exterior part of the problem in a fine way. However for the
interior part, this curvature averaging does not work because the Schwarzschild curvature components
diverge as 1=r3 near the center and therefore are not integrable.
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I. INTRODUCTION

Averaging the Newton potential over spheres centered at
different points yields the solution of the Poisson equation
for the sphere of uniform density. The exterior part of the
solution is again the Newton potential. Now we want to do
the same exercise but with the point source solution in
general relativity. However this is not so obvious because
the generally covariant averaging procedure itself is not yet
fully established. Different kinds of averaging schemes
have been proposed since the pioneering work of Shirokov
and Fisher [1] (see the review by Clifton [2] and references
therein). All of them are divided into two groups: spacetime
averaging and spatial averaging. The latter is widely used in
cosmology, which is the main source of interest in
averaging. The most well-studied approach was proposed
by Buchert [3] and a more recent one was suggested by
Sussmann [4]. However, those methods aim at the study of
the model expansion governed by the analogue of the
Friedmann equations, and therefore are not very suitable for
our little problem.
The first fully covariant and exact spacetime averaging

procedure was developed by Zalaletdinov [5]. His method
is based on two principles. One is the so-called rule of
averaging. To find the average of a tensor field Tα1…αn

β1…βm
at

some point x lying in the domain of averaging Σ the field is
transported from all the points of Σ to x with the help of a
bilocal averaging operator Aα

α0 ðx; x0Þ. Then the result is
integrated over Σ and divided by its volume

T̄α1…αn
β1…βm

¼ 1

VΣ

Z
Σ
Aα1
α0
1
…Aαn

α0n
A
β0
1

β1
…Aβ0m

βm
T
α0
1
…α0n

β0
1
…β0m

dΩ0: ð1Þ

The second principle is that the average of the connection
forms of the original spacetime are declared to be the
connection forms of the averaged spacetime. In other
words, the primary averaged object of the method is the
connection.
Relying on these assumptions, Zalaletdinov derived the

system of macroscopic gravity equations by applying his
averaging procedure to the Einstein equations. Though the
resulting equations are rather complicated, the solutions for
several important cases were found. First is the solution for
a point source [6,7] and the others are spatially homo-
geneous solutions [7–10]. The latter is significant for
cosmology because the governing equations for the model
evolution differ from the Friedmann equations by the
additional backreaction term that depends on the scale
factor in the same manner as the spatial curvature [8,11].
This means that the dynamical curvature parameter is
decoupled from the geometrical value of the curvature,
distorting the luminosity distance-redshift relation. The
quantitative observational consequences were studied by
Clarkson et al. [12] and later by Wijenayake et al. [13].
Zalaletdinov’s macroscopic gravity is not the only

possible spacetime method of averaging. Several other
covariant methods have been proposed. They differ in their
rules and objects of averaging. Behrend [14] suggests
transporting tensor quantities by means of the relativistic
analogue of the Wegner-Wilson line operator. The primary
averaged objects are tetrads. Another idea is to average a set
of scalar invariants sufficient to completely determine the
spacetime. These can be the curvature invariants con-
structed from the Riemann tensor and its derivatives [15]
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or the Cartan scalars [16]. The advantage of such a method
is the simplicity of the averaging rule for the scalars, which
do not require any transportation. Brannlund et al. [17]
consider the possibility of averaging the curvature forms
instead of the connection forms. They use the same
averaging rule as in the theory of macroscopic gravity,
but with the specific transport operator corresponding to the
Weitzenböck connection.
A very different scheme was proposed by Green and

Wald [18]. It has recently been widely discussed [19–22]
because of the restrictive conclusion on possible back-
reaction. The method generalizes the approach of Burnett
[23] and Isaacson [24] for gravitationally radiating systems
and defines the average metric as the limit of a one-
parameter family of metrics without the usual integration
over a finite volume.
With such a variety of different methods it is important

to probe them with some relatively simple tests, that is, to
take an exact microscopic solution and then average it
properly. For example, applying any averaging procedure
to the already smooth solutions such as the constant
curvature spacetimes should not change the source. In this
paper we suggest testing some of the proposed methods
by averaging the Schwarzschild solution for the point
gravitational source and comparing the results with a
similar Newtonian problem.

