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In recent years, the characteristic formulation of numerical relativity has found increasing use in the
extraction of gravitational radiation from numerically generated spacetimes. In this paper, we formulate the
characteristic initial value problem for fðRÞ gravity. We consider, in particular, the vacuum field equations
of Metric fðRÞ gravity in the Jordan frame, without utilizing the dynamical equivalence with scalar-tensor
theories. We present the full hierarchy of nonlinear hypersurface and evolution equations necessary for
numerical implementation in both tensorial and eth forms. Furthermore, we specialize the resulting
equations to situations where the spacetime is almost Minkowski and almost Schwarszchild using standard
linearization techniques. We obtain analytic solutions for the dominant l ¼ 2 mode and show that they
satisfy the concomitant constraints. These results are ideally suited as testbed solutions for numerical codes.
Finally, we point out that the characteristic formulation can be used as a complementary analytic tool to the
1þ 1þ 2 semitetrad formulation.
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I. INTRODUCTION

Initial value formulations have a long and eventful history
in numerical relativity, dating back to the seminal works of
[1–5]. This topic has been a subject of several review articles;
see, for example, [6] and references therein. For the purposes
of fixing context, we recall that relativistic initial value
formulations generally come in different flavors, among
which, those that are based on a 3þ 1 foliation of spacetime
are the most popular. The other formulations are generalized
harmonic, characteristic and hyperboloidal. The generalized
harmonic formulation is based on a harmonic decomposition
of the Ricci tensor, resulting in evolution equations for the
4-metric in some harmonic coordinates [7,8]. The character-
istic approach [2,4] is based on foliations of spacetime
on outgoing null hypersurfaces while the hyperboloidal
formulation is based on spacetime foliations by spacelike
hypersurfaces that smoothly intersect null infinity Iþ [3,9].
In this work, we are interested in setting up a characteristic
formulation of the field equations of metric fðRÞ gravity.
Geometrically, foliating spacetime with null hypersurfa-

ces presents a natural approach to study gravitational
radiation since these represent the characteristic surfaces
of the field equations. Indeed, a characteristic formulation of
the field equations presents a gauge invariant and unam-
biguous description of gravitational waves in a nonlinear
setting, where the perturbative methods of 3þ 1 formula-
tions are not adequate. However, one of the major challenges
of characteristic evolutions is the possible development of
caustics during evolution. These are coordinate singularities
that arise due to the focusing of light rays generating the null
hypersurfaces. Algorithms to handle this undesirable feature

have been proposed [10,11], but there has, apparently, not
been a numerical implementation in wide use. Nevertheless,
caustic formation is only an issue in standalone evolutions of
nonlinear spacetimes by characteristic methods.More recent
applications of characteristic formulations are in Cauchy
characteristic extraction (CCE) and Cauchy characteristic
matching (CCM) methods. In CCE, one takes metric data on
some inner timelike worldtube Γ, computed from a 3þ 1

Cauchy code, and propagates it to future null infinityIþ via a
characteristic code, thus enabling wave-form extraction at
Iþ [12,13]. This scheme represents a special case of themore
general CCM [14,15] which, in turn, uses data from the
characteristic code as exact boundary conditions for the
metric functions of the 3þ 1 Cauchy code.
Within the numerical relativity community, there arenowa

number of characteristic codes being used, with differing
levels of sophistication. For instance, some codes employ
secondorder finite difference schemes [16], others use higher
order schemes [85] while others have adopted spectral
methods [17]. Another point of distinction among different
codes is the coordinate system used to cover the sphere
labeling the null directions of the light cones. Common
choices range from a stereographic coordinate system [18] to
multipatch coordinate systems [16,19]. There have also been
efforts to introduce adaptive mesh refinement schemes to
characteristic evolution codes [20,21]. Overall, these codes
have made it possible to demonstrate the versatility of
characteristicmethods in numerical relativity and have found
extensive applications in, for example, binary black hole
mergers [18,22–24], stellar core collapse [25–27], Einstein-
Klein-Gordon systems [28–30], observational cosmology
[31–33], etc. These systems represent potential astrophysical
laboratories for testing general relativity in the nonlinear
regime.*bishop.mongwane@uct.ac.za
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Over the years, the theory of general relativity has been
subjected to a wide range of experimental tests and has no
doubt emerged as one of the most successful theories in
Physics. However, there has been considerable interest in
the literature to study gravity theories whose Lagrangians
contain higher order curvature invariants such as R2,
RμνRμν, RμναβRμναβ, R□R, R□kR [34–36]. The motivation
for these alternative theories of gravity stems from a variety
of grounds, most notably from within the dark sector in
cosmology [37]. Moreover, the inflationary paradigm arises
naturally in alternative theories of gravity without postu-
lating additional inflaton fields [34,36,38]. These higher
order corrections also arise in the effective action of
quantum gravity. For example, in the low energy limit
of string theory or when considering compactifications of
extra dimensions in M theory [39]. In this work, we restrict
our attention to the fourth order metric fðRÞ gravity.
Although simpler than most other alternative theories,
general predictions in the theory demand a numerical
treatment, especially when considering strong field sources
as in numerical relativity.
We derive the full set of nonlinear equations necessary for

a numerical implementation. We further present linearized
solutions about some fixed background spacetimes that may
aid in code development in the form of testbed solutions.
These solutions are based on a linearization of the exact
equations on Minkowski and Schwarzschild backgrounds
using standard techniques. In principle, one could consider
other background solutions about which to linearize.
However, one must be able to analytically cast the metric
of such background solutions in Bondi-Sachs form, which is
a nontrivial task formost known solutions [40]. For example,
a Bondi-Sachs representation of the Kerr solution involves
elliptic integrals, which require numerical evaluation [41].
The existence and stability conditions for both Minkowski
and Schwarzschild spacetimes in the context of fðRÞ gravity
have been studied by several authors; see [42–45]. Within
the Bondi-Sachs framework, linearized perturbations, in the
manner considered here, have been studied in general
relativity by [46–49], and have been used as testbed solutions
and in analytic descriptions of binary black holes in circular
[46,50] and eccentric orbits [51]. Different approaches on the
subject can be found in [12,52,53].
This paper is structured as follows: We review the field

equations of metric fðRÞ and its equivalence to scalar-
tensor theories in § II. In § III, we present the Bondi-Sachs
coordinates. The decomposed field equations in tensorial
form are given in IVA, and in § V we present them in the
complementary eth formalism which is commonly used in
numerical codes. We present linearized equations in § VI
and their solutions when linearized about Minkowski
background in § VI C 1 and Schwarzschild background
in §VI C 2. Finally, we conclude in §VII. For convenience,
we provide the Christoffel symbols for the Bondi-
Sachs metric in the Appendix. Throughout this paper,

we use geometrized units G ¼ c ¼ 1 and metric signature
ð−þþþÞ.

