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In recent years, the characteristic formulation of numerical relativity has found increasing use in the
extraction of gravitational radiation from numerically generated spacetimes. In this paper, we formulate the
characteristic initial value problem for f(R) gravity. We consider, in particular, the vacuum field equations
of Metric f(R) gravity in the Jordan frame, without utilizing the dynamical equivalence with scalar-tensor
theories. We present the full hierarchy of nonlinear hypersurface and evolution equations necessary for
numerical implementation in both tensorial and eth forms. Furthermore, we specialize the resulting
equations to situations where the spacetime is almost Minkowski and almost Schwarszchild using standard
linearization techniques. We obtain analytic solutions for the dominant # = 2 mode and show that they
satisfy the concomitant constraints. These results are ideally suited as testbed solutions for numerical codes.
Finally, we point out that the characteristic formulation can be used as a complementary analytic tool to the

1 + 1 + 2 semitetrad formulation.
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I. INTRODUCTION

Initial value formulations have a long and eventful history
in numerical relativity, dating back to the seminal works of
[1-5]. This topic has been a subject of several review articles;
see, for example, [6] and references therein. For the purposes
of fixing context, we recall that relativistic initial value
formulations generally come in different flavors, among
which, those that are based on a 3 + 1 foliation of spacetime
are the most popular. The other formulations are generalized
harmonic, characteristic and hyperboloidal. The generalized
harmonic formulation is based on a harmonic decomposition
of the Ricci tensor, resulting in evolution equations for the
4-metric in some harmonic coordinates [7,8]. The character-
istic approach [2,4] is based on foliations of spacetime
on outgoing null hypersurfaces while the hyperboloidal
formulation is based on spacetime foliations by spacelike
hypersurfaces that smoothly intersect null infinity Z* [3,9].
In this work, we are interested in setting up a characteristic
formulation of the field equations of metric f(R) gravity.

Geometrically, foliating spacetime with null hypersurfa-
ces presents a natural approach to study gravitational
radiation since these represent the characteristic surfaces
of the field equations. Indeed, a characteristic formulation of
the field equations presents a gauge invariant and unam-
biguous description of gravitational waves in a nonlinear
setting, where the perturbative methods of 3 4+ 1 formula-
tions are not adequate. However, one of the major challenges
of characteristic evolutions is the possible development of
caustics during evolution. These are coordinate singularities
that arise due to the focusing of light rays generating the null
hypersurfaces. Algorithms to handle this undesirable feature
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have been proposed [10,11], but there has, apparently, not
been a numerical implementation in wide use. Nevertheless,
caustic formation is only an issue in standalone evolutions of
nonlinear spacetimes by characteristic methods. More recent
applications of characteristic formulations are in Cauchy
characteristic extraction (CCE) and Cauchy characteristic
matching (CCM) methods. In CCE, one takes metric data on
some inner timelike worldtube I', computed from a 3 + 1
Cauchy code, and propagates it to future null infinity Z* viaa
characteristic code, thus enabling wave-form extraction at
Z7 [12,13]. This scheme represents a special case of the more
general CCM [14,15] which, in turn, uses data from the
characteristic code as exact boundary conditions for the
metric functions of the 3 4+ 1 Cauchy code.

Within the numerical relativity community, there are now a
number of characteristic codes being used, with differing
levels of sophistication. For instance, some codes employ
second order finite difference schemes [ 16], others use higher
order schemes [85] while others have adopted spectral
methods [17]. Another point of distinction among different
codes is the coordinate system used to cover the sphere
labeling the null directions of the light cones. Common
choices range from a stereographic coordinate system [ 18] to
multipatch coordinate systems [16,19]. There have also been
efforts to introduce adaptive mesh refinement schemes to
characteristic evolution codes [20,21]. Overall, these codes
have made it possible to demonstrate the versatility of
characteristic methods in numerical relativity and have found
extensive applications in, for example, binary black hole
mergers [18,22-24], stellar core collapse [25-27], Einstein-
Klein-Gordon systems [28—30], observational cosmology
[31-33], etc. These systems represent potential astrophysical
laboratories for testing general relativity in the nonlinear
regime.
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Over the years, the theory of general relativity has been
subjected to a wide range of experimental tests and has no
doubt emerged as one of the most successful theories in
Physics. However, there has been considerable interest in
the literature to study gravity theories whose Lagrangians
contain higher order curvature invariants such as RZ,
R*R,,, R*¥R,,.5 ROR, ROFR [34-36]. The motivation
for these alternative theories of gravity stems from a variety
of grounds, most notably from within the dark sector in
cosmology [37]. Moreover, the inflationary paradigm arises
naturally in alternative theories of gravity without postu-
lating additional inflaton fields [34,36,38]. These higher
order corrections also arise in the effective action of
quantum gravity. For example, in the low energy limit
of string theory or when considering compactifications of
extra dimensions in M theory [39]. In this work, we restrict
our attention to the fourth order metric f(R) gravity.
Although simpler than most other alternative theories,
general predictions in the theory demand a numerical
treatment, especially when considering strong field sources
as in numerical relativity.

