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The absence of a true thermodynamical equilibrium for an observer located in the causal area of a
Schwarzschild–de Sitter spacetime has repeatedly raised the question of the correct definition of its
temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild–
de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the
black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities
but also significant differences in their behavior as the number of extra dimensions and the value of the
cosmological constant are varied. We then investigate their effect on the energy emission spectra of
Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—
proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the
other temperatures either support a significant emission rate only in a specific Λ regime or have their
emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that
the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
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I. INTRODUCTION

The novel theories that postulate the existence of addi-
tional spacelike dimensions in nature [1,2] with size much
larger than the Planck length or even infinite have, in fact,
an almost twenty-year lifetime. During that period, several
aspects of gravity, cosmology and particle physics have been
reconsidered in the context of these higher-dimensional
theories. Black-hole solutions have been intensively studied,
since the existence of extra dimensions affects both their
creation and decay processes (for more information on this,
one may consult the reviews in Refs. [3–14]).
The presence of the brane(s) in the model with warped

extra dimensions [2] has proven so far to be an unsur-
mountable obstacle for the construction of analytical
solutions describing regular black holes. As a result, most
of the study of the decay process of a higher-dimensional
black hole has been restricted in the context of the model
with large extra dimensions [1], where the latter are
assumed to be empty, and thus flat, and where the self-
energy of the brane may be ignored compared to the black-
hole mass. It is in the context of this theory that analytical
expressions describing higher-dimensional black holes
may be written, and the emission of particles, comprising
the Hawking radiation [15], may be studied in detail.
Historically, the first solution describing a higher-

dimensional, spherically symmetric black hole appeared in
the 1960s, and is known as the Tangherlini solution [16].
The solution describes a higher-dimensional analogue of
the Schwarzschild solution of the general theory of rela-
tivity that is formed also in the presence of a cosmological
constant. Therefore, this solution constitutes in fact an

improvement of the assumption made in the context of
the large-extra-dimensions scenario where the extra space
is absolutely empty: here, the extra dimensions are filled
with a constant distribution of energy, or with some field
configuration that effectively acts as a constant distribution
of energy. For a positive cosmological constant, the
solution describes a higher-dimensional Schwarzschild–de
Sitter black-hole spacetime.
Although the emission of Hawking radiation from higher-

dimensional, spherically symmetric or rotating black holes
has been extensively studied in the literature (for a partial list,
see Refs. [17–37] or the aforementioned reviews [3–14]), the
analyses focused on higher-dimensional Schwarzschild–de
Sitter black holes are only a few. The first such work [38]
contained an analytic study of the greybody factor for scalar
fields propagating on the brane and in the bulk, and in
addition provided exact numerical results for the radiation
spectra in both emission channels. A subsequent analytic
work [39] extended the aforementioned analysis by deter-
mining the next-to-leading-order term in the expansion of
the greybody factor. An exact numerical study [40] then
considered the emission of fields with arbitrary spin from a
higher-dimensional Schwarzschild–de Sitter black hole.
A series of three more recent works studied the case of a
scalar field having a nonminimal coupling to the scalar
curvature: the first [41] studied the case of a purely four-
dimensional Schwarzschild–de Sitter black hole, the second
[42] considered the scalar field either propagating in the
higher-dimensional bulk or being restricted on a brane, and
the third [43] provided exact numerical results for the
greybody factors and radiation spectra in the same theory.
A few additional works [44–48] have also appeared that
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studied the greybody factors for fields propagating in the
background of variants of a Schwarzschild–de Sitter black
hole.
However, over the years, the question of what is the

correct notion of the temperature of a Schwarzschild–de
Sitter (SdS) spacetime has arisen. This spacetime contains a
black hole whose event horizon sets the lower boundary of
the causally connected spacetime. But it also contains a
positive cosmological constant that gives rise to a cosmo-
logical horizon, the upper boundary of the causal space-
time. An observer living at any point of this causal area is
never in a true thermodynamical equilibrium—the two
horizons each have their own temperature, expressed in
terms of their surface gravities [49,50], and thus an
incessant flow of thermal energy (from the hotter black-
hole horizon to the colder cosmological one) takes place
at every moment. In addition, the SdS spacetime lacks an
asymptotically flat limit where the black-hole parameters
may be defined in a robust way. The latter problem was
solved in Ref. [51], where a normalized black-hole temper-
ature was proposed that made amends for the lack of an
asymptotic limit. Then, assuming that the value of the
cosmological constant is small and the two horizons are
thus located far away from each other, one could formulate
two independent thermodynamics.
Despite the above, the question of what happens as the

cosmological constant becomes larger and the two horizons
come closer still persisted. It was this question that gave
rise to the notion of the effective temperature for an SdS
spacetime [52–56]—namely, one that implements both the
black-hole and the cosmological horizon temperatures.
(For a review on this, see Ref. [57].) A number of additional
works have appeared in the literature with similar or
alternative approaches on the thermodynamics of de
Sitter spacetimes [58–76]; however, the question of the
appropriate expression of the SdS black-hole temperature
still remains open.
Up to now, no work has appeared in the literature that

makes a comprehensive study of the different temperatures
for an SdS spacetime and compares their predictions for
the corresponding Hawking radiation spectra. In fact,
previous works that study the radiation spectra from a
four-dimensional or higher-dimensional SdS black hole
make use of either its bare temperature T0, based on its
surface gravity, or the normalized one TBH, at will. In the
context of this work, we will perform such a comprehensive
study, and we will derive and compare the derived radiation
spectra. We will do so not only for the aforementioned two
SdS black-hole temperatures but also for three additional
effective temperatures for the SdS spacetime, namely Teff−,
Teffþ, and TeffBH—the use of one of the latter temperatures
may be unavoidable for large values of the cosmological
constant when the two horizons lie so close that the
independent thermodynamics no longer hold. To address
the above, we will also extend the regime of values of the

cosmological constant that has been studied in the literature
so far, and consider the entire allowed regime, from a very
small value up to its maximum critical value [77].
To make our analysis as general as possible, we will

consider a higher-dimensional SdS spacetime. We will then
study the properties of the different temperatures in terms
of both the value of the cosmological constant and also
the number of extra spacelike dimensions. The correspond-
ing Hawking radiation spectra will then be produced for
scalar fields, both minimally and nonminimally coupled
to gravity, propagating either on our brane or in the bulk.
As we will see, the different temperatures will lead to
different energy emission rates for the black hole, each one
with its own profile in terms of the bulk cosmological
constant, the number of extra dimensions, and the value of
the nonminimal coupling constant. In addition, each
temperature will lead to different conclusions regarding
the dominance of the brane or of the bulk.
The outline of our paper is as follows: in Sec. II, we

present the theoretical framework of our analysis, the
gravitational background, and the equations of motion
for the scalar field, as well as the different definitions of
the temperature of an SdS spacetime. In Secs. III and IV, we
derive the energy emission rates for bulk and brane scalar
fields having a minimal or nonminimal coupling to gravity,
respectively. In Sec. V, we calculate the bulk-over-brane
emissivity ratio, and in Sec. VI, we summarize our analysis
and present our conclusions.