II. METRIC f ðRÞ GRAVITY

A. Field equations

The gravitational field equations of metric fðRÞ theories
can be derived starting from a simple generalization of the
Einstein-Hilbert action

S ¼ 1

16π

Z
dx4½ ffiffiffiffiffiffi

−g
p

fðRÞ þ 16πLmat�; ð1Þ

where fðRÞ is a general function of the Ricci scalar R, g is
the determinant of the spacetime metric gab and Lmat is the
Lagrangian of matter fields. Varying the action (1) with
respect to the metric gab and assuming that the connection
is the Levi-Civita connection,1 one obtains the equation of
motion

Σab ¼ 8πTab ð2Þ

where Tab is the energy momentum tensor of standard
matter fields, given in terms of the variational derivative of
Lmat as

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmatÞ
δgab

: ð3Þ

The symmetric tensor Σab is given by

Σab ¼ f0Rab −
1

2
fgab −∇a∇bf0 þ gab□f0

¼ f0Rab −
1

2
fgab − f00∇a∇bR − f000∇bR∇aR

þ gabðf000∇cR∇cRþ f00□RÞ; ð4Þ
where□ ¼ ∇c∇c is the d’Alembertian operator andweuse 0
to denote differentiation with respect to the Ricci scalar R.
Interestingly, Σab contains terms involving second deriva-
tives of the Ricci scalar R which translates to fourth
derivatives of the metric, hence the characterization as
“fourth order gravity.” Unlike in general relativity, the
relation between the Ricci scalar R and the trace T of the
energymomentum tensor is no longer algebraic (R ¼ −8πT)
but differential, given as

3□f0 − 2f þ f0R ¼ 8πT: ð5Þ
Equation (5) governs the dynamics of the scalar degree of
freedom inherent in the theory. As in the 3þ 1 formulation

1Relaxing this assumption, such that the affine connection Γa
bc

is independent of the metric gab, is the basis of Palatini fðRÞ and
leads to field equations that are different from those of metric
fðRÞ considered here.
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[54], it is convenient to use the equivalent form for the field
equations

Eab ≡ Σab − κ2Tab −
1

3
gabðΣ − κ2TÞ ¼ 0: ð6Þ

where we have introduced the notation Eab for later con-
venience. Finally, we note that in the limit of constant scalar
curvature R ¼ R0, the trace Eq. (5) reduces to an algebraic
relation −2f þ f0R ¼ 8πT and the field Eqs. (4) become

Rab −
1

2
gabRþ λgab ¼ 8πTab ð7Þ

where λ ¼ R0=4 is an effective cosmological constant Λ.

B. Equivalence with scalar-tensor theories

It has long been known that metric fðRÞ gravity theories
are dynamically equivalent to special cases of Brans-Dicke
scalar-tensor theories [55–58]. We briefly review this equiv-
alence in the following. Starting from the action (1), one can
introduce a new field χ and recast (1) into the equivalent form

S ¼ 1

16π

Z
dx4½ ffiffiffiffiffiffi

−g
p

fðχÞ þ f0ðχÞðR − χÞ� þ
Z

d4xLmat;

ð8Þ

Varying the new action (8) with respect to χ leads to

f00ðχÞðR − χÞ ¼ 0: ð9Þ

Then, provided that f00ðχÞ ≠ 0, the above implies χ ¼ R, and
consequently, the action (8) becomes (1). If we further define
an auxiliary field ϕ

ϕ ¼ f0ðχÞ ð10Þ

and supposing that the relation is invertible, then the action
(8) can be expressed as

S ¼ 1

16π

Z
dx4

ffiffiffiffiffiffi
−g

p ½χðϕÞR − VðϕÞ� þ
Z

d4xLmat; ð11Þ

where the potential VðϕÞ is given by

VðϕÞ ¼ χðϕÞϕ − fðχðϕÞÞ: ð12Þ

The action (11) corresponds to the Jordan frame representa-
tion of a Brans-Dicke scalar-tensor theory without a kinetic
term for the scalar field, i.e., with Brans-Dicke parameter
ωBD ¼ 0. By transforming to the Einstein frame, one can
proceed to show that this is conformally equivalent to the
Einstein-Hilbert action with a scalar field that couples
minimally to the Ricci scalar [59]. This equivalence can
be a convenient tool when studying various modified gravity
theories. However, one should exercise caution when inter-
preting results; see, for example, [60–66].

