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We investigate the Lorentz symmetry breaking effects (LSBE) on the deflection of light by a rotating
cosmic string spacetime in the weak limit approximation. We first calculate the deflection angle by a static
cosmic string for a fixed spacelike 4-vector case (FSL) with the corresponding effective-string optical
metric using the Gauss-Bonnet theorem (GBT). Then, we focus on a more general scenario, namely we
calculate the deflection angle by a rotating cosmic string applying the GBT to Randers effective-string
metric. We obtain a significant modification in the deflection angle because of the LSBE parameter. We
find first and second order correction terms due to the global effective topology which are proportional to
the cosmic string and LSBE parameter, respectively. Finally, for a fixed time-like 4-vector (FTL) case, we
show that the deflection angle is not affected by LSBE parameter.
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I. INTRODUCTION

Today, gravitational lensing phenomenon, which studies
the effects of light deflection on the appearance of cosmic
objects is a useful theoretical tool in observational cosmol-
ogy [1]. Since Eddington’s famous observed eclipse [2], the
topic of gravitational lensing has gained more attention.
One remarkable fact about the gravitational field is that the
deflection angle depends neither on the nature of the matter
nor on its physical state. Moreover, light deflection is an
indirect perception to compute the total matter density
around a black hole [3]. Besides, gravitational lensing can
also shed light on the possible existence and properties of
topological defects that are formed during the phase
transitions in the early universe. The examples of those
topological defects are monopoles, cosmic strings and
domain walls [4,5].

Recently, behavior of a relativistic spin-0 particles that
are subject to a scalar potential under the effects of the
Lorentz symmetry breaking [6—10] in the cosmic string
spacetime has been studied by Bakke et al. [11,12]. To
tackle the problem, they have considered two possible
scenarios of the anisotropy generated by a Lorentz sym-
metry breaking effect (LSBE). They defined the LSBE term
by using a tensor (Kr) uwap This tensor governs the Lorentz
symmetry violation in the CPT [C: charge conjugation, P:
parity, and T: time reversal]-even gauge sector of the
standard model extension [13]. Using the scalar potential,
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which modifies the mass term in the Klein- Gordon
equation (KGE), it has been shown that the cosmic string
spacetime can be changed with the effects of the Lorentz
symmetry violation backgrounds.

An effective geometrical method for computing the
gravitational lensing of a considered black hole was
introduced by Gibbons and Werner (GW) [14,15].
GW’s method calculates the asymptotic deflection
angle by employing the Gauss-Bonnet theorem (GBT).
Moreover, the method of GW was extended to the sta-
tionary metrics by Werner. Thus, he managed to get the
deflection angle for the Kerr black hole whose optical
geometry is Finslerian [16]. Today, there exists numerous
papers in the literature that use the GW’s method. Along
this line of thinking, for example, the deflection angles of
static cosmic strings and global monopoles were studied
by Jusufi [17,18]. Furthermore, recently the deflection
angle for the infrared region by using the Gaussian
curvature of the optical metric of Rindler modified
Schwarzschild back hole has been investigated by
Sakalli and Ovgun [19] in which the role of the
Rindler acceleration on the gravitational lensing is neatly
shown. Meanwhile, it is worth noting that by applying a
complex coordinate transformation, Newman and Janis
[20] established a relationship between the nonrotating
and rotating spacetimes of general relativity.

In this paper, we use the cosmic string spacetime with the
LSBE [11,12] to analyze the light deflection predicted by
Einstein’s general theory of relativity. To this end, we
follow the method of GW [14,15]. Thus, by integrating the
Gaussian curvature of the optical metric outwards from
the light ray, we plan to reveal how the LSBE plays a

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.024040
https://doi.org/10.1103/PhysRevD.96.024040
https://doi.org/10.1103/PhysRevD.96.024040
https://doi.org/10.1103/PhysRevD.96.024040

JUSUFI KIMET, SAKALLI iZZET, and OVGUN ALI

role on the cosmic string spacetime and modifies the
deflection angle.

