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Numerical results, based on a lattice method for computational general relativity, will be presented for
Cauchy evolution of initial data for the Brill, Teukolsky and polarized Gowdy spacetimes. The simple
objective of this paper is to demonstrate that the lattice method can, at least for these spacetimes, match
results obtained from contemporary methods. Some of the issues addressed in this paper include the
handling of axisymmetric instabilities (in the Brill space-time) and an implementation of a Sommerfeld
radiation condition for the Brill and Teukolsky spacetimes. It will be shown that the lattice method performs
particularly well in regard to the passage of the waves through the outer boundary. Questions concerning
multiple black holes, mesh refinement and long term stability will not be discussed here but may form the
basis of future work.
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I. INTRODUCTION

With the recent successful detection of gravitational
waves, and the reasonable expectation of more to follow,
there will soon be a wealth of new information about the
universe allowing ever more detailed questions to be asked.
But the computational methods that have served us well for
today’s questions may well prove to be inadequate for
the questions that arise in the near future. So it seems that
there is good reason to continue to develop new approaches
to computational general relativity. One such approach,
known as smooth lattice general relativity, will be used in
this paper. As its name suggests it is based on a lattice and it
employs a metric that is locally smooth.
The smooth lattice method [1–5] differs from traditional

numerical methods in computational general relativity in a
number of important aspects. The space-time manifold
consists of a large collection of overlapping computational
cells with local Riemann normal coordinates used in each
cell. The computational cells are a set of vertices and legs
that define small subsets of the manifold. The use of local
Riemann normal coordinates in each each cell not only
reduces the complexity of the evolution equations but it
also explicitly incorporates the Einstein equivalence prin-
ciple into the formalism. The lattice method provides an
elegant separation between the topological properties of
the space-time (by specifying combinatoric data such as the
connections between cells, vertices, etc.) and the metric
properties (by specifying data such as leg-lengths, curva-
ture components, etc. within each cell). A key element of
the lattice method is that it uses the second Bianchi identity
to evolve the Riemann curvatures. More details of the
lattice method will be given later in Sec. III.
Previous applications of the lattice method includes the

Schwarzschild [3], Oppenheimer-Snyder [5] and Kasner

[1] spacetimes. Though these were important tests of the
lattice method, they lacked some of the more challenging
aspects expected in full three-dimensional computational
general relativity, in particular the presence of gravitational
waves and their interactions with the outer boundaries on a
finite computational grid. In this paper evolutions of a
smooth lattice with zero shift for the Gowdy [6], Brill [7]
and Teukolsky [8] spacetimes will be presented. The
objective is not to explore any new features of these
spacetimes but rather to use them as examples of the
smooth lattice method.
The boundaries in the Gowdy space-time will be handled

using standard periodic boundary conditions while the Brill
and Teukolsky spacetimes will require an outgoing radi-
ation condition. The Brill spacetime adds the extra com-
plexity of the numerical instabilities that arise from the use
of a lattice adapted to the axisymmetry. These issues will be
addressed in the following sections.
This class of spacetimes has been studied extensively

by other authors. See [9–11] for the Gowdy spacetime,
[12–15] for Brill waves and [16,17] for Teukolsky waves.
The structure of this paper is as follows. The notation

used in this paper will be defined in the following section.
Sections III and IV provide a broad summary of the smooth
lattice method including details of the evolution equations
on a typical lattice. The specific details of the lattice, the
construction of the initial data and the evolution equations
for each of the three spacetimes are given Secs. V, VI and
VII. This is followed by a short discussion on the use of the
Einstein toolkit [18] before the results are presented in
Sec. IX. Most of the algebraic calculations are deferred to
the Appendices A–G.

II. NOTATION

Throughout this paper Greek letters will denote space-
time indices while spatial indices will be denoted by just*Leo.Brewin@monash.edu
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three Latin letters, i, j and k. The remaining Latin letters
will serve as vertex labels. One small exception to these
rules will be noted in Appendix B where Latin indices will
be used (extensively) to record frame components for
differential forms.
The coordinates for a typical Riemann normal frame will

be denoted by either ðt; x; y; zÞ or xμ while globally defined
coordinates will be denoted by the addition of a tilde such
as ð~t; ~x; ~y; ~zÞ or ~xμ. A tilde will also be used to denote tensor
components in the global frame, e.g., ~Txy would be the ~x ~y
component of the tensor T in the global coordinate frame.
Note that the global coordinates are not an essential part of
the smooth lattice method. They appear in this paper solely
to assist in setting the initial data and also when comparing
the evolved data against the exact solution or against data
obtained by other numerical means (e.g., a finite differ-
ence code).
A key element of the smooth lattice method is that it

employs many local Riemann normal frames. This intro-
duces a minor bookkeeping issue—if a tensor is defined
across two frames, how should its components in each
frame be recorded? Let ā and b̄ be the Riemann normal
frames associated with the pair of vertices a and b.
Consider a vector v defined over this pair of frames.
Then the components, in the frame b̄, of the vector v at
vertex a will be denoted by vαab̄ while vαaā denotes the
components, in ā, of v at a. Similar notation will be used
for other tensors, for example Rα

βpq̄ would denote the
components of the Ricci tensor at the vertex p in the
frame q̄.
It is customary to denote the Cauchy time parameter by

the symbol t. However, that symbol is reserved for the time
coordinate of a typical local Riemann normal frame and
thus some other symbol is required, for example ~t with a
corresponding time derivative operator d=d~t. The prolifer-
ation of tildes that would follow from this choice can be
avoided with the following convention—replace d=d~t with
d=dt and take the d=dt to be the time derivative operator
associated with the Cauchy time parameter ~t. This con-
vention applies only to the operator d=dt, thus a (partial)
time derivative such as vμ;t should be understood as a
derivative with respect to the Riemann normal coordinate t.
The signature for the metric, Riemann and Ricci tensors

follows that of Misner, Thorne and Wheeler [19].

III. SMOOTH LATTICES

A smooth lattice is a discrete entity endowed with
sufficient structure to allow it to be used as a useful
approximation to a smooth geometry (which in the context
of computational general relativity is taken to be a solution
of the Einstein equations). The typical elements of a smooth
lattice are combinatoric data such as vertices, legs, etc. and
geometric data such as a coordinates, the Riemann and

metric tensors and any other geometric data needed to make
the approximation to the smooth geometry meaningful.
An n-dimensional smooth lattice can be considered as

a generalization of an n-dimensional piecewise linear
manifold. The later are constructed by gluing together a
collection of flat n-simplices in such a way as to ensure that
the resulting object is an n-dimensional manifold, that the
points common to any pair of n-simplices form sub-spaces
of dimension n − 1 or less and that the metric is continuous
across the interface between every pair of connected
n-simplices.
In a smooth lattice the cells need not be simplices, they

are required to overlap with their neighbors and the
curvature may be nonzero throughout each cell. The picture
to bear in mind is that the cells of a smooth lattice are akin
to the collection of coordinate charts that one would
normally use to cover a manifold. The overlap between
each pair of charts is nontrivial and allows for coordinate
transformations between neighboring charts. So too for the
smooth lattice—each pair of neighboring cells overlap to
the extent that a well defined transition function can be
constructed. This is an essential element of the smooth
lattice formalism—it is used extensively when computing
various source terms in the equations that control the
evolution of the lattice (see Appendix A for further details).
Another important feature of the smooth lattice is that each
cell of the lattice need not be flat. The intention here is to
better allow the smooth lattice to approximate smooth
geometries than could otherwise be achieved using piece-
wise flat simplices (compare the approximation of a
sphere by spherical triangles as opposed to flat triangles).
The smooth lattice should also provide smoothly varying
estimates for various quantities (for example the geodesic
length of a leg) in the overlap region between a pair of cells.
The use of the adjective smooth in the name smooth lattice
is intended to capture the idea that all quantities on the
lattice should vary smoothly (as best as possible) across the
lattice.
Denote the smooth geometry by ðg;MÞ where g is the

metric on the n-dimensional manifold M. A smooth lattice
representation of ðg;MÞ can be constructed in a number of
stages, in particular, choose a set of cellsMi, i ¼ 1; 2; 3;…
that cover M, add the vertices and legs and finally add the
metric data to the lattice.
The cells Mi, i ¼ 1; 2; 3;… must be chosen so that each

point inM is contained in at least oneMi and each point in
each Mi should also be a point in M. Now decorate M by
introducing a set of vertices V and a set of legs L as follows.
Add one or more vertices to each cell and in each cell label
one of these as the central vertex for that cell (which will
later serve as the origin of a set of coordinates local to the
cell). Thus each cell will contain one central vertex as well
as other vertices (which are also the central vertices of other
neighboring cells). The legs L of the lattice are chosen as
the geodesics that connects the central vertices between
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pairs of neighboring cells. Paths other than geodesics could
be used but since the geodesic is defined intrinsically by the
underlying smooth geometry it is a natural choice. There is,
however, the issue of the uniqueness of the geodesic—if the
curvature is too large or the vertices too far apart there may
not exist a unique geodesic joining the pair of vertices. This
problem can be overcome by a suitable choice of cells—in
regions where the curvature is large the cells should be
small and closely packed while in other regions, where the
curvature is weak, the cells can be well spaced out. It is well
known that such a construction is always possible (in the
absence of curvature singularities).
The next step in the construction is to assign metric data

to the cells. In each cell Mi, expand the metric around the
central vertex in terms of a local set of Riemann normal
coordinates xα (see [20–22]), that is

ds2 ¼
�
gαβ −

1

3
Rαμβνxμxν −

1

6
Rαμβν;γxμxνxγ þ � � �

�
dxαdxβ:

ð1Þ
The coefficients gαβ, Rαμβν etc. can be obtained by
projecting their corresponding quantities from the smooth
metric onto a local orthonormal basis on the central vertex.
At this stage the lattice is an exact copy of the original

smooth geometry but with additional structure (the vertices,
legs, cells, coordinates, etc.). The approximation is intro-
duced by truncating the series expansion for the metric at
some finite order. The lattice will then no longer be an exact
copy of the original smooth metric and should be consid-
ered an entity in its own right and will be denoted by
ðg;M; V; LÞ. The original smooth geometry will now be
denoted by ð~g; ~MÞ.
For the spacetimes considered in this paper the metric in

each cell will be taken as

ds2 ¼
�
gαβ −

1

3
Rαμβνxμxν

�
dxαdxβ ð2Þ

where gαβ ¼ diagð−1; 1; 1; 1Þ. This form of the metric will
lead to estimates for the geodesic lengths that differ from
that given by ð~g; ~MÞ. By inspection of the (1) and (2) it is
should be clear that for a typical leg ðp; qÞ in ~M andM, the
geodesic lengths, using the two metrics ~g and g, will differ
by a term of order OðRL5Þ where R and L are estimates of
the largest curvatures and lengths in any of the cells that
contain this leg.
If ðp; qÞ is a leg in the smooth lattice then the (squared)

geodesic length can be estimated (see [21,22]) on the
smooth lattice using

L2
pq ¼ gαβΔxαpqΔx

β
pq −

1

3
Rαμβνxαpx

β
px

μ
qxνq þOðRL5Þ ð3Þ

where Δxαpq ¼ xαq − xαp. Of course other sources of trunca-
tion errors will arise as part of the numerical evolution of

the lattice data so thisOðRL5Þ truncation is the best that can
expected at this level of approximation. To obtain higher
order approximations would require not only retaining
more terms in the series expansion for the metric but would
also require the cells to overlap beyond nearest neighbors.
Imagine for the moment that the truncation errors on the

right hand side of (3) where discarded. This leaves one
equation that links the vertex coordinates, the leg lengths
and the curvatures. It might be thought that given suffi-
ciently many leg lengths that the curvatures and coordinates
could be computed by solving (3). Past experience shows
that even though the equations can be solved (in some
cases) the resulting evolution of the lattice did not converge
to the continuum spacetime. It was found that correct
evolutions could be obtained by evolving either the leg
lengths and curvatures or equally by evolving the coor-
dinates and the curvatures. Both approaches will be
discussed in more detail in Sec. IV B.

A. Continuous time smooth lattices

The construction of the smooth lattice as described above
would naturally lead, for the case of computational general
relativity, to a structure that is discrete in both space and
time. There is, however, an alternative picture in which the
lattice evolves smoothly in time while retaining its discrete
spatial structure. This allows for a fairly simple construc-
tion of a Cauchy initial value problem on such a lattice (as
described later in the following section). For the remainder
of this paper, the smooth lattice, its coordinates, leg lengths
and Riemann curvatures should be considered to evolve
smoothly with time.

IV. CAUCHY EVOLUTION
OF A SMOOTH LATTICE

Suppose that the spacetime ð~g; ~MÞ can be foliated by a
one parameter family of spatial hypersurfaces Σð~tÞ [i.e.,
each Σð~tÞ is a Cauchy surface in ð~g; ~MÞ]. Each element of
this family could be represented by a lattice with three-
dimensional computational cells denoted by Σi. The four-
dimensional computational cells Mi of M will be taken as
the spacetime volume swept out by the corresponding Σi
for an infinitesimal increment in the Cauchy time parameter
~t. Thus a single Mi is a four-dimensional cylinder, with a
three-dimensional base Σi, that connects a pair of infini-
tesimally close Cauchy surfaces while the set of all Mi,
i ¼ 1; 2; 3;… fills out the spacetime region between that
pair of Cauchy surfaces.
The dynamical variables on a smooth lattice can be

chosen to include the Riemann curvatures on the central
vertex and either the (squared) leg lengths or the Riemann
normal coordinates for each vertex in each cell. In either
case, the addition of the extrinsic curvatures (at the central
vertex) allows the full set of evolution equations for the
lattice to be given in first order form.
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A. Lapse and shift

In the standard formulation of the Cauchy initial value
problem for general relativity the lapse function and shift
vectors can be freely specified at each point in the
spacetime. This naturally carries over to the smooth lattice
by allowing the lapse function and shift vector to be freely
specified on the central vertex of each cell.
In computational general relativity it is usually the case

that once the lapse function and shift vector have been fully
specified then there are no remaining coordinate freedoms.
This is not exactly true on a smooth lattice—each cell
carries its own local set of coordinates and specifying the
lapse and shift at one point in that cell is not sufficient to
properly constrain the coordinates on the remaining ver-
tices. What remains is the freedom to orient the coordinate
axes within each cell. Thus using boosts and spatial
rotations the t-axis can be aligned with the worldline of
the central vertex (for the case of zero shift) while the
spatial axes can be given some preferred alignment with
some of the remaining vertices of the cell [23]. This is a
choice that depends on the structure of the cells and
possibly on any symmetries that might exist in the
spacetime.
In each of the spacetimes considered in this paper the

shift vector will be set equal to zero (i.e., the worldlines of
the vertices will be normal to the Cauchy surfaces) while
the lapse function will be given as a function on the set of
central vertices.

