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We present a single-domain Galerkin-collocation method to calculate puncture initial data sets for single
and binary black holes, either in the trumpet or wormhole geometries. The combination of aspects
belonging to the Galerkin and the collocation methods together with the adoption of spherical coordinates
in all cases are shown to be very effective. We propose a unified expression for the conformal factor to
describe trumpet and spinning black holes. In particular, for the spinning trumpet black holes, we exhibit
the deformation of the limit surface due to the spin from a sphere to an oblate spheroid. We also revisit the
energy content in the trumpet and wormhole puncture data sets. The algorithm can be extended to describe
binary black holes.
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I. INTRODUCTION

Theprecise characterizationof thegravitational andmatter
fields on some spatial hypersurface constitutes the initial data
problem in numerical relativity [1]. In this instance, it is
possible to identify if there exist interacting black holes and
neutrons stars together (or not) with any other distribution of
matter, which offers an ideal setup to simulate astrophysical
situations in which the high gravitational field plays a central
role. In parallel to the decades-long effort to directly detect
gravitational radiation (which has been accomplished
recently [2]), there has also been an endeavor to predict
gravitational-wave signals from compact binaries using
numerical simulations. These simulations [3–5] start with
initial data in general containing binary black holes.
In more precise terms, the initial data problem in general

relativity consists in specifying the spatial metric and
extrinsic curvature, γij and Kij, respectively, on a given
spatial hypersurface. These quantities must satisfy the
Hamiltonian and momentum constraint equations of the
Cauchy formulation of the field equations [6]. The most
important strategy for solving the constrained equations is
to introduce a conformal transformation of the spatial
metric to a known background metric, γ̄ij, and a similar
transformation involving the extrinsic curvature [7]. Then,

γij ¼ Ψ4γ̄ij; ð1Þ

Aij ¼ Ψ−2Āij; ð2Þ
where Ψ is the conformal factor and Aij is the traceless part
of the extrinsic curvature such that

Kij ¼ Aij þ
1

3
γijK; ð3Þ

with K being the trace of Kij. In this formulation, the set of
functions ðΨ; γ̄ij; Āij; KÞ specified in the initial hypersur-
face characterizes the initial data. These quantities are not
fixed by the constraint equations but must satisfy them.
We have adopted here the Bowen-York solution [8] for the
extrinsic curvature obtained with the requirements of
conformal flatness, maximal slicing, K ¼ 0, and vacuum.
In this case, it is possible to decouple the Hamiltonian and
momentum constraints which, respectively, become

∇̄2Ψþ 1

8
Ψ−7ĀijĀij ¼ 0; ð4Þ

D̄iĀij ¼ 0; ð5Þ

where D̄i ¼ γ̄ij∇j is the covariant derivative associated
with the flat background metric γ̄ij and ∇̄2 is the flat-space
Laplacian operator. Remarkably, Eq. (5) can be solved
analytically to describe boosted and spinning black holes
denoted by Āij

P and Āij
S , whose corresponding expressions are

Āij
P ¼ 3

2r2
½2PðinjÞ − ðηij − ninjÞn:P�; ð6Þ

Āij
S ¼ 6

r3
nðiϵjÞmpJmnp; ð7Þ

where P and J are, respectively, the Arnowitt-Deser-Misner
(ADM) linear and angularmomenta carried by the black hole
[9]. The quantity nk ¼ xk=r is the normal vector pointing*hp.deoliveira@pq.cnpq.br

PHYSICAL REVIEW D 96, 024035 (2017)

2470-0010=2017=96(2)=024035(11) 024035-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.024035
https://doi.org/10.1103/PhysRevD.96.024035
https://doi.org/10.1103/PhysRevD.96.024035
https://doi.org/10.1103/PhysRevD.96.024035


away from the black hole located at r ¼ 0. Due to the
linearity of the momentum constraint, we can construct
spacetimes containing a boosted spinning black hole or
multiple black holes by superposing the corresponding
expressions for the conformal extrinsic curvatures given
by Eqs. (6) and (7).
In general, the Hamiltonian constraint (4) is solved

numerically for the conformal factor after specifying the
extrinsic curvature Āij. To guarantee that there are black
holes in the initial hypersurface it is necessary to satisfy
appropriate boundary conditions which are dictated by the
excision or puncture methods. We are going to focus here
on the puncture method that consists [10] in decomposing
the conformal factor into two pieces: the background
component containing the black hole singularities which
are given analytically, and the regular component which is
obtained by solving the Hamiltonian constraint numeri-
cally. Accordingly, we have

Ψ ¼ Ψ0 þ u: ð8Þ

Considering a single black hole, Ψ0 is taken as the
Schwarzschild black hole in its wormhole representation,
or equivalently on a slice of constant Schwarzschild time.
It means that