II. SPHERICALLY SYMMETRIC ANSATZ IN
CARTESIAN COORDINATES

In Cartesian coordinates, a basis of 1-forms for the static
spherically symmetric spacetime can always be written as

θð0Þ ¼ ϑ1ðrÞdt; ð2Þ

θðiÞ ¼ ϑ2ðrÞ
xi

r
dtþ

�
ϑ3ðrÞ

xixj
r2

þ ϑ4ðrÞ
�
δij −

xixj
r2

��
dxj;

ð3Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The latin indices span the x, y, z

coordinates and are lowered and raised by the Kronecker
symbol.
For Schwarzschild spacetime, the coefficients take the

form

ϑ1 ¼ ϑ3 ¼ ϑ4 ¼ 1; ϑ2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
; ð4Þ

which leads to the linear element

ds2 ¼
�
1 −

2m
r

�
dt2 − 2

ffiffiffiffiffiffiffi
2m
r

r
xi
r
dtdxi − δijdxidxj: ð5Þ

The metric determinant g is constant (g ¼ −1), so the
chosen coordinates are volume preserving.

The connection forms for the general static spherically
symmetric spacetime have the following structure:

ωð0Þ
ðiÞ ¼ γ1ðrÞ

xi
r
dtþ γ2ðrÞ

xixj
r2

dxj þ γ3ðrÞδijdxj; ð6Þ

ωðiÞ
ðjÞ ¼ γ4ðrÞ

�
δik

xj
r
− δjk

xi

r

�
dxk: ð7Þ

For the Schwarzschild solution

γ1 ¼
m
r2

; γ2 ¼ −
3

2
γ3 ¼

3
ffiffiffiffiffiffiffi
2m

p

2r3=2
; γ4 ¼ 0: ð8Þ

The coefficients of the basis 1-forms θðαÞ and the

connection forms ωðαÞ
ðβÞ are related by the first Cartan

structure equations,

ϑ01 þ ðγ2 þ γ3Þϑ2 − γ1ϑ3 ¼ 0; ð9Þ

rγ3ϑ1 þ ϑ2 ¼ 0; ð10Þ

ϑ02 þ γ2ϑ1 −
1

r
ϑ2 ¼ 0; ð11Þ

ϑ04 −
1

r
ðϑ3 − ϑ4Þ ¼ 0: ð12Þ

The idea of Zalaletdinov’s macroscopic gravity [5] is that
the averages of the connection forms are declared to be the
connection forms of the averaged spacetime. The averaging
over a region Σ is performed by the rule (1) applied to the
connection

ω̄ðαÞ
ðβÞγ0 ðx0Þ ¼

1

VΣ

Z
Σ
ωðαÞ

ðβÞγðxÞAγ
γ0 ðx; x0ÞdΩ; ð13Þ

where VΣ is the volume of the averaging region Σ and dΩ is
the volume element.
The averaging over an arbitrary volume is very compli-

cated and not related to the Newtonian analogy. So we
choose a particular kind of averaging region, in the form of
the four-cylinders

Σðt0; r0Þ ¼ fðt; rÞjjt − t0j < T=2; jr − r0j < Rg: ð14Þ

If we choose the averaging operator Aα
α0 ðx; x0Þ to be

independent of t, then the averaging becomes effectively
three dimensional, and the averaging regions are spheres of
the same radius R centered at the variable points r0.