B. Evolving the legs and coordinates

The only legs that will be evolved in a cell are those that
are directly connected to the central vertex. There are two
reasons for making this choice. First, legs that are not tied
to the central vertex are likely to incur a larger truncation
error than legs closer to the central vertex (such as those
tied to that vertex). Second, there is no contribution to the
leg length from the Riemann tensor for legs directly
connected to the central vertex thus avoiding any issues
of accounting for time derivatives of such terms.
Consider a typical cell with central vertex o and let q

be any of its vertices. A standard result from differential
geometry, known as the first variation of arclength [24–26],
states that for a one-parameter family of geodesics, the
arclength Loq will evolve according to

dLoq

dt
¼ ½vμðNnμÞ�qo ð4Þ

where vα is the (forward pointing) unit tangent vector to the
geodesic, nμ is the (future pointing) unit tangent vector to
the vertex worldline and N is the lapse function. For a short
leg, where the lapse and extrinsic curvatures are approx-
imately constant across the leg, this result can be estimated
by [4,27]

dLoq

dt
¼ −NKijvioqv

j
oqLoq þOðL2Þ ð5Þ

Since N and Kij are defined on the vertices there is an
ambiguity in attempting to apply this equation to any leg—
each leg is defined by two vertices so which vertex should
supply the required values? As there is no clear reason to
prefer one vertex over the other it seems reasonable to take
the average from both vertices, that is [28]

dLoq

dt
¼ −

1

2
ððNKijÞqq̄viqoq̄vjqoq̄ þ ðNKijÞoōvioqōvjoqōÞLoq

þOðL2Þ: ð6Þ

A simple generalization of this result can be obtained
by noting that any 3-geodesic within a Cauchy surface can
be arbitrarily approximated by a large sequence of short
4-geodesics of the spacetime. The arclength for each short
4-geodesic is subject to the above evolution equation and
thus, on summing over all contributions to the path and
taking a suitable limit, it follows that

d ~Loq

dt
¼ −

Z
q

o
NKijvioqv

j
oqds ð7Þ

where s is the proper distance along the path and ~Loq ¼R
q
o ds is the arclength of the 3-geodesic.
Using this equation to evolve the leg lengths requires a

re-appraisal of how the legs of the lattice are interpreted. In
the standard formulation [1], the legs of the lattice are
geodesics in spacetime (and will appear as chords con-
necting the vertices) whereas in this alternative interpreta-
tion the geodesics now lie entirely within a Cauchy surface.
The evolution equation (7) is suitable for simple lattices,

such as the Gowdy lattice, where information about N and
Kij can be deduced along the entire path. In all other cases,
such as the Brill and Teukolsky lattices, the former
evolution equation (6) must be used.
As the leg lengths evolve, so too must the Riemann

normal coordinates. So it is natural to ask: What are the
appropriate evolution equations for the xi? A simple
calculation, as detailed in [1], shows that for any vertex
p in a cell

dxip
dt

¼ −NKi
jx

j
p: ð8Þ

A short independent derivation of this equation can also be
found in Appendix E. Note that in choosing to evolve the
coordinates, the freedom to adapt the coordinates to the
lattice, as described in Sec. IVA, can only be imposed
either on the initial Cauchy surface or at future times by
applying suitable rotations.
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C. Evolving the extrinsic curvatures

In [1] the evolution equations for the extrinsic curvatures
where given for the particular case of a unit lapse. The
method employed in that paper can be easily repeated for
the more general case of a nonconstant lapse. The results
are as follows [29]

dKxx

dt
¼ −N;xx þ NðRtxtx þ K2

xx − K2
xy − K2

xzÞ ð9Þ

dKyy

dt
¼ −N;yy þ NðRtyty þ K2

yy − K2
xy − K2

yzÞ ð10Þ

dKzz

dt
¼ −N;zz þ NðRtztz þ K2

zz − K2
xz − K2

yzÞ ð11Þ

dKxy

dt
¼ −N;xy þ NðRtxty − KxzKyzÞ ð12Þ

dKxz

dt
¼ −N;xz þ NðRtxtz − KxyKyzÞ ð13Þ

dKyz

dt
¼ −N;yz þ NðRtytz − KxyKxzÞ: ð14Þ

These equations apply at the central vertex where, in the
Riemann normal frame of this vertex, nα ¼ δαt and where
the covariant derivatives N;αβ coincides with the partial
derivatives N;αβ.

D. Evolving the Riemann curvatures

In four dimensions there are 20 algebraically indepen-
dent components of the Riemann tensor at any one point
and in each cell these are taken to be

Rxyxy; Rxyxz; Rxyyz; Rxzxz; Rxzyz; Ryzyz

Rtxxy; Rtyxy; Rtzxy; Rtxxz; Rtyxz; Rtzxz; Rtyyz; Rtzyz

Rtxtx; Rtyty; Rtztz; Rtxty; Rtxtz; Rtytz: ð15Þ

Of these, the first 14 will be evolved while the remaining
six will be set by applying the vacuum Einstein equations
(see Sec. IV E).
The evolution equations for the Riemann curvatures are

based upon the second Bianchi identity. At the origin of the
local frame (i.e., the central vertex) the connection vanishes
and thus these equations take the simple form

Rxyxy;t ¼ Rtyxy;x − Rtxxy;y ð16Þ
Rxyxz;t ¼ Rtzxy;x − Rtxxy;z ð17Þ

Rxyyz;t ¼ Rtzxy;y − Rtyxy;z ð18Þ

Rxzxz;t ¼ Rtzxz;x − Rtxxz;z ð19Þ
Rxzyz;t ¼ Rtzxz;y − Rtyxz;z ð20Þ

Ryzyz;t ¼ Rtzyz;y − Rtyyz;z ð21Þ

Rtxxy;t ¼ −Rxyxy;y − Rxyxz;z ð22Þ

Rtyxy;t ¼ Rxyxy;x − Rxyyz;z ð23Þ

Rtzxy;t ¼ Rxyxz;x þ Rxyyz;y ð24Þ

Rtxxz;t ¼ −Rxyxz;y − Rxzxz;z ð25Þ

Rtyxz;t ¼ Rxyxz;x − Rxzyz;z ð26Þ

Rtzxz;t ¼ Rxzxz;x þ Rxzyz;y ð27Þ

Rtyyz;t ¼ Rxyyz;x − Ryzyz;z ð28Þ

Rtzyz;t ¼ Rxzyz;x þ Ryzyz;y: ð29Þ

There is, however, a small bump in the road in using these
equations to evolve the curvatures—the only data immedi-
ately available are the point values for the curvatures in
each cell and thus some process must be applied to estimate
the partial derivatives in each cell. It is possible to use a
finite difference approximation using data from neighbor-
ing cells but in doing so a proper account must be made of
the different orientations of the neighboring frames. This is
clearly true for the spatial derivatives where neighboring
frames may differ by boosts and rotations. It is also true for
the time derivatives due to progression of boosts needed to
keep the worldline of the origin of the local frame normal to
the Cauchy surfaces. Thus Rtzxy;x, for example, will consist
not only of the raw partial derivatives (i.e., taking the raw
data from neighboring frames without regard for coordinate
transformations) but also of terms that account for the
boosts and rotations between neighboring frames. The
details are spelled out in full, for the particular class of
lattices used in this paper, in Appendix C leading to
expression such as

Rαβμν;γ ¼ Rαβμν†γ −mλ
αγRλβμν −mλ

βγRαλμν

−mλ
μγRαβλν −mλ

νγRαβμλ ð30Þ

in which the Rαβμν†γ are the raw partial derivatives of Rαβμν

and the mα
βγ are geometrical data built solely from the

structure of the lattice (i.e., they depend only on the leg
lengths and Riemann normal coordinates). This result is
very much like the usual definition of a covariant deriva-
tive. This does of course lead to a significant increase in the
number of terms in each equation. The full set of equations
(for a zero shift) can be found in Appendix G.
The evolution scheme as just described (6)–(29) has the

feel of a 3þ 1 evolution. In the standard ADM or BSSN
3þ 1 schemes the principle quantities at play are the 3-
metric, the extrinsic curvatures and the three-dimensional
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Riemann curvatures. In contrast, the smooth lattice scheme
employs (at least) geodesic segments (the legs), the
extrinsic curvatures and the four-dimensional Riemann
curvatures. Nowhere in the smooth lattice are the three-
dimensional Riemann curvatures used. They could be
inferred from the Kαβ and Rαβμν by the Gauss-Codacci
equations and then compared with estimates obtained
directly from the leg lengths (in a manner similar to
computing curvatures from a metric). This could be used
as a consistency check on the numerical scheme. However,
no reliable method for estimating the curvatures from the
leg lengths is known so this test is at present not possible.

E. The vacuum Einstein equations

The second Bianchi identity provides no information
about the time derivatives of the Riemann components such
as Rtxtx. Consequently such components can not be evolved
but rather must be determined algebraically by applying
the (vacuum) Einstein equations. Thus the six curvatures
Rtxtx; Rtxty…Rtytz are obtained from

0 ¼ Rxx ¼ −Rtxtx þ Rxyxy þ Rxzxz ð31Þ

0 ¼ Ryy ¼ −Rtyty þ Rxyxy þ Ryzyz ð32Þ

0 ¼ Rzz ¼ −Rtztz þ Rxzxz þ Ryzyz ð33Þ

0 ¼ Rxy ¼ −Rtxty þ Rxzyz ð34Þ

0 ¼ Rxz ¼ −Rtxtz − Rxyyz ð35Þ

0 ¼ Ryz ¼ −Rtytz þ Rxyxz: ð36Þ

F. Constraint equations

The constraints consist not only of the four standard
Hamiltonian and momentum constraints, which on a lattice
take the form

0 ¼ Rtt ¼ Rtxtx þ Rtyty þ Rtztz ð37Þ

0 ¼ Rtx ¼ Rtyxy þ Rtzxz ð38Þ

0 ¼ Rty ¼ −Rtxxy þ Rtzyz ð39Þ

0 ¼ Rtz ¼ −Rtxxz − Rtyyz ð40Þ

but also the extra constraints that arise from allowing the
Riemann curvatures to be evolved. These constraints follow
from the second Bianchi identity, namely

0 ¼ Rxyxy;z þ Rxyyz;x − Rxyxz;y ð41Þ

0 ¼ Rxyxz;z þ Rxzyz;x − Rxzxz;y ð42Þ

0 ¼ Rxyyz;z þ Ryzyz;x − Rxzyz;y ð43Þ

0 ¼ Rtyxy;z þ Rtyyz;x − Rtyxz;y ð44Þ

0 ¼ Rtzxy;z þ Rtzyz;x − Rtzxz;y ð45Þ

0 ¼ Rtxxy;z þ Rtxyz;x − Rtxxz;y: ð46Þ

Note that Rtxyz is not one of the 20 chosen Rαβμν but it can
be computed directly using Rtxyz ¼ Rtyxz − Rtzxy.

V. GOWDY POLARIZED COSMOLOGIES

Polarized Gowdy cosmologies on T3 × R are a class of
solutions of the vacuum Einstein equations that posses two
linearly independent spatial Killing vectors. The metric,
in coordinates adapted to the symmetries, is commonly
written in the form [30,31]

ds2 ¼ ~t−1=2eλ=2ð−d~t2 þ d~z2Þ þ ~tðePd~x2 þ e−Pd~y2Þ ð47Þ

where P and λ are functions of ð~t; ~zÞ and where ∂=∂ ~x and
∂=∂ ~y are the two Killing vectors. Each of the spatial
coordinates ð~x; ~y; ~zÞ are required to be periodic (to respect
the T3 topology). The functions P and λ used in this paper
are those given by New-Watt et al. [30], namely,

Pð~t; ~zÞ ¼ J0ð2π~tÞ cosð2π ~zÞ ð48Þ

λð~t; ~zÞ ¼ −2π~tJ0ð2πtÞJ1ð2π~tÞcos2ð2π ~zÞ
þ 2ðπ~tÞ2ðJ20ð2π~tÞ þ J21ð2π~tÞÞ
− 2π2ðJ20ð2πÞ þ J21ð2πÞÞ − πJ0ð2πÞJ1ð2πÞ ð49Þ

with ~z restricted to ½−0.5; 0.5�. The domain for ~x and ~y can
be chosen as any finite interval, e.g., [0,1].
The metric is singular only at ~t ¼ 0 and consequently

initial data should be set at some other time (e.g., at ~t ¼ 1 as
described below). The Gowdy initial data will be evolved
away from the ~t ¼ 0 singularity.

A. A Gowdy lattice

A lattice that represents the spatial part of this metric is
rather easy to construct. Start by discretizing the ~z-axis into
a finite number of points labeled from 0 toNz with the point
labeled 0 identified with that labeled Nz (i.e., two labels for
a single point). These points will soon be identified as the
vertices of the lattice. Note that there are no legs at this
stage, these will be added later. Now use the Killing vectors
∂=∂ ~x and ∂=∂ ~y to drag the discretized ~z-axis along the ~x
and ~y-axes. The legs of the lattice can now be constructed
as the spacetime geodesics that connect pairs of points (now
taken as vertices of the lattice). This leads to the simple
lattice shown in Fig. 1 consisting of Nz computational cells
labeled from 0 toNz with cell 0 identified with cellNz. This
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lattice contains three classes of legs, one for each of the
three coordinate axes, namely, Lxx; Lyy and Lzz. Other data
that must be carried by the lattice include the extrinsic
curvatures, Kαβ, the Riemann curvatures, Rαβμν and the
lapse function N.
Consider a typical computational cell, as shown in Fig. 1,

and ask the question: How should the Riemann normal
frame be constructed? Let ∂α be the unit basis vectors for
the Riemann normal frame. Now choose the origin of the
Riemann normal frame to be (permanently) attached to the
central vertex. Next, use boosts to ensure that ∂t is normal
to the Cauchy surface, then use rotations to ensure that the
vertices of Lzz lie on the z-axis and also for the vertices of
Lxx to lie in the xz plane. Given the symmetries of the
Gowdy spacetime it is no hard to appreciate that the
ðt; x; y; zÞ coordinates of the seven vertices of the cell
Mp will be of the following form

xμ0p̄ ¼ ð0; 0; 0; 0Þμ
xμ1p̄ ¼ ðt1; 0; 0; ðLzzÞpÞμ xμ2p̄ ¼ ðt2; 0; 0;−ðLzzÞp−1Þμ
xμ3p̄ ¼ ðt3; 0; ðLyyÞp; 0Þμ xμ4p̄ ¼ ðt4; 0;−ðLyyÞp; 0Þμ
xμ5p̄ ¼ ðt5; ðLxxÞp; 0; 0Þμ xμ6p̄ ¼ ðt6;−ðLxxÞp; 0; 0Þμ

ð50Þ

where the time coordinate is given by 2t ¼ −Kαβxαxβ

(see [2]).
Note that this construction also ensures that the Riemann

normal axes are aligned with their Gowdy counterparts (as
a consequence of the Gowdy metric being diagonal).