Ψ0 ¼ 1þm0

2r
; ð9Þ

where r ¼ 0 locates the puncture and m0 is a free
parameter. It can be verified that the above expression is
the solution of the Hamiltonian constraint for Āij ¼ 0 and
u ¼ 0, and in this situation the parameter m0 is the ADM
mass. The substitution of Eqs. (8) and (9) into the
Hamiltonian constraint (4) results in an elliptic equation
for the regular component u. We can construct initial data
with multiple black holes by a direct generalization of the
background conformal factor to Ψ0 ¼ 1þP

kmk=2rk,
where each puncture mk is located at rk ¼ 0. Of particular
interest is the case of binary black holes, for which most of
the initial data used in the simulations adopt the puncture
method [4,11–16].
There is another representation of the Schwarzschild black

hole based on spatial slices that terminate at nonzero areal
radius known as the trumpet representation. The interest in
constructing trumpet initial data has increased after the
advent of the moving puncture method [4,5]. It has been
shown that the Schwarzschild wormhole puncture data
evolves in such a way that the numerical slices tend to a
spatial slice with finite areal radius or trumpets [17–20].
Therefore, it ismotivating to construct initial trumpet data for
single and binary black holes endowed with spin and linear
momentum. In this direction, we mention the derivation of
the analytical solutions for maximally sliced and 1þ log
trumpet Schwarzschild black holes in Refs. [21,22], respec-
tively. The initial data for single (spinning and boosted) and

binary trumpets were studied by Hannan et al. [23], and
Immerman and Baumgarte [24]. More recently, Dietrich
and Brugman [26] constructed 1þ log sliced initial data for
single and binary systems.
We present here a single-domain algorithm based on the

Galerkin-collocation spectral method [27–29] to obtain
wormhole and trumpet initial data sets. The algorithm is
distinct from other spectral codes [30–33], but nonetheless
it is very efficient and simple. We believe that this task is
valuable in its own right. The selection of the radial and
angular basis functions is of crucial importance; we chose
the spherical harmonics since they are the most natural
basis functions for the angular domain in general, whereas
the radial basis functions are expressed as appropriate linear
combinations of the Chebyshev polynomials to satisfy the
boundary conditions. The algorithm iswell suited to describe
a spinning and boosted single black hole, a wormhole, or a
trumpet binary system.
The paper is divided as follows. After the Introduction in

Sec. I, we present the basic equations for constructing
trumpet initial data sets.We use themaximal sliced analytical
solution of Naculich and Baumgarte [21] to establish a
convenient expression for the conformal factor describing
single or binary trumpets. The numerical scheme is detailed
in Sec. III. We present the numerical tests and discuss some
cases of interest in Sec. IV. In particular, we highlight the
proposed unified descriptionof a single trumpet spinning and
a trumpet black hole. For a single spinning black hole, we
show the influence of the spin in altering theminimal surface
from a sphere to an oblate spheroid. As the last application
involving a single black hole, we revisit the amount of junk
radiation present in the spinning and boosted trumpet/worm-
hole black holes. We also consider wormhole and trumpet
binaries to illustrate the feasibility of the algorithm in more
general cases. Finally, in Sec. V we conclude and describe
some possible extensions of the present investigation.

II. TRUMPET AND WORMHOLE
PUNCTURE DATA SETS

The starting point to construct maximal sliced puncture
trumpet initial data is to establish the trumpet slicing of the
Schwarzschild spacetime. Baumgarte and Naculich [21]
have derived the corresponding exact conformal factor as a
function of the areal radius R ¼ rΨ2

0 (cf. Appendix A).
With the exact solution, they have shown the following
asymptotic behavior:

Ψ0 ¼
�
3m0

2r

�
1=2

; r → 0; ð10Þ

Ψ0 ¼ 1þm0

2r
; r → ∞; ð11Þ
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where m0 is the Schwarzschild mass. The corresponding
expression for the traceless part of the extrinsic curvature is

Āij
0 ¼ 3

ffiffiffi
3

p
m2

0

4r3
ðγ̄ij − 3ninjÞ: ð12Þ

In the case of wormhole data we have Āij
0 ¼ 0. With the

above expression it can be shown that the momentum
constraint D̄iĀ

ij
0 ¼ 0 is satisfied along with the validity of

the Hamiltonian constraint,

∇̄2Ψ0 þ
1

8
Ψ−7

0 Āij
0 Ā

0
ij ¼ 0; ð13Þ

where

Āij
0 Ā

0
ij ¼

81m4
0

8r6
: ð14Þ

For the trumpet initial data sets, we propose the follow-
ing puncture-like expression for the conformal factor:

Ψ ¼ Ψ0ð1þ uÞ; ð15Þ

whereΨ0 is the trumpet Schwarzschild solution. Introducing
the new conformal factor into the Hamiltonian constraint (4),
we obtain

∇̄2uþ 2D̄iΨ0D̄iu
Ψ0

þ ĀijĀij

8Ψ8
0ð1þ uÞ7 −

ð1þ uÞ
8Ψ8

0

Āij
0 Ā

0
ij ¼ 0;

ð16Þ

where the total traceless part of the extrinsic curvature is
given by

Āij ¼ Āij
0 þ Āij

P þ Āij
S ð17Þ

due to the linearity of the momentum constraint equation.
In the case of the wormhole data sets the conformal factor is
expressed by Eq. (8) and the Hamiltonian equation becomes

∇̄2uþ 1

8
ðΨ0 þ uÞ−7ĀijĀij ¼ 0; ð18Þ

with Āij
0 ¼ 0 and Ψ0 given by Eq. (9).

