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We analytically study the nonlinear stability of a spherically symmetric wormhole supported by an
infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a
situation in which a thin spherical shell composed of dust falls into an initially static wormhole; the dust
shell plays the role of the nonlinear disturbance. The self-gravity of the falling dust shell is completely
taken into account through Israel’s formalism of the metric junction. When the dust shell goes through the
wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction
between these shells is only gravity and show the condition under which the wormhole stably persists after
the dust shell goes through it.
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I. INTRODUCTION

A wormhole is a fascinating spacetime structure by
which shortcut trips or travels to disconnected worlds
are possible. Active theoretical studies of this subject began
with influential papers written by Morris, Thorne, and
Yurtsever [1] and Morris and Thorne [2]. The earlier works
were shown in the book written by Visser [3] and review
paper by Lobo [4].
We should note that it is not a trivial task to define a

wormhole in a mathematically rigorous and physically
reasonable manner, although we may easily find a worm-
hole structure in each individual case. Hayward gave an
elegant definition of the wormhole as an extension of the
“black hole” defined by using a trapping horizon [5,6].
Recently, a more sophisticated definition has been pro-
posed by Tomikawa, Izumi, and Shiromizu, and showed
that the violation of the null energy condition is a necessary
condition for the existence of a traversable stationary
wormhole in the framework of general relativity, where
the null energy condition means that Tμνkμkν ≥ 0 holds for
any null vector kμ [7].1

But where does the exotic matter violating the null
energy condition appear? In Refs. [1,2], the possibilities of
quantum effects were discussed. Alternatively, such an
exotic matter is often discussed in the context of cosmol-
ogy. The phantom energy—whose pressure p is given
through the equation of state p ¼ wρ with w < −1 and
positive energy density, ρ > 0—does not satisfy the null
energy condition, and a few researchers showed the
possibility of a wormhole supported by phantom-like

matter [10–12]. Recently, theoretical studies from an
observational point of view of a compact object made of
exotic matter (possibly wormholes) were also reported
[13–17], and observational constraints were reported by
Takahashi and Asada [18].
It is important to study the stability of wormholes in

order to determine whether they are really traversable. The
stability against linear perturbations is a necessary con-
dition for a traversable wormhole, but it is insufficient. The
investigation of a nonlinear dynamical situation is neces-
sary, and there have been a few studies in this direction
[19–22]. In this paper, we also study the nonlinear stability
of a wormhole in a similar way as in Ref. [22].
In Ref. [22], the wormhole was assumed to be spheri-

cally symmetric and supported by an infinitesimally thin
spherical shell. The largest merit of a spherical thin shell
wormhole is its finite number of dynamical degrees of
freedom; hence, we can analyze this model analytically
even in highly dynamical cases. The thin shell wormhole
was first devised by Visser [23], and its stability against
linear perturbations was investigated by Poisson and Visser
[24]. Recently, the linear stability of the thin shell worm-
hole in a more general situation was investigated by Garcia,
Lobo, and Visser [25].
We assume that the spherical shell supporting the

wormhole is a brane whose equation of state is P ¼ −σ,
where P is the tangential pressure and σ is the energy per
unit area. Furthermore, we assume the existence of a
spherically symmetric electric field. This wormhole model
was devised by Barcelo and Visser [26], and its higher-
dimensional extension was studied by Kokubu and Harada
[27]. The brane wormhole has a positive gravitational mass;
this is an important difference between the present study
and that in Ref. [22] in which the gravitational mass of the
wormhole was negative. The sign of the mass will be
significant for the stability, since a positive mass may cause
gravitational collapse, leading to the formation of a black
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1Several researchers have pointed out the intriguing fact that

stationary wormhole solutions exist even without the violation of
the null energy condition, if they have a nonvanishing NUT
charge which causes closed timelike curves [8,9].
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hole. It is worth noticing that the positivity of the mass
avoids the observational constraint given in Ref. [18].
Then, as in Ref. [22], we consider a situation in which
an infinitesimally thin spherical dust shell concentric with
the wormhole falls into the wormhole, or in other words,
plays the role of a nonlinear disturbance in the wormhole
spacetime. These spherical shells are treated by Israel’s
formulation of the metric junction [28]. When the dust shell
goes through the wormhole, it necessarily collides with the
brane supporting the wormhole. The collision between thin
shells has already been studied by several researchers
[29–31], and we follow them. Then, we show the condition
under which the wormhole persists after the passage of a
spherical shell.
This paper is organized as follows. In Sec. II, we derive

the equations of motion for the brane supporting the
wormhole and the spherical dust shell falling into
the wormhole, in accordance with Israel’s formalism of
the metric junction. In Sec. III, we derive a static solution of
the wormhole supported by the brane, which is the initial
condition. In Sec. IV, we investigate the condition that a
dust shell freely falls from infinity and reaches the worm-
hole throat. In Sec. V, we study the motion of the shells and
the change in the gravitational mass of the wormhole after
collision. In Sec. VI, we show the condition under which
the wormhole persists after the dust shell goes through it.
Some complicated manipulations and discussions on this
subject are given separately in the Appendix. Section VII is
devoted to a summary and discussion.
In this paper, we adopt the geometrized units in which

the speed of light and Newton’s gravitational constant are
one. However, if necessary, they will be recovered.

II. EQUATIONS OF MOTION FOR
SPHERICAL SHELLS

We consider two concentric spherical shells which are
infinitesimally thin. As mentioned in the previous section,
one is the brane supporting the wormhole and the other is
composed of the dust which will cause a nonlinear
perturbation for the wormhole.
The trajectories of these shells in the spacetime are

timelike hypersurfaces: the one formed by the brane is
denoted by Σ1, and the other formed by the dust shell is
denoted by Σ2. These hypersurfaces divide the spacetime
into three domains denoted by D1, D2, and D3, respec-
tively; Σ1 divides the spacetime intoD1 andD2, whereas Σ2

divides the spacetime into D2 and D3. We also call Σ1 and
Σ2 shell-1 and shell-2, respectively. This configuration is
depicted in Fig. 1.
The geometry of the domain Di (i ¼ 1, 2, 3) is assumed

to be described by the Reissner-Nordström solution: the
infinitesimal world interval is given by

ds2 ¼ −fiðrÞdt2i þ
1

fiðrÞ
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð1Þ

with

fiðrÞ ¼ 1 −
2Mi

r
þQ2

i

r2
; ð2Þ

where Mi and Qi are the mass parameter and the charge
parameter, respectively, whereas the gauge 1-form is given
by