B. Initial data

A straightforward computation on the Gowdy metric
reveals that there are three nontrivial extrinsic curvatures,
~Kxx; ~Kyy and ~Kzz and five nontrivial Riemann curvatures,
~Rxyxy; ~Rxzxz; ~Ryzyz; ~Rtxxz and ~Rtyyz. The lattice values for the
extrinsic and Riemann curvatures, Kαβ and Rαβμν, were
computed by projecting their counterparts, ~Kαβ and ~Rαβμν,
onto the local Riemann normal frame. This provides not

only a way to identify the nontrivial components on the
lattice but also a simple way to assign the initial data.
The leg lengths Lxx; Lyy and Lzz were set as follows. The

Lxx were computed as the length of the geodesic connecting
ð1; 0; 0; ~zÞ to ð1; δ~x; 0; ~zÞ with δ~x ¼ 0.0001. A similar
approach was used to compute the Lyy this time using
the points ð1; 0; 0; ~zÞ and ð1; 0; δ~y; ~zÞ with δ~y ¼ δ~x ¼
0.0001. A common value for Lzz was chosen for all cells,
namely

Lzz ¼
1

Nz

Z
0.5

−0.5

ffiffiffiffiffiffi
~gzz

p
d~z ð51Þ

This in turn required the ~z coordinate to be unequally
spaced from cell to cell. Starting with ~z0 ¼ −0.5 the
successive ~zp for p ¼ 1; 2; 3 � � �Nz − 1 where found by
treating the equation

0 ¼ Lzz −
Z

~zp

~zp−1

ffiffiffiffiffiffi
~gzz

p
d~z ð52Þ

as a nonlinear equation for ~zp given ~zp−1.

C. Evolution equations

The evolution equations for Lxx; Lyy and Lzz follow
directly from Eq. (7) by making appropriate use of the
symmetries built into the Gowdy lattice, in particular that
the legs are aligned to the coordinate axes and thus
vαox ¼ ð0; 1; 0; 0Þ, vαoy ¼ ð0; 0; 1; 0Þ and vαoz ¼ ð0; 0; 0; 1Þ
while rotational symmetry ensures that the integrand in (7)
is constant along the x and y axes. This leads to the
following evolution equations for Lxx; Lyy and Lzz in cell p,

dLxx

dt
¼ −NKxxLxx ð53Þ

dLyy

dt
¼ −NKyyLyy ð54Þ

dLzz

dt
¼ −

Z
pþ1

p
NKzzds ð55Þ

FIG. 1. Two examples of a subset of the Gowdy one-dimensional lattice. The left figure shows a single cell in the while the right figure
shows a pair of neighboring cells. The purple vertices are the central vertices of their respective cells. Note that the vertical legs pass
through the central vertex and begin and end on the red vertices. This also applies to the corresponding horizontal legs. In contrast, the
radial legs begin and end on the central vertices.
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and where s is the arclength along the leg connecting
successive cells (i.e., along the ~z-axis of the lattice) and
where the limits ðp; pþ 1Þ are understood to denote the
corresponding vertices.
The evolution equations for the extrinsic and Riemann

curvatures can be constructed in at least two ways. In the
first approach the evolution equations for the ~Kαβ and ~Rαβμν

can be projected onto the local Riemann normal frame. The
second approach is to impose the known symmetries on
the complete set of equations given in Appendix G. Both
approaches lead to the following set of equations for the
extrinsic curvatures,

dKxx

dt
¼ −N;xx þ NðK2

xx þ Rxyxy þ RxzxzÞ ð56Þ

dKyy

dt
¼ −N;yy þ NðK2

yy þ Rxyxy þ RyzyzÞ ð57Þ

dKzz

dt
¼ −N;zz þ NðK2

zz þ Rxzxz þ RyzyzÞ ð58Þ

and for the Riemann curvatures,

dRxyxy

dt
¼ NðRyzyz þ 2RxyxyÞKxx þ NðRxzxz þ 2RxyxyÞKyy

− Nmx
zxRtyyz − Nmy

zyRtxxz ð59Þ

dRxzxz

dt
¼ NðRyzyz þ 2RxzxzÞKxx þ NðRxyxy þ 2RxzxzÞKzz

− Nmx
zxRtxxz − 2RtxxzN;z − NRtxxz†z ð60Þ

dRyzyz

dt
¼ NðRxzxz þ 2RyzyzÞKyy þ NðRxyxy þ 2RyzyzÞKzz

− Nmy
zyRtyyz − 2RtyyzN;z − NRtyyz†z ð61Þ

dRtxxz

dt
¼ NðKyy þ 2KzzÞRtxxz þ NðRxyxy − RxzxzÞmy

zy

− ðRxyxy þ 2RxzxzÞN;z − NRxzxz†z ð62Þ

dRtyyz

dt
¼ NðKxx þ 2KzzÞRtyyz þ NðRxyxy − RyzyzÞmx

zx

− ðRxyxy þ 2RyzyzÞN;z − NRyzyz†z ð63Þ

where

N;z ¼
∂N
∂s N;zz ¼

∂2N
∂s2 ð64Þ

N;xx ¼
1

Lxx

∂Lxx

∂s
∂N
∂s N;yy ¼

1

Lyy

∂Lyy

∂s
∂N
∂s ð65Þ

Rtxxz†z ¼
∂Rtxxz

∂s Rtyyz†z ¼
∂Rtyyz

∂s ð66Þ

mx
zx ¼

1

Lxx

∂Lxx

∂s my
zy ¼

1

Lyy

∂Lyy

∂s : ð67Þ

D. The lapse function

The lapse function can be freely chosen across the lattice
either by way of an explicit function (e.g. N ¼ 1) or by
evolving the lapse along with other lattice data. This second
choice will taken in this paper where three different
methods for evolving the lapse will be used, namely

dN
dt

¼ −2NTrK 1þ log ð68Þ

dN
dt

¼ −N2TrK Harmonic ð69Þ

dN
dt

¼ −N2Kzz Exact ð70Þ

where TrK ¼ Kxx þ Kyy þ Kzz. The 1þ log and harmonic
lapse equations are standard gauge choices and need no
explanation while the third equation, as its name suggests,
is designed to track the exact solution. This exact lapse
equation can be obtained as follows. First note that for the
exact solution N2 ¼ ~gzz. Then use d~gzz=dt ¼ −2N ~Kzz to
obtain dN=dt ¼ − ~Kzz whereupon the result follows by
noting that ~Kzz ¼ ~gzzKzz ¼ N2Kzz.
Many other choices are of course possible but those just

given stand out as they allow for a direct comparison with
either the exact solution (47)–(49) or with the results from
the Cactus code.
Initial values for the lapse will be discussed later in

Sec. IX A.

E. Constraints

The only constraints that survive under the symmetries
inherent in the Gowdy spacetime are (37), (40), (41) and
can be written as

0 ¼ C1 ¼ Rxyxy þ Rxzxz þ Ryzyz ð71Þ

0 ¼ C2 ¼ Rtxxz þ Rtyyz ð72Þ

0 ¼ C3 ¼ Rxyxy†z þ KxxRtyyz þ KyyRtxxz

þ ðRxyxy − RyzyzÞmx
zx þ ðRxyxy − RxzxzÞmy

zy ð73Þ

where Rxyxy†z, mx
zx and my

zy are given by (66), (67). Note
also that trivial factors have been cleared from the first two
equations. This set of constraints were not imposed during
the evolution but were instead used as a quality control on
the evolved data (see Sec. IX A).
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F. Numerical dissipation

It was found that for some choices of the lapse function,
most notably the 1þ log choice, the addition of some
numerical dissipation could significantly prolong the
evolution.
The particular form of numerical dissipation used here is

based upon the familiar Kreiss-Oliger approach in which an
additional term is added to the right-hand side of selected
evolution equations, in our case, the evolution equations
for the extrinsic and Riemann curvatures. In each case the
modified evolution equation in cell p was of the form

dY
dt

¼
�
dY
dt

�
ϵ¼0

−
2ϵ

ðLzzÞp þ ðLzzÞpþ1

× ðYpþ3 − 6Ypþ2 þ 15Ypþ1 − 20Yp

þ Yp−3 − 6Yp−2 þ 15Yp−1Þ ð74Þ

where ϵ is a small number (in the results described below
ϵ ¼ 0.8). The first term on the right-hand side is the right-
hand side of the evolution equations (56)–(63) while the
second term is a naive approximation to ϵL5

zzd6Y=ds6. The
important point is that the dissipation scales as OðL5

zzÞ and
thus will vanish in the limit as Lzz → 0.

VI. BRILL WAVES

Brill waves [7] are time and axisymmetric solutions of
the vacuum Einstein equations generated by initial data of
the form

ds2 ¼ ψ4ðe2qðd~ρ2 þ d~z2Þ þ ~ρ2d ~ϕ2Þ ð75Þ

in which ð~ρ; ~ϕ; ~zÞ are cylindrical polar coordinates and
where ψð~ρ; ~zÞ and qð~ρ; ~zÞ are a class of functions subject to
the conditions of asymptotic flatness, the vacuum Einstein
equations and reflection symmetry across both ~z ¼ 0 and
~ρ ¼ 0. The reflection symmetry across ~ρ ¼ 0 follows from
the condition that the data be well behaved at ~ρ ¼ 0.
However, the condition that the data be reflection sym-
metric across ~z ¼ 0 has no physical basis and is introduced
only to reduce the bulk of the numerics [i.e., the data can be
evolved in the quarter plane (~ρ > 0; ~z > 0) rather than the
half plane (~ρ > 0; j~zj < ∞)].
Brill showed that the initial data will have a finite ADM

mass when the functions q and ψ behave as q ¼ Oð~r−2Þ
and ψ ¼ 1þOð~r−1Þ as ~r → ∞ where ~r2 ¼ ~ρ2 þ ~z2. He
also showed that for the initial data to be well behaved
near the ~ρ ¼ 0 coordinate singularity, q must behave like
q ¼ Oð~ρ2Þ as ~ρ → 0 which can also be expressed as

0 ¼ lim
~ρ→0

q; 0 ¼ lim
~ρ→0

�∂q
∂ ~ρ

�
ð76Þ

while the reflection symmetric conditions on q and ψ
requires

0 ¼ lim
~ρ→0

�∂q
∂ ~ρ

�
; 0 ¼ lim

~z→0

�∂q
∂ ~z

�
ð77Þ

0 ¼ lim
~ρ→0

�∂ψ
∂ ~ρ

�
; 0 ¼ lim

~z→0

�∂ψ
∂ ~z

�
: ð78Þ

The condition that ψ ¼ 1þOð~r−1Þ as ~r → ∞ was imple-
mented using a standard mixed outer boundary condition,

∂ψ
∂ ~r ¼ 1 − ψ

~r
as ~r → ∞: ð79Þ

Finally, the vacuum Einstein equations requires ψ to be a
solution of the Hamiltonian constraint which in this case
takes the form

∇2ψ ¼ −
ψ

4

�∂2q
∂ ~ρ2 þ

∂2q
∂ ~z2

�
ð80Þ

where ∇2 is the (flat space) Laplacian in the cylindrical
coordinates ð~ρ; ~ϕ; ~zÞ. The three momentum constraints
provide no new information as they are identically satisfied
for any choice of q and ψ .

A. Eppley Initial data

The function qð~ρ; ~zÞ was chosen as per Eppley [32],
namely

qð~ρ; ~zÞ ¼ a~ρ2

1þ ð~ρ2 þ ~z2Þn=2 ð81Þ

with n ¼ 5 [any n ≥ 4 would be sufficient to satisfy
q ¼ Oð~ρ−2Þ]. The parameter a governs the wave amplitude
with a ¼ 0.01 in the results presented below. Even though
this is a weak amplitude it is sufficient to test the lattice
method.
The Hamiltonian constraint (80), subject to the boundary

conditions (78)–(79), was solved for ψ using standard
second order centred finite differences (including on the
boundaries). The grid comprised 2048 × 2048 equally-
spaced points covering the rectangle bounded by ~ρ ¼ ~z ¼
0 and ~ρ ¼ z ¼ 20. The finite difference equations were
solved (with a maximum residual of approximately 10−13)
using a full multigrid code. The full Brill 3-metric was then
constructed using the reflection symmetry across z ¼ 0 and
the rotational symmetry around the z-axis.
Since the Brill initial data is axisymmetric it is sufficient

to use a two-dimensional lattice on which to record the
initial data for the lattice. An example of such a lattice is
shown in Fig. 2. Each cell contains legs that are (at ~t ¼ 0)
aligned to the Brill ð~ρ; ~zÞ axes as well as a set of diagonal
legs. A full three-dimensional lattice could be constructed
by rotating this two-dimensional lattice around the sym-
metry axis [as indicated in Fig. 2]. In our computer code the
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right portion of lattice covered the domain bounded by
~ρ ¼ ~z ¼ 0, ~z ¼ �5 and ~ρ ¼ 5 while the left portion was
obtained by reflection symmetry across ~ρ ¼ 0. This places
the symmetry axis midway from left to right across the
lattice [this is the blue axis shown in Fig. 2].
Each cell of the lattice contains nine vertices

o; a; b;…; h plus one additional vertex p connected just
to the central vertex o. The purpose of the extra vertex p is
that the collection of all such vertices defines the image of
the two-dimensional lattice under the action of the rota-
tional symmetry. Figure 2 shows two such additional
lattices in which each yellow leg has vertices of the form
ðo; pÞ.
In each cell the local Riemann normal coordinates

ðt; x; y; zÞ were chosen as follows

xαpō ¼ ð0; 0; yp; 0Þ ð82Þ

xαdō ¼ð0;xd;0;zdÞ xαcō ¼ð0;0;0;zcÞ xαbō¼ð0;xb;0;zbÞ
ð83Þ

xαeō¼ð0;xe;0;zeÞ xαoō ¼ð0;0;0;0Þ xαaō¼ð0;xa;0;zaÞ
ð84Þ

xαfō¼ð0;xf;0;zfÞ xαgō¼ð0;xg;0;zgÞ xαhō¼ð0;xh;0;zhÞ
ð85Þ

FIG. 2. Details of the Brill two-dimensional lattice. The left figure shows a subset of the lattice including two overlapping cells. Each
cell is a 2 × 2 set of vertices and legs. An axisymmetric lattice is obtained by assembling copies of the two-dimensional lattice in the
manner shown in the middle figure. The yellow legs in the middle figure are needed to define the separation between the copies. The
right figure shows the various subsets of the lattice used to evolve the data and to apply various boundary conditions. Data in the outer
boundary (the orange region) were evolved using a radiation boundary condition while the data on and near the symmetry axis (the dark
blue region) were evolved by interpolating the time derivatives from the nearby cells (the light blue region). The remaining data (in the
yellow region) were evolved using the lattice evolution equations.