S. PH. TEGAI and I. V. DROBOV PHYSICAL REVIEW D 96, 024041 (2017)

024041-2



III. CONNECTION AVERAGING WITH
SOME PARTICULAR CHOICES OF THE

AVERAGING OPERATOR

The most natural choice for the averaging operator is to
make it equal to the coordination bivector, which in the
volume preserving coordinates is equal to the Kronecker
symbol

Aα
β ¼ δαβ: ð15Þ

In that case, the average connection forms are

γ̄1 ¼
�
mr=R3; r < R

m=r2; r > R;
ð16Þ

γ̄3 ¼
2

ffiffiffiffiffiffiffi
2m

p

15r3R3
½ð2R − rÞðR − 2rÞðRþ rÞ5=2

− ð2Rþ rÞðRþ 2rÞjR − rj5=2�; ð17Þ

γ̄2 ¼ rγ̄03: ð18Þ

Knowing the connection, we can find the properties of
the averaged spacetime. First of all, we see that it fulfils the
same ansatz as the original spacetime. Therefore, we can
say that all the symmetries are preserved. The Killing
vector ξ ¼ ∂=∂t has the norm

ξαξα ¼ 1 − r2γ̄23: ð19Þ
For a sufficiently large radius of the averaging region
ðR≳ 0.85mÞ, the norm becomes positive everywhere and
the spacetime is globally static. For radii less than critical,
the norm has two roots.
The averaged spacetime is divided into exterior and

interior parts by the surface r ¼ R. The matching con-
ditions require the continuity of the coefficient ϑ̄4 through
the matching surface. This gives the boundary conditions
for solving Eq. (12) in the interior region. The integration
constant in the exterior solution is found from the limit
R → 0, which should yield the Schwarzshild value ϑ4 ¼ 1.
With this, all the tetrads (2) and (3) for the averaged
spacetime can be found explicitly and even expressed in
elementary functions, though the result is cumbersome.
The resulting Einstein tensor has two pairs of

eigenvalues,

λ1 ¼ λ2 ¼ −
2γ̄1
rϑ̄4

þ γ̄23
ϑ̄24

; ð20Þ

λ3 ¼ λ4 ¼
γ̄1γ̄

0
1

rγ̄3ðγ̄2 þ γ̄3Þ
−
2γ̄1
rϑ̄4

: ð21Þ

Unfortunately, the denominator γ̄2 þ γ̄3 turns to 0. It
follows directly from Eqs. (17) and (18) that the condition
γ̄2 þ γ̄3 ¼ 0 is equivalent to

75
r6

R6
− 135

r4

R4
þ 64 ¼ 0; ð22Þ

which has two positive roots in the exterior region r > R
leading to the discontinuities in the Einstein tensor.
Therefore, the result of the averaging is unsatisfactory.
At large distances from a black hole, the series for the

eigenvalues take the form

λ1 ¼ λ2 ≈
m
r3

�
−
18

5

R2

r2
þO

�
R4

r4

��
; ð23Þ

λ3 ¼ λ4 ≈
m
r3

�
27

5

R2

r2
þO

�
R4

r4

��
: ð24Þ

This behavior is in agreement with the “no backreaction”
theorem of Green and Wald [18]. Indeed, the curvature
length scale for Schwarzschild spacetime ism=r3. Far away
from the center, the theorem’s conditions are clearly
fulfilled and both jλ1j and jλ3j are much smaller than
m=r3. However, we cannot really say that there is no
backreaction as the initial stress-energy tensor was equal to
0 and no correction can be called small compared to it.
In their recent paper, Brannlund et al. [17] suggested the

averaging operator

Aα
α0 ðx; x0Þ ¼ eαðβÞðxÞeðβÞα0 ðx0Þ ð25Þ

corresponding to the parallel transport of the averaged
tensors with the curvature-free Weitzenböck connection.
The averaging of the connection forms with the help of

this operator yields the same results (17) and (18) for γ̄3ðrÞ
and γ̄2ðrÞ. The γ̄1ðrÞ coefficient is different and can be
written as