The main reason for not adopting the usual decompo-
sition for the conformal factor [Eq. (8)] for trumpet black
hole data sets is to provide a unified framework for
describing spinning and boosted black holes with regular
functions u. For instance, for a single trumpet spinning
black hole in which Ψ ¼ Ψ0 þ u, it can be shown that
[23,24] u ∼Oðr−1=2Þ near r ¼ 0, and for a single boosted
black hole u ∼OðrÞ. On the other hand, by considering the
puncture-like expression (15), we follow the analysis of
Immerman and Baumgarte [24] of the behavior of u near

the puncture at r ¼ 0 for a boosted (uP) and a spinning
black hole (uS) in the axisymmetric case. Assuming that
u ≪ 1, the corresponding Hamiltonian constraints are
approximated by

∇̄2uP −
1

r
∂uP
∂r ≈

ffiffiffi
3

p
P cos θ
3m2

0r
þ 2

uP
r2

; ð19Þ

∇̄2uS −
1

r
∂uS
∂r ≈ −

4J2 sin2 θ
9m4

0r
2

þ
�
1þ 28J2 sin2 θ

9m4
0

�
uS
r2

:

ð20Þ

From these equations one can show that near the origin

uP ∼OðrÞ; and uS ∼Oð1Þ: ð21Þ

The above behaviors near the origin can be dealt with
numerically without difficulties.
To guarantee that the spacetime is asymptotically flat, the

function u must satisfy the following asymptotic condition:

u ¼ δm
r

þOðr−2Þ; ð22Þ

where δm ¼ δmðθ;ϕÞ in general after adopting the spheri-
cal coordinates. As indicated in the sequence, the function
δm is the contribution due to angular and linear momenta to
the ADM mass which is calculated from

MADM ¼ −
1

2π
lim
r→∞

Z
Ω
r2Ψ;rdΩ: ð23Þ

Assuming that the conformal factor is expressed by
either Eq. (8) or Eq. (15), and taking into account the
behavior of u and Ψ0 for r → ∞, we obtain

MADM ¼ m0 þ
1

2π

Z
2π

0

Z
π

0

δmðθ;ϕÞ sin θdθdϕ: ð24Þ

According to the numerical scheme of the next section,
we can obtain an analytical expression for δmðθ;ϕÞ, and
the ADM mass is calculated straightforwardly. In the case
of multiple black holes, we have to replace m0 →

P
mi in

the above expression.

III. THE GALERKIN-COLLOCATION
ALGORITHM

We present here the Galerkin-collocation scheme to
solve the Hamiltonian constraint (16) or (18) for trumpet
and wormhole data sets. The centerpiece of the numerical
treatment is the spectral approximation of the function
uðr; θ;ϕÞ given by
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uaðr; θ;ϕÞ ¼
XNx;Ny

k;l¼0

Xl

m¼−l
cklmχkðrÞYlmðθ;ϕÞ: ð25Þ

Here cklm represents the unknown coefficients or modes,
and Nx and Ny are, respectively, the radial and angular
truncation orders that limit the number of terms in the above
expansion. The angular patch has the spherical harmonics
Ylmðθ;ϕÞ as the basis functions. The choice of spherical
coordinates togetherwith the adoption of spherical harmonics
as the angular basis functions are quite natural and (as we are
going to show) computationally very efficient. Concerning
the radial basis functions χkðrÞ, we have followed the
prescription of the Galerkin method in which each basis
function satisfies the boundary conditions. Usually, this is
done by establishing an appropriate combination of
Chebyshev polynomials. Near r ¼ 0, we have

χkðrÞ ∼OðrÞ and χkðrÞ ∼Oð1Þ ð26Þ
according to the boundary conditions (21). The asymptotic
behavior of each basis function is

χkðrÞ ∼Oðr−1Þ: ð27Þ

To satisfy these boundary conditions, we define each
radial basis function as

χkðrÞ ¼
1

2
ðTLkþ2ðrÞ − TLkðrÞÞ; ð28Þ

χkðrÞ ¼
1

2
ðTLkþ1ðrÞ − TLkðrÞÞ ð29Þ

for boosted and spinning black holes, respectively. For the
wormhole case the basis function is given by Eq. (29).
Here TLkðrÞ represents the rational Chebyshev polyno-
mials defined by

TLkðrÞ ¼ Tk

�
x ¼ r − L0

rþ L0

�
; ð30Þ

where TkðxÞ is the Chebyshev polynomial of kth order
and L0 is the map parameter that connects −1 ≤ x < 1 to
0 ≤ r < ∞ through the algebraic map [25] r ¼ L0ð1þ xÞ=
ð1 − xÞ.
The spherical harmonics are in general complex functions.

Therefore, the coefficients cklm must be complex but also
satisfy some symmetry conditions to guarantee that the
conformal factor is a real function. The symmetry conditions
are

c�kl−m ¼ ð−1Þ−mcklm ð31Þ
due to the symmetry relation of the spherical harmonics
Y�
l−mðθ;ϕÞ ¼ ð−1Þ−mYlmðθ;ϕÞ. Consequently, the number

of independent modes is ðNx þ 1ÞðNy þ 1Þ2.