Aμ ¼
�
−
Qi

r
; 0; 0; 0

�
: ð3Þ

We should note that the coordinate ti is not continuous at
the shells, whereas r, θ, and ϕ are everywhere continuous.
If Mi > jQij holds, two horizons can exist, and their

locations are given by real roots of the algebraic equation
fiðrÞ ¼ 0:

r ¼ ri� ≔ Mi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i −Q2
i

q
: ð4Þ

If Mi ¼ jQij, there can be one degenerate horizon at
r ¼ Mi. If Mi < jQij holds, the roots of fiðrÞ ¼ 0 are
complex or real negative roots, and hence there is no
horizon.
Since finite energy and finite momentum are concen-

trated on the infinitesimally thin domains, the stress-energy
tensor diverges on these shells. This means that these shells
are categorized into the so-called curvature polynomial
singularity through the Einstein equations [32]. Even
though ΣA (A ¼ 1, 2) are spacetime singularities, we can
derive an equation of motion for each spherical shell that is
consistent with the Einstein equations using the so-called
Israel’s formalism, since each of these singularities is so
weak that its intrinsic metric exists and the extrinsic
curvature defined on each side of ΣA is finite.
We cover the neighborhood of the singular hypersurface

ΣA by a Gaussian normal coordinate λ, where ∂=∂λ is a unit
vector normal to ΣA and is directed fromDA toDAþ1. Then,
the sufficient condition to apply Israel’s formalism is that
the stress-energy tensor is written in the form

Tμν ¼ Sμνδðλ − λAÞ; ð5Þ

3D

shell-2

shell-1
2D

1D

FIG. 1. The initial configuration is depicted.
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where ΣA is located at λ ¼ λA, δðxÞ is Dirac’s delta
function, and Sμν is the surface stress-energy tensor on ΣA.
The junction condition of the metric tensor is obtained as

follows. We impose that the metric tensor gμν is continuous
even at ΣA. Hereafter, nμ denotes the unit normal vector of
ΣA, instead of ∂=∂λ. The intrinsic metric of ΣA is given by

hμν ¼ gμν − nμnν; ð6Þ
and the extrinsic curvature is defined as

KðiÞ
μν ¼ −hαμhβν∇ðiÞ

α nβ; ð7Þ

where ∇ðiÞ
α is the covariant derivative with respect to the

metric in the domain Di. This extrinsic curvature describes
how ΣA is embedded into the domain Di. In accordance
with Israel’s formalism, the Einstein equations lead to

KðAþ1Þ
μν − KðAÞ

μν ¼ 8π

�
Sμν −

1

2
hμνtrS

�
; ð8Þ

where trS is the trace of Sμν. Equation (8) gives us the
condition of the metric junction.
By the spherical symmetry of the system, the surface

stress-energy tensors of the shells should be of the perfect-
fluid type:

Sμν ¼ σAuμuν þ PAðhμν þ uμuνÞ; ð9Þ
where σA and PA are the energy per unit area and the
pressure on ΣA, respectively, and uμ is the 4-velocity.
Due to the spherical symmetry, the motion of shell-A is

of the form ti ¼ TA;iðτÞ and r ¼ RAðτÞ, where i ¼ A or
i ¼ Aþ 1, that is to say, i represents one of two domains
divided by shell-A, and τ is the proper time of the shell. The
4-velocity is given by

uμ ¼ ð _TA;i; _RA; 0; 0Þ; ð10Þ
where a dot denotes a derivative with respect to τ. Then, nμ
is given by

nμ ¼ ð− _RA; _TA;i; 0; 0Þ: ð11Þ
Together with uμ and nμ, the following unit vectors form an
orthonormal frame:

θ̂μ ¼
�
0; 0;

1

r
; 0

�
; ð12Þ

ϕ̂μ ¼
�
0; 0; 0;

1

r sin θ

�
: ð13Þ

The extrinsic curvature is obtained as

KðiÞ
μνuμuν ¼ 1

fi _TA;i

�
R̈A þ f0iðRAÞ

2

�
; ð14Þ

KðiÞ
μν θ̂

μθ̂ν ¼ KðiÞ
μν ϕ̂

μϕ̂ν ¼ −nμ∂μ ln rjDi
¼ −

fiðRAÞ
RA

_TA;i

ð15Þ
and the other components vanish, where a prime denotes a
derivative with respect to its argument. By the normaliza-
tion condition uμuμ ¼ −1, we have

_TA;i ¼ � 1

fiðRAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
A þ fiðRAÞ

q
: ð16Þ

Substituting the above equation into Eq. (15), we have

KðiÞ
μν θ̂

μθ̂ν ¼∓ 1

RA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
A þ fiðRAÞ

q
: ð17Þ

From the u − u component of Eq. (8), we obtain the
following relations:

dðσAR2
AÞ

dτ
þ PA

dR2
A

dτ
¼ 0: ð18Þ

In the case of the equation of state

PA ¼ wAσA; ð19Þ
where wA is constant, by substituting Eq. (19) into Eq. (18),
we obtain

σA ∝ R−2ðwAþ1Þ
A : ð20Þ

A. Shell-1: The brane

As mentioned, we assume that shell-1 is a brane, i.e.,

w1 ¼ −1:

Without loss of generality, we assume Q2 ≥ 0.
Furthermore, we focus on the case of

Q2 ¼ jQ1j ¼ Q ≥ 0:

Since the electric charge of shell-1 is equal to Q2 −Q1, the
electric charge of shell-1 is zero in the case of Q2 ¼ Q1,
whereas the electric charge of shell-1 may not vanish in the
case of Q2 ¼ −Q1. As will be shown later, the results in
both cases are identical to each other.
By this assumption, the union of the domainsD1 and D2

should have a wormhole structure due to shell-1. This
means that na∂a ln rjD1

< 0 and na∂a ln rjD2
> 0 (see

Fig. 2), and we have

Kð1Þ
μν θ̂

μθ̂ν ¼ þ 1

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f1

q
and

Kð2Þ
μν θ̂

μθ̂ν ¼ −
1

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f2

q
: ð21Þ
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Here, note that Eq. (21) implies _T1;1 is negative, whereas
_T1;2 is positive. Hence, the direction of the time coordinate
basis vector in D1 is opposite that in D2.
From the θ − θ component of Eq. (8), we obtain the

following relations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f2ðR1Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f1ðR1Þ

q
¼ −4πσ1R1: ð22Þ

Equation (22) is satisfied only if σ1 is negative, and hence
we assume that this is the case. From Eq. (20), we have

σ1 ¼ −
μ

4π
; ð23Þ

where μ is a positive constant, which hereafter we call the
stress constant.
Let us rewrite Eq. (22) in the form of the energy equation

for shell-1. First, we write it in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f2ðR1Þ

q
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f1ðR1Þ

q
þ μR1; ð24Þ

and then take the square of both sides of the above equation
to obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1þf1ðR1Þ

q
¼ 1

2μR1

½f1ðR1Þ−f2ðR1ÞþðμR1Þ2�: ð25Þ

By taking the square of both sides of the above equation,
we have

_R2
1 þ V1ðR1Þ ¼ 0; ð26Þ

where

V1ðrÞ ¼ 1−
1

r4

�
M2 −M1

μ

�
2

−
M1 þM2

r
þQ2

r2
−
�
μ

2

�
2

r2:

ð27Þ

Equation (26) is regarded as the energy equation for shell-1.
The function V1 corresponds to the effective potential. In
the allowed domain for the motion of shell-1, the inequality

V1 ≤ 0 should hold, but this inequality is not a sufficient
condition for the allowed region.
The left-hand side of Eq. (24) is non-negative, and hence

the right-hand side of it should also be non-negative. Then,
substituting Eq. (25) into the right-hand side of Eq. (24), we
have

0 ≤ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f1ðR1Þ

q
þ μR1 ¼

μR1

2
−
M2 −M1

μR2
1

: ð28Þ

Further manipulation leads to

R3
1 ≥

2

μ2
ðM2 −M1Þ: ð29Þ

By a similar argument, we obtain

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
1 þ f2ðR1Þ

q
þ μR1 ≥ 0: ð30Þ

Then, by a similar procedure, we have

R3
1 ≥

2

μ2
ðM1 −M2Þ: ð31Þ

Hence, we have the following constraint:

R1 ≥
�
2jM1 −M2j

μ2

�1
3

: ð32Þ

In order to find the allowed domain for the motion of shell-
1, we need to take into account the constraint (32) in
addition to the condition V1 ≤ 0.

B. Shell-2: The dust shell

As mentioned, we assume that shell-2 is composed of
nonexotic dust, i.e., w2 ¼ 0 and σ2 > 0. The proper mass of
shell-2 is defined as

m2 ≡ 4πσ2R2
2: ð33Þ

We find that m2 is constant by Eq. (20) and positive by
σ2 > 0. We also assume

Q3 ¼ Q2 ¼ Q:

This assumption means that shell-2 is electrically neutral.
The wormhole structure does not exist around shell-2

due to σ2 > 0. Hence, the extrinsic curvature of shell-2 is
given by

Kð2Þ
μν θ̂

μθ̂ν ¼ −
1

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f2ðR2Þ

q
and

Kð3Þ
μν θ̂

μθ̂ν ¼ −
1

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3ðR2Þ

q
: ð34Þ

3Dshell-2

shell-1

2D

1D

n

FIG. 2. Shell-1 forms the wormhole structure.
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By using the above result, the θ-θ component of the
junction condition leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2
2 þ f3ðR2Þ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f2ðR2Þ

q
¼ −

m2

R2

: ð35Þ

Since m2 is positive, we find from the above equation
that f2ðR2Þ > f3ðR2Þ, or equivalently, M3 > M2. From
Eq. (35), we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2
2 þ f3ðR2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f2ðR2Þ

q
−
m2

R2

: ð36Þ

By taking the square of both sides of Eq. (36), we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f2ðR2Þ

q
¼ M3 −M2

m2

þ m2

2R2

: ð37Þ

By taking the square of both sides of Eq. (37), we obtain
an energy equation for shell-2,

_R2
2 þ V2ðR2Þ ¼ 0; ð38Þ

where

V2ðrÞ ¼ 1 − E2 −
2Md

r
þQ2

1

r2
−
�
m2

2r

�
2

; ð39Þ

with

E≡M3 −M2

m2

and Md ≡ 1

2
ðM2 þM3Þ: ð40Þ

Note that E is a constant which corresponds to the specific
energy of shell-2.
In the allowed domain for the motion of shell-2,

the effective potential V2 should be nonpositive. But, as
in the case of shell-1, it is not a sufficient condition for the
allowed domain. Since the left-hand side of Eq. (36) is non-
negative, the following inequality should be satisfied:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2
2 þ f2ðR2Þ

q
−
m2

R2

≥ 0: ð41Þ

Substituting Eq. (37) into the left-hand side of Eq. (41), we
have

R2 ≥ Rb ≔
m2

2

2ðM3 −M2Þ
: ð42Þ

The above inequality should also be taken into account as a
condition for the allowed domain.
As mentioned, in the case of M3 ≥ Q, the horizon may

appear in the domain D3; when the radius R2 of shell-2
becomes smaller than or equal to

RH ≔ r3þ ¼ M3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3 −Q2

q
; ð43Þ

a black hole including both the wormhole and shell-2
forms. Here it should be noted that Eq. (42) is derived by

assuming that ut2 is positive, but ut2 can change its sign
within the black hole (R2 < RH). Hence, if Rb is smaller
than RH, Eq. (42) looses its validity, and thus the allowed
domain for the motion of shell-2 is solely determined by the
condition V2 ≤ 0. The allowed domain for the motion of
shell-2 satisfies V2 ≤ 0 as well as Eq. (42) only if Rb ≥ RH.

III. STATIC WORMHOLE SOLUTION

We consider a situation in which the brane supporting the
wormhole is initially static and located at r ¼ a.
Furthermore, we assume that the wormhole is initially
mirror symmetric with respect to r ¼ a, i.e., f1ðrÞ ¼
f2ðrÞ ¼ fðrÞ, or equivalently, M1 ¼ M2 ¼ Mw. In order
for shell-1 to be in a static configuration, its areal radius
R1 ¼ a should satisfy V1ðaÞ ¼ 0 ¼ V 0

1ðaÞ. Furthermore,
V 00
1ðaÞ > 0 should hold so that this structure is stable.
The condition V1ðaÞ ¼ 0 leads to the following relation

between the stress constant μ and the areal radius a:

μ2 ¼ 4

a2
fðaÞ: ð44Þ

Together with the above condition, the condition
V 0
1ðaÞ ¼ 0 leads to

a2 − 3Mwaþ 2Q2 ¼ 0: ð45Þ
The roots of the above equation are given by

a ¼ a� ≔
1

2
ð3Mw �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
Þ:

The following inequality should hold so that a is real and
positive:

Mw ≥
2

ffiffiffi
2

p

3
Q: ð46Þ

Equation (46) implies that Mw is non-negative.
Together with Eqs. (44) and (45), the condition V 00

1ðaÞ >
0 leads to

a <
ffiffiffi
2

p
Q: ð47Þ

The above condition implies that the charge parameter Qi
cannot vanish so that the areal radius a is positive. Since we
have

a� −
ffiffiffi
2

p
Q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Mw − 2

ffiffiffi
2

p
Q

q
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Mw − 2

ffiffiffi
2

p
Q

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Mw þ 2

ffiffiffi
2

p
Q

q
Þ;

a ¼ aþ does not satisfy Eq. (47), but a ¼ a− does.
Since μ2 should be positive, Eq. (44) implies that

fða−Þ > 0 should be satisfied. By using Eq. (45), the
condition fða−Þ > 0 leads to
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3M2
w − 2Q2 > Mw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
:

By taking the square of both sides of the above inequality,
we obtain Mw < Q.
To summarize this section, the areal radius a and the

stress constant μ of the static wormhole are given as
functions of Mw and Q;

a ¼ 1

2
ð3Mw −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
Þ; ð48Þ

μ ¼ a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mw

a
þQ2

a2

s
; ð49Þ

with the constraint

Mw < Q <
3

2
ffiffiffi
2

p Mw: ð50Þ

Equations (48) and (50) lead to

Mw < a <
3

2
Mw: ð51Þ

IV. CAN SHELL-2 REACH THE
WORMHOLE THROAT?

We consider the condition that shell-2 enters the worm-
hole supported by shell-1. The allowed domain for the
motion of shell-2 is determined by the conditions (42) and
V2 ≤ 0. Shell-2 is assumed to come from spatial infinity.
By this assumption, E ≥ 1 should be satisfied so that
V2ðrÞ < 0 for sufficiently large r.