γ̄1 ¼
ffiffiffiffiffiffiffi
2m
r

r
ðγ̄2 þ γ̄3Þ: ð26Þ

The expressions for the Einstein tensor’s eigenvalues (20)
and (21) also hold true but due to the γ̄2 þ γ̄3 factor in γ̄1, all
the eigenvalues are finite for any r > R. The behavior of the
eigenvalues near the center is given by the series

λ1 ¼
128m
9πR3

� ffiffiffiffi
R
r

r
−
27

40

�
r
R

�
3=2

þO

��
r
R

�
2
��

; ð27Þ

λ3 ¼ −
m
R3

�
R3

r3
−
9

4
·
R
r
þOð1Þ

�
: ð28Þ

While at infinity, the leading terms of the expansion are

λ1 ¼ λ2 ≈
m
r3

�
−
18

5

R2

r2
þO

�
R4

r4

��
; ð29Þ
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λ3 ¼ λ4 ≈
m
r3

�
18

5

R2

r2
þO

�
R4

r4

��
: ð30Þ

We see that this choice of the averaging operator satisfies
the Green and Wald theorem in the same way. It is not
fully satisfactory either, because the singularity at the center
remains after the averaging.
For both considered choices of the operator Aα

β, the
exterior region of the averaged spacetime is no longer
described by the Schwarzschild solution. This contrasts
with the Newtonian case, where the exterior potential
remains the same after the averaging.

IV. EMPTY EXTERIOR AVERAGED SPACETIME

We now try to construct an averaging operator that gives
us the Schwarzschild solution for the exterior part of the
averaged spacetime. Mars and Zalaletdinov [25] showed
that the general averaging operator can be factorized as

Aα
βðx0; xÞ ¼ Fα

γ ðxÞF−1γ
β ðx0Þ: ð31Þ

For the averaged spacetime to coincide with the original, it
is sufficient to require the integrand in the averaging rule
(13) to be harmonic, i.e.,

ΔðωðαÞ
ðβÞσðxÞFσ

γ ðxÞÞ ¼ 0: ð32Þ

Wewere able to find a particular solution of this equation in
the form

F0
0 ¼ 1; F0

i ¼ f1ðrÞ
xi
r
;

Fi
0 ¼ 0; Fi

j ¼ f2ðrÞδij; ð33Þ

where

f1 ¼ C1r−1 þ C2rþ C3r2 þ C4r4; ð34Þ

f2 ¼
1

3
·

ffiffiffiffiffiffiffi
2m
r

r
ðC1r−1 − C2r − C3r2 þ C4r4Þ: ð35Þ

Therefore, the averaging operator (31) with the components

A0
0 ¼ 1; A0

i ¼
f1ðrÞ
f2ðr0Þ

·
xi
r
−
f1ðr0Þ
f2ðr0Þ

·
x0i
r0
; ð36Þ

Ai
0 ¼ 0; Ai

j ¼
f2ðrÞ
f2ðr0Þ

δij ð37Þ

with f1, f2 as in Eqs. (34) and (35) does give the
Schwarzschild solution in the exterior region of the
averaged spacetime.

V. CURVATURE AVERAGING

Another idea suggested by Brannlund et al. [17] is that
the proper averaging object might not be the connection
forms, but rather the curvature forms. This proposition,
together with their choice of the averaging operator in
the form (25), works especially well for the spacetimes of
constant curvature. The action of the operator (25) on the
curvature forms yields

Aμ0
μ ðx; x0ÞAν0

ν ðx; x0ÞRðαÞ
:ðβÞμ0ν0 ðx0Þ

¼ eμ
0

ðσÞðx0ÞeðσÞμ ðxÞeν0ðρÞðx0ÞeðρÞν ðxÞRðαÞ
:ðβÞμ0ν0 ðx0Þ

¼ eðσÞμ ðxÞeðρÞν ðxÞRðαÞ
:ðβÞðσÞðρÞðx0Þ: ð38Þ

For constant curvature spacetimes, the Riemann tensor
can be expressed through the metric as