We derive the full set of nonlinear equations necessary for
a numerical implementation. We further present linearized
solutions about some fixed background spacetimes that may
aid in code development in the form of testbed solutions.
These solutions are based on a linearization of the exact
equations on Minkowski and Schwarzschild backgrounds
using standard techniques. In principle, one could consider
other background solutions about which to linearize.
However, one must be able to analytically cast the metric
of such background solutions in Bondi-Sachs form, which is
anontrivial task for most known solutions [40]. For example,
a Bondi-Sachs representation of the Kerr solution involves
elliptic integrals, which require numerical evaluation [41].
The existence and stability conditions for both Minkowski
and Schwarzschild spacetimes in the context of f(R) gravity
have been studied by several authors; see [42—45]. Within
the Bondi-Sachs framework, linearized perturbations, in the
manner considered here, have been studied in general
relativity by [46-49], and have been used as testbed solutions
and in analytic descriptions of binary black holes in circular
[46,50] and eccentric orbits [51]. Different approaches on the
subject can be found in [12,52,53].

This paper is structured as follows: We review the field
equations of metric f(R) and its equivalence to scalar-
tensor theories in § II. In § III, we present the Bondi-Sachs
coordinates. The decomposed field equations in tensorial
form are given in IVA, and in § V we present them in the
complementary eth formalism which is commonly used in
numerical codes. We present linearized equations in § VI
and their solutions when linearized about Minkowski
background in § VIC1 and Schwarzschild background
in § VI C 2. Finally, we conclude in § VII. For convenience,
we provide the Christoffel symbols for the Bondi-
Sachs metric in the Appendix. Throughout this paper,

PHYSICAL REVIEW D 96, 024028 (2017)

we use geometrized units G = ¢ = 1 and metric signature
(= +++).

II. METRIC f(R) GRAVITY
A. Field equations

The gravitational field equations of metric f(R) theories
can be derived starting from a simple generalization of the
Einstein-Hilbert action

1

$=Ton

dx4[\/__gf(R> + 16”'Cmat]’ (1)

where f(R) is a general function of the Ricci scalar R, g is
the determinant of the spacetime metric g, and L, is the
Lagrangian of matter fields. Varying the action (1) with
respect to the metric g,;, and assuming that the connection
is the Levi-Civita connection,' one obtains the equation of
motion

zab = 8”Tab (2)

where T, is the energy momentum tensor of standard
matter fields, given in terms of the variational derivative of
Lonat @S

Tab - _ 2 5(\/_—g£mat) ) (3)

V=9 g%

The symmetric tensor X, is given by

1
Zap = ' Rap = Efguh =V, Vo f' + 9,01
= f/Rab - %fgah - f”vava - fmvavuR
+ Gap (f""VRV.R + f"LIR), (4)

where [1 = V,V¢is the d’ Alembertian operator and we use
to denote differentiation with respect to the Ricci scalar R.
Interestingly, X, contains terms involving second deriva-
tives of the Ricci scalar R which translates to fourth
derivatives of the metric, hence the characterization as
“fourth order gravity.” Unlike in general relativity, the
relation between the Ricci scalar R and the trace T of the
energy momentum tensor is no longer algebraic (R = —8xzT)
but differential, given as

300f" - 2f + f'R = 8aT. (5)

Equation (5) governs the dynamics of the scalar degree of
freedom inherent in the theory. As in the 3 + 1 formulation