FIG. 3. A typical set of vertices and legs used in computing the transition matrices, ma
bc. The coordinate axes in these figures are

applicable only to the two-dimensional Brill lattice and should be ignored when reading the discussion in Appendix A particularly in the
calculations leading to equation (A16).
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for some set of numbers xa; za;…yp and where the labels
o; a; b;…; h follow the pattern shown in Fig. 3.
The leg lengths and Riemann normal coordinates were

set by first distributing the Nx × Nz vertices as equally
spaced points in the ð~ρ; ~zÞ domain, ð−5;−5Þ to (5, 5), and
then integrating the geodesic equations as a two-point
boundary value problem for each leg in each cell.
The remaining initial data on the lattice consists of the

nonzero components of the Riemann and extrinsic curva-
tures along with either the leg lengths or the vertex
coordinates [33]. Given the symmetries of the Brill metric
it is not hard to see that there are only four nontrivial
extrinsic curvatures, Kxx, Kyy, Kzz and Kxz and eight
nontrivial Riemann curvatures, Rxyxy, Ryzyz, Rxzxz, Rxyyz,
Rtxxz, Rtzxz, Rtyxy and Rtyyz. Each of these 12 curvatures
were given initial values by projecting their counterparts
from the Brill metric (extended to 3þ 1 form using a unit
lapse and setting dψ=dt ¼ dq=dt ¼ 0 at ~t ¼ 0) onto the
local orthonormal frame.

B. Evolution equations

The initial data just described has only 12 nontrivial
components for the Riemann and extrinsic curvatures. It is
easy to see that this situation is preserved by the evolution
equations. For example, equation (12) shows that
dKxy=dt ¼ 0 for this particular set of initial data. Thus
all of the symmetries in the initial data will be preserved
throughout the evolution (e.g., Kxy will remain zero for all
time). This leads to the following set of evolution equations
for the four extrinsic curvatures

dKxx

dt
¼ Rxyxy þ Rxzxz þ K2

xx − K2
xz ð86Þ

dKyy

dt
¼ Rxyxy þ Ryzyz þ K2

yy ð87Þ

dKzz

dt
¼ Rxzxz þ Ryzyz þ K2

zz − K2
xz ð88Þ

dKxz

dt
¼ −Rxyyz ð89Þ

while the evolution equations for the eight Riemann
curvatures are

dRxyxy

dt
¼ðRyzyzþ2RxyxyÞKxxþðRxzxzþ2RxyxyÞKyy

−KxzRxyyz−mx
yyRtyxy−mx

zxRtyyzþRtyxy†x ð90Þ

dRyzyz

dt
¼ ðRxzxz þ 2RyzyzÞKyy þ ðRxyxy þ 2RyzyzÞKzz

− KxzRxyyz −mx
zzRtyxy −mx

yyRtzxz − Rtyyz†z

ð91Þ

dRxzxz

dt
¼ ðRyzyz þ 2RxzxzÞKxx þ ðRxyxy þ 2RxzxzÞKzz

þ 2KxzRxyyz −mx
zxRtxxz −mx

zzRtzxz

þ Rtzxz†x − Rtxxz†z ð92Þ

dRxyyz

dt
¼ðKzzþ2KyyÞRxyyz− ðRyzyzþ2RxyxyÞKxz

þmx
zzRtyyz−Rtyxy†z ð93Þ

dRtxxz

dt
¼ ðKyy þ 2KzzÞRtxxz − 2KxzRtzxz −mx

yyRxyyz

− Rxzxz†z ð94Þ

dRtzxz

dt
¼ðKyyþ2KxxÞRtzxzþðRyzyz−RxzxzÞmx

yy

−2KxzRtxxzþRxzxz†x ð95Þ

dRtyxy

dt
¼ðKzzþ2KxxÞRtyxyþðRyzyz−RxyxyÞmx

zz

−KxzRtyyz−2mx
zxRxyyzþRxyxy†x−Rxyyz†z ð96Þ

dRtyyz

dt
¼ðKxxþ2KzzÞRtyyzþðRxyxy−RyzyzÞmx

zx

−KxzRtyxy−2mx
zzRxyyzþRxyyz†x−Ryzyz†z ð97Þ

where mx
yy, mx

zx and mx
zz are solutions of

vyqsā þ vyuwē ¼ mx
yyðvxeaōvytpō − vxtpōv

y
eaōÞ ð98Þ

vxhbāþvxbdc̄þvxdfēþvxfhḡ¼mx
zxðvzeaōvxgcō−vzgcōv

x
eaōÞ ð99Þ

vzhbāþvzbdc̄þvzdfēþvzfhḡ¼mx
zzðvzeaōvxgcō−vzgcōv

x
eaōÞ

ð100Þ
where vαabc̄ ¼ xαbc̄ − xαac̄. The equations for m

x
yy, mx

zx and
mx

zz were obtained by a simple application of Eq. (A16) to
the xz plane [leading to Eqs. (99) and (100)] and the yz
plane [leading to Eq. (98)].
The final set of evolution equations required are those for

the leg lengths or the vertex coordinates. In contrast to the
Gowdy lattice it was decided to evolve the vertex coor-
dinates. There are two reasons for doing so. First, the above
evolution equations for the Rαβμν refer directly to the vertex
coordinates and second, solving the coupled set of non-
linear equations (3) for the vertex coordinates involves not
only extra work but was observed to lead to asymmetric
evolutions (i.e., the evolved data failed to be reflection
symmetric across the symmetry axis). This loss of sym-
metry was attributed to the algorithm [1] used to solve these
equations [34].
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C. Numerical dissipation

Other authors [13,35] have noted that the singular
behavior of the evolution equations on the symmetry axis
can cause numerical instabilities to develop along the
symmetry axis. This problem can be avoided by either
using a fully three-dimensional formulation (which is
computationally expensive) or mitigated by introducing
numerical dissipation. Similar instability problems were
expected on the two-dimensional axisymmetric lattice. By
direct experiment it was found that good damping of the
numerical instabilities could be obtained by applying a
Kreiss-Oliger dissipation to the evolution equations. The
standard practice is to weight the dissipation term by powers
of the discretization scale (i.e., powers of L) to ensure that
the dissipation terms do not dominate the truncation errors
inherent in the numerical integrator. For a fourth-order
Runge-Kutta integrator (as used here) this would require
a dissipation term of order OðL6Þ which would be the case
for a sixth-order derivative term [as used in the Gowdy lattice
(74)]. However, on this simple Brill lattice, where cells
interact only by nearest neighbors, the best that can be done
is to use a second-derivative dissipation term. The choice
used in the results given below was

dY
dt

¼
�
dY
dt

�
ϵ¼0

þ ϵðYa þ Yc þ Ye þ Yg − 4YoÞ ð101Þ

where ϵ is a small number and the first term on the right hand
side is time derivative without dissipation while the second
term is a crude estimate of OðL2Þ∇2Y on the cell [the
subscripts correspond to the vertices displayed in Fig. 3].
The dissipation was applied only to the Riemann curvatures
as no significant gains were noted when the dissipation was
also applied to the extrinsic curvatures. In the results
presented below ϵ ¼ 1.0 (this was the smallest value of ϵ
that allowed the evolution to remain stable to at least t ¼ 10).

D. Inner boundary conditions

Figure 2 shows three copies of the two-dimensional
lattice sharing the common symmetry axis. Away from
the symmetry axis the three copies of the lattice provide
sufficient data to estimate y derivatives of data on the
lattice. However, this construction clearly fails at the
symmetry axis. One consequence of this can be seen in
Eq. (98) which, when expressed in terms of the coordinates
and leg lengths, leads tomx

yy ≈ −ð1=LyyÞðdLyy=dxÞwhere
x is the proper distance measured along the x-axis. This
shows that mx

yy is singular on the symmetry axis (where
Lyy ¼ 0). The upshot is that any y derivative, on this choice
of lattice, will by singular on the symmetry axis [e.g., all of
the y derivatives in Eqs. (16)–(29)].
One approach to dealing with this problem is to return

to Eqs. (16)–(29) and make direct use of the rotational
symmetry to express all of the y derivatives in terms of the
(manifestly nonsingular) x derivatives on the symmetry

axis. As an example, let Vαβ be the components of a tensor
V on the lattice. Now consider a copy of the lattice rotated
by π=2 about the symmetry axis. Denote the components
of V on the second lattice by V 0

αβ. Then V 0
αβ ¼ Vαβ by

rotational symmetry. However, on the symmetry axis the
coordinates for both lattices are related by x0 ¼ y, y0 ¼ −x
and z0 ¼ z thus the usual tensor transformation law would
give V 0

xy ¼ −Vyx. But V 0
xy ¼ Vxy and thus Vxy ¼ −Vyx on

the symmetry axis. Now suppose Vαβ ¼ Wα;β for some
tensor W. It follows that Wx;y ¼ −Wy;x on the symmetry
axis. This idea can be applied to any tensor on the lattice in
particular to the derivatives of Rαβμν.
It is also possible to gain information about the curvature

components by considering a rotation of π rather than π=2.
Following the steps described above, the result is that any
component of a tensor with an odd number of x indices will
be antisymmetric across the symmetry axis while the
remaining components will be symmetric. This shows
immediately that Kxz, Rxyyz, Rtyxy and Rtzxz must vanish
on the symmetry axis.
The upshot is that the evolution Eqs. (16)–(29) can be

reduced, on the symmetry axis, to just five nonzero
equations

dRxyxy

dt
¼ 2ðRxzxz þ 2RxyxyÞKxx − 2mx

zxRtxxz þ Rtyxy†x

ð102Þ
dRxzxz

dt
¼ 3KxxRxzxz þ ðRxyxy þ 2RxzxzÞKzz −mx

zxRtxxz

þ Rtzxz†x − Rtxxz†z ð103Þ

dRyzyz

dt
¼ 3KxxRxzxzþðRxyxyþ2RxzxzÞKzz

−mx
zxRtxxz−Rtyyz†z ð104Þ

dRtxxz

dt
¼ ðKxx þ 2KzzÞRtxxz þmx

zxRxyxy −mx
zxRxzxz

− Rxzxz†z ð105Þ
dRtyyz

dt
¼ ðKxx þ 2KzzÞRtxxz þmx

zxRxyxy −mx
zxRxzxz

þ Rxyyz†x − Ryzyz†z: ð106Þ
Though these equations are nonsingular there remains a
numerical problem with cells near the symmetry axis—
their proximity to the symmetry axis can lead to instabilities
in the evolution.
A better approach, described in more detail below, is to

excise a strip of cells containing the symmetry axis [as
shown in Fig. 2] and to interpolate from outside the strip to
recover the time derivatives of the Riemann curvatures
within the strip. This, along with numerical dissipation,
proved to be crucial in obtaining stable evolutions.
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The interpolation near the symmetry axis was imple-
mented as follows. The cells of the two-dimensional lattice
where indexed by rows and columns aligned to the ~x and ~z
axes. Each cell was given an index pair such as ði; jÞ with i
denoting the number of columns from the ~x ¼ 0 axis (i.e., the
symmetry axis) and j the number of rows from the ~z ¼ 0 axis.
The interpolation used data from the cells i ¼ 3, 4, 5, 6, 7, for
a given j, to supply data for the cells with i ¼ −2;−1, 0, 1, 2,
for the same j. In each case the interpolation was tailored to
respect the known symmetry of the data across the symmetry
axis. Thus for dRxyxy=dt, which is symmetric across ~x ¼ 0, a
polynomial of the form yðxÞ ¼ a0 þ a2x2 þ � � �a8x8 was
used. For antisymmetric data the polynomial was of the
form yðxÞ ¼ a1xþ a3x3 þ � � � a9x9. The five coefficients
a0; a2;…a8 and a1; a3;…a9 were determined using trivial
variations of standard methods for polynomial interpolation.
The choice of interpolation indices i ¼ 3, 4, 5, 6, 7, which
correspond to the light blue strip in Fig. 2, was found by trial
and error as it gave stable evolutions (in conjunction with the
numerical dissipation) without being overly expensive.
There is a simple variation on this interpolation scheme

in which the data from the symmetry axis (i.e., equa-
tions (102)–(106)) is included in the data used to build the
polynomial. Thus data on the cells i ¼ 0, 3, 4, 5, 6, 7 would
be used to build data for cells i ¼ −2;−1, 1, 2. The
evolutions that resulted form this construction were highly
unstable and crashed at approximately t ¼ 4.7.

E. Outer boundary conditions

The outer boundary of the lattice is defined to be a skin
of cells one cell deep on the outer edges of the lattice [as
indicated by the orange region in Fig. 2]. In each of the
boundary cells the Riemann and extrinsic curvatures were
evolved by way of an outgoing radiation boundary con-
dition of the form

∂f
∂t ¼ −

f
~r
−

~r
~xini

∂f
∂n ð107Þ

where f is one of the Riemann and extrinsic curvatures and
n is the outward pointing unit normal to the cell (at the
central vertex). The ~xi are constants set equal to the Brill the
coordinates ð~ρ; ~zÞ of the central vertex at t ¼ 0. Finally,
~r ¼ ð~ρ2 þ ~z2Þ1=2. The leg lengths and Riemann normal
coordinates in each cell were not evolved but rather copied
across from the nearest inward neighboring cell.
This is an extremely simplistic set of boundary con-

ditions (particularly so for the leg lengths and coordinates).
It was chosen simply to get a numerical scheme up and
running. The surprise it that it works very well (as
discussed below in Sec. IX B).