We now establish the residual equation associatedwith the
Hamiltonian constraint by substituting the spectral approxi-
mation (25) for the functionu into theHamiltonian constraint
(16) [or (18)]. In addition, we have taken into account the
differential equation for the spherical harmonics to get rid of
those terms involving derivatives with respect to θ and ϕ.
After a straightforward calculation, we arrive at the following
expression:

Resðr; θ;ϕÞ ¼
X
k;n;p

cknp

�
1

r2
∂
∂r

�
r2
∂χk
∂r

�
−
nðnþ 1Þ

r2
χk

�

× Ynpðθ;ϕÞ þ
2

Ψ0

∂Ψ0

∂R
∂R
∂r

∂ua
∂r

−
ð1þ uaðr; θ;ϕÞÞ

8Ψ8
0

ðĀijĀijÞ0

þ ð1þ uaðr; θ;ϕÞÞ−7
8Ψ8

0

ĀijĀij: ð32Þ

In the case of binary systems with trumpet punctures, it is
necessary to modify the second term on the rhs to include
the angular dependence that appears in the background
solution Ψ0.
The next and final step is to describe the procedure to

obtain the coefficients cklm. From the method of weighted
residuals [34], these coefficients are evaluated with the
condition that the residual equation is forced to zero in an
average sense. This means that

hRes; RjðrÞSlmðθ;ϕÞi

¼
Z
D
ResR�

jðrÞS�lmðθ;ϕÞwrwθwϕr2drdΩ ¼ 0; ð33Þ

where the functions RjðrÞ and Slmðθ;ϕÞ are called the test
functions, while wr, wθ, and wϕ are the corresponding
weights. We have chosen the radial test function as
prescribed by the collocation method,

RjðrÞ ¼ δðr − rjÞ; ð34Þ

which is the Dirac delta function; rj represents the radial
collocation points and wr ¼ 1. Following the Galerkin
method we identify the angular test function Slmðθ;ϕÞ as
the spherical harmonics, and consequently wθ ¼ wϕ ¼ 1.
Therefore, Eq. (33) becomes

hResðr; θ;ϕÞ; Ylmðθ;ϕÞir¼rj ¼ 0; ð35Þ

where j ¼ 0; 1; ::; Nx, l ¼ 0; 1; ::; Ny, and m ¼ 0; 1; ::; l.
The Nx þ 1 radial collocation points are

rj ¼
L0ð1þ ~xjÞ
1 − ~xj

; ð36Þ

P. C. M. CLEMENTE and H. P. DE OLIVEIRA PHYSICAL REVIEW D 96, 024035 (2017)

024035-4



with the Chebyshev-Gauss collocation points ~xj in the
computational domain,

~xj ¼ cos

�ð2jþ 1Þπ
2Nx þ 2

�
; j ¼ 0; 1; ::; Nx: ð37Þ

We have excluded the point at infinity (~x ¼ 1) since the
residual equation (32) is identically satisfied asymptoti-
cally due to the choice of the radial basis functions.
Notice that the origin is also excluded. In Fig. 1 we show
schematically the spatial domain spanned by the new
coordinates ð~x; y ¼ cos θ;ϕÞ.
We are in a position to schematically present the set of

equations resulting from the relations (35). The integration
on the angular domain takes into account the orthogonality
of the spherical harmonics in the first three terms of the
residual equation (32), whose result is

hRes; Ylmðθ;ϕÞirj
¼

X
k

cklm

�
1

r2
∂
∂r

�
r2
∂χk
∂r

�
−
lðlþ 1Þχk

r2

�
rj

þ
�

2

Ψ0

∂Ψ0

∂R
∂R
∂r

�
rj

X
k

cklm

�∂χk
∂r

�
rj

−
�ðĀijĀijÞ0

8Ψ8
0

�
rj

�
2

ffiffiffi
π

p
δ0lδ0m þ

X
k

cklmχkðrjÞ
�

þ
� ðĀijĀijÞ
8Ψ8

0ð1þ uaÞ7
; Ylmðθ;ϕÞ

�
rj

¼ 0; ð38Þ

with j ¼ 0; 1; ::; Nx, l ¼ 0; 1; ::; Ny, and m ¼ −l; ::; l.
The last term is calculated using quadrature formulas as
indicated below:

hð::Þ; Ylmðθ;ϕÞirj ≈
XN1;N2

k;n¼0

ð::ÞY�
lmðθk;ϕnÞvθkvϕn ; ð39Þ

where ðθk;ϕnÞ, k ¼ 0; 1; ::; N1, n ¼ 0; 1; ::; N2 are the
quadrature collocation points, and vθkv

ϕ
n are the correspond-

ing weights [35]. To achieve better accuracy we have set
N1 ¼ N2 ¼ 2Ny þ 1, but this is not mandatory since it is
possible to use simply N1 ¼ N2 ¼ Ny. In summary, we
have to solve a set of ðNx þ 1ÞðNy þ 1Þ2 nonlinear alge-
braic equations indicated by Eq. (38) for an equal number
of coefficients cklm. For this aim, the Newton-Raphson
algorithm is employed. We originally implemented the
computational procedure indicated in this section in
MAPLE, as well as a faster version in PYTHON.