Rμναβ ¼ Rðgμαgνβ − gμβgναÞ: ð39Þ
Its tetrad components are constant and therefore the
averaging does not change the initial curvature forms. In
contrast, averaging the connection forms does change a
constant curvature spacetime, as was shown in the same
paper [17] on a two-dimensional example.
The nontrivial tetrad components of the Riemann tensor

for Schwarzschild spacetime are given by

Rð0Þ
:ðiÞð0ÞðjÞ ¼

m
r3

�
3
xixj
r2

− δij

�
; ð40Þ

RðiÞ
:ðjÞðkÞðlÞ ¼

m
r3

�
2δj½lδik� þ 3

�
xix½l
r2

δjk� −
xjx½l
r2

δik�

��
: ð41Þ

It is straightforward to check that all of them are harmonic
functions at any point besides the center. Thus the average
of the curvature form over any domain that does not contain
the center point gives the original curvature form by the
mean value property of harmonic functions.
For the domains that do contain the center, the Riemann

tensor’s components (40) and (41) are not integrable, due to
the 1=r3 factor.

VI. CONCLUDING REMARKS

We have considered the averaging of Schwarzschild
spacetime in the sense of Zalaletdinov’s macroscopic
gravity with several types of averaging operator. None
of the addressed variants are free from certain flaws. The

operators of the form Aα
α0 ðx; x0Þ ¼ δαα0 and Aα

α0 ðx; x0Þ ¼
eαðβÞðxÞeðβÞα0 ðx0Þ lead to singularities in the averaged space-

times. In addition, the exterior regions of the spacetimes
averaged with the help of those operators are not empty,
with a negative effective energy density. The operator (31)
with the components (36) and (37) does provide the same
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behavior of averaging as in the electrostatics analogy,
but its geometrical interpretation is unclear. Therefore, it
is difficult to apply it to spacetimes other than that of
Schwarzschild.
At the same time, curvature averaging gives the clear

expected result for the exterior part of the considered
problem. This supports the conjecture that the appropriate
object for the averaging should be the curvature but not the
connection. The violation of the integrability for the interior
part of the problem can probably be explained by the poor
choice of the integration volume (14). Indeed, the coor-
dinate t does not have the meaning of a time variable over
the entirety of a domain containing the center point. Under
the horizon, the integration goes over the timelike hyper-
surface, breaking the desired Newtonian analogy.
At large distances from the center, our results agree with

the Green and Wald no backreaction theorem in the sense
that the arising effective stress-energy tensor is small
compared to the curvature length scale. And there is indeed
no backreaction when we apply the ways of averaging
that maintain the Newtonian analogy and produce the
same Schwarzschild spacetime as the result. But in

Zalaletdinov’s averaging scheme with the first two con-
sidered transport operators, one cannot say that there is no
backreaction. The reason is that the initial spacetime is
empty and so no correction to its stress-energy tensor can
be negligible. The direct application of the method of Green
and Wald is difficult in our problem, even in regions remote
from the center, because the result heavily depends on the
choice of parametrization, as was shown in the criticism by
Buchert et al. [21]. For example, let us introduce the Green
and Wald parameter λ in such a way that the Schwarzschild
mass m is equal to the sum m1 þ λ. Then the metric (5)

can be decomposed as gαβ ¼ gð0Þαβ þ hαβ, where hαβ is small
when we consider only large distances from the center and

gð0Þαβ , which is called the averaged metric, is the
Schwarzschild solution with an arbitrary mass m1. So
the result of such an averaging is much too arbitrary,
ranging from Minkowski spacetime (m1 ¼ 0) to the
unchanged initial spacetime (m1 ¼ m), though the differ-
ence in the stress-energy tensor for different choices of m1

is 0, in perfect agreement with the results of Green
and Wald.
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