F. Constraints

Only five of the ten constraints (37)–(46) survive once
the axisymmetry of the Brill spacetime is imposed. The

surviving equations are (37), (38), (40), (41), (43) and can
be written in the form

0 ¼ C1 ¼ Rxyxy þ Rxzxz þ Ryzyz ð108Þ
0 ¼ C2 ¼ Rtyxy þ Rtzxz ð109Þ
0 ¼ C3 ¼ Rtxxz þ Rtyyz ð110Þ

0 ¼ C4 ¼ ðRxyxy − RyzyzÞmx
zx −mx

yyRxyyz − 2mx
zzRxyyz

þ KxxRtyyz þ KyyRtxxz þ KxzRtyxy þ Rxyxy†z þ Rxyyz†x

ð111Þ

0¼C5 ¼ðRyzyz−RxyxyÞmx
zzþðRyzyz−RxzxzÞmx

yy

−2mx
zxRxyyzþKyyRtzxzþKzzRtyxyþKxzRtyyz

−Rxyyz†z−Ryzyz†x ð112Þ
where some simple numerical factors have been fac-
tored out.

VII. TEUKOLSKY LINEARISED WAVES

The results for the Gowdy and Brill spacetimes are
promising but a proper test of the smooth lattice method
requires that it be applied to truly three-dimensional data,
i.e., initial data devoid of any symmetries such as the
Teukolsky linearized waves [8] described by the metric

ds2 ¼ −d~t2 þ d~r2 þ ~r2dΩ2

þ ð2 − 3sin2 ~θÞAð~t; ~rÞdr2
− ðAð~t; ~rÞ − 3ðsin2 ~θÞCð~t; ~rÞÞr2d~θ2

− ðAð~t; ~rÞ þ 3ðsin2 ~θÞðCð~t; ~rÞ − Að~t; ~rÞÞÞ~r2sin2 ~θd ~ϕ2

− 6rðsin ~θ cos ~θÞBð~t; ~rÞd~rd~θ ð113Þ

where

Að~t; ~rÞ ¼ 3

~r5
ð~r2Fð2Þ − 3~rFð1Þ þ 3FÞ ð114Þ

Bð~t; ~rÞ ¼ −1
~r5

ð−~r3Fð3Þ þ 3~r2Fð2Þ − 6~rFð1Þ þ 6FÞ ð115Þ

Cð~t; ~rÞ¼ 1

4~r5
ð~r4Fð4Þ−2~r3Fð3Þ þ9~r2Fð2Þ−21~rFð1Þ þ21FÞ

ð116Þ

FðnÞ ¼ 1

2

�
dnQð~tþ ~rÞ

d~rn
−
dnQð~t − ~rÞ

d~rn

�
ð117Þ

and where QðxÞ is an arbitrary function of x. Note that this
form of the metric differs slightly from that given by
Teukolsky. Here the function F has been expressed as an
explicit combination of ingoing and outgoing waves (thus
ensuring time symmetric initial data). Note also that the
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derivatives of F are taken with respect to ~r rather than x as
used by Teukolsky. Consequently, the signs of the odd
derivatives of F in the expressions for A, B andC have been
flipped.
Following Baumgarte and Shapiro [16], the function

QðxÞ was chosen to be

QðxÞ ¼ axe−x
2

with a > 0 ð118Þ
as this produces initial data describing a compact wave
centered on the origin with a wave amplitude controlled by
the parameter a.
Note that the metric (113) is not an exact solution of the

vacuum Einstein equations but rather a solution of the
linearized equations in the sense that GabðgÞ ¼ Oða2Þ.
This form of the metric requires some care when setting

the initial data near ~r ¼ 0 (where the coordinates are
singular). A better choice is to express the metric in
standard Cartesian coordinates. At the moment of time
symmetry, ~t ¼ 0, the Cartesian components, hij, of the
3-metric are given by

h~x ~x ¼ 1 − 24að1þ ð~r2 − 4Þ~y2 − ~x2 ~z2Þe−~r2 ð119Þ
h~y ~y ¼ 1 − 24að1þ ð~r2 − 4Þ~x2 − ~y2 ~z2Þe−~r2 ð120Þ

h~z ~z ¼ 1þ 24aðð~x2 þ ~y2 − 2Þ2 − 2Þe−~r2 ð121Þ

h~x ~y ¼ 24a~x ~y ð~r2 þ ~z2 − 4Þe−~r2 ð122Þ

h~x ~z ¼ −24a~z ~x ð~x2 þ ~y2 − 2Þe−~r2 ð123Þ

h~y ~z ¼ −24a~y ~z ð~x2 þ ~y2 − 2Þe−~r2 ð124Þ

where ~r ¼ ð~x2 þ ~y2 þ ~z2Þ1=2.
The three-dimensional lattice was built by a simple

generalization of the two-dimensional lattice used for the
Brill waves (see Fig. 4). The grid was built from a set of
Nx × Ny × Nz equally spaced points in a the three-dimen-
sional volume bounded by jxj ¼ jyj ¼ jzj ¼ 5. The points
were then identified as thevertices of the latticewhile on each
of the ~x ~y, ~x ~z and ~y ~z planes, legs were added in exactly the
same pattern as for the two-dimensional Brill lattice, recall
Fig. 2. Consequentlymany of the ideas discussed in regard to
the Brill lattice carry over to the this lattice. Initial data for the
coordinates and leg lengths were assigned by integrating the
geodesic equations as two-point boundary problems for each
leg of the lattice (this was time consuming but only needed to
be done once). The outer boundary conditions were exactly
as per equation (107) but on this occasion applied to all six
faces of the lattice. Geodesic slicing was used (i.e., zero shift
and unit lapse) and as there are no symmetries, the full set of
evolution Eqs. (9)–(14) and (16)–(29) were used (see also
Appendix G). The implementation of the numerical dis-
sipation is in this case slightly different to that for the two-
dimensional lattice. The appropriate version of (101) for the
three-dimensional lattice is

dY
dt

¼
�
dY
dt

�
ϵ¼0

þ ϵ

�
−6Yo þ

X
i

Yi

�
ð125Þ

where the sum on the right-hand side includes contributions
from the six immediate neighboring cells. The term in the
second set of brackets in this expression is an approximation
toOðL2Þ∇2Y and thus will converge to zero on successively
refined lattices.
Since the Teukolsky spacetime carries no symmetries

it follows that none of the constraints (37)–(46) will be
trivially satisfied throughout the evolution. Including
results for all 10 of the constraints is somewhat of an
overkill so results will be presented (in Sec. IX C) for just
the Hamiltonian constraint, namely,

0 ¼ C1 ¼ Rxyxy þ Rxzxz þ Ryzyz: ð126Þ

VIII. CACTUS

The combination of the open source code Cactus [36]
and the Einstein Toolkit [18] (collectively referred to here
as the Cactus code) provide a well understood framework
for computational general relativity. The Cactus code was
used largely out of the box but with some simple extensions
for setting the initial data for the Brill and Teukolsky
spacetimes. A new thorn was written for the Brill spacetime
to set the initial data from the discretized metric provided
by the same multigrid code used to set the lattice initial

FIG. 4. A typical computational cell for the Teukolsky lattice.
This figure shows, for simplicity, only one of three sets of yellow
diagonal legs. A proper figure would show yellow diagonal legs
on each of the three coordinate planes (bounded by the green
rectangles). Note also that though this cell looks regular (roughly
equal leg lengths and apparently orthogonal legs) this is again just
to simplify the figure. In general the leg lengths and their mutual
angles will vary (slightly) across the cell.
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data. For the Teukolsky metric the EINSTEININITIALDATA/
EXACT thorn was extended to include the exact 3-metric
given in Eqs. (119)–(124). These changes were made to
ensure that the lattice and Cactus evolutions were based on
exactly the same initial data.
The Cactus initial data were built over the same domain

as used in the corresponding lattice initial data. The initial
data were integrated using the standard BSSN and ADM
thorns. The BSSN thorn used a fourth order Runge-Kutta
integrator and artificial dissipation was applied to all
dynamical variables with a dissipation parameter equal
to 0.1. The ADM integrations used a two-step iterated
Crank-Nicholson scheme without artificial dissipation. The
time step in each case was chosen to ensure a Courant
factor of 1=8.
The Cactus code does not provide values for the

components of either the 3 or 4 dimensional Riemann
tensor. However the spatial components, such as ~Rxyxy, can
be reconstructed from the three-dimensional components
of the Ricci tensor and metric using a combination of the
Gauss-Codazzi equations

⊥ ~Rαβμν ¼ 3 ~Rαβμν þ ~Kαμ
~Kβν − ~Kαν

~Kβμ ð127Þ

and the equation

3 ~Rαβμν ¼ ~Rαμ
~hβν − ~Rαν

~hβμ þ ~hαμ ~Rβν − ~hαν ~Rβμ

−
~R
2
ð ~hαμ ~hβν − ~hαν ~hβμÞ ð128Þ

where ~hαβ is the 3-metric, ~Rαβ is the 3-Ricci tensor

and ~R ¼ ~hαβ ~Rαβ.
Since the Cactus and lattice data are expressed in

different frames some post-processing of the data is
required before the two sets of data can be compared.
There are two aspects to this, first, mapping points between
the respective spaces (e.g., given a point in the Cactus
coordinates what is the corresponding point in the lattice?)
and second, comparing the data at those shared points.
Recall that when constructing the initial data for the Brill
and Teukolsky lattices, the vertices of the lattice were taken
as the uniformly distributed grid points in the Brill and
Teukolsky coordinates. This correspondence is preserved
throughout the evolution by the zero shift condition. This is
not the case for the Gowdy spacetime where the initial data
was constructed on an unequally spaced grid (see Sec. VA)
while in contrast the Cactus code uses an equally-spaced
grid. In this case the conversion of tensor components, such
as ~Rαβμν, from the Cactus data into a form suitable for
comparison with the lattice data entails two steps, first,
the tensor is projected onto a local orthonormal frame,
second, the radial ~z coordinate is converted to a radial
proper distance ~s. Since the Gowdy metric is diagonal the
projection onto the coordinate aligned orthonormal frame is

trivial, for example Rxyxy ¼ ~hxx ~hyy ~Rxyxy, while the
proper distance between successive grid points can be
computed by

Δ~siiþ1 ¼
Z

iþ1

i

ffiffiffiffiffiffi
~hzz

q
d~z ð129Þ

where the limits ði; iþ 1Þ are understood to represent
the corresponding grid points. The integral was estimated
by a cubic polynomial based on the grid points
ði − 1; i; iþ 1; iþ 2Þ.

IX. RESULTS

The evolution equations for the Brill and Teukolsky
lattices were integrated using a fourth order Runge-Kutta
routine with a fixed time step δt chosen to satisfy a Courant
condition of the form δt < CδLwhere δL is the shortest leg
length on the lattice and where C is a Courant factor with
0 < C < 1. The same integration scheme was used for the
Gowdy lattice apart from one small change where the
Courant condition was based upon Nδt < CminðLzzÞ
where N is the largest lapse on the lattice. This Courant
condition uses the shortest Lzz for the simple reason that the
evolution equations (53), (54) for Lxx and Lyy admit a
rescaling of Lxx and Lyy and thus their values can not
influence δt.
A trial and error method was first used to find any time

step that yielded a stable evolution (despite the cost). This
allowed a more informed judgement to made by a careful
examination of the history of the leg lengths. Thus for
the Gowdy lattices the time step was chosen as δt ¼
0.0512=Nz corresponding to a Courant factor of 1=20,
while for the Brill and Teukolsky lattices the time step, with
C ¼ 1=8, was set by δt ¼ 1.25=ðNz − 1Þ.

A. Gowdy

There are two obvious tests that can be applied to the
lattice data, first, a comparison against the exact data and,
second, a comparison against numerical results generated
by the Cactus code. Other tests that can be applied include
basic convergence tests as well as observing the behavior of
the constraints.
The initial data for the lapse was chosen according to

the comparison being made. The comparisons with the
Cactus data were based on a unit lapse, N ¼ 1, while the
comparisons with the exact solution used initial values
taken from the exact solution, N ¼ eλ=4 at ~t ¼ 1.
The dissipation parameter ϵ [see Eq. (74)] was set

equal to 0.8 (which was found by trial and error as the
smallest value that ensured good stability for the 1þ log
lapse). The integral in Eq. (55) was estimated using a
fourth order interpolation built from five cells centered on
this leg.
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Selected results can be seen in Figs. 5–9 and show that
the lattice method works well with excellent agreement
against the exact and numerical solutions. Note that since
the lattice expands by factors of order 100, the Lzz have
been uniformly scaled to squeeze the lattice into the range
½−0.5; 0.5�. Figure 5 shows a comparison of the original and
scaled data. Figures 8, 9 show the behavior of selected
constraints as well as basic convergence tests.

B. Brill

The results for the Brill initial data are shown in
Figs. 10–13. In all cases the dissipation parameter ϵ for
the lattice was set equal to 1.0 [except as noted in Fig. 13].

The Cactus BSSN data was computed on a full three-
dimensional grid and thus there is no reason to expect any
instabilities on the symmetry axis. This allows a much
small dissipation parameter, ϵ ¼ 0.1, to be used for the
BSSN evolutions. The Cactus ADM thorn does not appear
to support any form of Kreiss-Oliger numerical dissipation.
The expected behavior for the Brill wave is that the

curvature will be propagated away from the symmetry axis
with the wave hitting the edges of the outer boundary by
about t ¼ 5 followed by the four corners by about t ¼ 7
and will completely cross the boundary by about t ¼ 10. As
the wave moves across the grid it should leave zero
curvature in its wake (though the extrinsic curvatures need
not return to zero).

FIG. 5. This figure shows the rapid expansion (into the future of the t ¼ 0 singularity) of the lattice in the 1þ log slicing. The left plot
shows the lapse (from t ¼ 1 to t ¼ 20 in steps of 1) as a function of the unscaled proper distance while the right plot shows the same data
but using a rescaled z-axis. The red curves display the lattice data (for Nz ¼ 1024) while the blue dots are from the Cactus data (with
Nz ¼ 400 though only every fourth point is shown). The agreement between the lattice and Cactus data is very good.