II. THE THEORETICAL FRAMEWORK

A. The gravitational background

We will start by considering a higher-dimensional
gravitational theory with D ¼ 4þ n total number of
dimensions. The action functional of the theory will also
contain a positive cosmological constant Λ, and will
therefore read

SD ¼
Z

d4þnx
ffiffiffiffiffiffiffi
−G

p �
RD

2κ2D
− Λ

�
: ð1Þ

In the above, RD is the higher-dimensional Ricci scalar, and
κ2D ¼ 1=M2þn� is the higher-dimensional gravitational con-
stant associated with the fundamental scale of gravity M�.
If we vary the above action with respect to the metric tensor
GMN , we obtain the Einstein field equations having the
form

RMN −
1

2
GMNRD ¼ κ2DTMN ¼ −κ2DGMNΛ; ð2Þ

with the only contribution to the energy-momentum tensor
TMN coming from the bulk cosmological constant.
The above set of equations admits a spherically sym-

metric solution of the form [16]
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ds2 ¼ −hðrÞdt2 þ dr2

hðrÞ þ r2dΩ2
2þn; ð3Þ

where dΩ2
2þn is the area of the (2þ n)-dimensional unit

sphere given by

dΩ2
2þn ¼ dθ2nþ1 þ sin2θnþ1ðdθ2n þ sin2θnð� � � þ sin2θ2ðdθ21

þ sin2θ1dφ2Þ � � �ÞÞ; ð4Þ

with 0 ≤ φ < 2π and 0 ≤ θi ≤ π, for i ¼ 1;…; nþ 1. The
radial function hðrÞ is found to have the explicit form [16]

hðrÞ ¼ 1 −
μ

rnþ1
−

2κ2DΛr2

ðnþ 3Þðnþ 2Þ : ð5Þ

The above gravitational background describes a (4þ n)-
dimensional Schwarzschild–de Sitter (SdS) spacetime,
with the parameter μ related to the black-hole mass M
through the relation [78]

μ ¼ κ2DM
ðnþ 2Þ

Γ½ðnþ 3Þ=2�
πðnþ3Þ=2 : ð6Þ

The horizons of the SdS black hole follow from the
equation hðrÞ ¼ 0—this has, in principle, (nþ 3) roots;
however, not all of them are real and positive. In fact, the
SdS spacetime may have two, one, or zero horizons,
depending on the values of the parameters M and Λ
[79]. Here, we will ensure that the values of M and Λ
are in the regime that supports the existence of two
horizons, the black-hole rh and the cosmological one rc,
with rh < rc. However, the degenerate case, that results in
the Nariai limit [77] in which the two horizons coincide,
will also be investigated.
The higher-dimensional background (3) is seen by

gravitons and particles with no standard-model quantum
numbers that may propagate in the bulk. All ordinary
particles, however, are restricted to live on our four-
dimensional brane [1,2], and therefore propagate on a
different gravitational background. The latter follows by
projecting the (4þ n)-dimensional background (3) on the
brane, and it is realized by fixing the value of the extra
angular coordinates, θi ¼ π=2, for i ¼ 2;…; nþ 1. Then,
we obtain the 4D line element

ds2 ¼ −hðrÞdt2 þ dr2

hðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð7Þ

with the metric function hðrÞ preserving its form, given by
Eq. (5), and thus its dependence on both the number of
additional spacelike coordinates n and the value of the bulk
cosmological constant Λ.

B. The temperature of the Schwarzschild–de Sitter
black hole

The temperature of a black hole is traditionally defined in
terms of its surface gravity kh at the location of the horizon
[49,50]. The latter quantity is expressed as

k2h ¼ −
1

2
lim
r→rh

ðDMKNÞðDMKNÞ; ð8Þ

where DM is the covariant derivative and

K ¼ γt
∂
∂t ð9Þ

is the timelike Killing vector, with γt a normalization
constant. In the case that the gravitational background is
spherically symmetric, Eq. (8) takes the simpler form [80]

kh ¼
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr
p jgtt;rjr¼rh : ð10Þ

When the above expression is employed for the line
element (3) of a higher-dimensional Schwarzschild–de
Sitter black hole, we obtain the following expression for
its temperature [38,49,80]:

T0 ¼
kh
2π

¼ 1

4πrh
½ðnþ 1Þ − ðnþ 3Þ ~Λr2h�; ð11Þ

where we have defined, for convenience, the quantity ~Λ ¼
2κ2DΛ=ðnþ 2Þðnþ 3Þ, and used the condition fðrhÞ ¼ 0 to
replace μ in terms of rh and ~Λ.
The Schwarzschild–de Sitter spacetime is characterized,

in the most generic case, by the presence of a second
horizon, the cosmological horizon rc. As a result, one may
define another surface gravity kc, this time at the location of
rc, and a temperature for the cosmological horizon [49,50],
namely [38]

Tc ¼ −
kc
2π

¼ −
1

4πrc
½ðnþ 1Þ − ðnþ 3Þ ~Λr2c�; ð12Þ

where care has been taken so that Tc is positive definite,
since rh < rc [38]. The presence of the second horizon
with its own temperature makes the thermodynamics of the
Schwarzschild–de Sitter spacetime significantly more com-
plicated, as compared to the cases of either asymptotically
Minkowski or anti–de Sitter spacetimes [57]. The two
temperatures, T0 and Tc, are in principle different; there-
fore, an observer located at an arbitrary point of the causal
region rh < r < rc is not in thermodynamical equilibrium.
The usual approach adopted in the literature is to make the
assumption that the two horizons are located far away, and
therefore each one can have its own independent thermo-
dynamics [50,51,62]—this assumption, however, is valid

EFFECTIVE TEMPERATURES AND RADIATION SPECTRA … PHYSICAL REVIEW D 96, 024038 (2017)

024038-3



only for small values of the cosmological constant, and thus
it imposes a constraint on all potential analyses.
In Ref. [51], a modified expression for the temperature of

the black hole was proposed, namely

TBH ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p 1

4πrh
½ðnþ 1Þ − ðnþ 3Þ ~Λr2h�; ð13Þ

in which a normalization factor
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
was introduced

involving the value of the metric function at its global
maximum r0. This point follows from the condition
h0ðrÞ ¼ 0 and is given by [38]

rnþ3
0 ¼ ðnþ 1Þμ

2 ~Λ
: ð14Þ

There, the metric function assumes the value

hðr0Þ ¼ 1 −
μ

rnþ1
0

− ~Λr20 ¼
1

nþ 1
½ðnþ 1Þ − ðnþ 3Þ ~Λr20�:

ð15Þ

The above is the maximum value that the metric function
attains as it interpolates between the two zeros at the
two horizons. The point r0 is the closest point that the
Schwarzschild–de Sitter spacetime has to an asymptotically
flat region: it is here that the effects of the black-hole and
cosmological horizons cancel out and an observer can stay
at rest [51]. Mathematically, the normalization factorffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
appears from the normalization of the Killing

vector, KMKM ¼ −1: this condition is satisfied in asymp-
totically flat spacetime for γt ¼ 1, but at r ¼ r0, this factor
should be γt ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
.

Including this normalization factor in Eq. (13) is a step
forward in defining the black-hole temperature in a non-
asymptotically flat spacetime; however, this factor modifies

significantly the properties of T0. In Figs. 1(a) and 1(b), we
depict the dependence of the two temperatures, T0 and TBH,
as a function of the cosmological constant, and for two
values of the number of extra dimensions, n ¼ 2 and n ¼ 5.
For low n, as Λ increases, T0 monotonically decreases,
in accordance with Eq. (11), whereas TBH predominantly
increases—the latter is caused by the variation in the value
of hðr0Þ that, in most of the allowed Λ regime, causes an
enhancement in TBH. For large values of n, the monotonic
decrease of T0 remains unaffected, while the increase of
TBH holds only for the lower range of values of Λ. Even in
this case, the value of TBH is constantly larger than that of
T0 (see also Ref. [40] for a similar comparison and
conclusions). The two temperatures match only in the limit
Λ → 0 when they reduce to the temperature of a higher-
dimensional Schwarzschild black hole. A radically differ-
ent behavior appears in the opposite limit, the Nariai or
extremal limit [58,59,77]: as Λ approaches its maximum
allowed value, the two horizons approach each other and
eventually coincide, with rh ¼ rc. In that limit, the combi-
nation inside the square brackets in Eq. (11), and thus T0

itself, vanishes,1 a feature that is clearly shown in Fig. 1.
On the contrary, in the critical limit, TBH assumes an
asymptotic constant value; this is caused by the fact that its
numerator and denominator both tend to zero values with
the ratio approaching a constant number.
In Fig. 2, we show the dependence of T0 and TBH on the

number of extra dimensions n, for two different fixed
values of the cosmological constant, Λ ¼ 0.1 and Λ ¼ 0.8

(a) (b)

FIG. 1. Temperatures for a (4þ n)-dimensional Schwarzschild–de Sitter black hole as a function of the cosmological constant Λ, for
(a) n ¼ 2 and (b) n ¼ 5.