The paper is organized as follows. In Sec. II, we
briefly review the FSL 4-vector case of the cosmic
string metric of [11,12]. The second part of this section
is devoted to the derivation of effective Gaussian
curvature within the GBT and its corresponding deflec-
tion angle. In Sec. III, we study the deflection angle of
the rotating cosmic string metric with LSBE. In par-
ticular we consider the effective Gaussian optical cur-
vature and deflection angle. In Sec. IV, we briefly
review and calculate the deflection angle for a fixed
FTL 4-vector case of a static cosmic string with the
LSBE. We extend our results and investigate the
deflection angle for a rotating cosmic string for a
FTL 4-vector case. In Sec. V, we consider the geodesics
equations to recover the deflection angles. Finally, we
draw our conclusions in Sec. VI. Throughout this paper,
we shall use natural units, i.e. G=c=h = 1.

II. EFFECTIVE COSMIC STRING METRIC
FOR A FSL 4-VECTOR CASE

A. A static cosmic string for a FSL 4-vector case

The Lagrange density for the non-birefringent modified
Maxwell theory coupled to gravity [11,21,22] is given by

1 1
L:mod =—Vv-yg <4 FqupogW)gyU + 4IC”DMFWFP,1> s (1)

where K#*7* is a Lorentz symmetry violating tensor, which
guarantees the CPT symmetry. K** shares the same
features of the Riemann tensor, plus some additional
double-traceless conditions:

Kowpr = ]C[/W] A Kowpr = Koy K = 0. (2)

By using the following effective metric tensor

Gip (X) = Gp (%) + €88, 3)

in which the parameter ¢ is governed by e=
k/(1+x&,E/2) with 0<k <2, one can see (as being stated
in [11]) that ¢*(x) background attributes an anisotropy,
which means that the propagation of light must be modified
by the background. Let us first consider a normalized
parameter four-vector £, as a spacelike 4-vector:

£,=1(0,0,1,0). (4)

Under the Lorentz symmetry breaking, a topological
defect in curved spacetime can be expressed by the
effective metric tensor of the cosmic string [23], whose
line-element in cylindrical coordinates is given by the
effective metric [11]

PHYSICAL REVIEW D 96, 024040 (2017)
ds? = —=d* + dp? + ?p*(1 + €)de? +dz2.  (5)

In the above equation 5 is the parameter of the cosmic
string. Moreover, 7 is expressed by n = 1—4u, where u is
the linear mass density of the cosmic string. We can easily
write the above metric in spherical coordinates. To do so,
let us introduce the following coordinates transformations
z =rcos@ and p = rsin . Thus, metric (5) becomes

ds? = —d> +dr? + r2d6* + ?r*(1 + €) sin? dg?,  (6)

then we can find the corresponding optical metric form of
metric (6), if we first project the metric into equilateral
plane with & = /2 and immediately after we consider the
null case: ds?> = 0. Therefore, one gets the optical metric of
the line-element (6) as follows

d? = dr?* + n*r2(1 + €)dg?. (7)

We now introduce a new coordinate r*, thereby a new
function f(r*):

dr* =dr, f(r*) =nrv1+e. (8)

Therefore, the optical metric (7) becomes [14]
df? = §,pdxtdx? = dr*? + f2(r*)de?. 9)

To derive the corresponding effective Gaussian optical
curvature K of the metric (9), we follow [14]:

1 df(r*)
) a4

1 dr d /dr\d dr\2d?
== N\ | q* A \ 3~ _f+ * _JZC (10)
f(r*) |drrdr \dr* ) dr dr*) dr
Since f(r*) is linear in r, one can check by using Eq. (10)
that in fact the effective Gaussian optical vanishes, i.e.
K = 0. This result will provide us some convenience

during the computation of the light deflection in the
following sections.

K=-

B. Effective Gaussian curvature
and deflection angle

The GBT for the nonsingular region Dy in M, with
boundary dDg = y; U C can be stated as follows [14]

//de + ]{KdH- Zei =2my(Dg). (11
Dr !

ODg

Note that x is the geodesic curvature, K gives the
Gaussian optical curvature, #; gives the corresponding
exterior angle at the i vertex, and y(Dg) is the Euler
characteristic number. The geodesic curvature can be
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computed as x = g(V,;7,7), in which the unit speed
condition holds g(7,7) = 1 and 7 is the unit acceleration
vector.