'Relaxing this assumption, such that the affine connection I'%,,,
is independent of the metric g, is the basis of Palatini f(R) and
leads to field equations that are different from those of metric
f(R) considered here.
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[54], it is convenient to use the equivalent form for the field
equations

1
Eab = zab - KZTuh - ggah(z - KZT) =0. (6)

where we have introduced the notation E,, for later con-
venience. Finally, we note that in the limit of constant scalar
curvature R = Ry, the trace Eq. (5) reduces to an algebraic
relation —2f + f'R = 8T and the field Egs. (4) become

1
Ra, — EgabR + AGap = 87Ty (7)

where 1 = R(/4 is an effective cosmological constant A.

B. Equivalence with scalar-tensor theories

It has long been known that metric f(R) gravity theories
are dynamically equivalent to special cases of Brans-Dicke
scalar-tensor theories [55-58]. We briefly review this equiv-
alence in the following. Starting from the action (1), one can
introduce a new field y and recast (1) into the equivalent form

1
S=16s | AT+ FOR=D]+ [ d2Lom
(8)
Varying the new action (8) with respect to y leads to
"Q)(R =) =0. ©)

Then, provided that f”(y) # 0, the above implies y = R, and
consequently, the action (8) becomes (1). If we further define
an auxiliary field ¢

¢ =10 (10)

and supposing that the relation is invertible, then the action
(8) can be expressed as

1

S=—
167

VT DR V) + [ Pl (1)
where the potential V(¢) is given by

V(@) =x(d)b - fx(#)). (12)

The action (11) corresponds to the Jordan frame representa-
tion of a Brans-Dicke scalar-tensor theory without a kinetic
term for the scalar field, i.e., with Brans-Dicke parameter
wpp = 0. By transforming to the Einstein frame, one can
proceed to show that this is conformally equivalent to the
Einstein-Hilbert action with a scalar field that couples
minimally to the Ricci scalar [59]. This equivalence can
be a convenient tool when studying various modified gravity
theories. However, one should exercise caution when inter-
preting results; see, for example, [60-66].
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III. THE BONDI-SACHS METRIC

For the characteristic initial value problem, we employ
coordinates (u,r,x*) based on a family of outgoing null
hypersurfaces emanating from an inner worldtube I" denot-
ing the inner boundary of the characteristic domain.
Within this system, u = r — ¢ is a retarded time coordinate
labeling the hypersurfaces, r is a surface area coordinate
and x*(A = 2,3) are labels for the null rays.2 Then, the
Bondi-Sachs metric takes the form

ds* = g, dx#dx” (13)
»Y _ AT7B ) 4,2 25
=—| e’ ——rhgUU” |du® — 2e“dudr
r
- 2r2hABUBdudxA + rzhAdeAde. (14)

It is straightforward to compute the contravariant compo-
nents of the Bondi-Sachs metric. The nonzero components
are

Vv

grr — e—Zﬂ -, grA — _e—ZﬁUA’

gru — —6_2‘5, gAB — l"_zhAB. (15)
The Christoffel symbols for the above metric are given in
the Appendix. We note that it is sometimes convenient to
use W instead of the more usual Bondi-Sachs variable V,
where W := V — r. The 2-tensor h,g, with h4Bhg- = 5,
satisfies the determinant condition

det(hap) = det(qap) (16)
where g,p is the unit 2-sphere metric, so that h,p has
only two degrees of freedom. By considering the metric of
r = const surfaces,” one identifies h,p as the conformal
2-metric of surfaces of constant u# which foliate the world-
tube, and e’V /r corresponds to the square of the lapse
function while —U* represents the shift vector. In total, the
metric (14) contains only six free variables i, 8, V and U4,
which are in general, a function of the coordinates. Evolution
equations for these Bondi-Sachs variables are derived from
the field equations of gravity.

IV. THE FIELD EQUATIONS

In analogy with the 3 + 1 formulation, the field equa-
tions within the Bondi-Sachs formalism can be classified
into main and constraint equations. In the following
sections, we present these in turn.

2 . . .

Here, and in the following, we will generally use uppercase
indices for the angular directions. These will run from 2 to 3.

3This can be obtained from (14) by setting dr = 0.