III. THE BONDI-SACHS METRIC

For the characteristic initial value problem, we employ
coordinates ðu; r; xAÞ based on a family of outgoing null
hypersurfaces emanating from an inner worldtube Γ denot-
ing the inner boundary of the characteristic domain.
Within this system, u ¼ r − t is a retarded time coordinate
labeling the hypersurfaces, r is a surface area coordinate
and xAðA ¼ 2; 3Þ are labels for the null rays.2 Then, the
Bondi-Sachs metric takes the form

ds2 ¼ gμνdxμdxν ð13Þ

¼ −
�
e2β

V
r
− r2hABUAUB

�
du2 − 2e2βdudr

− 2r2hABUBdudxA þ r2hABdxAdxB: ð14Þ

It is straightforward to compute the contravariant compo-
nents of the Bondi-Sachs metric. The nonzero components
are

grr ¼ e−2β
V
r
; grA ¼ −e−2βUA;

gru ¼ −e−2β; gAB ¼ r−2hAB: ð15Þ

The Christoffel symbols for the above metric are given in
the Appendix. We note that it is sometimes convenient to
use W instead of the more usual Bondi-Sachs variable V,
where W ≔ V − r. The 2-tensor hAB, with hABhBC ¼ δAC,
satisfies the determinant condition

detðhABÞ ¼ detðqABÞ ð16Þ

where qAB is the unit 2-sphere metric, so that hAB has
only two degrees of freedom. By considering the metric of
r ¼ const surfaces,3 one identifies hAB as the conformal
2-metric of surfaces of constant u which foliate the world-
tube, and e2βV=r corresponds to the square of the lapse
function while −UA represents the shift vector. In total, the
metric (14) contains only six free variables hAB, β,V andUA,
which are in general, a function of the coordinates. Evolution
equations for these Bondi-Sachs variables are derived from
the field equations of gravity.

IV. THE FIELD EQUATIONS

In analogy with the 3þ 1 formulation, the field equa-
tions within the Bondi-Sachs formalism can be classified
into main and constraint equations. In the following
sections, we present these in turn.

2Here, and in the following, we will generally use uppercase
indices for the angular directions. These will run from 2 to 3.

3This can be obtained from (14) by setting dr ¼ 0.
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A. Main equations

The main equations are further classified into hypersur-
face and evolution equations. The hypersurface equations
form a hierarchical set of equations for the Bondi-Sachs
variables β,UA and V to be integrated radially once hAB and
R are given on some u ¼ const slice. These are derived
from the Ru

α components of the field equations, giving

β;r

�
1þ r

2

f00

f0
R;r

�
¼ r

16
hAChBDhAB;rhCD;r

þ r
4f0

�
f00R;rr þ f000R;rR;r

�
ð17Þ

ðr2QAÞ;r ¼ 2r4ðr−2β;AÞ;r − r2hBCDChAB;r

þ 2r2

f0

�
r2f00ðr−2R;AÞ;r þ f000R;AR;r þ f00β;AR;r

−
r2

2
f00hABUB

;rR;r −
1

2
f00hDChAC;rR;D

�
ð18Þ

2e−2βV;r¼R−2DADAβ−2DAβDAβþr−2e−2βDAðr4UAÞ;r
−
r4

2
e−4βhABUA

;rUB
;r

þe−2β

f0

�
e2βf00DADARþf000e2βDARDAR

−2f00R;uþ2Vf00R;r−r2f00R;rDCUC−2rUCf00R;C

−
r2

3
e2βfþ2r2

3
e2βf0R

�
ð19Þ

where in (18) we have used the auxiliary quantity QA,

QA ¼ r2e−2βhABUB
;r: ð20Þ

To obtain the evolution equation for hAB, it suffices to
consider the trace-free symmetric part of the angular
components of the field equations,

mAmB

�
rðrhAB;uÞ;r −

1

2
ðrVhAB;rÞ;r − 2eβDADBeβ −

1

2
r4e−2βhBDhACUC

;rUD
;r

þUCr2DChAB;r þ hACDBðr2UCÞ;r þ
1

2
r2hAB;rDCUC − r2hBEhAC;rðDCUE − DEUCÞ

−
1

f0

�
f00e2βDADBRþ f000e2βR;AR;B −

r2

2
f00hAB;rR;u þ

r
2
Vf00hAB;rR;r

−r2f00R;rDAUB −
r2

2
f00hAB;uR;r −

r2

2
f00UChAB;rR;C

��
¼ 0 ð21Þ

where mA is a complex dyad such that hAB ¼ mðAm̄BÞ.
The trace Eq. (5) gives the following evolution equation for
the quantity f0:

−
2

r
∂u∂rðrf0Þþ

V
r
∂r∂rf0þ

1

r
∂rV∂rf0þ

V
r2
∂rf0−2UA∂A∂rf0

−∂rf0DAUA−
2

r
UA∂Af0−∂Af0∂rUAþr−2e2βDADAf0

þ2e2βr−2hAC∂Cf0∂Aβ¼
2

3
e2βf−

1

3
e2βf0R: ð22Þ

To turn this into an equation for the Ricci scalar R, one uses
the fact that f0 ¼ dfðRÞ=dR, and proceed via the chain rule
such that

f0;x ¼ f00R;x ð23aÞ
f0;xy ¼ f00R;xy þ f000R;xR;y: ð23bÞ

B. Conservation conditions

Up to this point, we have only focused on the main
equations. The remaining components of the field equa-
tions Rr

α, split into the trivial equation

Eur ¼ 0 ð24Þ

and supplementary equations

Euu ¼ 0 and EAu ¼ 0; ð25Þ

where we have used the notation [cf. Eq. (6)]

Eab ≡ Σab − κ2Tab −
1

3
gabðΣ − κ2TÞ ¼ 0: ð26Þ

Along with the main equations, these make up the full set of
components for the field equations. Because of the Bianchi
identities, and assuming that the main equations are
satisfied, the trivial equation is satisfied identically, while
the supplementary equations need only be satisfied on a
single spherical cross section of the worldtube as was
shown in the general relativity case by [2,4].
Clearly, a key to this conservation property is the Bianchi

identities. In fðRÞ gravity, the divergence of the field
equations takes the form [67]
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∇aΣab ¼ ∇a

�
f0Rab −

1

2
fgab −∇a∇bf0 þ gab□f0

�
¼ 0

¼ Rab∇af0 þ f0∇aRab −
1

2
gab∇af

−∇a∇a∇bf0 þ gab∇a∇c∇cf0 ð27Þ

¼ Rab∇af0 þ f0∇aRab −
1

2
gabf0∇aR

− ð∇a∇b∇a −∇b∇c∇cÞf0: ð28Þ

Then, the generalized Bianchi identities ∇aΣab ¼ 0 follow
geometrically because

∇a

�
Rab −

1

2
gabR

�
¼ 0 and

ð∇a∇b∇a −∇b∇c∇cÞf0 ¼ Rab∇af0 ð29Þ

as a result of the standard Bianchi and Ricci identities.
General expressions for (24) and (25) are lengthy and

are not required in most numerical applications. We give,
instead, linearized expressions in § VI.