While R — oo, both jump angles (6, €5) become 7/2,
and hence 6, + 6 — =; in which the subscripts S and O
correspond to the source and observer, respectively (see for
example [14]). Furthermore, since y; is a geodesic, then it

follows x(y;) = 0. Let us find now the geodesic curvature,
which can be calculated as k(Cg) = [V, Cp| in which one
can choose Cy :=r(¢) = R = const. The radial compo-
nent of the geodesic curvature can be calculated as

(Ve Cr)" = CR(9,Ch) + I,

e

(CR)*. (12)

The first term vanishes, while the second term gives
nonzero contribution. To see this, we should recall the

nonzero component f;¢ =—f(r*)f'(r*) and the unit
speed condition gw'cﬁéf,’g =1, where f(r*) is given by
Eq. (8). Using these relations and the optical metric (9), it
follows immediately that

dt = nRV'1 + ede. (13)
Thus, for very large R, the geodesic curvature reads
(o) = i
2 1/2
= lim A Te) (1+e¢) ,
R—o0 2R2(1 + (:')
1

Y (14)

which suggests that
k(Cr)dt = nV'1 + ede. (15)

Reconsidering Eq. (11) and recalling that the Euler
characteristic is characterized by y(Dg) = 1, we find

// Kds + ]f kdr = // Kds

co

n+a
+11\/1+€/

0

dp =n, (16)

in which the domain D, connotes an infinite domain
bounded by the light ray y;. Thus, the asymptotic deflection
angle a can be found as

z
a0=———r. 17
nvl1l+e (17)

Using Taylor series in # and €, we can approximate the
result for the deflection angle as
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a:4,m—%”—2nﬂe+0(u2,n2). (18)

The first term is just the deflection angle by a static
cosmic string. Interestingly, due to the Lorentz symmetry
breaking by the parameter ¢, we find that the deflection
angle decreases.

III. ROTATING COSMIC STRINGS
WITH FSL 4-VECTOR

A. Effective String-Randers optical metric

Let us introduce a rotating cosmic string by using the
following coordinate transformations [24,25]

dt — dt + adg, (19)
into the metric (5), we find

ds? = —(dt + ade)? + dp? + ?p*(1 + €)dg? + dz°.
(20)

Let us now introduce the tetrads e“,(x), which satisfies
the relation g, (x) = e“,(x)e’,(x)n,p, in which 7, is the
Minkowski tensor. In particular we choose the tetrads as
follows

1 0 0 0
0 1 0
e, (x) = (1)
a 0 npvl—+e
0 0 0 1

Next, by writing the four vector &, (x), in terms of tetrads
as £,(x) = e?,(x)&,, and choosing &, = ({.0.7.6), one
can show that &,(x)&(x) = —(* + 6® + y* 4 &* = const
holds for the rotation case. In particular, the choice of £, =
(0,0,1,0) results in &,(x)&"(x) = 1 = const. Metric (20)
can be expressed in spherical coordinates as follows

ds? = —(dt + ade)? + dr* + r?d6? + p*r*asin® dg?,
(22)

where we have introduced @ = 1 + ¢. The stationary metric
can be recasted to give a Finslerian optical metric of
Randers type with the Hessian given as [16]

10°F*(x, X)

950 X) = 55 xiox

(23)

Furthermore, by homogeneity we have F?(x,X) =
gi;(x, X)X'X/, thus the Randers metric can also be written
in the following from [15]
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F(x,X) = \/a;;(x)X'X) + b;(x)X', (24)

where a;; and b; must satisfy the condition a"/b;b; < 1.