FIG. 6. A comparison of the lattice data for the exact slicing against the New-Watt et al. [30] data. The continuous line denotes the
lattice data (using Nz ¼ 1024) while the New-Watt data (with Nz ¼ 32) are denoted by points. It is clear that the lattice data agrees very
well with the New-Watt data. There are nine curves in each figure representing data from t ¼ 2 to t ¼ 6 in steps of 0.5.
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The results for all three methods at t ¼ 5 are shown in
Fig. 10 where it is clear that though there is some good
agreement in the propagation of the main the wave there
are also some notable differences. The ADM method
shows a series of parallel waves propagating in from the
outer boundary towards the symmetry axis (such waves
will later be referred to as boundary waves, these waves
are particular evident in movies from t ¼ 0 to t ¼ 10)
while the BSSN data shows a nonpropagating bump close
to the origin. In contrast the lattice data shows a smooth
behavior in the wave with no apparent boundary waves
nor any sign of a bump. By t ¼ 10 [see Fig. 11] the ADM
data shows not only the boundary waves but also reflected
waves from the outer boundary. Similar reflected waves
can also be seen in the BSSN results though with a

significantly smaller amplitude. The bump in the BSSN
data has remained in place and has grown in amplitude.
The lattice data shows no signs of reflection but there is a
very small bump that correlates with the wings of the
BSSN bump.
It is reasonable to ask why the three methods should give

such different results in the region behind the main wave.
The smooth profile in the lattice data might be due to the
large dissipation parameter compared to that used in the
ADM and BSSN data. The boundary waves in the ADM
data are clearly associated with the boundary conditions
while the cause of the bump in the BSSN data is not so easy
to identify from these plots. A more detailed analysis will
be given later when discussing the Teukolsky data where
similar behavior was observed.

FIG. 7. This figure is similar to the previous figure but this time for the 1þ log slicing. The Cactus data (blue points) is based on
Nz ¼ 400 with only every fourth point shown. The lattice data (red lines) is based on Nz ¼ 1024. Each figure contains 20 curves for
t ¼ 2 to t ¼ 20 in steps of 1.

FIG. 8. This figure shows the behavior, in the 1þ log slicing, of the C1 constraint (71) over time (left panel) and across the grid at a
fixed time (right panel). The data in the left panel are for the case Nz ¼ 1024 and show the maximum values of C1 across the grid. The
right-hand panel shows three curves, Nz ¼ 256 (red), Nz ¼ 512 (blue) and Nz ¼ 1024 (green) with y values, at t ¼ 5, scaled by 1, 32
and 1024 respectively. The close agreement in the curves suggests that the constraints converge to zero as OðN−5

z Þ. The fifth order
convergence is unexpected and is likely due to a fortuitous interplay between the fourth and fifth order terms in the truncation errors
(arising from the fourth order Runge-Kutta integrations and the fifth order Kreiss-Oliger dissipation). Similar behavior was observed for
the remaining two constraints (72), (73). The somewhat erratic behavior in the left panel most likely arises by the fact that the grid point
on which the maximum occurs need not be a continuous function of time.
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FIG. 9. This figure show the convergence of two metric functions, Kzz and Rxyxy, as a function of Nz in the 1þ log slicing. The three
curves correspond to Nz ¼ 128 (red), Nz ¼ 256 (blue) and Nz ¼ 512 (green) and have their y values scaled by 1, 32 and 1024
respectively. For the 1þ log slicing there is no exact solution available so the best available data (i.e., Nz ¼ 1024) was taken as a best
estimate of the exact solution. This suggests that the lattice data is converging to the exact solution as OðN−5

z Þ. As with the previous
figure, the fifth order convergence is unexpected and is likely due to the same interplay between the truncation error terms as noted
before.

FIG. 10. This figure shows a comparison between the lattice, ADM and BSSN evolutions of Rxyxy for the Brill initial data at t ¼ 5. All
three methods agree well though the ADM and BSSN results show small waves near the symmetry axis. The figure in the lower right
shows the data for all three methods (red, lattice), (blue, ADM) and (green, BSSN) along the ~x-axis.
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FIG. 11. This is similar to Fig. 10 but for the case t ¼ 10. It shows clears signs of reflected waves in the both ADM and BSSN data
while the lattice data is mostly flat apart from two small bumps aligned to the wings of the BSSN bump.

FIG. 12. This pair of figures record the maximum value of the Brill constraints C1 and C4 across the lattice for 0 < t < 10. Note that
the constraints remain bounded and appear to decay towards a constant but nonzero value during the evolution. The nonzero value is
probably tied to the truncation error in solving the Hamiltonian constraint (80). The small bumps at approximately t ¼ 5 and t ¼ 10 in
the left hand figure are probably due to reflections from the outer boundary (though this was not tested). The remaining constraints C2,
C3 and C5 are not included here as they show much the same behavior as shown above.

EVOLUTIONS OF GOWDY, BRILL, AND TEUKOLSKY … PHYSICAL REVIEW D 96, 024037 (2017)

024037-19



The effects of changing dissipation parameter on the
evolution of the lattice data is shown in Fig. 13. This shows
clearly how crucial the numerical dissipation is in control-
ling the instabilities. The figure also shows that despite the
significant dissipation (ϵ ¼ 1.0) required to suppress the
axis instability, the broad features of the main wave are
largely unaffected.
Figure 12 shows the behavior of the constraints C1 (108)

and C4 (111) over the period t ¼ 0 to t ¼ 10. The
remaining three constraints are not shown as they show
much the same behavior. Each plot contains four curves
corresponding to different lattices scales, Nz ¼ 101 (red),
Nz ¼ 201 (blue), Nz ¼ 401 (green) and Nz ¼ 801 (black).
These show that the constraints appear to decrease as Nz
is increased. It also appears that the constraints settle
to a nonzero value as t increases. This could be due to
truncation errors inherent in the solution of the Hamiltonian
equation (80) coupled with the interpolation to the lattice
(though this claim was not tested). The two bumps in the

left figure, one just after t ¼ 5 and one close to t ¼ 10 are
most likely due to reflections from the outer boundary (this
too was not tested).

C. Teukolsky

The Teukolsky data is specified on a full three-dimen-
sional grid/lattice and is thus not susceptible to the axis
instability seen in the Brill data. This allows for a much
smaller dissipation parameter to be used for the lattice,
ADM and BSSN codes, in this case ϵ ¼ 0.1.
The results for the Teukolsky initial data are shown

Figs. 14–18 and bear some similarities with the results for
the Brill initial data. However, in this case the boundary and
reflected waves appear to be much less noticeable while the
bump in the BSSN data is still present and is more
pronounced than in the Brill wave data.
The plots in Fig. 17 show that the bump in the BSSN data

is a numerical artifact. The figure shows that as the spatial
resolution is decreased (i.e., increasing Nz) the amplitude

FIG. 13. The top row of this figure shows how effective the numerical dissipation can be in suppressing the axisymmetric instabilities.
The data differs only in the choice of the dissipation parameter, on the left ϵ ¼ 0.1while on the right ϵ ¼ 1.0. The bottom row shows data
along the ~x axis for four choices of the dissipation parameter, ϵ ¼ 0.1 (red), ϵ ¼ 0.2 (blue), ϵ ¼ 0.5 (green) and ϵ ¼ 1.0 (black). The
lower right figure shows that the dissipation has only a small effect on the peaks of the wave at t ¼ 5.
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of the bump, at t ¼ 5, decreases. The figure also shows that
the amplitude of the bump grows with time. No attempt was
made to determine the source of the bump.
In order to better understand the influence of the outer

boundary condition on the evolution it was decided to run
the lattice, ADM and BSSN codes on two different sets of
initial data, each with the same spatial resolution but with
one grid twice the size of the other (i.e., one grid had
boundaries at �5 and the other at �10). The influence of
the outer boundary condition on the evolution was then be
measured by comparing the evolution on the common
region. The results are shown in Fig. 18. The right panel
shows the evolution of Rxyxy on the lattice on both grids
with Nz ¼ 101 for the red curve and Nz ¼ 201 for the blue
curve. Notice how the red curve lies entirely on top of the
blue curve even as the wave passes through the �5
boundary. The left panel shows the difference in Rxyxy

between the two grids for the lattice data (red curve) and
for the BSSN data (green curve, using Nz ¼ 100 and
Nz ¼ 200). This shows clearly that the boundary waves for

both methods are present well before the main wave hits the
boundary. It also shows that the amplitude for the BSSN
data is much larger than for the lattice data. Note also that
the boundary waves do not propagate very far into the grid
(in stark contrast to the ADM Brill waves). By t ¼ 10 the
main wave has left the smaller grid and the data in the left
panel describes a mix of waves dominated by the reflected
waves. This figure also shows that the BSSN data contains
a long wavelength mode while the waves in the lattice data
are much smaller in amplitude and are dominated by high
frequency modes (which are rapidly suppressed by the
numerical dissipation).
The evolution of the Hamiltonian constraint (126) is

shown in Fig. 16. The linear growth in the constraint for the
BSSN data is due solely to the growth of the BSSN bump at
the origin. The sharp rise in the constraint for the lattice
data for Nz ¼ 201 is due to the onset of a small instability
in the lattice near the origin. This can also be seen in the
small bump in the lower right plot of Fig. 18. This
instability can be suppressed by increasing the dissipation

FIG. 14. This figure is similar to Fig. 10 but in this case showing the evolutions of the Teukolsky data. There are no obvious boundary
waves but the bump in the BSSN data remains. The lattice data again looks smooth and flat behind the main wave.
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parameter but at the expense of compromising the quality
of the evolution. The source of this instability is thought to
be due to the residual extrinsic curvatures driving the lattice
vertices in different directions leading to distorted computa-
tional cells that break the near-planar assumptions built into
the derivation of Eqs. (A16). This is an important issue for
the viability of the lattice method and will be explored in
more detail in subsequent work.

X. DISCUSSION

The passage of the waves through the outer boundaries
appear to be better handled by the lattice method than both
the ADM and BSSN methods. This is particularly true for
the Brill waves but less so for the Teukolsky waves. It is
reasonable to ask if this is a generic feature of the lattice
method and if so, then which features of the lattice method
gives rise to this result? An argument can be made that this
behavior may well be germane to the lattice method. The
basis of the argument is the simple observation that in any
small region of spacetime covered by Riemann normal

coordinates the first order coupled evolution equations for
the Riemann curvatures (16)–(29) can be decoupled to
second order equations in which the principle part is the
wave operator [37]. That is, for each Riemann component
such as Rxyxy,

Rxyxy;tt ¼ Rxyxy;xx þ Rxyxy;yy þ Rxyxy;zz þOðR2Þ ð130Þ

where the term OðR2Þ is a collection of terms quadratic in
the Rαβμν. The natural outgoing boundary condition for
this wave equation is the Sommerfeld condition as per
Eq. (107). Thus it is not surprising that the lattice method
works as well as it does. This result is a direct consequence
of the use of Riemann normal coordinates. In a generic set
of coordinates the principle part would not be the wave
operator.
As encouraging as the results may appear to be there

remain many questions about the method. How does it
behave for long term integrations? What are its stability
properties? How can it be extended to higher order

FIG. 15. As per Fig. 14 but at t ¼ 10. The BSSN bump has grown by a about 50% over the period t ¼ 0 to t ¼ 10. There is also a very
small bump in the lattice data near the origin.
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methods? How can mesh refinement be implemented? How
well does it work on purely tetrahedral meshes? How well
does it work for nonunit lapse functions? How can black
holes be incorporated into a lattice (punctures or trapped
surfaces?) and how would these holes move through the
lattice? How can energy flux, ADM mass and other
asymptotic quantities be computed on a lattice?
There is also the important question of consistency—do

the smooth lattice equations reduce to the Einstein equa-
tions in some suitable limit? The smooth lattice method
arose from earlier numerical investigations [38,39] into
the consistency of the Regge Calculus [40] as a discrete
approximation to General Relativity. The usual approach in
performing a consistency analysis is to expose the trunca-
tion errors in the discrete equations by expanding those
equations around the continuum solution. This is rather
difficult for the Regge calculus due to the complex
relationships between the continuum metric and the dis-
crete quantities such as the leg lengths and the defect
angles. The situation for the smooth lattice method is,

however, much simpler. The vacuum Einstein equations are
used directly, without discretization, in Eqs. (31)–(36). The
only place where explicit discretizations do appear are in
the discrete form of the Bianchi identities (16)–(29) and in
the evolution equations for the leg lengths (6), (7) and
coordinates (8). This should make a formal analysis of the
consistency of the smooth lattice method much easier than
for the Regge calculus. Such an analysis has not been
undertaken but may form the basis of later work.
These are all important questions and must be answered

before the lattice method can be considered for serious
work in computational general relativity.

APPENDIX A: THE TRANSITION MATRICES

The transition matrices play a central role in the
computation of the derivatives such as Rxyxy;z. They are
used to import data from neighboring cells so that the
vertices of a chosen cell are populated with data expressed
in the frame of that cell. A finite difference estimate can
then be made for the required partial derivatives.

FIG. 16. These plots show the behavior of the C1 constraint (126) for the evolution of the Teukolsky initial data. The plots in the top
left (ADM), top right (BSSN) and bottom left (SLGR) show the evolution of the maximum of C1 across the xy plane. The colours in the
ADM and BSSN plots correspond to Nx ¼ Ny ¼ Nz ¼ 26 (red), 50 (blue), 100 (green) and 200 (black) while for the lattice the
corresponding numbers are 25, 51,101 and 201. The plot in bottom right shows the values of C1 along the ~x-axis for the lattice data at
t ¼ 5 for three lattices, Nx ¼ Ny ¼ Nz ¼ 51 (red), 101 (blue) and 201 (green).
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The purpose of this appendix is to extend the approach
given in [1]. In that paper particular attention was paid to the
form of the transition matrix for a cubic lattice. It was argued

that, with sufficient refinement of the lattice, the transition
matrices should vary smoothly across the lattice and should
converge to the identity matrix in the continuum limit [41].

FIG. 17. This pair of plots shows the behavior the BSSN bump as a function of the number of grid points (left plot with Nz ¼ 26 (red),
Nz ¼ 50 (blue), Nz ¼ 100 (green) and Nz ¼ 200 (black)) and as a function of time (right plot for t ¼ 5 to t ¼ 10 in steps of 1). The left
plot shows that as the number of grid points is increased the size of the bump decreases while the right plot shows that the bump
increases linearly with time. This bump is the source of the linear growth in the constraint seen in Fig. 16.