V. SPIN-WEIGHTED AND ETH FORMALISM

Within the spin-weighted formalism, the unit sphere
metric qAB is expressed in terms of a dyadic product
qAB ¼ qðAq̄BÞ, where the dyad qA is a complex4 basis
2-vector satisfying qAqA ¼ 0, qAq̄A ¼ 2 and qA ¼ qABqB

[68,69]. We note that the basis vectors are not unique, up to
a phase transformation. For a given qA, one can construct
an alternative basis q̂A ¼ eiαqA, where the phase α is real.
Using the dyad vectors qA, rank-n tensor fields TA1A2…An

on the sphere can be conveniently represented by scalar
fields,

T ¼ qA1…qAmq̄Amþ1…q̄AnTA1…An
: ð30Þ

The spin weight s of such scalar fields depends on the rank
n of the tensor field and is given by s ¼ 2m − n, wherem is
the number of qA factors and n −m represents the number
of q̄A factors appearing in (30). In general, the scalars (30)
will have the transformation property T → eiαsT. With this
in mind, the three spin-weighted scalars

J ¼ 1

2
qAqBhAB; J̄ ¼ 1

2
q̄Aq̄BhAB and K ¼ 1

2
qAq̄BhAB

ð31Þ

with respective spin weights þ2, −2 and 0, contain all the
degrees of freedom of the 2-tensor hAB. Using (31), hAB is
irreducibly decomposed as

2hAB ¼ J̄qAqB þ Jq̄Aq̄B þ KðqAq̄B þ q̄AqBÞ; ð32Þ

with the inverse 2-metric hAB given by

2hAB ¼ −J̄qAqB − Jq̄Aq̄B þ KðqAq̄B þ q̄AqBÞ: ð33Þ

Furthermore, the determinant condition (16) implies the
relation

K2 ¼ 1þ JJ̄: ð34Þ

Consequently, the scalar K contains no additional infor-
mation, and hAB is uniquely determined by J, for an
arbitrary Bondi-Sachs metric. Similarly, UA and QA are
decomposed into the spin-weighted fields

U ¼ UAqA; Ū ¼ UAq̄A;

Q ¼ QAqA Q̄ ¼ QAq̄A ð35Þ

with respective spins of þ1, −1, þ1 and −1. We note that
within this spin-weighted formalism, the scalar quantities
β, V and R are spin-0 fields.
In addition to the spin-weighted scalars, it is convenient

to define complex differential eth operators ð and ð̄ whose
action on a quantity X of spin weight s is given as

ðX ¼ qA∂AX þ sϒX; ð̄X ¼ q̄A∂AX − sϒ̄X ð36Þ

where

ϒ ¼ −
1

2
qAq̄B∇AqB: ð37Þ

The resulting quantities ðX and ð̄X have spin weights sþ 1

and s − 1, respectively. More generally, the operator ð (ð̄)
acting on a spin-weighted scalar has the effect of raising
(lowering) the spin weight by 1.
For the stereographic coordinate system xA ¼ ðq; pÞ,

which we adopt in this work, the unit sphere metric qAB is
given as

qABdxAdxB ¼ 4

q2 þ p2 þ 1
ðdq2 þ dp2Þ: ð38Þ

The dyad vectors then become

qA ¼ q2 þ p2 þ 1

2
ð1; iÞ and qA ¼ 2

q2 þ p2 þ 1
ð1; iÞ:

ð39Þ

With this choice, (37) becomes ϒ ¼ qþ ip.
Using the above formalism, the hypersurface equations

become
4We will generally use an overbar on a complex quantity to

denote complex conjugation.
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β;r

�
1þ r

2

f00

f0
R;r

�
¼ Nβ þMβ ð40aÞ

U;r ¼ r−2e2βQþ NU ð40bÞ

ðr2QÞ;r ¼ −r2ðð̄J þ ðKÞ;r þ 2r4ððr−2βÞ;r
þ NQþMQ ð40cÞ

W;r ¼
1

2
e2βR − 1 − eβðð̄eβ

þ 1

4
r−2½r4ððŪ þ ð̄UÞ�;r þ NW

þ 1

2
e2βMW ð40dÞ

where the 2-Ricci scalar R is given by

R ¼ 2K − ðð̄K þ 1

2
ðð̄2J þ ð2J̄Þ þ 1

4K
ðð̄ J̄ ðJ − ð̄JðJ̄Þ:

ð41Þ

The evolution equations become

2ðrJÞ;ur ¼ ½r−1VðrJÞ;r�;r − r−1ðr2ðUÞ;r þ 2r−1eβð2eβ

− Jðr−1WÞ;r þ NJ þ r−1MJ; ð42Þ

2ðrf0Þ;ur ¼ ½r−1Vðrf0Þ;r�;r − f0ðr−1WÞ;r −Uð̄f0 − Ūðf0

ð43Þ

þ r−1e2β

K
½JððJ̄ ð̄f0 þ ð̄ J̄ ðf0Þ þ J̄ðð̄Jðf0 þ ðJð̄f0Þ�

þKe2βr−1ððð̄f0 þ ð̄f0ðβþ ðf0ð̄βÞ− r
2
½ð̄f0U;r þ ðf0Ū;r

þf0;rððŪþ ð̄UÞ þ 2ðŪðf0;r −Uð̄f0;rÞ�−
r−1e−2β

2

× ½J̄ð2f0 þ Jð̄2f0þð̄Jð̄f0 þ ðJ̄ðf0þ2ðJð̄f0ð̄βþ J̄ðf0ðβÞ�

þ re2β

3
ð2f − f0RÞ ð44Þ

where, again, one is to use the chain rule (23) to obtain an
evolution equation for the Ricci scalar R. The terms Nβ,
NU, NQ, NW and NJ are nonlinear aspherical terms whose
representation in terms of spin-weighted variables is given
in [18]. The terms Mβ, MQ, MW and MJ are modified
gravity terms arising from the fðRÞ corrections. These can
be computed as