IV. APPLICATIONS

A. Single spinning and boosted black holes

We begin by considering a single spinning or boosted
black hole located at the origin r ¼ 0. In each case the
angular and linear momenta lie on the z axis, that is, J ¼
ð0; 0; J0Þ and P ¼ ð0; 0; P0Þ. The quantities AijAij corre-
sponding to spinning and boosted black holes are given by

ĀijĀij ¼ 18J20
r6

sin2θ þ 81m4
0

8r6
; ð40Þ

ĀijĀij ¼ 9P2
0

2r4
ð1þ 2cos2θÞ þ 81m4

0

8r6
−
27

ffiffiffi
3

p
m2

0P0

2r5
cos θ:

ð41Þ

The resulting Hamiltonian constraint in each case is
axisymmetric due to the absence of any dependence on the
polar angle ϕ. Thus, in the spectral approximation of the
function uðr; θÞ [cf. Eq. (25)] the spherical harmonics are
replaced by Legendre polynomials as the angular basis
functions.
We have adopted the convergence of the ADM mass

evaluated according to Eq. (24) as the main numerical test.
From the spectral approximation (25) we can obtain δmðθÞ
after −limr→∞r2∂uaðr; θÞ=∂r without approximating the
infinity to some finite radius rmax. We have established
the convergence of the ADM mass by calculating the
difference of the ADM mass corresponding to approximate
solutionswith fixedNy ¼ 12 andvaryingNx ¼ 5; 10; 15;…
such that δMðNxÞ ¼ jMADMðNx þ 5Þ −MADMðNxÞj. As
reported previously [29], the value of the map parameter
can improve the convergence of δM. Figures 2 and 3 show
the convergence tests for spinning and boosted black holes,
respectively, where in both cases m0 ¼ 1.0; the spin param-
eter is J0 ¼ 0.5m2

0 while the boost is P0 ¼ 1.0m0. In Fig. 2
the results are displayed for L0 ¼ 2.0 and L0 ¼ 0.2 for the
trumpet data sets to illustrate the role ofL0 in the convergence
rate. Notice that the improvement of the convergence rate
is achieved when L0 ¼ 0.2. For the spinning wormhole,
the best map parameter is L0 ¼ 0.5, and the convergence
is better than in the trumpet case. Figure 3 shows the

FIG. 1. The three-dimensional spatial domain viewed as a cube
described by the coordinates −1 ≤ x < 1, −1 < y < 1
(y ¼ cos θ) that correspond to 0 ≤ r < ∞ and 0 ≤ θ ≤ π, while
the azimuthal angle ϕ is maintained.
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convergence of the ADM mass for trumpet and wormhole
boosted black holes with their respective best map param-
eters, L0 ¼ 0.1 and L0 ¼ 2.0.
Spinning trumpet black holes alter the geometry of the

minimal surface characterized by r ¼ 0 from a sphere to an
oblate spheroid. It will be instructive to quantify this
change by evaluating the eccentricity of the spheroid as
a function of the spin parameter J0. The eccentricity of the
minimal surface is defined by

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2
minðJ0; θ ¼ 0Þ

R2
minðJ0; θ ¼ π=2Þ

s
; ð42Þ

where RminðJ0;θÞ¼ limr→0rΨ2
0ð1þuÞ2. We have expressed

the eccentricity as a function of J0=m2
0 and J0=M2

ADM in
Fig. 4. Notice that the eccentricity tends to a limit value of
ϵ ≈ 0.439. We have included an inset plot with the
eccentricity calculated from the approximate solution
due to Immerman and Baumgarte [24] (continuous line)
valid for small J0 and the corresponding numerical

eccentricities (circles). As expected, the disagreement
between both results becomes evident as the spin increases.
We revisit the estimate of the radiation content or the

junk radiation present in the trumpet and wormhole initial
data sets, which have been considered in Refs. [23,36,37].
The radiation content Erad is estimated as [23]

Erad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM − P2

q
−MBH; ð43Þ

where P2 ¼ PiPi, andMBH is the total mass of a black hole
evaluated according to the Christodoulou [38] formula

M2
BH ¼ M2

irr þ
J2

4M2
irr

; ð44Þ

where J2 ¼ JiJi, andMirr is the irreducible mass calculated
from

Mirr ¼
ffiffiffiffiffiffiffiffi
A
16π

r
; ð45Þ

with A being the area of the apparent horizon. After solving
the apparent horizon equation for spinning and boosted
black holes (see Appendix B), A can be calculated,

FIG. 2. Convergence of the ADM mass for trumpet and
wormhole spinning punctures (upper and lower graphs, respec-
tively). Here J0 ¼ 0.5m2

0 and m0 ¼ 1.0. For the trumpet data, we
have included two convergence tests corresponding to L0 ¼ 0.2
and L0 ¼ 2.0 to make clear the influence of the map parameter.
The exponential convergence of the ADM mass is more evident
for L0 ¼ 0.2 than for L0 ¼ 2.0; the convergence is algebraic. For
the wormhole spinning puncture the convergence is clearly
exponential where L0 ¼ 0.5.

FIG. 3. Convergence of the ADM mass for trumpet and
wormhole boosted punctures (upper and lower graphs, respec-
tively). Here P0 ¼ 1.0m0 and m0 ¼ 1.0, and the map parameters
are L0 ¼ 0.1 and L0 ¼ 1.0, respectively. The exponential con-
vergence is achieved in both cases.
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allowing to determine the ratio erad ≡ Erad=MBH as a
function of J0=M2

BH and P0=MBH, respectively. We notice
that for spinning black holes the radiation content in
the trumpet and wormhole data is nearly the same.
However, there is a slight exception for small J0=M2