FIG. 18. These plots were created by evolving two sets of initial data, one with Nx ¼ Ny ¼ Nz ¼ 101, the other with
Nx ¼ Ny ¼ Nz ¼ 201. Both initial data sets used Δx ¼ Δy ¼ Δz ¼ 0.1. There are two curves in the right plot, both for Rxyxy,
one on the small grid (red) and the other on the larger grid (blue). Note how the red curve lies directly on top of the blue curve. The plots
on the left show the difference in Rxyxy between the two evolutions on jxj < 5. The green curve is for the BSSN data while the red curve
is for the lattice data.
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The particular feature of the cubic lattice that makes it
attractive for our purposes is that it is easily subdivided in a
manner that preserves its original structure. This allows a
whole family of cubic lattices to be constructed, with
arbitrarily small cells, and thus it is easy to investigate the
continuum limit of the lattice.
For a vertex p with neighbor q the transition matrix [42]

M allows data such as vαqq̄ to be imported from q̄ to p̄ via

vαqp̄ ¼ Mα
βv

β
qq̄: ðA1Þ

When constructing a frame within a cell there is
considerable freedom in locating the origin and orientation
of the coordinate axes. A simple and natural choice is to
locate the origin on the central vertex and to align the
coordinate axes with various subspaces of the cell (e.g.,
align the x-axis to the leg (0,1), the y-axis to the plane
spanned by the legs (0,1) and (0,2), etc.).
Without further information about the relationship of one

cell to another little can be said about the corresponding
transition matrices. However, for the cubic lattice it is not
hard to see that the frames for a typical pair of cells can be
chosen so that the transition matrix will be of the form

Mα
β ¼ δαβ þmα

β þOðL2Þ ðA2Þ

wheremα
β ¼ OðLÞ are determined from the data in the pair

of cells (i.e., the coordinates and leg lengths). This form of
M ensures that it converges to the identity matrix in the
continuum limit (e.g., by successive refinements of the
cubic lattice). Note that the mα

β must be subject to a
constraint since the resulting transition matrix must pre-
serve scalar products. That is, for any pair of vectors u
and v,

vαqp̄uαqp̄ ¼ vαqq̄uαqq̄ ðA3Þ

which leads immediately to

0 ¼ mαβ þmβα: ðA4Þ

This shows that the mαβ define a skew-symmetric 4 × 4

matrix determined by just six independent entries (corre-
sponding to three boosts and three rotations).
The mα

β were computed in [1] by applying (A1) to a
specially chosen set of vectors. A different approach will be
taken in this paper, one that will be seen to be more in the
spirt of Cartan’s method of local frames (see Appendix B).
First recall that the lattice is assumed to be a discrete

approximation to some possibly unknown smooth geom-
etry. Thus it is reasonable to requite that the mα

β should
also be smooth functions across the lattice. This allows the
mαβ to be expanded as a Taylor series based on the vertex p.
That is

mαβ ¼ mαβγx
γ
qp̄ þOðL2Þ ðA5Þ

for some set of coefficients mαβγ .
Now consider a closed path such as that defined by the

four vertices o, a, b, c in Fig. 3. Clearly

0 ¼ vαoaō þ vαabō þ vαbcō þ vαcoō ðA6Þ

where vαpqr̄ are defined by vαpqr̄ ¼ xαqr̄ − xαpr̄ and xαqr̄ are the
coordinates of vertex q in the frame r̄. However, the vector
joining vertices a to b can also be expressed in terms of
the frame ā. Likewise, the vector joining b to c can be
expressed in terms of the frame c̄. Using the transformation
law given by (A1) leads to

vαabō ¼ vαabā þmα
βγv

β
abāv

γ
oaō ðA7Þ

vαbcō ¼ vαbcc̄ þmα
βγv

β
bcc̄v

γ
ocō: ðA8Þ

Substituting this pair of equations into (A6) leads to

vαoaō þ vαabā þ vαbcc̄ þ vαcoō ¼ mα
βγð−vβabāvγoaō − vβbcc̄v

γ
ocōÞ:
ðA9Þ

This construction can be applied to each of the six
coordinate planes leading to 24 equations for the 24
unknowns mα

βγ . In the cases of a lattice that evolves
continuously in time it is possible (see Appendix D) to
solve these equations for 15 of the mα

βγ in terms of the
extrinsic curvatures Ki

j and the lapse function N. This
leaves just nine equations (based on the spatial coordinate
planes) for the nine remaining mα

βγ .
Though it is possible to use the above equations (A9) to

directly compute the mα
βγ doing so might introduce a

systematic bias due to the asymmetric arrangement of
the legs relative to the central vertex. An improved set of
equations can be obtained simply by adding together the
equations that would arise from each of the four tiles of
Fig. 3 attached to the central vertex ō. This leads to the
following set of equations

vαhbā þ vαbdc̄ þ vαdfē þ vαfhḡ

¼ mα
βγð−vβhbāvγoaō − vβbdc̄v

γ
ocō − vβdfēv

γ
oeō − vβfhḡv

γ
ogōÞ:
ðA10Þ

Now since each vαpqr̄ ¼ OðLÞ it follows that the right hand
side of (A10) is OðL2Þ and thus

vαbdc̄ þ vαfhḡ ¼ OðL2Þ ðA11Þ

vαhbā þ vαdfē ¼ OðL2Þ ðA12Þ

EVOLUTIONS OF GOWDY, BRILL, AND TEUKOLSKY … PHYSICAL REVIEW D 96, 024037 (2017)

024037-25



which allows the terms vαfhḡ and v
α
dfē on the right hand side

of (A10) to be replaced by their counterparts leading to

vαhbā þ vαbdc̄ þ vαdfē þ vαfhḡ ¼ mα
βγð−vβhbāvγeaō − vβbdc̄v

γ
gcōÞ:
ðA13Þ

Finally note that

vαhbā ¼ vαgcō þOðLÞ ðA14Þ

vαbdc̄ ¼ −vαeaō þOðLÞ ðA15Þ

and therefore

vαhbā þ vαbdc̄ þ vαdfē þ vαfhḡ ¼ −mα
βγðvβgcōvγeaō − vβeaōv

γ
gcōÞ:
ðA16Þ

These are the equations that were used in the computer
code to compute the mα

βγ .

APPENDIX B: CARTAN STRUCTURE
EQUATIONS

Equations (A4) and (A16) bear a striking similarity to the
Cartan structure equations [43]

0 ¼ ωij þ ωji ðB1Þ

dωi ¼ −ωi
j ∧ ωj ðB2Þ

in which ωi are the basis 1-forms, ωi
j are the connection

1-forms and where the metric is given by g ¼ gijωiωj

with gij ¼ diagð−1; 1; 1; 1Þ.
The purpose of this appendix is to show how Eqs. (A4)

and (A16) can be obtained from the Cartan structure
equations (B1) and (B2).
To start the ball rolling, note that Eqs. (A4) and (B1)

agree upon choosing mi
j ¼ ωi

j. Showing that the remain-
ing pair of Eqs. (A16) and (B2) agree requires a bit more
work. Start by integrating (B2) over the tile R defined by
the vertices b, d, f, h in Fig. 3

Z
R
dωi ¼ −

Z
R
ωi

jkω
k ∧ ωj ðB3Þ

where ωi
j has been expanded as ωi

jkω
k. This equation can

be rewritten using Stoke’s theorem as

Z
∂R

ωi ¼ −
Z
R
ωi

jkω
k ∧ ωj: ðB4Þ

The path integral on the left can be split into four pieces,
one the four edges of the tile. On each edge set ωi ¼ dxi

where xi are the local Riemann normal coordinates

appropriate to the edge (e.g., along the edge ðb; dÞ use
the coordinates of frame c̄). Thus

Z
∂R

ωi ¼
X

ðp;qÞ∈∂R

Z
q

p
dxi ¼ vihbā þ vibdc̄ þ vidfē þ vifhḡ

ðB5Þ

where vipqr̄ ¼ xiqr̄ − xipr̄. The area integral on the right-hand
side of (B4) can be estimated to leading order in the length
scale L by approximating ωi

jk by its value at the vertex o.
Thus

Z
R
ωi

jkω
k ∧ ωj ¼ ωi

jkō

Z
R
ωk ∧ ωj þOðL3Þ ðB6Þ

and noting that the integrand on the right is just the area
2-form for the tile leads to the estimate

Z
R
ωi

jkω
k ∧ ωj ¼ ωi

jkōðvkeaōvjgcō − vkgcōv
j
eaōÞ þOðL3Þ:

ðB7Þ

The integrated form of the Cartan equation (B4) can now be
rewritten as

vihbā þ vibdc̄ þ vidfē þ vifhḡ

¼ −ωi
jkōðvjgcōvkeaō − vjeaōv

k
gcōÞ þOðL3Þ ðB8Þ

which agrees (apart from the Greek/Latin indices), to
leading order in L, with (A16) provided mi

jk ¼ ωi
jkō.

APPENDIX C: SOURCE TERMS

A lattice would normally consist of a finite number of
local frames, one for each central vertex, but there is
nothing to stop the construction of a local frame at every
point in the lattice. The new frames could be introduced by
any rule but for a smooth lattice it is reasonable to require
that the frames vary smoothly across the lattice. This will
certainly be the case when the transition matrices are of the
form

Mα
βðxÞ ¼ δαβ þmα

βγxγ: ðC1Þ

The addition of these extra frames makes it easier to discuss
differentiation on the lattice.
Consider a cell p and some point q within that cell. Let

vα be the components of a typical vector at q expressed in
the local frame of q, that is vαq ¼ vαqq̄. The components of
the vector in the frame p̄ would then be given by Mα

βqp̄vα.
This allows the derivatives of vα at p and in p̄ to be
computed as follows
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vα;γ ¼ vα;γpp̄ ¼ ðMα
βvβÞ;γp ðC2Þ

¼ Mα
β;γpv

β
p þMα

βpv
β
;γp ðC3Þ

¼ mα
βγv

β
p þ vα;γp: ðC4Þ

At this point there is a slight problem with the notation.
The last term on the right hand side above is a derivative
of vα formed from the raw point values of the vα. That
derivative takes no account of the transition matrices and
thus is not the partial derivative (indeed the partial
derivative is the term on the left-hand side). To emphasise
this distinction the following notation will be used. Define a
new derivative operator † by [44]

vα†γ ¼ vα;γp: ðC5Þ

Then the equation (C3) can be written as

vα;γ ¼ vα†γ þmα
βγvβ ðC6Þ

where it is understood that all terms are evaluated at p and
in p̄. By following a similar line of reasoning it is not hard
to see that, for example,

vα;γ ¼ vα∶γ −mβ
αγvβ ðC7Þ

Rαβ;γ ¼ Rαβ∶γ −mρ
αγRρβ −mρ

βγRαρ: ðC8Þ

As a consistency check it is rather easy to see that applying
this notation to 0 ¼ gαβ;γ ¼ gαβ;γ leads directly to Eq. (A4).
To see that this is so first note that gαβqq̄ ¼ diagð−1; 1; 1; 1Þ
at every vertex q and thus the derivatives gαβ†γ are zero
everywhere. This leads immediately to Eq. (A4).
It should be noted that the hessian of lapse N;ij could

be computed entirely from data within a single frame
or by sharing data, such as N;i, between neighboring
frames. In the later case some care must be taken when
computing terms like N†x†y since the † derivatives need not
commute [45].

APPENDIX D: THE TIME COMPONENTS
OF mα

βγ

In a lattice that is discrete in both space and time there
would be 24 distinct mα

βγ in each computational cell.
However, in the case of a continuous time lattice with a zero
shift vector at each central vertex, 15 of the 24 mα

βγ can be
expressed in terms of the lapse function N and the extrinsic
curvature Kij, namely

mi
jt ¼ 0 ðD1Þ

mt
ij ¼ mt

ji ¼ −Kij ðD2Þ

mt
it ¼ ðlogNÞ;i: ðD3Þ

The key to this computation will be the application of
(A9) to two carefully chosen tiles, in particular a time-like
tile (generated by the evolution of a spatial leg) and a spatial
tile (where all of the vertices lie in one Cauchy surface).

1. Showing that mt
ij =mt

ji

Consider a spatial tile in which all of the vertices of the
tile lie within one Cauchy surface, Thus the t component of
the various vα in (A9) are zero. This leads immediately to

0 ¼ ðmt
ij −mt

jiÞvioaōvjocō ðD4Þ

where the implied sum over j includes only the spatial
terms (since vt ¼ 0). Since this equation must be true for all
choices of vioaōv

j
ocō it follows that

mt
ij ¼ mt

ji ðD5Þ

2. Showing that mt
it = ðlogNÞ;i

Consider now the time-like tile generated by the leg ðoaÞ
as it evolves between a pair of nearby Cauchy surfaces [as
indicated by vertices ðo; a; b; cÞ in Fig. 3]. The two time-
like edges ðocÞ and ðabÞ are tangent to the worldlines
normal to the Cauchy surface while the space-like edges
ðoaÞ and ðbcÞ are the two instances of the leg ðabÞ, one at
time t the other at tþ δt. Since the shift vector is assumed
to vanish at each central vertex, it follows that

vαocō ¼ ðNδt; 0; 0; 0Þαocō ðD6Þ

vαabā ¼ ðNδt; 0; 0; 0Þαabā: ðD7Þ

Likewise, for the spatial edges the vα will have a zero t
component and thus will be of the form

vαoaō ¼ ð0; vx; vy; vzÞαoaō ðD8Þ

vαcbc̄ ¼ ð0; vx; vy; vzÞαcbc̄ ðD9Þ

for some choice of vioaō and v
i
cbc̄. With this choice for the vα

and noting that Nabā ¼ Nocō þOðLÞ, the t component of
equation (A9) is given by

ðNabā − NocōÞδt ¼ ðmt
it −mt

tiÞvioaōNocōδtþOðL2δtÞ:
ðD10Þ

Noting that mt
ti ¼ 0 and estimating the left hand side by

N;ioōvioaōδt leads to

N;ioōvioaō ¼ Nocōmt
itvioaō ðD11Þ
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and since the vioaō are arbitrary, it follows that

mt
it ¼ ðlogNÞ;i ðD12Þ

in which it is understood that all terms are evaluated at o in
the frame ō.