A. The case of Q ≤ m2=2

In this case, V2ðrÞ is negative for r ≥ a. It should be
noted that, in this case,

M3 ¼ M2 þ Em2 > Mw þ 2EQ > Q

is satisfied, and hence RH is real and positive. As explained
in the paragraph including Eq. (43), since we have

RH − Rb ¼ M3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3 −Q2

q
−

m2
2

2ðM3 −M2Þ

¼ Mw þm2ð2E2 − 1Þ
2E

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3 −Q2

q
> 0;

the allowed domain for the motion of shell-2 is only
determined by the condition V2 < 0, and hence shell-2
can reach the wormhole throat r ¼ a in this case.

B. The case of Q > m2=2

We consider the cases of E ¼ 1 and E > 1 separately.

1. The case of E = 1

In this case, the positive real root of V2ðRzÞ ¼ 0 is
given by

Rz ¼
4Q2 −m2

2

4ð2Mw þm2Þ
:

The allowed domain for the motion of shell-2 is R2 ≥ Rz.
We have

a − Rz ¼
1

2
ð3Mw −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
Þ − 4Q2 −m2

2

4ð2Mw þm2Þ

¼ 1

2Mw þm2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
−
2Mw þm2

4

�
2

−
25

4
M2

w þ 7Q2 þ 3

16
m2

2 þ
5

4
Mwm2

�

>
1

2Mw þm2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

w − 8Q2

q
−
2Mw þm2

4

�
2

þ 3

4
Q2 þ 3

16
m2

2 þ
5

4
Mwm2

�
> 0; ð52Þ

where we have used Mw < Q in Eq. (50). The above inequality implies that shell-2 can reach the wormhole throat r ¼ a.

2. The case of E > 1

In this case, the positive real root of V2ðRzÞ ¼ 0 is given by

Rz ¼
1

E2 − 1

�
−Mw −

m2E
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mw þm2E

2

�
2

þ ðE2 − 1Þ
�
Q2 −

m2
2

4

�s �
:

The allowed domain for the motion of shell-2 is R ≥ Rz. We can easily see that Rz → 0 and so a > Rz, in the limit of
E → ∞. The derivative of Rz with respect to E with Mw, m2, and Q fixed is given by

∂Rz

∂E ¼ X − Y

ðE2 − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMw þ 1

2
m2EÞ2 þ ðE2 − 1ÞðQ2 − m2

2

4
Þ

q ; ð53Þ
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where

X ¼
�
1

2
m2E2 þ 1

2
m2 þ 2MwE

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mw þ 1

2
m2E

�
2

þ ðE2 − 1Þ
�
Q2 −

m2
2

4

�s
; ð54Þ

Y ¼ Q2E3 þ 3

2
Mwm2E2 −

�
Q2 −

1

2
m2

2 − 2M2
w

�
Eþ 1

2
Mwm2: ð55Þ

It is not so difficult to see that Y is positive for E ≥ 1,
whereas X is trivially positive. Since we have

Y2 − X2 ¼
�
Q2 −

1

4
m2

2

�

×

�
Q2E2 þMm2Eþ 1

4
m2

2

�
ðE2 − 1Þ2 > 0;

we find

∂Rz

∂E < 0

for E > 1. As a result, since (as already shown) a > Rz
holds for both E ¼ 1 and E → ∞, we have a > Rz even for
E > 1.

In the case of M3 ≥ Q, as already shown in the case of
Q < m2=2, sinceRb < RH holds, the alloweddomain for the
motion of shell-2 is only determined by the condition
V2 ≤ 0. Hence, shell-2 can reach thewormhole throat r ¼ a.
In the case ofM3 < Q, or equivalently,Mw < Q −m2E,

no horizon forms in D3, and hence we need to
study whether Rz is larger than Rb. In the case of
E ¼ 1, we have

Rz − Rb ¼
4Q2 − 4m2Mw − 3m2

2

4ð2Mw þm2Þ
>

ð2Q −m2Þ2
4ð2Mw þm2Þ

> 0:

In the case of E > 1, we have

Rz − Rb ¼
1

2EðE2 − 1Þ
�
−2MEþm2 − 2m2E2 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mw þm2E

2

�
2

þ ðE2 − 1Þ
�
Q2 −

m2
2

4

�s �

>
1

2EðE2 − 1Þ
�
−2MEþm2 − 2m2E2 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mw þm2E

2

�
2

þ ðE2 − 1Þ
�
ðMw þm2EÞ2 −

m2
2

4

�s �

¼ 1

2EðE2 − 1Þ ½2MEðE − 1Þ þm2ð2E2 − 1ÞðE − 1Þ� > 0: ð56Þ

Since now we have Rb < Rz for E ≥ 1, Eq. (42) gives no
additional constraint on the allowed domain for the motion
of shell-2. As a result, shell-2 can also reach the wormhole
throat r ¼ a in M3 < Q.
To summarize this section, shell-2 reaches the wormhole

throat r ¼ a from infinity if it moves inward initially. This
result is different from the case of the wormhole with a
negative mass studied in Ref. [22]: in the negative-mass
case, E should be larger than unity, or in other words, a
larger initial ingoing velocity than the present positive-mass
case is necessary for shell-2 to reach the wormhole throat,
since the gravitational force produced by a wormhole with a
negative mass is repulsive.