1Although this is very difficult to prove analytically for
arbitrary n, we may easily confirm it for special values of n:
for n ¼ 0, the Nariai limit is reached when M2Λ ¼ 1=9 and then
r2h ¼ 1=Λ; for n ¼ 1, the two horizons coincide when μ ~Λ ¼ 1=4
and then r2h ¼ 1=ð2 ~ΛÞ. In both cases, we may easily see that
Eq. (11) vanishes. For higher values of n, the vanishing of
Eq. (11) may be easily confirmed numerically.
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(we have set κ2D ¼ 1 for simplicity; therefore Λ is given in
units of r−2h ). We observe again that the “normalized”
temperature TBH remains always larger than the “bare” one
T0; however, this dominance gets softer as n increases, and
almost disappears for small values of Λ.
The temperature of a black hole is one of the important

factors that determine the Hawking radiation emission
spectra. Only a handful of works exist in the literature
that study the emission of Hawking radiation from a
Schwarzschild–de Sitter black hole, either four-dimensional
or higher-dimensional, and these use both definitions of its
temperature, Eq. (11) [41,81] or Eq. (13) [38,40,43], at
will. In addition, during the recent years, the notion of the
effective temperature of the Schwarzschild–de Sitter
spacetime has emerged, that involves both temperatures
T0 and Tc, in an attempt to unify the thermodynamical
description of this spacetime. In the most popular of the
analyses, a thermodynamical first law for a Schwarzschild–
de Sitter black hole is written in which the black-hole mass
plays the role of the enthalpy of the system (M ¼ −H), and

the cosmological constant that of the pressure (P ¼ Λ=8π),
while the entropy is the sum of the entropies of the two
horizons (S ¼ Sh þ Sc) [52–57]. In this picture, an effec-
tive temperature emerges that has the form

Teff− ¼
�
1

Tc
−

1

T0

�
−1

¼ T0Tc

T0 − Tc
: ð16Þ

The above expression was obtained for the case of a four-
dimensional Schwarzschild–de Sitter black hole. However,
the arguments leading to the formulation of the aforemen-
tioned first thermodynamical law had no explicit depend-
ence on the dimensionality of spacetime. Therefore, we
expect that the functional form of the effective temperature
Teff− for the case of a (4þ n)-dimensional Schwarzschild–
de Sitter black hole will still be given by Eq. (16), but with
the individual temperatures T0 and Tc, now assuming their
higher-dimensional forms, Eqs. (11) and (12). Then, the
explicit form of Teff− in D ¼ 4þ n dimensions will be the
following:

Teff− ¼ −
1

4π

ðnþ 1Þ2 − ðnþ 1Þðnþ 3Þ ~Λðr2h þ r2cÞ þ ðnþ 3Þ2 ~Λ2r2hr
2
c

ðrh þ rcÞ½ðnþ 1Þ − ðnþ 3Þ ~Λrhrc�
: ð17Þ

In the limit rh → 0, the above expression for the effective
temperature reduces to that of the cosmological horizon Tc,
as expected. However, the limit rc → ∞ (or, equivalently,
~Λ → 0) leads to a vanishing result: the effective temper-
ature does not interpolate between the black-hole temper-
ature T0 and the cosmological one Tc, as one may have
expected; in fact, the limitΛ → 0 is a particular one, since it
is equivalent to a vanishing pressure of the system, that in
the relevant analyses is always assumed to be positive. That
is, by construction, Teff− is valid for a nonvanishing
cosmological constant—but this is exactly the regime

where the need for an effective temperature really emerges,
since, in the limit of small Λ, the horizons rh and rc are
located so far away from each other that the independent
thermodynamics at the two horizons do indeed hold.
In Figs. 1 and 2, we depict also the behavior of Teff− in

terms of the value of the cosmological constant Λ and the
number of extra dimensions n, respectively. The effective
temperature Teff− is an increasing function of Λ, and,
similarly to the case of the normalized temperature TBH, it
assumes a nonvanishing constant value at the critical
limit—as in the case of TBH, the numerator and denominator

(a) (b)

FIG. 2. Temperatures for a (4þ n)-dimensional Schwarzschild–de Sitter black hole as a function of the number of extra dimensions n,
for (a) Λ ¼ 0.1 and (b) Λ ¼ 0.8.
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of Eq. (16) both go to zero with their ratio tending to a
constant number. On the contrary, Teff− is a decreasing
function of the number of extra dimensions n.
The effective temperature Teff− was found to exhibit

some unphysical properties, especially in the case of
charged de Sitter black holes where the aforementioned
expression may take on negative values or exhibit infinite
jumps at the critical point. For this reason, in Ref. [57] (see
also Ref. [52]), a new expression for the effective temper-
ature of a Schwarzschild–de Sitter spacetime was proposed,
namely the following:

Teffþ ¼
�
1

Tc
þ 1

T0

�
−1

¼ T0Tc

T0 þ Tc
: ð18Þ

The above proposal was characterized as an ad hoc one,
that would follow from an analysis similar to that leading
to Teff−, in which the entropy of the system would be
the difference of the entropies of the two horizons,
i.e. S ¼ Sc − Sh, instead of their sum. In the higher-
dimensional case, the aforementioned alternative effective
temperature has the explicit form

Teffþ ¼ 1

4π

ðnþ 1Þ2 − ðnþ 1Þðnþ 3Þ ~Λðr2h þ r2cÞ þ ðnþ 3Þ2 ~Λ2r2hr
2
c

ðrh − rcÞ½ðnþ 1Þ þ ðnþ 3Þ ~Λrhrc�
: ð19Þ

In the limit rh → 0, Teffþ reduces again to Tc. When
Λ → 0, it also exhibits the same behavior as Teff− by going
to zero. However, near the critical point, Teffþ has a distinct
behavior as it vanishes instead of taking a constant value.
This is in accordance with Eq. (18), where the numerator
clearly approaches zero faster than the denominator. It is
perhaps the vanishing of Teffþ near the critical point that
helps to avoid the infinite jumps and makes this alternative
effective temperature more physically acceptable. The
complete behavior of Teffþ in terms of the cosmological
constant is depicted in Fig. 1; its decreasing behavior in
terms of n is also shown in Fig. 2.
Inspired by the above analysis, here we propose a third,

alternative form for the effective temperature of a

Schwarzschild–de Sitter spacetime. Its functional form is
the following:

TeffBH ¼
�
1

Tc
−

1

TBH

�
−1

¼ TBHTc

TBH − Tc
; ð20Þ

and it matches the form of Teff−, but with the normalized
black-hole temperature TBH in the place of the bare one T0.
Our proposal may be considered as an equally ad hoc one
compared to that of Eq. (18); however, TeffBH would follow
from exactly the same analysis that gave rise to Teff− (with
S ¼ Sh þ Sc), with the only difference being the consider-
ation that the “correct” black-hole temperature, due to the
absence of asymptotic flatness, is TBH instead of T0. Its
explicit form in a spacetime with D ¼ 4þ n dimensions is

TeffBH ¼ −
1

4π

ðnþ 1Þ2 − ðnþ 1Þðnþ 3Þ ~Λðr2h þ r2cÞ þ ðnþ 3Þ2 ~Λ2r2hr
2
c

ðrh
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p þ rcÞ½ðnþ 1Þ − ðnþ 3Þ ~Λrhrc�
: ð21Þ

The above definition shares many characteristics with the
effective temperatureTeff−: it also reduces toTcwhen rh → 0,
and it vanishes in the limitΛ → 0. But it also exhibits the same
attractive behavior near the critical point as Teffþ by going to
zero; this is due to the fact that, as we approach the critical
point, TBH in Eq. (20) is a constant while Tc vanishes. The
complete profile of TeffBH as a function of the cosmological
constant is depicted in Fig. 1, while its similar behavior in
terms of n, compared to the other effective temperatures, is
shown in Fig. 2. Observing Fig. 1, it is interesting to note that
TeffBH matchesTeff− over an extended low-Λ regime, and then
coincides with T0 in the high-Λ regime.2