BH
in which ðeradÞtrumpet > ðeradÞwormhole (cf. Fig. 5). On the
other hand, the amount of radiation in the trumpet and
wormhole boosted black holes is indistinguishable accord-
ing to Fig. 5.
To illustrate an application of the Galerkin-collocation

algorithm to a simple three-dimensional case, we consider a
trumpet puncture located at the origin and with linear and
intrinsic angular momenta characterized, respectively, by
P ¼ ðP0; 0; 0Þ and S ¼ ð0; 0; J0Þ. In this case,

ĀijĀij ¼ 18J20
r6

sin2θ þ 9P2
0

2r4
ð1þ 2sin2θcos2ϕÞ

þ 81m4
0

8r6
−
18J0P0

r5
sin θ sinϕ

−
27

ffiffiffi
3

p
P0m2

0

2r5
sin θ cosϕ: ð46Þ

We have adopted the conformal factor as given by
Eq. (15) due to the presence of spin, and the relevant
parameters are m0 ¼ 1, P0 ¼ 0.2m0, and the spin param-
eter assumes several values, J0 ¼ 0.1m2

0; 0.2m
2
0; ::; 0.5m

2
0.

The influence of increasing the spin parameter on the

FIG. 4. Both graphs show the eccentricity of the minimal
surface versus J0=m2

0 and J0=M2
ADM, respectively. The eccen-

tricity tends to a limit value of about 0.439. In the inset the
continuous line represents the approximate exact solution of
Ref. [24] valid for small angular momentum parameter together
with the numerical eccentricities.

FIG. 5. Radiation content for spinning and boosted black holes
(upper and lower graphs, respectively). The circles and boxes
refer to trumpet and wormhole data sets, respectively.

FIG. 6. The regular function 1þ uðr; θ;ϕÞ projected onto the
plane y ¼ z ¼ 0 (θ ¼ 0;ϕ ¼ 0; π). We have fixed the boost
parameter to P0 ¼ 0.2m0 while varying the spin as J0 ¼
0.1m2

0; 0.2m
2
0; ::; 0.5m

2
0 with the corresponding profiles indicated

by the curves from bottom to top. We have set Nx ¼ 40 and
Ny ¼ 12.
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regular part of the conformal factor 1þ uðr; θ;ϕÞ can be
viewed in Fig. 6, which shows the projection of 1þ u on
the plane y ¼ z ¼ 0. Notice the deformation produced by
increasing J0 by inspecting the curves from bottom to top.

B. Binary black holes

We discuss here a boosted binary formed with trumpet
punctures lying on the z axis at the coordinate locations
indicated by C1 ¼ ð0; 0;−aÞ and C2 ¼ ð0; 0; aÞ, where 2a
is the coordinate separation between the punctures. We
have adopted a simpler form of the conformal factor [24],

Ψ ¼ Ψ1 þ Ψ2 − 1þ u; ð47Þ

whereΨ1 andΨ2 have the same form asΨ0 (seeAppendixA)
but are centered on C1 and C2 [24], respectively. Since the
momentum constraint is a linear equation, the extrinsic
curvature Āij is given by

Āij ¼ Ā0ð1Þ
ij þ Ā0ð2Þ

ij þ ĀP1

ij þ ĀP2

ij ; ð48Þ
and the Hamiltonian constraint becomes

∇̄2uþ 1

8
ðΨ1 þ Ψ2 − 1þ uÞ−7ĀijĀij

−
1

8Ψ7
1

ðĀij
0 Ā

0
ijÞð1Þ −

1

8Ψ7
2

ðĀij
0 Ā

0
ijÞð2Þ ¼ 0: ð49Þ

The expression for AijAij is shown in Appendix C,
and ðA0

ijA
ij
0 Þð1;2Þ ¼ 81m2

1;2=r
6
1;2. The algorithm presented in

the last section is straightforwardly adapted to solve the
Hamiltonian constraint for trumpet binary punctures with
the function u approximated as indicated in Eq. (25). The
radial basis function is given by Eq. (29).
To test the algorithm, we verify the convergence of the

ADMmass for the axisymmetric binary system after setting
m1 ¼ m2 ¼ 0.5, P1 ¼ ð0; 0; P0Þ, and P2 ¼ ð0; 0;−P0Þ,

FIG. 7. Convergence of the ADM mass for the binary of
boosted trumpet punctures located on the z axis with a ¼ 3,
m1 ¼ m2 ¼ 0.5, and P0 ¼ 0.4m1. We have set Nx ¼
20; 25; 30; 35; ::; 100 and Ny ¼ 14. In the second panel we show
the profile of 1þ u (Nx ¼ 100, Ny ¼ 14) projected onto the
plane x ¼ y ¼ 0.

FIG. 8. Illustrations in two- and three-dimensional plots (upper
and lower panels, respectively) of 1þ u for the binary of boosted
wormhole punctures in which a ¼ 3, m1 ¼ m2 ¼ 0.5, and
P0 ¼ 0.4m1.
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together with a ¼ 3 and P0 ¼ 0.4m1. Following the con-
vergence test, we fix Ny ¼ 14, and the radial truncation
order is made to vary as Nx ¼ 20; 25; 30; ::; 100. Figure 7
shows the exponential convergence of the ADM mass
calculated according to Eq. (24) in whichm1 þm2 replaces
m0. In this case, the best choice for the map parameter is the
coordinate separation between the punctures, L0 ¼ 2a. For
the sake of illustration we have included in Fig. 7 the plot of
1þ uðr; θÞ in the plane x ¼ y ¼ 0 for the binary black hole
under consideration.
As the last application, we consider a three-dimensional

binary formed by boosted wormhole punctures with P1 ¼
ðP0; 0; 0Þ and P2 ¼ ð−P0; 0; 0Þ. The conformal factor is
expressed in the same way as in Eq. (47),