One can easily find the corresponding Randers optical
metric for our stationary effective cosmic string spacetime
by writing the stationary spacetime (22) as [15]

ds? = V2[—(dr — b;dx')? + a;;dx'dx/], (25)

where
a;;(x)dx'dx/ = dr* + r*d6* + n*rPasin® 6dg?,  (26)
bi(x)dx’ = —adg?. (27)
In this paper we shall consider a planar light ray by

setting @ = /2, then making use of Egs. (24) and (25), we
end up with the effective Randers-string metric:

dr do dr\?2 de)\ 2 de
F — =) =/(= 2P —) —a—.
(r’(p’dt’dt> \/<dt) + ra(dt) “ar

(28)

Hence the Randers metric for null geodesics ds? = 0,
gives df = F(x,dx). On the other hand Fermat’s principle
suggests that light rays y are selected by the following
condition

0=25 / dr =6 / F(x,x)dt, (29)

where it is important to note that these spatial light rays y
are also geodesics yr of the Randers metric F. This is
crucial point since we can apply the so-called Nazim’s
method [26] to construct a Riemannian manifold (M, g),
osculating the Randers manifold (MF ). To do so, we
choose a smooth and nonzero vector field X over M
(except at single vertex points) with X(yz) = x. The
Hessian (23) then reads

ij(x) = g;;(x, X(x)). (30)

It is quite remarkable fact that the geodesic y of (M, F)
is also a geodesic y; of (M, g) i.e., yr = y; (see [16] for
details). Hence we shall use the cosmic string effective
optical metric and construct the corresponding osculating
Riemannian manifold (M, g). This is important since it
allows us to calculate the deflection angle of the planar
light ray. We choose the line r(¢@) = b/ sin ¢, where b is
known as the impact parameter and gives the minimal
radial distance of the light ray from the cosmic string lying
along the z axis. We make the following choose for the
leading terms of the vector field X = (X", X?)(r, ) (see
for details [16])
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_sin’gp
b

X" = —cosg + O(a), X¢ +O(a). (31)

In the next section we shall use these relationsto calculate
the Gaussian curvature and apply the GBT theorem to the
osculating Riemannian optical metric.

B. Deflection angle
In this section we shall apply the GBT to the osculating
optical geometries. In particular one can apply the GBT to a
domain (D, g) within the region Dy possessing boundary
curve 9Dk = y; U Cg [16]

// KdS + 74 kdt + Za,. =2my(Dg).  (32)
Dy !

ODp

Note that in a similar way we define the geodesic
curvature as k = |V;y| (with respect to g). Hereinbefore,
as R — oo the both jump angles tends to /2, hence in an
analogous way as in the last section we have 0, + ¢ — .
Thus, Eq. (32) recasts in

// Kds + f kdi = 277(Dg) — (0p +05) = 7. (33)
Dy

9D

Since the geodesic curvature in the case of geodesics y;
vanishes i.e. k(y;) = 0, we shall now focus on calculating
k(Cg)dt where k(Cg) = |V~CRCR|. For very large but
constant R given by Cy = r(¢) = R = const, if we use
the unit speed condition i.e. g,,,C4C% = 1, and the nonzero
Christoffel symbol I7,,, the geodesic curvature is found to
be k(Cg) — R~!. The effective cosmic string-optical metric

(28) then gives
dr = (\ I R*a — a) de. (34)

Hence if we combine these results it follows

. . a
Jimx(Codr = Jim (V- %) = nvadp.  (35)

We clearly see that our effective optical metric is not
asymptotically Euclidean i.e. k(Cg)dt/dp = ny/a # 1, due
to the fact that our spacetime metric (22) is globally conical.
Clearly if we set ny/a — 1, we find the asymptotically
Euclidean case, i.e. k(Cg)dt/de = 1. To find the deflection
angle we first approximate the boundary curve of D, by a
notional undeflected ray, that is, the line r(¢) = b/ sin ¢,
then GBT reduces to

&= ;T(ﬁ— 1) —ﬁaz 7 K+/detgdrdp.  (36)

sing
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We can make use of the Egs. (23), (33), and (35), to find
the following relations

sinpan’r’a
b (COS (p + w)

Grr = 1- 3/2 + O(az)’ (37)

Gop = Pra—2 sin?gar? (2r’n’asin* g + 3b*cos’g)n?
e ! b*(cos’p + wﬁﬂ

(38)

acos’p
b3(COS »+ r? ;1 asm (/))

gr(p = 3/2 + O(az)’ (39)

neglecting higher order terms of the angular momentum
parameter a. Then the determinant of this metric can be
written as