III. HAWKING RADIATION FOR MINIMALLY
COUPLED SCALAR FIELDS

In the previous section, we examined in detail the cha-
racteristics of two temperatures for the Schwarzschild–de
Sitter black hole, the bare temperature T0 and the normal-
ized one TBH as well as three effective temperatures for the
Schwarzschild–de Sitter spacetime, Teff−, Teffþ, and TeffBH,
to which the SdS black hole belongs. In this section, we
proceed to derive and compare the radiation spectra for
scalar fields emitted by the SdS black hole, for each one of
the aforementioned five temperatures.
Our analysis will focus on the higher-dimensional case

and will present radiation spectra for scalar fields emitted
both on the brane and in the bulk. To this end, we also need
the greybody factor for brane and bulk scalar fields
propagating in the SdS background. These have been
derived analytically, in the limit of a small cosmological
constant, in Ref. [42] and numerically, for arbitrary values

2One may wonder whether an alternative effective tempera-
ture could be defined along the lines of Eq. (20) but with a
normalized temperature for the cosmological horizon too, i.e.
TcBH ¼ Tc=

ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
. As one may see, such a temperature would

have a similar behavior to Teff− in the small-Λ regime but would
have an ill-defined behavior near the critical pointwhere it diverges.
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of Λ, in Ref. [43]. Since here we are interested in deriving
the form of the spectra for the complete range of Λ,
we will use the exact results derived in Ref. [43]. For
the sake of completeness, we will briefly review the method
for calculating the scalar greybody factors in a SdS
spacetime—for more information, interested readers may
consult Ref. [43].
We will start from the emission of scalar fields on the

brane. The equation of motion of a free, massless scalar
field minimally coupled to gravity and propagating in the
brane background (7) has the form

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νΦ

�
¼ 0: ð22Þ

If we assume a factorized ansatz for the field, i.e.
Φðt; r; θ;φÞ ¼ e−iωtRðrÞYðθ;φÞ, where Yðθ;φÞ are the
usual scalar spherical harmonics, we obtain a radial
equation for the function RðrÞ of the form:

1

r2
d
dr

�
hr2

dR
dr

�
þ
�
ω2

h
−
lðlþ 1Þ

r2

�
R ¼ 0: ð23Þ

As was shown in Ref. [43], in the near-horizon regime,
the above equation takes the form of a hypergeometric
equation. Its solution, when expanded in the limit r → rh,
takes the form of an ingoing free wave, namely

RBH ≃ A1fα1 ¼ A1e−iðωrh=AhÞ ln f; ð24Þ

where AðrÞ ¼ ðnþ 1Þ − ðnþ 3Þ ~Λr2 and Ah ¼ Aðr ¼ rhÞ.
Also, f is a new radial variable defined through the relation

r → fðrÞ ¼ hðrÞ
1 − ~Λr2

: ð25Þ

For simplicity, we may appropriately choose the arbitrary
constant A1 so that

RBHðrhÞ ¼ 1: ð26Þ

The above expression serves as a boundary condition for
the numerical integration of Eq. (23). The second boundary
condition comes from the near-horizon value of the
first derivative of the radial function (24), for which we
obtain [43]

dRBH

dr

				
rh

≃ −
iω
hðrÞ : ð27Þ

Near the cosmological horizon, the radial equation (23)
again takes the form of a hypergeometric differential
equation whose general solution, in the limits r → rc
and f → 0, is written as [42,43]

RC ≃ B1e−iðωrc=AcÞ ln f þ B2eiðωrc=AcÞ ln f: ð28Þ

In the above, Ac ¼ Aðr ¼ rcÞ and B1;2 are the amplitudes
of the ingoing and outgoing free waves. Then, the greybody
factor, or equivalently the transmission probability, for the
scalar field is given by

jAj2 ¼ 1 −
				B2

B1

				
2

: ð29Þ

The B1;2 amplitudes are found by integrating numerically
Eq. (23), starting close to the black-hole horizon, i.e. from
r ¼ rh þ ϵ, where ϵ ¼ 10−6–10−4, and proceeding towards
the cosmological horizon (again, for more information on
this, see Ref. [43]). The exact numerical analysis demon-
strated that for a minimally coupled, massless scalar field
propagating on the brane, the greybody factor is enhanced
over the whole energy regime as the cosmological constant
Λ increases.
Having at our disposal the exact values of the greybody

factor jAj2, we may now proceed to derive the differential
energy emission rate for brane scalars. This is given by the
expression [3,18,38]

d2E
dtdω

¼ 1

2π

X
l

NljAj2ω
expðω=TÞ − 1

; ð30Þ

where ω is the energy of the emitted particle, and Nl ¼
2lþ 1 the multiplicity of states that, due to the spherical
symmetry, have the same angular-momentum number [82].
Also, T is the temperature of the black hole—this will be
taken to be equal to T0, TBH, Teff−, Teffþ and TeffBH in order
to derive the corresponding radiation spectra. As was
demonstrated in Ref. [43], the dominant modes of the
scalar field are the ones with the lowest values of l—in fact,
all modes higher than the l ¼ 7 mode have negligible
contributions to the total emission rate.
In Fig. 3, we depict the differential energy emission rates

for a higher-dimensional Schwarzschild–de Sitter black
hole for the case of n ¼ 2 and for four different values of
the bulk cosmological constant (Λ ¼ 0.8, 2, 4, 5). For the
first small value of Λ, all the effective temperatures have an
almost vanishing value; therefore, the corresponding spec-
tra are significantly suppressed—it is the two black-hole
temperatures, T0 and TBH, that lead to significant emission
rates, with the latter dominating over the former in
accordance to the behavior presented in Fig. 1. As Λ
increases to the value of 2, the effective temperatures, and
their corresponding spectra, start becoming important; at
the same time, the emission spectrum for the bare temper-
ature T0 is suppressed, whereas the one for the normalized
TBH is enhanced. For Λ ¼ 4 and 5, finally, the radiation
spectrum for TBH is further enhanced, while the one for
Teff− has also become important—it is these two temper-
atures that tend to a constant, nonvanishing value at the
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critical limit; on the contrary, all three remaining temper-
atures, T0, Teffþ, and TeffBH, tend to zero, thus causing a
suppression to the corresponding spectra.
Let us also note that the traditional shape of the energy

emission curves—starting from zero and reaching a maxi-
mum value before vanishing again—is severely distorted.
The presence of the cosmological constant leads to a
nonvanishing asymptotic value of the greybody factor in
the limit ω → 0 [38,39,41–43] given by

jA2j ¼ 4r2hr
2
c

ðr2c þ r2hÞ2
þOðωÞ: ð31Þ

The above holds for the case of minimally coupled,
massless scalar fields propagating in the brane background,
and it leads to a significant emission rate of extremely soft,
low-energetic particles—this feature is evident in all plots
of Fig. 3. In addition, when the temperature employed has a
small value, like the effective temperatures in the low- and
intermediate-Λ regimes or T0, Teffþ, and TeffBH near the
critical limit, the emission curve never reaches a maximum
at an energy larger than zero; rather, it exhibits only the
“tail” and monotonically decreases towards zero.
The case of an even higher-dimensional Schwarzschild–

de Sitter black hole with n ¼ 5 is shown in Fig. 4. A similar
behavior to the one presented in the case of n ¼ 2 is also
observed here: for low values of Λ, the radiation spectra for
all effective temperatures are suppressed; as Λ increases,

they get moderately enhanced, while for large values of Λ
only the one for Teff− takes up significant values. The
radiation spectrum for the bare temperature T0 starts at its
highest values for small Λ and is constantly suppressed
as the value of the cosmological constant increases. The
radiation spectrum for the normalized black-hole temper-
ature TBH is the one that dominates over the whole Λ
regime—even in the high-Λ regime, where TBH is sup-
pressed with Λ according to Fig. 1(b), the compensating
enhancement of the greybody factor [43] causes the overall
increase of the differential energy emission rate.
Let us also study the emission of scalar fields from a

higher-dimensional Schwarzschild–de Sitter black hole in
the bulk. The equation of motion of a free, massless field
propagating in the bulk is also given by the covariant
equation (22), but with the projected metric tensor gμν of
Eq. (7) being replaced by the higher-dimensional one GMN
given in Eq. (3). Assuming again a factorized form
Φðt; r; θi;φÞ ¼ e−iωtRðrÞ ~Yðθi;φÞ, where ~Yðθi;φÞ are the
hyperspherical harmonics [83], we obtain the following
radial equation [42]:

1

rnþ2

d
dr

�
hrnþ2

dR
dr

�
þ
�
ω2

h
−
lðlþ nþ 1Þ

r2

�
R ¼ 0: ð32Þ

The above differential equation may be again analytically
solved for small Λ [42], but for the purpose of comparing
the radiation spectra over the entire Λ regime, we turn again

(a) (b)

(c) (d)

FIG. 3. Energy emission rates for scalar fields on the brane from a six-dimensional (n ¼ 2) Schwarzschild–de Sitter black hole for
different temperatures T, and for (a) Λ ¼ 0.8, (b) Λ ¼ 2, (c) Λ ¼ 4, and (d) Λ ¼ 5 (in units of r−2h ).
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to numerical integration. This has been performed in
Ref. [43] by following an analysis similar to the one for
brane scalar fields. The asymptotic solutions of Eq. (32)
near the black-hole and cosmological horizons take similar
forms to the brane ones, with their expanded forms (24)
and (28) being identical. The same boundary conditions
(26) and (27) were used for the numerical integration from
the black-hole to the cosmological horizon. The exact value
of the greybody factor for bulk scalar fields, for arbitrary
values of the particle and spacetime parameters, was again
derived via Eq. (29), and found to be an increasing function
of the bulk cosmological constant.
In Fig. 5, we display the differential energy emission

rates for bulk scalar fields emitted by a six-dimensional
(n ¼ 2) SdS black hole, and for four different values of the
cosmological constant. Similarly to the behavior observed
in the case of brane emission, the radiation spectrum for the
normalized temperature TBH is the one that dominates and
gets enhanced as Λ increases, under the combined effect of
the temperature and greybody profiles. The spectrum for
the bare temperature T0, starting from significant values for
low Λ, is again monotonically suppressed as Λ increases,
approaching its maximum critical value. The spectra for all
effective temperatures start from extremely low values, and
only the one for Teff− manages to reach non-negligible
values—this takes place only near the critical limit where
Teff− acquires a constant value. If we allow for a larger

value of the number of extra dimensions, i.e. n ¼ 5, the
general behavior of the emission curves remains the same,
as can be seen from the plots in Fig. 6, drawn for four
different values of the cosmological constant. Here, the
additional suppression of all effective temperatures with n
even more keeps the corresponding radiation spectra at low
values.
Also in the bulk, all emission curves tend to a non-

vanishing value in the limit ω → 0. This is again due to the
nonzero asymptotic value of the greybody factor in the very
low-energy regime. However, this value for bulk emission
is [38]

jA2j ¼ 4ðrhrcÞðnþ2Þ

ðrnþ2
c þ rnþ2

h Þ2 þOðωÞ: ð33Þ

The above expression is suppressed with the number of
extra dimensions n, and this is the reason why this feature is
more difficult to discern in the nine-dimensional emission
curves of Fig. 6 compared to the six-dimensional ones of
Fig. 5—it is nevertheless visible in the zoom-in plots that
have been added in Fig. 6.
The numerical analysis performed in the context of

the present work serves not only as a comparison of the
radiation emission curves when different expressions for
the temperature of the SdS spacetime are used, but also as

(a) (b)

(c) (d)

FIG. 4. Energy emission rates for scalar fields on the brane from a nine-dimensional (n ¼ 5) Schwarzschild–de Sitter black hole for
different temperatures T, and for (a) Λ ¼ 4, (b) Λ ¼ 10, (c) Λ ¼ 16, and (d) Λ ¼ 18 (in units of r−2h ).
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(a) (b)

(c) (d)

FIG. 6. Energy emission rates for scalar fields in the bulk from a nine-dimensional (n ¼ 5) Schwarzschild–de Sitter black hole for
different temperatures T, and for (a) Λ ¼ 4, (b) Λ ¼ 10, (c) Λ ¼ 13, and (d) Λ ¼ 18 (in units of r−2h ).

(a) (b)

(c) (d)

FIG. 5. Energy emission rates for scalar fields in the bulk from a six-dimensional (n ¼ 2) Schwarzschild–de Sitter black hole for
different temperatures T, and for (a) Λ ¼ 0.8, (b) Λ ¼ 2, (c) Λ ¼ 4, and (d) Λ ¼ 5 (in units of r−2h ).
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an extension to the previous results obtained in Ref. [43]
where the normalized temperature TBH was employed.
There, exact results for the radiation spectra were produced,
but the range of values of the cosmological constant was
much more restricted, i.e. Λ ∈ ½0.01; 0.3�; therefore, the
regime of large values of Λ, including the critical limit, was
never studied. Here, we have performed a thorough
analysis of the Λ regime for all different temperatures,
and thus we have the complete picture of how the
corresponding radiation spectra behave as a function of
the value of the cosmological constant.
Overall, after having performed both the brane and the

bulk analysis, we may conclude that it is the black-hole
temperatures T0 and TBH that lead to Hawking radiation
emission curves with the typical shape—i.e., starting from
a low value in the low-energy regime, rising to a maximum
height, and then slowly dying out in the high-energy
regime. In fact, even the T0 spectrum loses this typical
shape as Λ increases. Of the effective temperatures, only
Teff− manages to mimic this behavior, and does so only
close to the critical limit.
If we focus on the most typical radiation spectra, i.e. the

ones derived for the normalized temperature TBH, we could
comment on some additional features that emerge from the
more thorough study, in terms of the Λ regime, performed
in the present work. Our current results have confirmed the
enhancement of the corresponding radiation spectra in
terms of both the number of extra dimensions n and the
value of the cosmological constant, as found in Ref. [43].
As Λ increases, the nonzero asymptotic value of each curve
in the limit ω → 0 is enhanced, thus increasing the
probability of the emission of very low-energy particles.
In addition, for large values of n, as Λ increases, all
emission curves, for brane and bulk propagation alike,
show a significant shift of the peak of the curves towards
the lower part of the spectrum. Therefore, we may conclude
that the presence of a cosmological constant gives a
significant boost to both low- and intermediate-energy
free, massless scalar particles, and it does so more effec-
tively the larger the number of extra dimensions is.
Finally, in Ref. [43], it was found that for Λ in the regime

[0.01, 0.3], the brane emission channel for free, massless
scalar fields is always dominant compared to the bulk
channel. Here, we observe that for larger values of Λ the
situation is radically changed: even for small values of n,
i.e. n ¼ 2, the comparison of the vertical axes of the plots of
Figs. 3 and 5 reveals that the bulk emission curve has
surpassed, by a factor of 2, the brane one, for values of Λ
larger than 4. As the dimensionality of spacetime increases,
the bulk dominance becomes more important: for n ¼ 5,
the comparison of the vertical axes of the plots of Figs. 4
and 6 now tells us that the bulk dominates over the brane for
values of Λ > 10, i.e., for more than half the allowed
regime of values of the cosmological constant, by a factor
that ranges between 3 and 20.