Ψ ¼ 1þ 1

2

�
m1

r1
þm2

r2

�
þ u: ð50Þ

Here the Hamiltonian constraint and the function u are
given, respectively, by Eqs. (18) and (25), and the corre-
sponding expression for AijAij is given in Appendix C. The
values of the parameters are the same as in Ref. [31]:
a ¼ 3.0M, m1 ¼ m2 ¼ 0.5M, and P0 ¼ 0.2M, where
M ¼ m1 þm2. In Fig. 8 we show the two- and three-
dimensional plots of 1þ uðx; y ¼ 0; zÞ. We use truncation
orders Nx ¼ 40 and Ny ¼ 16, which means 40 radial
collocation points and a grid of 33 × 33 collocation points
for the quadrature formulas given by Eq. (39).

V. FINAL REMARKS

We have presented a single-domain algorithm using the
Galerkin-collocation method to solve the Hamiltonian
constraint for trumpet and wormhole puncture data sets,
with an emphasis on the first type of data sets. We have
considered Bowen-York data including the cases of
spinning, boosted, single, and binary black holes. Some
features of the algorithm are worth mentioning. The spatial

domain is covered by spherical coordinates ðr; θ;ϕÞ. In all
cases, the regular part of the conformal factor is approxi-
mated by Eq. (25) with the radial basis functions satisfying
the appropriate boundary conditions and taking the spheri-
cal harmonics as the angular basis functions.
To describe trumpet data corresponding to a single

spinning and boosted black hole, we have proposed a
puncture-like approach with a new form of the conformal
factor given by Eq. (15). We have also taken into account the
analytical solution that describes the trumpet Schwarzschild
black hole found by Baumgarte and Naculich [21] as the
background solution. This procedure is analogous to using
the background solution Ψ0 ¼ 1þm0=2r in the case of a
single wormhole Schwarzschild black hole.
We have tested the algorithm successfully by checking

the exponential convergence of the ADM mass that was
present in most of the cases. In the sequence, we have made
some applications of the algorithm to situations of interest.
Of particular importance is the case of a single spinning
trumpet black hole, in which we have shown the influence
of the spin in deforming the minimal surface from a sphere
to an oblate spheroid by evaluating the eccentricity of the
resulting surface. The eccentricity has a limit value of about
0.439 obtained for large spin parameters. Interestingly, this
value is approximately half of the eccentricity of the
ergosphere of the extremal Kerr black hole.
We have revisited the radiation content present in the

trumpet and wormhole single spinning and boosted black
holes. In general, the radiation content is nearly the same in
both families of initial data sets, as indicated by Fig. 5. We
have also presented the profiles of the regular function
uðr; θ;ϕÞ for the single trumpet black hole with spin and
boost. By fixing the boost parameter P0 and decreasing the
spin J0, we noticed that the profile approaches that of a
single boosted black hole, as expected.
For the last and more illustrative applications of the

algorithm, we have considered initial data for trumpet and
wormhole binaries. Trumpet data consisting of binary
boosted black holes was envisaged for the axisymmetric
case; the ADM mass converges exponentially. For a more
general case,wegenerated initial datawithwormhole boosted
black holes with the same parameters as in Ref. [31] but with
truncation orders Nx ¼ 40 and Nθ ¼ 16, which means
40 radial collocation points and a grid of 33 × 33 angular
points for the quadrature formulas (39).
The Galerkin-collocation method is a viable alternative

to solve the Hamiltonian constraint for the trumpet and
wormhole initial data sets. We point out two directions to
follow. The first is to consider 1þ log trumpet data sets for
which the maximal sliced conditions are relaxed [20,26].
The second is to extend the present algorithm to include
more than one domain using the technique of domain
decomposition.

FIG. 9. Locations of the apparent horizon r ¼ hðθÞ for a boosted
black hole in thewormhole representation for several values of the
momentum parameter along the z axis. The corresponding
locations for the trumpet representation are similar.

PUNCTURE BLACK HOLE INITIAL DATA: A SINGLE … PHYSICAL REVIEW D 96, 024035 (2017)

024035-9



ACKNOWLEDGMENTS

The authors acknowledge the financial support of the
Brazilian agencies Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
and Fundação Carlos Chagas Filho de Amparo à Pesquisa
do Estado do Rio de Janeiro (FAPERJ). H. P. O. thanks
FAPERJ for support within the Grant No. E-26/202.998/
2016 Bolsas de Bancada de Projetos (BBP). We also would
like to thank Thomas W. Baumgarte for comments on the
manuscript.