024028-3



BISHOP MONGWANE

A. Main equations

The main equations are further classified into hypersur-
face and evolution equations. The hypersurface equations
form a hierarchical set of equations for the Bondi-Sachs
variables 3, U4 and V to be integrated radially once 4, and
R are given on some u = const slice. These are derived
from the R", components of the field equations, giving

rf” r
ﬂ.r <1 =+ E?Rr> = 1_6hAChBDhAB,rhCD,r

+ # (f”R,,r + f”’R,rR,r> (17)
(PQ4), =2r*(r2p.4) , — r*h®Dchyg,,

252
+ I {rzf"(r_zR,A),r +f"RAR, + f"BaR ,

2 1
/" hapU® R, - Ef"hDChAc.rR.D} (18)
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2e7#V =R —2DAD,—2D*BD S+ r 2e ¥ D, (r*UA) ,
A
—36_4ﬂhABUA‘rUB,r
6_2‘5
+7 e f'DADAR+ f" e’ DARD4R
=2f"R,+2Vf'R . —r*f"R ,DcUC=2rU "R ¢

72

2 21 26 41
~ e R (19)

where in (18) we have used the auxiliary quantity Q,,

QA ES rze_zﬂhABUB’,. (20)

To obtain the evolution equation for h,p, it suffices to
consider the trace-free symmetric part of the angular
components of the field equations,

1 1
mAm® |:r(l”hAB.u),r - E (thAB.r),r - 2€/jDADBeﬁ - 5 r4e_2ﬁhBDhACUc,rUD,r

1
+UCrDchyp, + hacDp(r?UC) , + 5 r*hag,DcUC = r*hgghyc,(DCUF = DFUC)

1 r2 r
- ]7 {f“‘fzﬁDADBR + f"e*R 4R p — Ef//hAB,rR,u + 3 Vf"hsp R ,

2 2
P f'R DyUp == f"hap.R , - %f"UChAB,,R,C}] =0 (1)

where m” is a complex dyad such that h*% = m4m?).
The trace Eq. (5) gives the following evolution equation for

the quantity f”:

200, ) 40,0, 41 0,VO,f 450, ~2UA0,0,

2
=0,/ DAUA=ZUAOL f =0, f'0,UA+ 72D, DAf'
r
2,1
+267 WD f D=7 3 f'R. (22)

To turn this into an equation for the Ricci scalar R, one uses

the fact that /' = df(R)/dR, and proceed via the chain rule
such that

f{x = f//R,x (233)

f{xy = f”R,xy + me,xR,y' (23b)

B. Conservation conditions

Up to this point, we have only focused on the main
equations. The remaining components of the field equa-
tions R}, split into the trivial equation

E, =0 (24)
and supplementary equations
E,, =0 and E4, =0, (25)

where we have used the notation [cf. Eq. (6)]
1
Eab = Zatb - KzTab - ggab(2 - KZT) =0. (26)

Along with the main equations, these make up the full set of
components for the field equations. Because of the Bianchi
identities, and assuming that the main equations are
satisfied, the trivial equation is satisfied identically, while
the supplementary equations need only be satisfied on a
single spherical cross section of the worldtube as was
shown in the general relativity case by [2,4].

Clearly, a key to this conservation property is the Bianchi
identities. In f(R) gravity, the divergence of the field
equations takes the form [67]
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1
VT =V <f/Rab - Efgab =V, V,f' + gab‘:‘f/> =0

1
=R, Vf' + f'VR,, — Egabvaf

- vavavbf/ + gabvavcvcf/ (27)
= Rabvaf/ + f,vaRab - %gabf/vaR
- (VeV,V, =V, VeV, )f. (28)

Then, the generalized Bianchi identities V*Z,, = 0 follow
geometrically because

1
V“ (Rtlb - EgabR) =0 and

(VAV,V, =V, VEV ) f7 = Ry VO (29)
as a result of the standard Bianchi and Ricci identities.

General expressions for (24) and (25) are lengthy and
are not required in most numerical applications. We give,
instead, linearized expressions in § VI.