IV. HAWKING RADIATION SPECTRA FOR
NONMINIMALLY COUPLED SCALAR FIELDS

In this section, we will consider the case of scalar
particles propagating either on the brane or in the bulk
and having a nonminimal coupling to gravity. This cou-
pling is realized through a quadratic function ξΦ2, where ξ
is a constant, multiplying the appropriate scalar curvature
(with the value ξ ¼ 0 corresponding to the minimal
coupling). The reason for studying such a theory is twofold:
First, the presence of the nonminimal coupling acts as an
effective mass term for the scalar field; therefore the effect
of the mass on the radiation spectra may thus be studied.
Second, for large values of the coupling constant ξ, it has
been found that the enhancement of the radiation spectra
with the cosmological constant—for the normalized tem-
perature TBH, which was also evident in the results of the
previous section—changes to a suppression in the low-
energy and intermediate-energy regimes [43]. It would thus
be interesting to see what the effect of the nonminimal
coupling would be on the radiation spectra over the
complete Λ regime and for different temperatures.
For a scalar field propagating in the bulk, its higher-

dimensional action would read

SΦ ¼ −
1

2

Z
d4þnx

ffiffiffiffiffiffiffi
−G

p
½ξΦ2RD þ ∂MΦ∂MΦ�; ð34Þ

where GMN is again the higher-dimensional metric tensor
defined in Eq. (3), and RD is the corresponding curvature
given by the expression

RD ¼ 2ðnþ 4Þ
nþ 2

κ2DΛ ð35Þ

in terms of the bulk cosmological constant. The equation of
motion of the bulk scalar field now reads

1ffiffiffiffiffiffiffi
−G

p ∂M

� ffiffiffiffiffiffiffi
−G

p
GMN∂NΦ

�
¼ ξRDΦ; ð36Þ

or, more explicitly,

1

rnþ2

d
dr

�
hrnþ2

dR
dr

�
þ
�
ω2

h
−
lðlþ nþ 1Þ

r2
− ξRD

�
R ¼ 0:

ð37Þ

In the above we have decoupled the radial part of the
equation by considering the same factorized ansatz, namely
Φðt;r;θi;φÞ¼ e−iωtRðrÞ ~Yðθi;φÞ, as in the previous section.
The action functional for a scalar field propagating on

the brane background and having also a quadratic, non-
minimal coupling to the scalar curvature will have a form
similar to Eq. (34). However, now the metric tensor GMN
will be replaced by the projected-on-the-brane one gμν
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given in Eq. (7), and the higher-dimensional Ricci scalar
RD by the four-dimensional one R4 that is found to be [42]

R4 ¼
24κ2DΛ

ðnþ 2Þðnþ 3Þ þ
nðn − 1Þμ

rnþ3
: ð38Þ

The equation for the radial part of the brane-localized,
nonminimally coupled scalar field then follows from
Eq. (37) by setting n ¼ 0 and changing RD with R4, and
it reads

1

r2
d
dr

�
hr2

dR
dr

�
þ
�
ω2

h
−
lðlþ 1Þ

r2
− ξR4

�
R ¼ 0: ð39Þ

Both equations (37) and (39) were solved analytically in
Ref. [42] and numerically in Ref. [43]. As it is clear from
both equations, the nonminimal coupling term acts as an
effective mass term; therefore, any increase in the coupling
function ξ causes a suppression to the radiation spectra, in
accordance with previous studies of massive scalar fields
[84–87]. In addition, in Ref. [43], it was found that as ξ
exceeds the value of approximately 0.3, any increase in the
value of the cosmological constant causes a suppression in
the low and intermediate parts of the spectrum.
In the light of the above, here we will consider a value for

the nonminimal coupling constant well beyond that critical
value—namely, we will choose ξ ¼ 1. We will also study

the complete Λ regime and compute the radiation spectra
for all five temperatures: T0, TBH, Teff−, Teffþ, and TeffBH.
We will use again the exact numerical results for the brane
and bulk greybody factors, that follow from an analysis
identical to that in the minimal-coupling case—although
the coupling constant ξ modifies the form of the effective
potentials that the brane and bulk scalar fields have to
overcome to reach infinity [42], it has no effect in the
asymptotic regimes of the two horizons; therefore, the
asymptotic solutions (24) and (28) as well as the boundary
conditions (26) and (27) remain the same.
Starting from the emission of nonminimally coupled

scalar fields on the brane, in Fig. 7 we depict the differential
energy emission rates for a six-dimensional SdS black hole,
and for the values Λ ¼ 2, 2.8, 4, and 5 of the bulk
cosmological constant. We first note that, in the presence
of ξ, the emission curves have returned to their typical
shape: as was found in Refs. [41,42], and confirmed also
here, the nonminimal coupling destroys the nonzero
asymptotic limit of the scalar greybody factor in the
low-energy limit; as a result, all emission curves emanate
from zero in the low-energy regime. Moreover, the larger
the value of ξ, the later in terms of ω the emission curves
rise above the zero value, in accordance with the effect that
the mass of the scalar particle has on the spectra [86,87].
Also, by comparing the vertical axes of Figs. 3(b) and 3(c)
with those of Figs. 7(a) and 7(c), respectively, we observe
that the radiation spectra in the nonminimal case are indeed

(a) (b)

(c) (d)

FIG. 7. Energy emission rates for nonminimally coupled brane scalar fields, with ξ ¼ 1, from a six-dimensional (n ¼ 2) SdS black
hole for different temperatures T, and for (a) Λ ¼ 2, (b) Λ ¼ 2.8, (c) Λ ¼ 4, and (d) Λ ¼ 5 (in units of r−2h ).
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significantly suppressed, in accordance with the previous
discussion.
This suppression is due to the fact that the greybody

factors for both brane and bulk scalar fields decrease with
any increase in the nonminimal coupling constant ξ, and
therefore are common to the radiation spectra for the
different temperatures. As a result, the inclusion of the
nonminimal coupling does not modify the general picture
drawn in the previous section. However, some of the
radiation spectra are more sensitive to the changes brought
by the presence of the nonminimal coupling. For example,
in Fig. 3, drawn for the minimal-coupling case, we observe
that, for the three effective temperatures and T0, the
maxima of all emission curves are located at the very
low-energy limit; the relatively small magnitude of these
temperatures, compared to that of TBH, combined with the
enhanced value of the greybody factor for ultrasoft par-
ticles, makes the emission of low-energetic particles much
more favorable for the black hole. When the nonminimal
coupling is introduced, the emission of soft particles
becomes disfavored, and the radiation spectra for the
aforementioned four temperatures are significantly sup-
pressed. The radiation spectrum for the normalized temper-
ature TBH is also suppressed; however, its relatively large
value allows also for the significant emission of higher-
energetic particles, and these are not significantly affected
by the nonminimal coupling. As a result, the relative

enhancement of the TBH radiation spectrum compared
to the remaining ones is extended by the nonminimal
coupling. As the critical limit is approached, only the
Teff− spectrum manages again to reach comparable values
due to its asymptotic, nonzero value in that regime.
A similar behavior is observed also in the case where the

number of extra dimensions takes larger values. We have
performed the same analysis for n ¼ 5, and found that all
emission curves for nonminimally coupled brane scalar
fields return again to their typical shape and thus have the
emission of low-energy particles suppressed. For small
values of Λ, and due to the enhancement with n that
characterizes both T0 and TBH (see Fig. 2), the difference in
the corresponding two radiation spectra is smaller com-
pared to the case with n ¼ 2. As Λ increases, however, the
T0 radiation spectrum is constantly suppressed, reaching a
negligible value at the critical limit. Of the effective
temperature, only Teff− manages to support a relatively
significant spectrum, and that is realized very close to the
critical limit.
We now turn to the case of the emission of nonminimally

coupled scalar fields emitted in the bulk. The radiation
spectra for the different temperatures and for the case with
n ¼ 2 are now depicted in Fig. 8, again for the value ξ ¼ 1
and for the same four values of the cosmological constant.
A similar picture emerges also here: the T0 radiation
spectrum is significant only in the low-Λ regime, and

(a) (b)

(c) (d)

FIG. 8. Energy emission rates for nonminimally coupled bulk scalar fields, with ξ ¼ 1, from a six-dimensional (n ¼ 2) SdS black hole
for different temperatures T, and for (a) Λ ¼ 2, (b) Λ ¼ 2.8, (c) Λ ¼ 4, and (d) Λ ¼ 5 (in units of r−2h ).
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Teff− becomes important near the critical limit, while the
other two radiation spectra, for Teffþ and TeffBH, fail to
acquire any significant value in anyΛ regime. The radiation
spectrum for TBH is the one that dominates over the whole
energy regime and for the entire Λ range. The same
behavior is observed also for n ¼ 5.
Let us finally note that the dominance of the bulk

emission channel in the large-Λ regime [43] is confirmed
also in the case of nonminimal coupling and even for
models with a small number of extra dimensions. As the
comparison of the vertical axes of Figs. 7 and 8 reveals, the
differential energy emission rate in the bulk exceeds that
on the brane as soon as Λ becomes approximately larger
than 3, and it stays dominant for the remaining half of the
allowed range.