3asin? pan?r*(sin* pan’r? + cos? pb?)
b3 (cos® ¢ + 7#"2‘2?“4 (’))3/2

detg = r’n*a —

(40)

For the Christoffel symbols we find,

PHYSICAL REVIEW D 96, 024040 (2017)

3asin*[2(— sin pr + b)cos’p — rsin’g| cos ¢

b == 2rb3(cos’p + 7#”22?114(#)5/2 ’
ro - 1 N aan?rsing[2sin*pan®r* + 5b*cos’ ]
r 2(cos’p + 7r 1-asing )5/2b5
(41)
The Gaussian curvature is
_ Ry
detg
() g ()
Vaetg |0 \ G, ") or\ g, )I
(42)

so using the Christoffel symbols and the metric compo-
nents, we obtain

K== .0 (43)

with

f(rio.n.a) =

singp sin''pa’n®r  b2rntasin’e  rPr’acos’eb?(Pa +27)sin’ @
(COSZ(/) + r2n222in4(/7)7/2b7 24 8 24
303 ntacos’psin®y  (5b*r*ntacoste  cos’ebir\ . o 3r*bian’costpsinte
- + - sin’¢p — (44)
4 4 2 2
17r(;7 a—B)cos*pbisindyp  costpsin’pb’ _ 5b*rsingcos’p L bieosty (45)

24

The deflection angle (36) reduces to

&24ﬂﬂ—%—2ﬂ€ﬂ——

na

(e

) Vdetgdrdp,  (46)
Sng

in which b is the impact parameter. After we integrate with
respect to the radial coordinate and considering a Taylor
expansion around u and e, we find a nonzero contribution
for a retrograde light ray

[ [

sing

v/ det gdrde

_ 3amp  3ame 3amep
2D 16b 4p

+ O®u?, €?). (47)

4

But zero contribution for the prograde light ray

© 12
/ / —“frrpn, )\/detgdrdp = 0.  (48)

sing

Finally the deflection angle for the retrograde case gives

3anu 3ane

R €m
aretz47r,u—7—27we+ T b " (49)
and similarly for the prograde case
prog = 4yt — %t — 2nue. (50)

It is interesting to note that since the rotating cosmic
string parameter a is proportional to the angular momen-
tum, i.e. a = 4J, which contains the mass per unit length, y,
by definition of the angular momentum. As a consequence,
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the last two terms in Eq. (49) can be considered as second
order terms, more precisely, the term ay can be viewed as
42, while the last term can also be viewed as u?, is we
assume u and e, say, to be of the same order of magnitude.
In this way, if we neglect these terms, we end up with the
following result

&247w—%—2ﬂye. (51)

IV. EFFECTIVE COSMIC STRING METRIC FOR A
FTL 4-VECTOR CASE WITH LSBE

A. Static cosmic strings

In this section we shall consider a normalized parameter
four-vector &, as a timelike 4-vector given by

£, =(1,0,0,0). (52)

In this case, under the LSB, a cosmic string metric can be
expressed by the effective metric [23], whose line-element
in cylindrical coordinates is given by [6]

ds? = —(1 — €)dr® 4 dp® + ?p*de?® + dz2.  (53)

Introducing a spherically coordinates transformations to
the above metric and considering the equatorial plane, for
the optical metric it follows

dr2 172r2d(p2
dr? = . 4
oo T ime (54)

We now introduce a new coordinate r*, thereby a new
function f(r*):

J(r) = : (55)

Moreover, we show that the corresponding Gaussian
optical curvature vanishes also in this case i.e. K = 0. We
need to apply the GBT but first let us see that for very large
R, the optical metric gives

nR

Vv1—e¢

Using the optical metric (49), one can show in a similar
way the following relation for the geodesic curvature

k(Cg) = R7'\/1 —¢, and consequently «(Cg)dt = nde.
From the GBT we find

// de+f KdrRzm// KdsS
Dy Cx S

n+a
+ 7]% dp ==n. (57)

dr = dg. (56)
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Hence, for the deflection angle the last equation we
derive the following result

& =dur + O(u?). (58)

As expected, the LSBE parameter for a FTL 4-vector
case is not relevant for light deflection, which is different
from the FSL 4-vector case.