Mβ ¼
r
4f0

�
f00R;rr þ f000R;rR;r

�
; ð45Þ

f0MQ ¼ rðf00r−1ðRÞ;r −
1

2
r2e−2βf00R;rðKU;r þ JŪ;rÞ

− f00R;rðβ −
1

2
f00KðK;rðRþ J;rð̄RÞ

þ 1

2
f00ðJ̄J;rðRþ JK;rð̄RÞ; ð46Þ

f0MW ¼ −
1

2
r2f00e−2βR;rððŪ þ ð̄UÞ − rf00e−2βðŪðRþUð̄RÞ − 1

2
f00½ð̄ðJð̄RÞ þ ððJ̄ðRÞ�

−
1

2
f000½J̄ððRÞ2 − 2Kð̄RðRþ Jðð̄RÞ2� þ 2f00e−2βðR;rV − rR;uÞ

þ 1

2
f00ððRð̄K þ ð̄RðKÞ þ f00Kð̄ðR −

r2

3
ðf − 2f0RÞ; ð47Þ

f0MJ ¼ f00ððRþ f000ððRÞ2 − 1

2
f00ðJðJ̄ðRþ Jð̄Jð̄Rþ KðJð̄R − Kð̄JðR − 2JðKð̄RÞ

−
1

2
e−2βf00ðr2JÞ;r½ŪðRþ Uð̄R� þ f00e−2βR;rVr−1ðr2JÞ;r

−
1

2
f00e−2βr2R;rð2KðU þ 2JðŪ þUð̄J þ ŪðJÞ − f00e−2βR;uðr2JÞ;r

− r2f00e−2βR;rJ;u: ð48Þ

As in the 3þ 1 case, it may be necessary to define ψ ¼ R;u
so that the hypersurface equations contain no u derivatives.

VI. LINEARIZED PERTURBATIONS

In the following, we specialize the above nonlinear
equations to situations where the spacetime is almost

Schwarzschild and almost Minkowski. In outgoing null
coordinates, the Schwarzschild metric takes the Eddington-
Finkelstein form

ds2 ¼ −
�
1 −

2M
r

�
du2 − 2dudrþ r2qABdxAdxB; ð49Þ
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where it is to be understood that M ¼ 0 corresponds to
Minkowski space. The existence and stability of both
Schwarzschild and Minkowski spacetimes in fðRÞ gravity
can be found in, for example, [42–45]. The line element
(49) corresponds to J ¼ U ¼ β ¼ 0 and W ¼ −2M. We
therefore designate the following quantities and their
derivatives as first order:

J; J̄; U; Ū; w; β ¼ OðϵÞ ð50Þ

with W ¼ −2M þ w. We note that the scalar K is unity to
linear order because of the determinant condition (34).
The linearization procedure proceeds by discarding terms
of order Oðϵ2Þ and higher, i.e., terms involving products of
the first order quantities (50). We note that the Ricci scalar
R vanishes for the background metric (49). In order to deal
with the fðRÞ corrections, we therefore perform a Taylor
expansion about the background such that, to linear order,5

fðRÞ ¼ f0ð0ÞR: ð51Þ

where f0ð0Þ is a background quantity andR ¼ OðϵÞ. To avoid
having to write prefactors f0ð0Þ and f

00
ð0Þ, we note that one can

define an effective mass for the scalaron field as

m2 ¼ 1

3

f0

f00
: ð52Þ

The linearized main Eqs. (40) then become

β;r −
1

3m2
R;rr ¼ 0; ð53aÞ

r3U;rr þ 4r2U;r þ rð̄J;r þ 4ðβ − 2rðβ;r

þ 2

3m2
R −

2r
3m2

R;r ¼ 0; ð53bÞ

4β − 2ðð̄β þ 1

2
ðð̄2J þ ð2JÞ þ 1

2r2
½r4ððŪ þ ð̄UÞ�;r

− 2w;r −
r2

3
R −

2r
3m2

�
1 −

2M
r

�
R;r þ

2

3m2
R;u ¼ 0;

ð53cÞ

2rðrJÞ;ur − 2ð2β þ 2rðU þ r2ðU;r − 2ðr −MÞJ;r
− r2

�
1 −

2M
r

�
J;rr −

1

3m2
ððR ¼ 0; ð53dÞ

�
1 −

2M
r

�
R;rr −

2

r
ðR;u þ rR;urÞ þ

2

r

�
1 −

M
r

�
R;r

þ r−2ðð̄R −m2R ¼ 0: ð53eÞ

A noteworthy feature of the above equations is that the fðRÞ
terms have prefactors of 1=m2. Therefore, as m → ∞, the
equationswill resemble those of general relativity. This is the
basic principle behind screening mechanisms that allow
modified gravity to behave like general relativity in certain
environments by suitably altering the mass of the scalaron
field.
The trivial Eq. (24) simplifies to

1

r2

�
2ðr −MÞβ;r þ r2

�
1 −

2M
r

�
β;rr þ

1

2
rw;rr þ ðð̄β

−2r2β;ru −
1

4
½r2ððŪ þ ð̄UÞ�;r

�

¼ 1

3m2

�
R;ur −

M
r2

R;r

�
−
1

6
R; ð54Þ

while the constraints (25) respectively become

1

4r2
½−4r2ðβ;uþ2r2ð̄J;u−2r4U;urþ4r2Uþ2rðw;r−2ðw

þr2ððð̄U−ððŪÞþ2r2ðr−2MÞð4U;rþ rU;rrÞ�

¼ 1

3m2
ðR;u ð55Þ

and

1

2r3
½−4rðr − 2MÞβ;u þ 2ðr − 2MÞðð̄β þ rðr − 2MÞw;rr þ ðð̄wþ 2rw;u

−MrððŪ þ ð̄UÞ − r3ððŪ þ ð̄UÞ;u − 4r2ðr − 2MÞβ;ru þ 2rðr − 2MÞ2β;rr
þ4ðr − 2MÞðr −MÞβ;r� ¼