V. BULK-OVER-BRANE RELATIVE
EMISSIVITIES

A final question that we would like to address in this
section is that of the effect of the different temperatures on
the total emissivities in the bulk and on the brane, and more
particularly on the bulk-over-brane emissivity ratio. In our
previous work [43], we calculated the total power emitted
by the SdS black hole over the whole frequency range in
both the brane and bulk channels by employing the Bousso-
Hawking TBH normalization for the temperature. Here, we
generalize this analysis to cover all five temperatures—T0,
TBH, Teff−, Teffþ, and TeffBH—and compare the corre-
sponding results. We also extend our previous study by
considering the whole range of values for the bulk
cosmological constant, from a vanishing value up to its
critical limit.
The quantity of interest, namely the ratio of the total

power emitted in the bulk over the corresponding total
power on the brane, for the case with n ¼ 2 and for four
different values of the coupling constant ξ—i.e., ξ ¼ 0, 0.5,
1, 2—is presented in Tables I–IV. The five columns of each
table give the total ratio for five values of the cosmological
constant that span the entire allowed range: i.e., for
Λ ¼ 0.3, 1, 2, 4, 5. Let us see first how the change in
the value of Λ affects our results. For small values of Λ, and
independently of the value of ξ, the brane emission channel
clearly dominates over the bulk one; however, as Λ
increases, the bulk emission channel gradually becomes
more and more important. This is due to the fact that for an
increasing cosmological constant, the bulk emission curves
move to the right, thus allowing for the emission of a larger
number of high-energetic particles compared to that on the
brane, but also, the maximum height of the bulk curves
soon overtakes that of the brane curves by a factor of 3. For
the TBH and Teff− temperatures, which retain a significant
value near the critical limit, the bulk-over-brane ratio well
exceeds unity, thus rendering the bulk channel the dom-
inant one in the emission process of the black hole—the
tendency of TBH to overturn the power ratio in favor of the

bulk channel was already anticipated by the results of
Ref. [43]. The only exception to the above behavior is the
one exhibited by the bare temperature T0: the enhance-
ment of the bulk-over-brane ratio with Λ is observed only
in the case of minimal coupling, whereas this ratio
decreases for all values ξ ≠ 0, as Λ increases towards
its critical value. We may interpret this as the result of
the disappearance of the low-energy modes as soon as
the coupling constant ξ takes a nonvanishing value: the
emission curves for T0 have their maxima in the low-energy
regime and are thus mostly affected when these are banned
from the emission spectrum—according to our results, this

TABLE I. Bulk-over-brane total emissivity for n ¼ 2 and
ξ ¼ 0.

Λ → 0.3 1 2 4 5

T0 0.259 268 0.304 247 0.402 190 0.663 547 0.781 833
TBH 0.338 245 0.506 324 0.798 603 1.929 660 3.247 190
Teff− 0.032 997 0.132 329 0.319 508 0.860 880 2.071 590
Teffþ 0.032 507 0.125 599 0.298 895 0.717 772 0.884 068
TeffBH 0.032 950 0.130 510 0.309 000 0.669 669 0.792 598

TABLE II. Bulk-over-brane total emissivity for n ¼ 2 and
ξ ¼ 0.5.

Λ → 0.3 1 2 4 5

T0 0.281 627 0.220 836 0.160 691 0.089 933 0.067 954
TBH 0.369 359 0.450 873 0.629 061 1.617 200 2.962 410
Teff− 0.003 762 0.012 441 0.038 311 0.432 708 1.710 000
Teffþ 0.003 424 0.008 841 0.014 009 0.019 979 0.021 436
TeffBH 0.003 725 0.011 167 0.022 578 0.046 074 0.052 124

TABLE III. Bulk-over-brane total emissivity for n ¼ 2 and
ξ ¼ 1.

Λ → 0.3 1 2 4 5

T0 0.286 455 0.165 240 0.089 413 0.032 550 0.020 609
TBH 0.380 420 0.387 464 0.500 779 1.364 060 2.704 060
Teff− 0.001 233 0.003 214 0.011 410 0.279 735 1.433 260
Teffþ 0.001 140 0.002 529 0.003 787 0.005 227 0.005 582
TeffBH 0.001 222 0.002 907 0.005 497 0.012 099 0.013 918

TABLE IV. Bulk-over-brane total emissivity for n ¼ 2 and
ξ ¼ 2.

Λ → 0.3 1 2 4 5

T0 0.280 978 0.099 559 0.035 998 0.007 446 0.003 698
TBH 0.382 963 0.287 373 0.331 984 1.002 190 2.289 020
Teff− 0.000 222 0.000 471 0.001 935 0.138 896 1.045 890
Teffþ 0.000 216 0.000 410 0.000 580 0.000 778 0.000 828
TeffBH 0.000 221 0.000 438 0.000 738 0.001 767 0.002 089
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change affects the bulk channel more than the brane one,
causing the suppression of the bulk-over-brane ratio.
If we now turn our attention to the role of the non-

minimal coupling constant ξ in the value of the bulk-
over-brane ratio, we find that the overall behavior is a
suppression of this quantity as ξ increases. This behavior
holds for almost all values of the cosmological constant
apart from the lower part of its allowed regime where, in
contrast, the bulk-over-brane ratio exhibits an enhancement
without, however, exceeding unity. On the other hand,
despite the suppression with ξ, the bulk-over-brane ratio
retains values above unity when Λ tends to its critical limit.
When we increase the number of the extra dimensions,

all the above effects become amplified. In Tables V–VIII,

we display the value of the bulk-over-brane ratio for the
case with n ¼ 5, for the same four values of the non-
minimal coupling constant ξ and for five indicative values
of the bulk cosmological constant, i.e.Λ ¼ 1, 4, 10, 13, and
18, that again span the entire allowed regime. The domi-
nance of the bulk channel over the brane one for TBH and
Teff−, as Λ approaches its critical limit, is now much more
prominent, with the overall energy emitted in the bulk
surpassing the one emitted on the brane by a factor even
larger than 10. The suppression of the energy ratio as ξ
increases is also obvious here, but again this suppression
does not prevent the bulk from becoming the dominant
channel at the critical limit. What is different in this case
from the n ¼ 2 case is that the enhancement with ξ for

TABLE VII. Bulk-over-brane total emissivity for n ¼ 5 and ξ ¼ 1.

Λ → 1 4 10 13 18

T0 0.664 875 0.248 447 0.040 067 0.015 499 0.002 610
TBH 0.890 165 0.778 299 1.195 190 2.049 140 9.026 680
Teff− 3.679 × 10ð−7Þ 0.000 007 0.000 200 0.003 575 1.293 840
Teffþ 3.956 × 10ð−7Þ 0.000 006 0.000 054 0.000 095 0.000 164
TeffBH 3.683 × 10ð−7Þ 0.000 007 0.000 080 0.000 187 0.000 616

TABLE VIII. Bulk-over-brane total emissivity for n ¼ 5 and ξ ¼ 2.

Λ → 1 4 10 13 18

T0 1.162 700 0.179 527 0.009 087 0.002 170 0.000 160
TBH 1.509 360 0.632 852 0.585 960 1.010 350 6.207 500
Teff− 0.000 274 1.054 × 10ð−6Þ 6.508 × 10ð−6Þ 0.000 305 0.514 108
Teffþ 0.000 299 1.653 × 10ð−6Þ 1.827 × 10ð−6Þ 3.402 × 10ð−6Þ 6.292 × 10ð−6Þ
TeffBH 0.000 275 1.033 × 10ð−6Þ 2.328 × 10ð−6Þ 5.573 × 10ð−6Þ 0.000 022

TABLE V. Bulk-over-brane total emissivity for n ¼ 5 and ξ ¼ 0.