B. Rotating cosmic strings

In a similar way as in the FSL 4-vector case, we shall
introduce a rotating cosmic string into the effective metric
(53). In that case we find

ds? = —(1 —€)(dt + ade)? + dp? + p*p*de?* + dz>.
(59)
Now we will try to show that the condition &, (x)& (x) =

const is indeed satisfied. To do so, let us first choose the
following tetrads for our metric (59)

vi-e 0 0 0
0 1 0 O
e, (x) = 60
) avl—¢ 0 np O (60)
0 0 0 1

Then by writing the four vector &,(x) = e?,(x)&,, and
choosing for generally £, = (£, 6,7, ), one can show that
£,(x)&(x) = =(* + 6® + y* + 8* = const. Furthermore if
we choose, &, = (1,0,0,0), we find &,(x)& (x) = -1 =
const.

Thus, by considering the spherical coordinate trans-
formations, we find

ds? = —p(dt + ade)? + dr* + r*d6@? + n*r? sin” Odg?
(61)

where f =1 —e¢. This leads to the considerably simpler
Randers type metric

F dr dg 1 /dr 2+;12r2 dp\?2  dg
ry@,—,—4— - >\ 5. - |\ 5. —a—.
P4 dr 5 \dr 5 \dr dr

(62)

The effective Gaussian curvature gives:

12
K= —Taf(mo,n,ﬁ) (63)

where

024040-6
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sin? sin''pn®r’ b rin’sin®e  rPrcos’eb?(n* + 27)sin’
P B) = — % - [ pi°r | b rpsiny | ricostyb®(n )sin’ g
(% rﬂbsm o) p7 g2 24 8 24
303 n*cos’psin®y  (5b*rnPcostyp  cosPpbtr\ . 5 3r’bPnPcostesinte 64
B 4 + 4 Ty )mes 2 (64)
17r(n* = E)cos*pb*sin’p  cos*psin®pb®  5b*r sin pcos®
+ (r )24 ? e (,02 P _ 4('0 L b’coslp|. (65)

We can now integrate with respect to the radial coor-
dinate first and then make a Taylor series expansion around
u and e, for the retrograde light ray we find

1—<

// lz—afrgonﬂ\/det drd(p—
(66)

sing

While for the prograde light ray we find zero contribution
© 12a -
—frgonﬂ \/detgdrdp =0.  (67)

For the total deflection angle, we find the following
results for the retrograde case

3rmap
= dur + = (1 -
Oy = 4um + b ( ) (68)

and for the prograde case

Qprog = 4UT. (69)

Hence, since the rotating cosmic string parameter a is
proportional to the angular momentum J, the last two terms
in Eq. (68) can be considered as second order terms y°.
Therefore, by neglecting these terms we find

a=4un. (70)
|

V. GEODESICS EQUATIONS

A. Effective metric for FSL 4-vector case

We can apply now the variational principle § [ £ds = 0
to calculate the deflection angle in the stationary spacetime
metric (22). The Lagrangian can be written as [27]
r(5)2(0* + nPasin?® 04?)

1 . 21
_ ! N A
L= 2(t+aqo) —|—2+2

(71)

We can simplify further this problem by choosing
60 = n/2. Next, we introduce two constants of motion,
say [ and y, given by

oL . . .
Py = % = —(t+ap)a+nar(s)*p=1 (72)

Pi= = —(ap +1) = —y. (73)

We change the coordinates by using r = 1/u(¢), which
leads to the following identity

rdr 1 du
¢ dp  WPde
Moreover, we make clear that the angle ¢ is measured
from the point of closest approach i.e. u = Uy, =
1/rmin = 1/b [28]. Hence, we can choose for the first

and second constant y = 1 and [ = n./ab, respectively.
This leads to the following equation

(74)

a(n*a — a*u* — n\/abu*a) d*

1 [du)\? N a1 (pa—d*u® —n/abu*a)?
2 2 u(a +ny/ab)?

de 2u?