1

3m2

�
R;uu þ

M
r2

R;u −
M
r2

�
1 −

2M
r

�
R;r

�

−
1

6

�
1 −

2M
r

�
R: ð56Þ

5We use the fact that fð0Þ ¼ 0, which is one of the conditions for the stability of the Schwarzschild solution in fðRÞ gravity [44].
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Finally, one can derive an expression for the linearized
Ricci scalar R from the metric variables. One is free to do so
since in metric fðRÞ gravity, one assumes that the Chris-
toffel symbols are related to derivatives of the metric in the
usual way, unlike in Palatini fðRÞ gravity. Therefore, from
R ¼ gabRab one obtains

R ¼ −
4

r2
ðð̄β −

4M
r2

β;r þ
4

r2
β − 2

�
1 −

2M
r

�
β;rr þ 4β;ur

−
1

r3
ðr2w;rÞ;rþ

1

2r2
ðð̄2J þ ð2J̄Þþ 1

r3
ðr3ðŪ þ r3ð̄UÞ;r:

ð57Þ

This expression can be used as a consistency check with the
result obtained by integrating the trace Eq. (53e).

A. Eigenfunction decomposition

It is convenient to write the metric quantities in terms of
eigenfunctions of the ð and ð̄ operators. Without loss of
generality, we assume that the linearized variables can be
written as [47]

R ¼ R0ðrÞReðeiνuÞZlm; ð58aÞ

β ¼ β0ðrÞReðeiνuÞZlm; ð58bÞ

w ¼ w0ðrÞReðeiνuÞZlm; ð58cÞ

U ¼ U0ðrÞReðeiνuÞðZlm; ð58dÞ

J ¼ J0ðrÞReðeiνuÞð2Zlm: ð58eÞ

A more consistent representation would be in terms of
a multipolar series involving sums over l and m as is done
in, for example, [50]. The above corresponds to having
these quantities fixed, which is sufficient for our purposes.
In (58) the sZlm are orthonormal real-valued spin s
spherical harmonics defined as [68]

sZlm ¼

8>><
>>:

iffiffi
2

p ½ð−1ÞmsYlm þ sYl−m� for m < 0

sYlm for m ¼ 0
1ffiffi
2

p ½ð−1ÞmsYlm þ sYl−m� for m > 0:

ð59Þ

The sYlm are the standard spin-weighted spherical
harmonics

sYlm ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ðsYlm for s ≥ 0

ð−1Þs
ffiffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ð−sYlm for s < 0:

ð60Þ

B. Master equation

Using the ansatz (58), we are able to reduce the
linearized Eqs. (53) into a set of linear ordinary differential
equations in r, for the quantities β0, U0, w0, J0 and R0. For
brevity, we shall henceforth drop the zero subscript on these
quantities. In the following, we restrict our attention to the
particular case of l ¼ 2. We emphasize that this choice is
motivated by simplicity; it is possible to consider other l
values. We further make the change of variable r ¼ 1=x.
With these simplifications, the linearized equations become

4xβ;x þ
x2

3m2
R;xx þ

2x
3m2

R;x ¼ 0; ð61aÞ

4β þ 2xβ;x þ xU;xx − 2U;x þ 4xJ;x þ
2

3m2
R

þ 2x
3m2

R;x ¼ 0; ð61bÞ

16xβ þ 24xJ − 24U þ 6xU;x þ 2x3w;x −
x−2

3
R

þ 2

3m2
ðiνþ 3xÞRþ 2x2

3m2
ð1 − 2xMÞR;x ¼ 0; ð61cÞ

− 4xβ þ 4U − 2xU;x þ 4x3MJ;x − 2x3ð1 − 2xMÞJ;xx
þ 4iνJ − 4xiνJ;x −

2x
3m2

R ¼ 0; ð61dÞ

x4ð1 − 2xMÞR;xx − 2x2ðx2M − iνÞR;x

− ð2xiν − 6x2 þm2ÞR ¼ 0: ð61eÞ

Using standard techniques, it is possible to derive a master
equation for the Bondi-Sachs variable J. Interestingly, this
takes the same form as that obtained in the general relativity
case [47],

x3ð1 − 2xMÞJ;xxxx þ ð4x2 þ 2iνx − 14x3MÞJ;xxx
− ð4xþ 16Mx2 þ 2iνÞJ;xx ¼ 0: ð62Þ

This master equation can be further simplified by defining
an auxiliary variable J;xx ¼ J2 [47]. Then, J2 obeys

x3ð1 − 2xMÞJ2;xx þ ð4x2 þ 2iνx − 14x3MÞJ2;x
− ð4xþ 16Mx2 þ 2iνÞJ2 ¼ 0: ð63Þ

We are now in a position to solve the above linearized
ordinary differential equations for the various metric
quantities.

C. Solutions

The solution procedure proceeds in a hierarchical order,
mirroring that of a numerical scheme. First, we obtain
solutions for J and R from Eqs. (63) and (61e). Having
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obtained R, Eq. (61a) can be solved for β. Having β, R and
J, Eq. (61b) can be solved for U, and finally Eq. (61c) is
solved for w. In the following sections, we consider
separately the cases of Minkowski (M ¼ 0) and
Schwarzschild (M ≠ 0) backgrounds. In all cases, we
verify that the R obtained by solving (61e) is consistent
with that reconstructed from (57). We also evaluate the
constraints by plugging in the obtained solutions.