V. COLLISION BETWEEN THE SHELLS

When shell-2 goes through the wormhole, it necessarily
collides with shell-1 located at the wormhole throat r ¼ a.
This situation is shown in Fig. 3. In this section, we show

how the mass parameter in the domain between the shells
changes due to the collision.
We assume that the interaction between these shells is

gravity only, or in other words, these shells merely go
through each other: Both the 4-velocity and the proper mass
4πσAR2

A of each shell are continuous at the collision event.
In the domain D2, we may introduce two kinds of

orthonormal frames ðuαA; nαA; θ̂α; ϕ̂αÞ at the collision event,
where A ¼ 1, 2. We can express the 4-velocity uα1 of shell-1
by using the orthonormal frame ðuα2; nα2; θα;ϕαÞ, and the
converse is also possible:

uα1 ¼ ½−uα2u2β þ nα2n2β þ θ̂αθ̂β þ ϕ̂αϕ̂β�
uβ1 ¼ −ðuβ1u2βÞuα2 þ ðuβ1n2βÞnα2; ð57Þ

uα2 ¼ ½−uα1u1β þ nα1n1β þ θ̂αθ̂β þ ϕ̂αϕβ�
uβ2 ¼ −ðuβ2u1βÞuα1 þ ðuβ2n1βÞnα1: ð58Þ
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The components of uαA and nαA with respect to the
coordinate basis in D2 are given by

uα1 ¼
�

1ffiffiffi
f

p ; 0; 0; 0

�
; ð59Þ

nα1 ¼ ð0;
ffiffiffi
f

p
; 0; 0Þ; ð60Þ

uα2 ¼
�
1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f

q
; _R2; 0; 0

�
; ð61Þ

nα2 ¼
�
_R2

f
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f

q
; 0; 0

�
; ð62Þ

where f ¼ fðaÞ. Hence, we have

uβ1u2β ¼ uβ2u1β ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2

f
þ 1

s
; ð63Þ

uβ1n2β ¼ −
_R2ffiffiffi
f

p ; ð64Þ

uβ2n1β ¼
_R2ffiffiffi
f

p : ð65Þ

A. Shell-1 after the collision

The orthonormal frame ðuα2; nα2; θ̂α; ϕ̂αÞ at the collision
event is also available in the domain D3. The components
of uα2 and nα2 with respect to the coordinate basis in D3 are
given by

uα2 ¼
�
1

f3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3

q
; _R2; 0; 0

�
; ð66Þ

nα2 ¼
�
_R2

f3
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3

q
; 0; 0

�
; ð67Þ

where f3 ¼ f3ðaÞ. By using the above equations, we obtain
the components of uα1 with respect to the coordinate basis in
D3 as

ut31 ¼ −ðuβ1u2βÞut32 þ ðuβ1n2βÞnt32
¼ −ðuβ1u2βÞ

1

f3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3

q
þ ðuβ1n2βÞ

_R2

f3

¼ 1

f3
ffiffiffi
f

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _R2

2 þ fÞð _R2
2 þ f3Þ

q
− _R2

2�; ð68Þ

ur1 ¼ −ðuβ1u2βÞur2 þ ðuβ1n2βÞnr2
¼ −ðuβ1u2βÞ _R2 þ ðuβ1n2βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3

q

¼
_R2ffiffiffi
f

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f3

q
Þ; ð69Þ

uθ1 ¼ uϕ1 ¼ 0: ð70Þ

The above components are regarded as those of the 4-
velocity of shell-1 just after the collision event. By using
Eqs. (35) and (69), we have

ur1 ¼
m2

_R2

a
ffiffiffi
f

p : ð71Þ

By taking the square of Eq. (35) and using Eq. (38), we
have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _R2

2 þ fÞð _R2
2 þ f3Þ

q
¼ _R2

2 þ
f þ f3

2
−
1

2

�
m2

a

�
2

¼ E2 −
�
m2

2a

�
2

: ð72Þ

The above equation implies

E2 >

�
m2

2a

�
2

: ð73Þ

Then, we have

ut31 ¼ 1

f3
ffiffiffi
f

p
�
1 −

2Md

a
þQ2

a2
−
1

2

�
m2

a

�
2
�
: ð74Þ

We can check that the normalization condition −f3ðut31 Þ2 þ
f−13 ður1Þ2 ¼ −1 is satisfied.

D1

D2

D3

D4

shell-1

shell-1

shell-2

shell-2

FIG. 3. Shell-1 supporting the wormhole is initially static.
Shell-2 falls into the wormhole and collides with shell-1. The
interaction between these shells is assumed to be gravity only: the
shells merely go through each other.
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The above result implies that just after the collision, the
derivative of the areal radius of shell-1 with respect to its
proper time becomes

_R1jafter ¼
m2

_R2

a
ffiffiffi
f

p : ð75Þ

Since shell-2 falls into the wormhole just before the
collision, _R2 is negative. This fact implies that shell-1 or
equivalently the radius of the wormhole throat begins
shrinking just after the collision since m2 is assumed to
be positive.
The domain between shell-1 and shell-2 after the

collision is called D4. From the junction condition between
D3 and D4, shell-2 obeys the following equation just after
the collision:

_R2
1jafter ¼−1þ

�
M3−M4

μR2
1

�
2

þM3þM4

R1

−
Q2

R2
1

þ
�
μR1

2

�
2

:

ð76Þ

From the above equation and Eq. (75), we obtain

_R2
2 ¼ −f

�
a
m2

�
2
�
1 −

�
M3 −M4

μa2

�
2

−
M3 þM4

a
þQ2

a2
−
�
μa
2

�
2
�
: ð77Þ

Here note that _R2 is the value of shell-2 just before the
collision.

B. Shell-2 after the collision

Since the orthonormal frame ðuα1; nα1; θ̂α; ϕ̂αÞ is also
available in the domain D1, by using Eqs. (15), (16),
and (21) the components of uα1 and nα1 with respect to the
coordinate basis in D1 are given by

uα1 ¼
�
−

1ffiffiffi
f

p ; 0; 0; 0

�
; ð78Þ

nα1 ¼ ð0;−
ffiffiffi
f

p
; 0; 0Þ: ð79Þ

As already noted just below Eq. (21), the time component
of uα1 with respect to the coordinate basis in D1 is negative.
By using the above equations, we obtain the components

of uα2 with respect to the coordinate basis in D1 as

ut12 ¼ −ðuβ2u1βÞut11 þ ðuβ2n1βÞnt11
¼ ðuβ2u1βÞ

1ffiffiffi
f

p ¼ −
1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2
2 þ f

q
; ð80Þ

ur2 ¼ −ðuβ2u1βÞur1 þ ðuβ2n1βÞnr1 ¼ −ðuβ2n1βÞ
ffiffiffi
f

p
¼ − _R2;

ð81Þ

uθ2 ¼ uϕ2 ¼ 0: ð82Þ

Since _R2 is negative, shell-2 begins expanding after the
collision. This is a reasonable result because of the worm-
hole structure.
Due to the spherical symmetry, D4 is also described by

the Reissner-Nordström geometry with the mass parameter
M4 and the unchanged charge parameter Q. From the
junction condition between D1 and D4, we have

_R2
2jafter ¼−1þ

�
M1−M4

m2

�
2

þM1þM4

R2

−
Q2

R2
2

þ
�
m2

2R2

�
2

:

ð83Þ

From Eq. (81), since _R2
2 is unchanged by the collision, we

have

_R2
2 ¼ −1þ

�
M1 −M4

m2

�
2

þM1 þM4

a
−
Q2

a2
þ
�
m2

2a

�
2

:

ð84Þ

Here again, note that _R2 is the value of shell-2 just before
the collision.