We can solve the above differential equation (75) using
a perturbation method. The solution of this differential
equation in leading order terms can be written in the
form

Ap =7+ a, (76)

where @ is the deflection angle. Solving for du/d¢g [30],
one can show that the above result can be written as

u*(a +ny/ab) 2 0 (75)

a= zl(p(umax) - (pool - 7. (77)

where we have used a Taylor series expansion around u, a,
and e, which leads to the following integral

1/b
Q= / A(u,p,a,e,b)du (78)
0
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The function A(u, u, a, €, b) is given by

bla(e —1)(8u+1) + ¢

A(u,p,a,e,b) = 2 N2 12.,2
2/(1 = b2®)b? (h*u? = 1)

. (79)

where
C=((4u+1)e—8u—2)— (e —2)(du + 1)u’b>.

We find the following result for the deflection angle in
leading order terms

& = dum — % — 27ep. (80)

Thus, we have recovered the deflection angle which
corresponds to the static case given by Eq. (51).
|

PHYSICAL REVIEW D 96, 024040 (2017)

B. Effective metric for FTL 4-vector case

Using a similar approach we can calculate the
deflection angle in the stationary spacetime metric (54).
The Lagrangian can be written as

. i1 .
E:—g(ﬂra(p)z+%+EF(S)2(92+77281H29¢2)- (81)

Then in the equatorial plane we find

oL .
Po == Bt + ap)a+n*r(s)p=1 (82)
p=5_ plag+iy=—r. (83)

or

Without loss of generality, we can choose y =1 and

I = (nb)/+/P. The following differential equation can be
obtained

2u* \dg) ' 2u

This result leads to the following integral

1/b
Q= / B(u,p,a,e,b)du, (85)
0

where the function B(u, u, a,e,b) is given by

bla(e =2)(8u+1) + E]
27/(1 = 2D b (b*u? — 1)

B(u,p,a,e,b) = (86)

where
E=bQub*(4u +1) = 2b(4u + 1)).

Working in a similar fashion as in the FSL 4-vector case,
the solution of Eq. (84) is written as

Ap =7+ a, (87)
with the deflection angle & given by
a=4un. (88)

This result is consistent with the Eq. (70) found by the
GB method.

VI. CONCLUSION

In this paper, we have first computed the deflection
angle by virtue of a cosmic string having the LSBE. To

1 <du>2 w1 = @pu —nyPbuta)®  a(n’ — a*pu’ —ny/Pbura) a’p
22 uBla+ (nb)/ VPP

@renvm 2 (54

this end, we have applied the GBT to the effective-optical
metric of the static cosmic string spacetime for a FSL
4-vector case. The first term of the deflection angle (18)
was found to be the ordinary deflection angle by a static
cosmic string. However, it has been shown that Lorentz
symmetry breaking, which is parametrized by e decreases
the deflection angle. On the other hand, for a FTL
4-vector case with the LSBE, the deflection angle
remains unchanged, remarkably. Next, we have extended
our results to rotating cosmic strings. We have derived
their corresponding both Randers type effective-cosmic
string optical metrics and the effective Gaussian optical
curvatures. We then have constructed the osculating
Riemannian manifolds and applied the GBT to those
obtained optical metrics. We have deduced from our
results that the deflection angle is not affected by the
rotation of the cosmic string in leading order terms. Thus,
the results obtained by the GB method are in perfect
agreement with the geodesics computations in the leading
order terms.

It is worth noting that the main outcome of this study
is that LSBE plays an important role on the light
deflection in a cosmic string spacetime. From this point
of view, the latter remark is the newest contribution to
the subject of gravitational lensing. Besides, LSBE can
be considered in the future observations about gravita-
tional lensing. Moreover, GB method is a powerful
theoretical technique for finding an exact result of the
deflection angle. Because, it evaluates the associated
deflection angle integral in the domain that connotes an

024040-8
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infinite domain bounded by the light ray. In con-
clusion, GB method reveals that light deflection
can be seen as a partially topological effect of the
spacetime geometry, which is very recently discussed
in [29].

PHYSICAL REVIEW D 96, 024040 (2017)
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