Λ → 1 4 10 13 18

T0 0.296 070 0.299 653 0.357 216 0.422 606 0.584 868
TBH 0.419 245 0.818 056 2.578 580 4.629 670 14.182 30
Teff− 0.000 267 0.010 603 0.140 588 0.328 066 4.192 670
Teffþ 0.000 265 0.010 319 0.137 045 0.291 825 0.658 816
TeffBH 0.000 267 0.010 549 0.134 856 0.273 098 0.559 205

TABLE VI. Bulk-over-brane total emissivity for n ¼ 5 and ξ ¼ 0.5.

Λ → 1 4 10 13 18

T0 0.468 836 0.288 097 0.099 659 0.054 591 0.016 835
TBH 0.641 474 0.841 435 1.770 690 3.060 490 11.199 70
Teff− 3.152 × 10ð−6Þ 0.000 090 0.002 028 0.018 275 2.231 760
Teffþ 2.898 × 10ð−6Þ 0.000 071 0.000 552 0.000 923 0.001 500
TeffBH 3.139 × 10ð−6Þ 0.000 086 0.000 938 0.002 127 0.005 982
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small values of the cosmological constant, noted also in the
case with n ¼ 2, is now adequate to cause the dominance of
the bulk channel over the brane one for the bare T0 and
normalized TBH temperatures—for the latter temperature,
this effect was also observed in Ref. [43].

VI. CONCLUSIONS

Over the years, the study of the thermodynamics of the
Schwarzschild–de Sitter spacetime has proven to be a
challenging task. The existence of two different horizons,
the black-hole and the cosmological one—each with its
own temperature expressed in terms of its surface gravity—
results in the absence of a true thermodynamical equilib-
rium. On the other hand, the absence of an asymptotically
flat limit led to the formulation of a normalized temperature
for the black hole [51] more that two decades ago. Both
problems become more severe in the limit of a large
cosmological constant when the two horizons are located
so close to each other that the argument of the two
independent thermodynamics, valid at the two horizons,
comes into question. As a result, the notion of the effective
temperature of the SdS spacetime was proposed [53–56]
that implements both the black-hole and the cosmological
horizon temperatures.
In the context of the present work, we have focused on

the case of the higher-dimensional Schwarzschild–de Sitter
black hole, and have formed a set of five different temper-
atures: the bare black-hole temperature T0 based on its
surface gravity, the normalized black-hole temperature
TBH, and three effective temperatures for the SdS space-
time, Teff−, Teffþ, and TeffBH—the latter three are inspired
by four-dimensional analyses, where the cosmological
constant plays the role of the pressure of the system,
and are combinations of the black-hole and cosmological
horizon temperatures. We have first studied the dependence
of the aforementioned temperatures on the value of the
cosmological constant, as this is varied from zero to its
maximum allowed value, set by the critical limit where the
two horizons coincide. In the limit of a vanishing cosmo-
logical constant, the black-hole temperatures T0 and TBH
reduce to the temperature of an asymptotically flat, higher-
dimensional Schwarzschild black hole as expected; on the
other hand, all three effective temperatures tend to zero, an
artificially ill behavior due to the fact that Λ (or, equiv-
alently, the pressure of the system) is not allowed to vanish.
In the opposite limit, that of the critical value, it is the
normalized TBH and effective Teff− temperatures that have a
common behavior reaching a nonvanishing asymptotic
value; the other three temperatures all vanish in the same
limit. We then examined the dependence of the temper-
atures on the number of extra dimensions. Here, the five
temperatures were found to fall again into two categories:
the black-hole temperatures T0 and TBH are both enhanced
with n, while all effective temperatures predominantly are

suppressed. Overall, the normalized TBH temperature was
found to be the dominant one for all values of Λ and n.
The set of five temperatures was then used to derive

the Hawking radiation spectra for a free, massless scalar
field propagating both on the brane and in the bulk. We
considered the cases where the number of extra dimensions
had a small (n ¼ 2) and a large (n ¼ 5) value: in each case,
we chose four different values for the cosmological con-
stant that covered the allowed regime from zero to the
critical value. For both brane and bulk radiation spectra,
the emission curves closely followed the behavior of the
temperatures: for small Λ, the emission curves for all
effective temperatures were significantly suppressed, while
the ones for the black-hole temperatures were the dominant
ones. As Λ increased, the emission rate for the bare T0

started to become suppressed, while the one for the
effective Teff− started to become important. Near the critical
limit, it is the two temperatures TBH and Teff− with the
nonvanishing values that lead to the dominant emission
curves. It is worth noting that the two effective temper-
atures Teffþ and TeffBH support a non-negligible emission
rate only for intermediate values of the cosmological
constant, where they favor the emission of very low-
energetic scalar particles. The emission rate for the nor-
malized temperature TBH is one that constantly rises as Λ
gradually increases, being clearly the dominant one: for
n ¼ 2, the peak of the emission curve on the brane for TBH
rises to a height that is 2 times larger than that for T0 in the
low-Λ regime and 5 times larger than that for Teff− in the
high-Λ regime; these factors increase even more as n
increases, or when we study the bulk emission channel.
For the case of a minimally coupled scalar field, all

emission curves were found to have nonzero asymptotic
values at the very low part of the spectrum due to the well-
known behavior of the greybody factor both on the brane
and in the bulk. As a result, a significant number of soft
particles are expected to be emitted; in fact, for the three
effective temperatures Teff−, Teffþ, TeffBH (for small values
of values of Λ) and for T0 (for large values of Λ), this is
where the peak of the emission curves is located. When the
nonminimal coupling to the scalar curvature is turned on,
the emission curves for all five temperatures resume their
usual shape. The general behavior regarding the compar-
ative strength of the emission curves for the different
temperatures observed in the case of the minimal coupling
holds also here. The emission curve for the normalized
temperature TBH is again the dominant one over the entire
Λ regime, with only the emission curves for T0 and Teff−
reaching significant values at low and large values of Λ,
respectively.
The exact analysis performed in the context of this work

serves not only as a comparison of the radiation spectra,
which follow by using different temperatures for the
Schwarzschild–de Sitter spacetime, but also as a source
of information regarding their behavior as the cosmological
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constant varies from a very small value to the largest
allowed one at the critical limit. The complete radiation
spectra reveal that as Λ increases, the emission of energy
from the black hole along the brane and bulk channels very
quickly become comparable, and even for low values of the
number of extra dimensions, the bulk emission eventually
dominates over the brane one. The exact total emissivities
that were calculated in Sec. V demonstrated exactly this
effect: apart from the case of T0 when ξ ≠ 0, the bulk-over-
brane ratio exhibits a significant enhancement as Λ
increases and, in fact, renders the bulk channel the
dominant emission channel of the SdS black hole for the
temperatures TBH and Teff−—i.e., for the temperatures that
retain a nonvanishing value near the critical limit. In
addition, when the number of extra dimensions is large
enough, the bulk is found to dominate over the brane even
for values of Λ much lower than its critical limit, as long as
the value of the nonminimal coupling constant ξ is large

enough; in this case, the bulk dominance is obtained also
for the bare temperature T0.
In conclusion, choosing a particular form for the temper-

ature of an SdS black hole—i.e., the bare, the normalized,
or an effective one—plays a paramount role in the form of
the obtained radiation spectra. Some of the suggested
temperatures fail even to produce a significant emission
rate; others lead to an emission only for very small or very
large values of the bulk cosmological constant. Our results
clearly reveal that the normalized temperature TBH, the one
that makes amends for the absence of an asymptotically flat
limit in a Scwarzschild–de Sitter spacetime, is the one that
produces the most robust radiation spectra over the entire
regime of the bulk cosmological constant.
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