C. The mass parameter M4 in D4

From Eqs. (38) and (39), we can write _R2
2 just before the

collision in the form

_R2
2 ¼ −1þ

�
M3 −M2

m2

�
2

þM2 þM3

a
−
Q2

a2
þ
�
m2

2a

�
2

:

ð85Þ

Then, Eqs. (77), (84), and (85) determine the unknown
parameter M4.
Since M1 ¼ M2 ¼ Mw, Eqs. (84) and (85) lead to

�
Mw −M3

m2

�
2

þMw þM3

a
¼

�
Mw −M4

m2

�
2

þMw þM4

a
:

ð86Þ

By solving the above equation with respect to M4, we
obtain two roots:M4 ¼ M3 andM4 ¼ 2Mw −M3 −m2

2=a.
By using Eqs. (44) and (77), we find that the latter one, i.e.,

M4 ¼ 2Mw −M3 −
m2

2

a
; ð87Þ

is the solution we need, where we have used
M3 ¼ Mw þm2E. Hence, after the collision, the wormhole
does not have mirror symmetry with respect to r ¼ a.
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VI. THE CONDITION THAT THE
WORMHOLE PERSISTS

In this section, we consider the condition that the
wormhole stably exists after the passage of shell-2.
From Eq. (76), the effective potential of shell-1 after the
collision is given by

V1jafterðrÞ ¼
1

r4

�
−
μ2

4
r6 þ r4 − ðM3 þM4Þr3

þQ2r2 −
�
M4 −M3

μ

�
2
�
: ð88Þ

By using Eqs. (44), (45), and (87), we have

μ2 ¼ 2ða −MwÞ
a3

; ð89Þ

Q2 ¼ a
2
ð3Mw − aÞ; ð90Þ

M3 þM4 ¼ 2Mw −
m2

2

a
; ð91Þ

M3 −M4 ¼ 2m2Eþm2
2

a
: ð92Þ

Equations (89)–(92) imply that the effective potential
V1jafter is characterized by four parameters: Mw, a, m2,
and E. By regarding Mw as a parameter to determine the
unit of length, the motion of the wormhole after the passage
of shell-2 is characterized by three parameters: a, m2,
and E.

A. No black hole formation

First of all, a > RH must be satisfied in the case of
M3 ≥ Q. If not, the wormhole is enclosed by an event
horizon after shell-2 enters the domain r ≤ RH, and hence
the wormhole cannot stably persist.
The inequality M3 ≥ Q leads to

m2 ≥
1

E

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að3Mw − aÞ

2

r
−Mw

�
; ð93Þ

whereas the inequality a > RH leads to

m2 <
a −Mw

4E
: ð94Þ

If Eq. (93) holds, Eq. (94) should be satisfied. It is not so
difficult to see that

a −Mw

4
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að3Mw − aÞ

2

r
−Mw;

and hence both of Eqs. (93) and (94) can hold simulta-
neously. In the case of

m2 <
1

E

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að3Mw − aÞ

2

r
−Mw

�
;

M3 < Q holds, and hence no horizon appears in D3 even if
shell-2 enters the wormhole. As a result, the event horizon
does not form due to the passage of shell-2 only if the
inequality (94) holds.
Hereafter, we focus on the following bounded domain in

the parameter space ða;m2Þ:

D ¼
�
ða;m2ÞjMw < a <

3

2
Mw and 0 < m2 <

a −Mw

4E

�
:

ð95Þ

B. Allowed domain for the motion of shell-1

The allowed domain for the motion of shell-1 after the
collision should be restricted to r > 0 and bounded so that
the wormhole stably persists. We introduce the function

WðrÞ≔ r4V1jafterðrÞ

¼−
μ2

4
r6þ r4− ðM3þM4Þr3þQ2r2−

�
M4−M3

μ

�
2

:

ð96Þ

It is easy to see that the function WðrÞ has a negative
minimum at r ¼ 0. Since WðrÞ has at most five extrema,
WðrÞ should have two non-negative maxima and one
negative minimum in r > 0 and one maximum in r < 0,
so that there is a bounded domain of V1jafter < 0 in r > 0.
We introduce the function wðrÞ defined as

dWðrÞ
dr

¼ −
3μ2

2
rwðrÞ

≔ −
3μ2

2
r

�
r4 −

8

3μ2
r2 þ 2ðM3 þM4Þ

μ2
r −

4Q2

3μ2

�
:

ð97Þ

The quartic equation wðrÞ ¼ 0 should have three positive
real roots and one negative real root, so that there is a
bounded domain of V1jafter < 0 in r > 0. In the Appendix,
we see that this is the case as long as the parameters a and
m2 are restricted to the domain D. Thus, WðrÞ has two
maxima and one minimum in r > 0 and one maximum in
r < 0. The radial coordinates of the extrema of WðrÞ other
than r ¼ 0, i.e., the roots of wðrÞ ¼ 0 are denoted by rA, rB,
rC, and rD, all of which are functions of not E, but rather a
and m2; the explicit forms of rA, rB, rC, and rD are given
through Ferrari’s formula for the roots of a quartic equation,
but we will not show them here since the expressions of the
roots are too complicated to get any information from them.
We assume rA < 0 < rB < rC < rD, and hence WðrÞ has
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maxima at r ¼ rA, r ¼ rB, and r ¼ rD, whereas it has
minima at r ¼ 0 and r ¼ rC (see Fig. 4).
In the case of m2 ¼ 0, since V1jafterðrÞ is equal to V1ðrÞ,

we have rC ¼ a and WðrCÞ ¼ 0, and both WðrBÞ and
WðrDÞ are positive (see Fig. 5). By contrast, in the case of
nonvanishing m2, we have

WðaÞ ¼ −
m2

2a
2

2ða −MwÞ

×

�
2ð2E2 − 1Þaþ 2Mw þ 4Em2 þ

m2
2

a

�
< 0;

and hence WðrCÞ must be negative by the continuous
dependence of WðrÞ on the parameter m2.
Since shell-1 shrinks just after the passage of shell-2 [see

Eq. (75)], if WðrBÞ is negative, shell-1 (or equivalently, the

wormhole) collapses to form a black hole. If WðrBÞ
vanishes, shell-1 asymptotically approaches r ¼ rB and
thus the size of the wormhole remains finite. If WðrBÞ is
positive, shell-1 bounces off the potential barrier, and then
R1 increases. In this case, WðrDÞ should be equal to or
larger than zero so that the wormhole persists with a finite
size. The domain in ða;m2Þ space with E fixed in which the
wormhole persists after the passage of the shell-2 is a curve
WðrBÞ ¼ 0 and a domain restricted by WðrBÞ > 0 and
WðrDÞ ≥ 0. Hence the critical curves in ða;m2Þ space with
E fixed are given by the condition