3. Showing that mt
ij = −Kij

This computation follows on directly from the previous
computation. This time our attention is on the spatial terms
of Eq. (A9), namely

vioaō − vicbc̄ ¼ ðmi
jt −mi

tjÞvjoaōNocōδtþOðL2δtÞ: ðD13Þ

Now recall that vαpqr̄ is defined by vαpqr̄ ¼ xαqr̄ − xαpr̄ and as
xαoō ¼ xαcc̄ ¼ 0 it follows that

xiaō − xibc̄ ¼ ðmi
jt −mi

tjÞxjaōNocōδtþOðL2δtÞ ðD14Þ

and on taking a limit as δt → 0 leads immediately to the
evolution equations

−
�
dxi

dt

�
aō

¼ ðmi
jt −mi

tjÞxjaōNo þOðL2Þ ðD15Þ

for the coordinates xiaōðtÞ. Now take d=dt of gijxiaōx
j
aō and

use equation (8) to obtain

gijxiaō

�
dxj

dt

�
aō

¼ −NKijxiaōx
j
aō ðD16Þ

which when combined with the above result leads to

Kijxiaōx
j
aō ¼ mijtxiaōx

j
aō −mitjxiaōx

j
aō ðD17Þ

and as the first term on right vanishes due to mijt ¼ −mjit

the above can be further simplified to

0 ¼ ðKij þmitjÞxiaōxjaō: ðD18Þ
But from (D5), mitj ¼ −mtij ¼ −mtji ¼ mjti, and as the
xiaō are arbitrary (since the vertex a can be chosen anywhere
in the cell) the previous equation can only be true provided

mitj ¼ −Kij ðD19Þ

or equally

mt
ij ¼ −Kij ðD20Þ

4. Showing that mi
jt = 0

The next task is to show that mi
jt ¼ 0. This is rather

easy to do. Having just shown that mt
ij ¼ −Kij means that

Eq. (D15) can also be written as

−
�
dxi

dt

�
aō

¼ ðmi
jt þ Ki

jÞxjaōNo þOðL2Þ ðD21Þ

which when compared with (8) shows that

0 ¼ mi
jtx

j
aōNo ðD22Þ

for any choice of xjaōNo. This in turn requires mi
jt ¼ 0.

APPENDIX E: EVOLUTION OF xi

Our aim here is to obtain evolution equations for the
spatial coordinates xiðtÞ of each vertex in a computa-
tional cell.
To begin, consider two points p and q chosen arbitrarily

in a typical cell. Equation (D15) can be applied to this pair
of points leading to

−
�
dxi

dt

�
pō

¼ ðmi
jt −mi

tjÞxjpōNo ðE1Þ

−
�
dxi

dt

�
qō

¼ ðmi
jt −mi

tjÞxjqōNo ðE2Þ

Now combine this pair by contracting (E1) with xjqō and

(E2) with xjpō while noting that mijt ¼ −mjit to obtain

−gijx
j
qō

dxipō
dt

− gijx
j
pō

dxiqō
dt

¼ Kijðxiqōxjpō þ xjqōx
i
pōÞNo

ðE3Þ

After shuffling terms across the equals sign this can also be
rewritten as

�
NoKijxipōþgij

dxipō
dt

�
xjqō ¼−

�
NoKijxiqōþgij

dxiqō
dt

�
xjpō

ðE4Þ

This equation must be true for all choices of ðp; qÞ. As the
bracketed term on the left-hand side depends only on p,
that term must match the only p dependent term on the
right-hand side, namely the xjpō. Thus it follows that

NoKi
jx

j
pō þ

dxipō
dt

¼ αxipō ðE5Þ

NoKi
jx

j
qō þ

dxiqō
dt

¼ −αxiqō ðE6Þ

for some scalar α. But upon setting p ¼ q in (E4) it follows
that
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gikxkpō

�
NoKi

jx
j
pō þ

dxipō
dt

�
¼ 0 ðE7Þ

which when applied to (E5) leads to

0 ¼ αgijxipōx
j
pō ¼ αL2

op ðE8Þ
and thus α ¼ 0. This leads immediately to

dxipō
dt

¼ −NoKi
jx

j
pō ðE9Þ

with a similar result for the point q. Since the point p is
arbitrary it follow that this result holds for any point in the
computational cell.

APPENDIX F: EVOLUTION OF Loq

Equation (6) can be obtained from (4) as follows. Let
ðo; qÞ be a typical leg connected to the central vertex of
some cell. Our first step is to express the various vectors at
o and q in terms of the local frames ō and q̄. Since the shift
vector is assumed to be zero across the lattice it is follows
that the unit normals take the simple form

nαoō ¼ ð1; 0; 0; 0Þ ðF1Þ

nαqq̄ ¼ ð1; 0; 0; 0Þ ðF2Þ

while

vαoqōLoq ¼ xαqō ðF3Þ
vαqoq̄Loq ¼ xαoq̄ ðF4Þ

which follows directly from the definition of Riemann
normal coordinates xα. Recall that xα

ab̄
are the Riemann

normal coordinates of the vertex a in the frame b̄. Note also
that the forward pointing unit tangent vectors vαoō and vαqq̄
are given by

vαoō ¼ vαoqō ðF5Þ

vαqq̄ ¼ −vαqoq̄: ðF6Þ

Now substitute the above Eqs. (F1)–(F6) into (4) to obtain

Loq
dLoq

dt
¼ Loq½vμðNnμÞ�qo ðF7Þ

¼ LoqðvμðNnμÞÞq − LoqðvμðNnμÞÞo ðF8Þ

¼ −Nqxμoq̄n
μ
qq̄ − Noxμqōn

μ
oō ðF9Þ

¼ Nqtoq̄ þ Notqō ðF10Þ

where t is the Riemann normal time coordinate. However,
as shown in [2],

−2toq̄ ¼ ðKαβÞqq̄xαoq̄xβoq̄ þOðL3Þ ðF11Þ

−2tqō ¼ ðKαβÞoōxαqōxβqō þOðL3Þ ðF12Þ

which using (F3)–(F4) can also be written as

−2toq̄ ¼ ðKαβÞqq̄vαqoq̄vβqoq̄L2
oq þOðL3Þ ðF13Þ

−2tqō ¼ ðKαβÞoōvαoqōvβoqōL2
oq þOðL3Þ ðF14Þ

and thus

2Loq
dLoq

dt
¼ −ðNKαβÞqq̄vαqoq̄vβqoq̄L2

oq

− ðNKαβÞoōvαoqōvβoqōL2
oq þOðL3Þ ðF15Þ

which leads immediately to Eq. (6).

APPENDIX G: COMPLETE
EVOLUTION EQUATIONS

The following are the complete set of evolution equa-
tions for the 14 Riemann curvatures for the particular case
of a zero shift vector. These were obtained by applying the
process outlined in Appendix C to the second Bianchi
identity (16)–(29).

dRxyxy

dt
¼ NðKyzRxyxz − KxzRxyyz − 2KxyRtxty −mx

yxRtxxy −mx
yyRtyxy −mx

zxRtyyz

−my
zyRtxxz þ ðRtyty þ RxyxyÞKxx þ ðRtxtx þ RxyxyÞKyy þ ðRtyxz − 2RtzxyÞmx

zy

þ ðRtyxz þ RtzxyÞmy
zx − Rtxxy†y þ Rtyxy†xÞ − 2N;yRtxxy þ 2N;xRtyxy ðG1Þ

dRxyxz

dt
¼ NðKzzRxyxz − KxzRtxty −mx

yzRtyxy −my
zzRtxxz þ ðRtytz þ RxyxzÞKxx

þ ðRxyyz − RtxtzÞKxy þ ðRtxtx þ RxyxyÞKyz − ðRtxxy þ RtzyzÞmx
zx

þ ðRtzxz − RtyxyÞmy
zx þ ðRtyxz − 2RtzxyÞmx

zz − Rtxxy†z þ Rtzxy†xÞ
þ ðRtyxz þ RtzxyÞN;x − N;yRtxxz − N;zRtxxy ðG2Þ
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dRxyyz

dt
¼ NðKzzRxyyz þ KyzRtxty þmx

yzRtxxy þmx
zzRtyyz þ ðRxyyz − RtxtzÞKyy

þ ðRtytz þ RxyxzÞKxy − ðRtyty þ RxyxyÞKxz − ðRtxxy þ RtzyzÞmx
zy

þ ðRtzxz − RtyxyÞmy
zy − ðRtyxz þ RtzxyÞmy

zz − Rtyxy†z þ Rtzxy†yÞ
− ðRtyxz − 2RtzxyÞN;y þ N;xRtyyz − N;zRtyxy ðG3Þ

dRxzxz

dt
¼ NðKxyRxzyz þ KyzRxyxz − 2KxzRtxtz þmx

yxRtzyz −mx
zxRtxxz −mx

zzRtzxz

þmy
zzRtxxy þ ðRtztz þ RxzxzÞKxx þ ðRtxtx þ RxzxzÞKzz þ ðRtzxy − 2RtyxzÞmx

yz

− ðRtyxz þ RtzxyÞmy
zx − Rtxxz†z þ Rtzxz†xÞ − 2N;zRtxxz þ 2N;xRtzxz ðG4Þ

dRxzyz

dt
¼ NðKyyRxzyz − KyzRtxtz þmx

yyRtzyz −mx
zyRtxxz þ ðRtxty þ RxzyzÞKzz

þ ðRtztz þ RxzxzÞKxy − ðRtytz þ RxyxzÞKxz þ ðRtxxz − RtyyzÞmx
yz

− ðRtyxz þ RtzxyÞmy
zy þ ðRtyxy − RtzxzÞmy

zz þ Rtzxz†y − Rtyxz†zÞ
þ ðRtzxy − 2RtyxzÞN;z þ N;xRtzyz þ N;yRtzxz ðG5Þ

dRyzyz

dt
¼ NðKxyRxzyz − KxzRxyyz − 2KyzRtytz −mx

yyRtzxz −mx
zzRtyxy −my

zyRtyyz

−my
zzRtzyz þ ðRtztz þ RyzyzÞKyy þ ðRtyty þ RyzyzÞKzz − ðRtzxy − 2RtyxzÞmx

yz

− ðRtyxz − 2RtzxyÞmx
zy − Rtyyz†z þ Rtzyz†yÞ − 2N;zRtyyz þ 2N;yRtzyz ðG6Þ

dRtxxy

dt
¼ NðKyzRtxxz þ KzzRtxxy þ 2KyyRtxxy − 2KxyRtyxy −mx

yzRxyyz þmx
zzRxzyz

þ 2mx
zyRxyyz − 2my

zyRxyxz − ðRtyxz þ RtzxyÞKxz þ ðRxyxy − RxzxzÞmy
zz

− Rxyxy†y − Rxyxz†zÞ − ðRtxtx þ RxyxyÞN;y þ N;xRtxty − N;zRxyxz ðG7Þ

dRtyxy

dt
¼ NðKzzRtyxy − KxzRtyyz þ 2KxxRtyxy − 2KxyRtxxy þmx

yzRxyxz −my
zzRxzyz

− 2mx
zxRxyyz þ 2my

zxRxyxz þ ðRtyxz − 2RtzxyÞKyz − ðRxyxy − RyzyzÞmx
zz

þ Rxyxy†x − Rxyyz†zÞ þ ðRtyty þ RxyxyÞN;x − N;yRtxty − N;zRxyyz ðG8Þ

dRtzxy

dt
¼ Nð−KxzRtxxy − KyzRtyxy þmx

yxRxyyz −mx
yyRxyxz −mx

zxRxzyz þmy
zyRxzyz

þ ðRtyxz þ RtzxyÞKxx − ðRtxxz − RtyyzÞKxy − ðRtyxz − 2RtzxyÞKyy

þ ðRxyxy − RyzyzÞmx
zy − ðRxyxy − RxzxzÞmy

zx þ Rxyxz†x þ Rxyyz†yÞ
þ ðRtytz þ RxyxzÞN;x − ðRtxtz − RxyyzÞN;y ðG9Þ

dRtxxz

dt
¼ NðKyyRtxxz þ 2KzzRtxxz − 2KxzRtzxz þ KyzRtxxy −mx

yyRxyyz þmx
zyRxzyz

− 2mx
yzRxzyz þ 2my

zzRxyxz − ðRtyxz þ RtzxyÞKxy þ ðRxyxy − RxzxzÞmy
zy

− Rxyxz†y − Rxzxz†zÞ − ðRtxtx þ RxzxzÞN;z þ N;xRtxtz − N;yRxyxz ðG10Þ
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dRtyxz

dt
¼ Nð−KxyRtxxz − KyzRtzxz þmx

yxRxyyz −mx
zxRxzyz −mx

zzRxyxz þmy
zzRxyyz

þ ðRtyxz þ RtzxyÞKxx − ðRtzxy − 2RtyxzÞKzz − ðRtxxy þ RtzyzÞKxz

þ ðRxzxz − RyzyzÞmx
yz − ðRxyxy − RxzxzÞmy

zx þ Rxyxz†x − Rxzyz†zÞ
þ ðRtytz þ RxyxzÞN;x − ðRtxty þ RxzyzÞN;z ðG11Þ

dRtzxz

dt
¼ NðKyyRtzxz þ KxyRtzyz þ 2KxxRtzxz − 2KxzRtxxz −my

zyRxyyz þmx
zyRxyxz

þ 2mx
yxRxzyz − 2my

zxRxyxz þ ðRtzxy − 2RtyxzÞKyz − ðRxzxz − RyzyzÞmx
yy

þ Rxzxz†x þ Rxzyz†yÞ þ ðRtztz þ RxzxzÞN;x − N;zRtxtz þ N;yRxzyz ðG12Þ

dRtyyz

dt
¼ NðKxxRtyyz − KxzRtyxy þ 2KzzRtyyz − 2KyzRtzyz −mx

yxRxyxz þmy
zxRxzyz

þ 2mx
yzRxzyz − 2mx

zzRxyyz − ðRtyxz − 2RtzxyÞKxy þ ðRxyxy − RyzyzÞmx
zx

þ Rxyyz†x − Ryzyz†zÞ − ðRtyty þ RyzyzÞN;z þ N;xRxyyz þ N;yRtytz ðG13Þ

dRtzyz

dt
¼ NðKxxRtzyz þ KxyRtzxz þ 2KyyRtzyz − 2KyzRtyyz þmx

zxRxyxz −my
zxRxyyz

− 2mx
yyRxzyz þ 2mx

zyRxyyz þ ðRtzxy − 2RtyxzÞKxz − ðRxzxz − RyzyzÞmx
yx

þ Rxzyz†x þ Ryzyz†yÞ þ ðRtztz þ RyzyzÞN;y þ N;xRxzyz − N;zRtytz ðG14Þ
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