APPENDIX A: BACKGROUND
SCHWARZSCHILD TRUMPET

EXACT SOLUTION

The exact expression corresponding to the maximally
sliced trumpet of the Schwarzschild spacetime was derived
by Baumgarte and Naculich [21]:

Ψ0 ¼
�

4R

2Rþm0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 þ 4m0Rþ 3m2

0

p �
1=2

×

�
8Rþ 6m0 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2 þ 8m0Rþ 6m2

0

p
ð4þ 3

ffiffiffi
2

p Þð2R − 3m0Þ

�1=2 ffiffi
2

p

;

ðA1Þ
where the isotropic radial coordinate r is

r ¼
�
2Rþm0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 þ 4m0Rþ 3m2

0

p
4

�

×

� ð4þ 3
ffiffiffi
2

p Þð2R − 3m0Þ
8Rþ 6m0 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2 þ 8m0Rþ 6m2

0

p �1= ffiffi
2

p

: ðA2Þ

We have placed the binary punctures along the z axis
[C1;2 ¼ ð0; 0;�aÞ] for the sake of convenience. The back-
ground conformal factors have the same form as
Eq. (A1), however with Ψ1 ¼ Ψ1ðR1Þ and Ψ2 ¼ Ψ2ðR2Þ.
The relation between the areal radius R1 and the coor-
dinates ðr; θÞ is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ar cos θ þ a2

p
¼

�
2R1 þm1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

1 þ 4m1R1 þ 3m2
1

p
4

�

×

� ð4þ 3
ffiffiffi
2

p Þð2R1 − 3m1Þ
8R1 þ 6m1 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2

1 þ 8m1R1 þ 6m2
1

p �1= ffiffi
2

p

; ðA3Þ

and a similar expression connecting R2 with ðr; θÞ.

APPENDIX B: THE APPARENT HORIZON

The apparent horizon for axisymmetric systems satisfies
the following ordinary differential equation:

∂2
θh ¼ −ΓA

BCMAuBuC −
�
ds
dθ

�
2

γϕϕΓA
ϕϕmA − ðγð2ÞÞ−1=2

×
ds
dθ

uAuBKAB − ðγð2ÞÞ−1=2
�
ds
dθ

�
3

γϕϕKϕϕ; ðB1Þ

where r ¼ hðθÞ describes the apparent horizon surface,
mi ¼ ð1;−∂θh; 0Þ, ui ¼ ð∂θh; 1; 0Þ, and ðds=dθÞ2 ¼
γABuAuB; the capital letters run over the coordinates r,
θ. Since K ¼ 0, it follows that Kij ¼ Aij ¼ Ψ2Āij. The
conformal factor is obtained after numerically solving the
Hamiltonian constraint and inserted into the apparent
horizon equation.
We have introduced ~y ¼ cos θ and transformed the

apparent horizon equation in a nonautonomous dynamical
system of the type ∂ ~yh ¼ v, ∂ ~yv ¼ fðh; v; ~yÞ, whose
solution must satisfy the boundary conditions ∂θh ¼ 0

for θ ¼ 0, π or v
ffiffiffiffiffiffiffiffiffiffiffi
1 − ~y

p ¼ 0 for ~y ¼ −1, 1. In Fig. 9 we
have shown the locations of the apparent horizon
r ¼ hðθÞfor a boosted black hole using the approach
described above

APPENDIX C: EXTRINSIC CURVATURE
FOR BINARY BLACK HOLES

The quantity ĀijĀij for trumpet boosted punctures with
P1 ¼ ð0; 0; P1Þ, P2 ¼ ð0; 0; P2Þ and located at C1 ¼
ð0; 0;−aÞ, C2 ¼ ð0; 0; aÞ, respectively, is given by

ĀijĀij¼9P2
1

2r61
½ð1þ2cos2θÞr2þ6arcosθþ3a2�þ9P2

2

2r62
½ð1þ2cos2θÞr2−6arcosθþ3a2�þ9P1P2

2r51r
5
2

½ð1þ2cos2θÞr6

þð2cos4θ−14cos2θþ3Þa2r4þð8cos2θþ1Þa4r2−3a6�þ81m4
1

8r61
þ81m4

2

8r62
þ81m2

1m
2
2

4r51r
5
2

ð2a2r2cos2θþa4−4a2r2þr4Þ

−
27

ffiffiffi
3

p
m2

1P1

2r61
ðrcosθþaÞ−27

ffiffiffi
3

p
m2

2P2

2r62
ðrcosθ−aÞ−27

ffiffiffi
3

p
m2

2P1

2r51r
5
2

½a5þa4rcosθ−2a3r2þð2cos2θ−4Þcosθa2r3

þð2cos2θ−1Þar4þr5cosθ�þ27
ffiffiffi
3

p
m2

1P2

2r51r
5
2

½a5−a4rcosθ−2a3r2

þð−2cos2θþ4Þa2r3cosθþð2cos2θ−1Þar4−r5cosθ�; ðC1Þ
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where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ar cos θ þ a2

p
and r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2ar cos θ þ a2

p
. For the case of wormhole boosted punctures located at

C1, C2 with P1 ¼ ðP1; 0; 0Þ, P2 ¼ ðP2; 0; 0Þ, we have

ĀijĀij ¼ 9P2
1

2r61
½2arcosθþ a2 þ r2 þ 2r2ð1− cos2θÞcos2ϕ� þ 9P2

2

2r22
ð−2ar cosθþ a2 þ r2 þ 2r2ð1− cos2θÞcos2ϕÞ þ 9P1P2

2r31r
3
2

×

�
r2 − a2 þ 2r2ð1− cos2θÞðr4 − a4 − a2r2ð1− cos2θÞÞ

ð2ar cosθþ a2 þ r2Þðr2 − 2ar cosθþ a2Þ cos
2ϕ

�
: ðC2Þ
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