1. Minkowski background

Following the above procedure, we first consider the
static case, ν ¼ 0, obtaining the solutions

R ¼ C1xem=xðm2 − 3xmþ 3x2Þ
þ C2xe−m=xðm2 þ 3xmþ 3x2Þ; ð64Þ

β ¼ C1

12m2
e
m
x ð12x2m − 5xm2 − 12x3 þm3Þ

−
C2

12m2
e−

m
x ð12x2mþ 5xm2 þ 12x3 þm3Þ þ C3;

ð65Þ

J ¼ C4 þ
C5

x2
þ C6xþ C7x3; ð66Þ

U ¼ x
6m2

Rþ 2C5

x
þ 2x2C6 þ 2xC3 − 3x4C7; ð67Þ

w ¼ −
C1

6m2x
e
m
x ð6x2m − 6x3 þm3 − 3m2xÞ

− 6x2C7 −
10

x
C3 þ

12

x
C4

þ C2

6m2x
e−

m
x ð6x2mþ 6x3 þm3 þ 3m2xÞ

−
6

x3
C5 þ C8: ð68Þ

As expected, the trivial Eq. (54) is identically satisfied.
The constraints (55) and (56) respectively lead to

C8 ¼ 0; ð69Þ

4ð2C3 − 3C4Þ − C8x ¼ 0: ð70Þ

For the dynamic case, ν ≠ 0, we obtain

R ¼ iC1x exp

�
iν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�

× ðm2 − ν2 þ 3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
þ 3x2Þ

þ iC2x exp

�
iνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�

× ðm2 − ν2 − 3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
þ 3x2Þ; ð71Þ

β ¼ −
C1

12m2
exp

�
iν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�
½5ixðm2 − ν2Þ þ 3xð4ixþ νÞðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
Þ

þðm2 − ν2Þðνþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
Þ� − C2

12m2
exp

�
iνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�
½5ixðm2 − ν2Þ

þ3xð4ixþ νÞðx −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
Þ þ ðm2 − ν2Þðνþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
Þ� þ C3; ð72Þ

J ¼ C4 þ C5xþ
C6x3

6
þ C7

2
exp

�
2iν
x

�
ðx − iνÞ2x; ð73Þ

U ¼ x
6m2

R − iνC4 þ 2C5x2 þ 2xC3 −
C6x3

6
ð4iνþ 3xÞ þ C7x3

2
exp

�
2iν
x

�
ð2iν − 3xÞ; ð74Þ

w ¼ −
C1

6m2x
exp

�
iν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�h
ðm2 − ν2Þ

	
ν − 3ix − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p 


þ3xð2ix − νÞ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − ν2
p

þ x

i

−
C2

6m2x
exp

�
iνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p

x

�

× ½ðm2 − ν2Þ
	
ν − 3ixþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p 

þ 3xð2ix − νÞ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
− x


i

þ 6C4

x2
ðiνþ 2xÞ − C6ð2iνþ xÞ − 10C3

x
− C7x2 exp

�
2iν
x

�
þ C8: ð75Þ
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Again, the trivial Eq. (54) is identically satisfied. The
constraints (55) and (56) lead to

C8 − 2ν2C6 ¼ 0; ð76Þ

12iνC5 þ 6xν2C6 þ 12ð2C3 − 3C4Þ − ð3x − iνÞC8: ð77Þ

We note that one can recover the static solutions by simply
setting ν ¼ 0 in the dynamical solution. With this in mind,
we will only consider the dynamic case in the next section.

2. Schwarzschild background

When the background is Schwarzschild, we are not able
to find analytical solutions in closed form. This is true even
in general relativity for the case M ≠ 0 and ν ≠ 0 [47,49].
In principle, one could write the solutions in terms of
confluent hypergeometric functions or as a power series
about the singular points of the concomitant ordinary

differential equations (ODEs). Here, we opt for the latter.
The singular points of the ODEs (61e) and (63) are as
follows:

Regular∶ x ¼ ∞ x ¼ 1

2M
; ð78Þ

Irregular∶ x ¼ 0: ð79Þ

In the following we compute series solutions about the
regular singular point x ¼ 1=2M, corresponding to r ¼ 2M.
We write z ¼ x − 1=2M and expand the solutions about
z ¼ 0, obtaining

R ¼ C1

�
1þ 4Mð2iνM þ 2m2M2 þ 3Þ

4iνM − 1
zþOðz2Þ

�
; ð80Þ

β ¼ C2 − C1

�
4M2m2 þ 8iνM þ 5

12m2ð4iνM − 1Þ þ 4M4m4 þ 8M3m2iν − 8ν2M2 þ 12m2M2 þ 23iνM þ 6

3m2ð4iνM − 1Þð2iνM − 1Þ zþOðz2Þ
�
; ð81Þ

J ¼ C3 þ C4zþ C5

z2

2

�
1þ 8MðiνM þ 3Þ

3ð4iνM − 3Þ zþOðz2Þ
�
; ð82Þ

U ¼ C2ð2Mzþ 1Þ
M

− iνC3 − 3C4ð8M3z3 þ 20z2M2 þ 2iνM þ 14Mzþ 3Þ

−
C5ð2iνM − 1Þ

8M3
½1þ 4Mzþ 8M2z2 þOðz3Þ� þ 2Mzþ 1

12Mm2
R; ð83Þ

w ¼ C6 þ
40M2zC2

2Mzþ 1
− C3

�
2Mzþ 1þ 2MiνðMzþ 1Þ

ð2Mzþ 1Þ2
�
48M2zþ C4

�
8iνMðMzþ 1Þ þ 4MzðMzþ 3Þ þ 5

ð2Mzþ 1Þ2
�
6Mz

þ C1

�
2M2ð16M3m2iνþ 16ν2M2 þ 36iνM − 1Þ

3m2ð4iνM − 1Þ zþOðz2Þ
�

− C5ð2iνM − 1Þ½6z − 12Mz2 þ 32M2z3 þOðz4Þ�: ð84Þ

This time, the trivial equation becomes a series in z, and is
identically satisfied order by order. The constraints (55) and
(56) respectively become

3M2m2C6 ¼ M2ð4Miνþ 1ÞC1 − 36M2m2C2

þ 72M2m2ðMiνþ 1ÞC3

− 9Mm2ð2Miνþ 3ÞC4

þ 6m2ð3iνM þ 2ν2M2 − 1ÞC5; ð85Þ
0 ¼ 48M2C2 − 72M2C3 þ 12Mð2Miνþ 3ÞC4

þ 16iν3M3 − 24ν2M2 − 38iνM þ 15

Miνþ 2
C5: ð86Þ

For the irregular singular point x ¼ 0, it is still possible to
obtain a series solution for J [47]. However, the same
procedure does not work for R (61e); hence, a solution for
the other quantities is not possible. In any case, standard
methods for obtaining series solutions are not guaranteed to
work for irregular singular points.