WðrBÞ ¼ 0 and WðrDÞ ¼ 0:

In Fig. 6, we depict the domain in ða;m2Þ space with E ¼ 1
in which the wormhole persists after the passage of shell-2
as an unshaded region. Figure 7 is the same as Fig. 6 but
zoomed into the neighborhood of the intersections of the
curvesWðrBÞ ¼ 0,WðrDÞ ¼ 0, and a −M ¼ 4m2, i.e., the
upper bound of the domain D. The mass of shell-2, m2, is
bounded from above by 0.0785026Mw at which the initial
radius of the wormhole throat, a, equals 1.31581Mw. This
result shows another physically significant difference from
the case of the wormhole with a negative mass investigated
in Ref. [22]: the upper bound on m2 is of the order jMwj in
the negative-mass case, since the gravitational collapse
needed to form a black hole is prevented by the negative
mass of the wormhole.
Here it should be noted that E appears only in the last

term on the right-hand side of Eq. (96) [see Eq. (92)], and
the inclination of WðrÞ does not depend on E. The area of
the domain in ða;m2Þ space in which the wormhole persists
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FIG. 4. Adopting the units Mw ¼ 1, the function WðrÞ with
ða;m2; EÞ ¼ ð1.3; 0.05; 1Þ is depicted. There is a maximum of
WðrÞ at r ¼ rA < 0. However, it is very large compared with
extrema in r ≥ 0, and hence we do not show it in this figure.
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FIG. 5. The same as Fig. 4 but with m2 ¼ 0.

a < RH

   Black hole formation by 
the shrinkage of the shell-2

W(r ) = 0B

W(r ) = 0D

by the collapse of the wormhole

4m
  =

 a 
− M

2

w

M = Q
3

        Wormhole stably persists 
even after the passage of the shell-2.

Wormhole expands forever.

Black hole formation 

m2

Mw

Mw

a
1.0 1.1 1.2 1.3 1.4 1.5

0.00

0.04

0.06

0.02

0.08

0.10

0.12

0.14

FIG. 6. The ða;m2Þ space with E ¼ 1 is depicted. The domain
in which the wormhole stably persists is shown as the unshaded
region.
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decreases as E increases. However, there is a domain in
which the wormhole persists for any E larger than unity.
Figure 8 is the same as Fig. 6 but with E ¼ 2.

VII. SUMMARY AND DISCUSSION

We analytically studied the nonlinear stability of a
wormhole supported by an infinitesimally thin spherical
brane, i.e., a thin spherical shell whose tangential pressure
is equal to its energy per unit area with an opposite sign. We

considered a situation in which a thin spherical shell
composed of dust concentric with the brane goes through
the initially static wormhole in order to play the role of a
nonlinear disturbance. We took into account the self-
gravities of both the brane and the dust shell through
Israel’s formalism of the metric junction. The wormhole
was assumed to have a mirror symmetry with respect to the
brane supporting it. As Barcelo and Visser have shown, in
such a situation the gravitational mass of the static worm-
hole should be positive, and the static electric field should
exist in order for the wormhole to be stable against linear
perturbations. Then, we studied the condition that the
wormhole persists after the dust shell goes through it.
We assumed that the interaction between the brane and the
dust shell is only gravity, or in other words, the 4-velocities
of these shells were assumed to be continuous at the
collision event. In this model, there are three free param-
eters—the initial areal radius a of the wormhole, the
conserved specific energy E, and the proper mass m2 of
the dust shell—if we regard the initial gravitational mass
Mw of the wormhole as a unit of length. Then, we showed
that there is a domain of nonzero measure in ða;m2Þ space
for E ≥ 1 in which the wormhole persists after the dust
shell goes through it. In the case of E ¼ 1, the maximum
mass of the dust shell m2 is almost equal to 0.08Mw.
Assuming a≃Q≃Mw, through the geodesic deviation

equations, the tidal acceleration Atidal felt by a spacecraft at
the throat of the wormhole r ¼ a is roughly estimated as

Atidal ¼
2Mwl
a3

�
3Q2

2Mwa
− 1

�

≃ c6l
G2M2

w
¼ 10

�
Mw

4 × 105 M⊙

�
−2
�

l
40 m

�
m=s2;

where l is the length of the spacecraft and M⊙ is the solar
mass (2 × 1030 kg). The area of the wormhole throat with
Mw ¼ 4 × 105 M⊙ is about 4πM2

w ≃ 4.5 × 1012 km2.
Here, let us imagine 1012 spacecrafts placed with almost
equal spacing on a sphere concentric with a spherical brane
wormhole with Mw ¼ 4 × 105 M⊙. Together, they can be
regarded as a dust shell if they almost freely fall into the
wormhole along the radial direction. If the size of a
spacecraft is about 40 m, the tidal acceleration on each
spacecraft is of the order of 10 m=s2 even at the throat of
the wormhole. Then, since the average separation between
adjacent spacecrafts is of the order of 1 km, they can safely
go through the wormhole. Since the mass of each spacecraft
will be about 2 × 106 kg, the total mass of the shell
composed of these spacecrafts is 2×1018kg≃10−12M⊙.
The present result suggests that the wormhole supported by
the negative tension brane stably persists even after the
passage of these spacecrafts.
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FIG. 7. A close-up of the neighborhood of the intersections of
the curves WðrBÞ ¼ 0, WðrDÞ ¼ 0, and 4m2 ¼ a −Mw.
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FIG. 8. The same as Fig. 6, but E ¼ 2.
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APPENDIX: ON THE ROOTS OF THE
QUARTIC EQUATION wðrÞ= 0

In this appendix, we show that if the parameters a andm2

are in the domain D of E ≥ 1, the quartic equation wðrÞ ¼
0 has three positive real roots and one negative real root.
In accordance with Eqs. (89)–(92), we regard μ and Q as

functions of a, M3 þM4 as a function of a, and m2 and
M3 −M4 as functions of a, m2, and E.
First, we show that M3 þM4 is bounded below by a

positive value. Because of Eq. (94), by using Eq. (91) we
have

M3 þM4 ¼ 2Mw −
m2

2

a
> Nða;Mw; EÞ;

where

Nða;Mw; EÞ ≔
ð16E2 þ 1ÞMw

8E2
−

1

16E2

�
aþM2

w

a

�
:

Because of Eq. (51),

∂N
∂a ¼ M2

w − a2

16E2a2
< 0

is satisfied, and hence we have

Nða;Mw; EÞ > N

�
3

2
Mw;Mw; E

�

¼ 1

96

�
192 −

1

E2

�
Mw ≥

191

96
Mw;

where we have used E ≥ 1. As a result, we obtain

M3 þM4 >
191

96
Mw: ðA1Þ

The derivative of wðrÞ is given by

dwðrÞ
dr

¼ 4r3 −
16

3μ2
rþ 2ðM3 þM4Þ

μ2
: ðA2Þ

If the inequality

ðM3 þM4Þμ <
32

27
ðA3Þ

holds, the cubic equation dwðrÞ=dr ¼ 0 has three real
roots. We show that Eq. (A3) necessarily holds in the
domain D of E ≥ 1. Because of Eq. (51), we have

dμ
da

¼ 3Mw − 2a
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2ða −MwÞ
r

> 0; ðA4Þ

and hence

μ < μja¼3
2
Mw

¼ 1

Mw

ffiffiffiffiffi
8

27

r
ðA5Þ

holds. Equation (A5) leads to Eq. (A3) as follows:

ðM3 þM4Þμ ¼
�
2Mw −

m2
2

a

�
μ < 2Mwμ <

ffiffiffiffiffi
32

27

r
<

32

27
:

By virtue of Eqs. (A1) and (A3), we find that wðrÞ has
one minimum in r < 0 and one maximum and one
minimum in r > 0.
Hereafter, the three real roots of dwðrÞ=dr ¼ 0 are

denoted by r ¼ ri (i ¼ 1, 2, 3):

r1 ¼
4

3μ
cos

�
θ

3

�
; r2 ¼

4

3μ
cos

�
θ þ 2π

3

�
and

r3 ¼
4

3μ
cos

�
θ þ 4π

3

�
; ðA6Þ

where

θ ¼ arccos

�
−
27

32
ðM3 þM4Þμ

�
: ðA7Þ

Since

−1 < −
27

32
ðM3 þM4Þμ < 0

is satisfied by virtue of Eq. (A3),

π

2
< θ < π ðA8Þ

holds. Equation (A8) leads to r1 > r3 > 0 > r2.
We introduce the function

UðρÞ ¼ −
4

3μ2

�
ρ2 −

9ðM3 þM4Þ
8

ρþQ2

�
:

Then, since ri satisfies

r4i ¼
4

3μ2
r2i −

M3 þM4

2μ2
ri;

we have

wðriÞ ¼ UðriÞ:

Because of Eqs. (50) and (A1), the quadratic equation
UðρÞ ¼ 0 has two real roots:

ρ ¼ ρ� ≔
9

16

"
M3 þM4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM3 þM4Þ2 −

�
16Q
9

�
2

s #
:
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If the inequalities

Uðr1Þ < 0; Uðr2Þ < 0 and Uðr3Þ > 0;

or equivalently,

r1 > ρþ; r2 < ρ− and ρ− < r3 < ρþ ðA9Þ

are simultaneously satisfied, the quartic equation wðrÞ ¼ 0
has four real roots. We will see below that Eq. (A9) holds.
Since both ρ� are positive, r2 < ρ− is trivially satisfied

because of r2 < 0.
From Eq. (A7), we can see that

∂θ
∂m2

¼ −
27μm2

16a sin θ
< 0;

where we have used Eq. (A8) in the inequality. Thus, we
see that

∂r1
∂m2

¼ −
4

9μ
sin

�
θ

3

� ∂θ
∂m2

> 0;

and

r1 > r1jm2¼0 ¼
4

3μ
cos

�
1

3
arccos

�
−
27

16
Mwμ

��
ðA10Þ

It is not difficult to see that

∂ρþ
∂m2

< 0

holds, and hence we have

ρþ < ρþjm2¼0: ðA11Þ

We depict ðr1 − ρþÞμ form2 ¼ 0 in Fig. 9. Since (as shown
in Fig. 9) r1 > ρþ holds for m2 ¼ 0, we have from
Eqs. (A10) and (A11)

r1 > ρþ for m2 > 0:

We can easily see that ρþ is an increasing function of
M3 þM4, whereas ρ− is a decreasing function of
M3 þM4, in the domain D of E ≥ 1. Then, Eq. (A1)
implies

ρþ > ρþjM3þM4¼191
96
Mw

¼ 9

16

�
191

96
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
191

96

�
2

−
�
16Q
9Mw

�
2

s �
Mw

>
9

16

�
191

96
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
191

96

�
2

−
32

9

s �
Mw > Mw: ðA12Þ

We have

1

4

dw
dr

				
r¼Mw

¼ 1

a3μ2

�
M3

wa3μ2 −
1

3
Mwa3 −

m2
2a

2

2

�

< −
Mw

3a3μ2
fðaÞ; ðA13Þ

where

fðaÞ ¼ a3 − 6M2
waþ 6M3

w:

It is easy to see that fðaÞ > 0 holds for a > 0. This result
implies that dw=drjr¼Mw

< 0 holds. As a result, we have

r3 < Mw < ρþ;

 0
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 0.4

 0.6
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 1  1.1  1.2  1.3  1.4  1.5

(r
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a

m = 02

FIG. 9. We depict ðr1 − ρþÞμ with m2 ¼ 0 as a function of a in
units of Mw ¼ 1.
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since r ¼ r3 is the lower bound of the domain of dw=dr <
0 in r > 0.
It is easy to see that the following inequality holds in the

domain D of E ≥ 1:

∂ρ−
∂m2

> 0;

and hence we have

ρ− < ρubðaÞ ≔ ρ−jm2¼a−Mw
4

¼ 9

8

�
1 −

ða −MwÞ2
32Mwa

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ða −MwÞ2
32Mwa

�
2

−
�

8Q
9Mw

�
2

s �
Mw

ðA14Þ

where we have used Eq. (94) and E ≥ 1 in the inequality.
We can see that

μ2

4

dw
dr

				
r¼ρub

¼ μ2ρ3ub −
4

3
ρub þMw −

m2
2

2a
> w0

lbðaÞ

≔ μ2ρ3ub −
4

3
ρub þMw −

ða −MwÞ2
32a

; ðA15Þ

where we have used Eq. (94) and E ≥ 1 in the inequality. In
Fig. 10, we depict w0

lb as a function of a. From this figure,
we find that dw=dr > 0 at r ¼ ρub, and hence r3 > ρub >
ρ− holds for the same reason as that leading to
r3 < Mw < ρþ. As a result, we have ρ− < r3 < ρþ.
The result obtained above implies that the quartic

equation wðrÞ ¼ 0 has four real roots. Here, we recall that
the function wðrÞ has one minimum in r < 0, whereas one
maximum and one minimum exist in r > 0. Then, since
w < 0 and dw=dr > 0 at r ¼ 0, we find that one root of
wðrÞ ¼ 0 is negative and the other three are positive.
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