VII. CONCLUDING REMARKS

In this work, we have presented a characteristic formu-
lation formetric fðRÞ gravity.We have cast the full nonlinear
system both in tensorial form using the language of [70,71]
and also in the eth formalism [68,69] that is commonly
used in numerical relativity codes. The nonlinear equations
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assume a simple structure as can be seen from § IVand § V,
with fðRÞ modifications encoded in the variables Mβ, MQ,
MW and MJ. This makes it straightforward to modify
existing codes that were originally built for general relativity
to include terms arising from fðRÞ gravity.
A numerical implementation of the equations presented

in this work will pave a way for Cauchy characteristic
extraction methods in modified gravity. The recent detec-
tions of gravitational waves [72,73] has opened up the
possibility of constraining modified theories of gravity
with gravitational wave data. This topic has revived some
interest in the characterization of gravitational radiation in
fðRÞ gravity theories [74,75]. On the mathematical side,
we have not addressed the Well-posedness of the timelike-
null cone problem, upon which CCE is based. Interestingly,
this is still an open question, even in general relativity.
However, there have been encouraging results [76,77].
The linearized solutions presented in §VI C 1will serve as

testbed solutions for validating numerical codes. Another
interesting area of application is in the linearized description
of the binary black hole problem [46,50,51]. A potential
application for this scenario is in the context of wave-form
extraction. Generally, one needs initial data on the null cone
in some far field region exterior to a timelike worldtube. In
this case, a linearized solution for the binary black hole
problem presents a consistent approximation to the initial
data [46]. On the other hand, the series solutions in § VI C 2
are of somewhat limited use as testbed solutions. This is
largely due to their finite radius of convergence. However,
they may still find analytical use in the study of gravitational
wave scattering off a Schwarzschild black hole, which is a
topic of broad interest; see [78] and references therein.
Finally, we note that, in principle, applications of the

characteristic formulation of the field equations can go
beyond numerical simulations. For example, one could
use the formulation as an analytical tool to investigate
various aspects of spherically symmetric solutions and their
perturbations in fðRÞ gravity [79–83]. Using the character-
istic formulation in this way will allow for a transparent
interpretation and generalization of analytical results by
using ready-built characteristic codes. It would also be of
interest to pursue comparisons with the covariant 1þ 1þ 2
semitetrad formalism [84].
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APPENDIX: CHRISTOFFEL SYMBOLS

In the following we present the Christoffel symbols for
the Bondi-Sachs metric (14):

Γu
AB ¼ 1

2
e−2β∂rðr2hABÞ ðA1Þ

Γr
rr ¼ 2∂rβ ðA2Þ

ΓA
rB ¼ 1

2
ðr−2hACÞ∂rðr2hCBÞ ðA3Þ

Γu
uu ¼ −

1

2
e−2β½2∂uð−e2βÞ þ ∂rðr−1Ve2βÞ

− ∂rðr2hABUAUBÞ� ðA4Þ

Γr
rA ¼ 1

2
e−2β½∂Aðe2βÞ þ r2hAB∂rðUBÞ� ðA5Þ

Γr
ru ¼ −

1

2
e−2β½∂rð−r−1Ve2β þ r2hABUAUBÞ�

−
1

2
e−2βUA½∂rð−r2hABUBÞ þ ∂Aðe2βÞ� ðA6Þ

Γu
uA ¼ 1

2
e−2β½∂Aðe2βÞ −UB∂rðr2hABÞ − r2hAB∂rðUBÞ�

ðA7Þ

Γr
uu ¼ −

1

2
e−2β∂uð−e2βr−1V þ r2hABUAUBÞ

−
1

2
e−2βr−1V½2∂uðe−2βÞ

þ ∂rð−e2βr−1V þ r2hABUAUBÞ�

þ 1

2
e−2βUA½2∂uðr2hABUBÞ

þ ∂Að−e2βr−1V þ r2hCDUCUDÞ� ðA8Þ

Γr
uA ¼ −

1

2
e−2β½∂Að−e2βr−1V þ r2hABUAUBÞ�

−
1

2
r−1Ve−2β½∂Aðe2βÞ − ∂rðr2hABUBÞ�

−
1

2
e−2βUB½∂uðr2hABÞ − ∂Aðr2hCBUCÞ

þ ∂Bðr2hACUCÞ� ðA9Þ

Γr
AB ¼ 1

2
e−2β½2∂Aðr2hBCUCÞ þ ∂uðr2hABÞ�

−
1

2
r−1Ve−2β½∂rðr2hABÞ� − r2e−2βUD

ð2ÞΓD
AB

ðA10Þ

ΓA
uu¼

1

2
e−2βUA½2∂uðe2βÞþ∂rð−e2βr−1Vþ r2hCDUCUDÞ�

−
1

2
r−2hAB½2∂uðr2hCBUCÞ

þ∂Bð−e2βr−1Vþ r2hCDUCUDÞ� ðA11Þ
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ΓA
ur ¼

1

2
r−2hAC½∂rð−r2hCDUDÞ þ ∂Cðe2βÞ� ðA12Þ

ΓA
Bu ¼

1

2
e−2βUA½∂Bðe2βÞ − ∂rðr2hCBUCÞ� þ 1

2
r−2hAC½∂Bð−r2hCDUDÞ þ ∂uðr2hBCÞ þ ∂Cðr2hBDUDÞ� ðA13Þ

ΓA
BC ¼ 1

2
e−2βUA½∂rðr2hBCÞ� þ ð2ÞΓA

BC ðA14Þ

In the above, ð2ÞΓA
BC represents the Christoffel symbols of the 2-metric hAB.
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