V. SPIN-WEIGHTED AND ETH FORMALISM

Within the spin-weighted formalism, the unit sphere
metric g,p is expressed in terms of a dyadic product
qaB = q(aqp)> Where the dyad g* is a complex4 basis
2-vector satisfying ¢*g, =0, ¢*g, = 2 and g, = qapq°
[68,69]. We note that the basis vectors are not unique, up to
a phase transformation. For a given ¢,, one can construct
an alternative basis §, = e'*q,, where the phase « is real.
Using the dyad vectors g*, rank-n tensor fields Tya,. A,
on the sphere can be conveniently represented by scalar
fields,

T=q". . q*gh . g"Ty a (30)

An

The spin weight s of such scalar fields depends on the rank
n of the tensor field and is given by s = 2m — n, where m is
the number of ¢ factors and n — m represents the number
of g# factors appearing in (30). In general, the scalars (30)
will have the transformation property 7 — ¢/ T. With this
in mind, the three spin-weighted scalars

1
and K = -q2GPhyp

(31)

with respective spin weights +2, —2 and 0, contain all the
degrees of freedom of the 2-tensor A, 5. Using (31), hyp is
irreducibly decomposed as

1 -
J:_quBhA& J=

—A—Bh
2 qq Nap

N =
NS}

*We will generally use an overbar on a complex quantity to
denote complex conjugation.
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2hap = Jqaqp +J3as + K(qads + qagqs),  (32)
with the inverse 2-metric h*® given by
208 = -Jq'q" - Jg'3" + K(¢"3" + 3'4").  (33)

Furthermore, the determinant condition (16) implies the
relation

K*=1+JJ. (34)

Consequently, the scalar K contains no additional infor-
mation, and h,p is uniquely determined by J, for an
arbitrary Bondi-Sachs metric. Similarly, U4 and Q* are
decomposed into the spin-weighted fields

U: UAqA,
0= 0%,

U == UAq As
0 = 0", (35)
with respective spins of +1, —1, +1 and —1. We note that
within this spin-weighted formalism, the scalar quantities
p, V and R are spin-0 fields.

In addition to the spin-weighted scalars, it is convenient
to define complex differential eth operators d and 0 whose
action on a quantity X of spin weight s is given as

X = g0, X + sYTX,

X = g9, X —sTX (36)

where

1

T= _EquBvAQB- (37)

The resulting quantities 3X and dX have spin weights s + 1
and s — 1, respectively. More generally, the operator d (9)
acting on a spin-weighted scalar has the effect of raising
(lowering) the spin weight by 1.

For the stereographic coordinate system x* = (g, p),
which we adopt in this work, the unit sphere metric g4 is
given as

dxrdx? = —————(dg* + dp?). 38
qAB q2+p2+l(q p) ( )
The dyad vectors then become
2 2
A9 t+p+1 . 2 )
= 1, d e G 1, .
D) ( l) an qda q2+p2+1( l)
(39)

With this choice, (37) becomes T = g + ip.
Using the above formalism, the hypersurface equations
become
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rf//
U,=r2Q0+Ny (40b)
(r?Q), = =r*(dJ + 0K) , + 2r*d3(r2p) ,
+No+Mg (40c¢)
1, <
W,=se PR —1— /30’
1 _ _
+3 r2[r*(dU +0U)| , + Ny
1
+ EezﬁMW (40d)
where the 2-Ricci scalar R is given by
- | - - | R - -
R =2K — 30K +§(62J +0%J) +ﬁ(616J— dJoJ).
(41)

The evolution equations become

2(rd) e = [r'V (1), — r ' (FPOU) , + 2r el &l

—J(r_1W),r—|—NJ—|—r_1M], (42)

2rf") 1y = FV(f), ], = (W), — UBS - T3f
(43)
|
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~1,28
K
+ Ke?r= (00f" + 0f'0p + 01'0p)

+ [J(dT D f +dTdf") + J(DJdf + dJdf")]
[0V, +0f'U.,

o2

r
2

X [JO2f! + JO f'+dJAf + dIdf'+2(JOf'df + JOf'0p)]
2p
+5-2F = f'R) (44)

where, again, one is to use the chain rule (23) to obtain an
evolution equation for the Ricci scalar R. The terms Ny,
Ny, Ng, Ny and N are nonlinear aspherical terms whose
representation in terms of spin-weighted variables is given
in [18]. The terms My, My, My and M; are modified
gravity terms arising from the f(R) corrections. These can
be computed as

r

(f”R.rr + f’”R,rR.r> ; (45)

1 _
f'Mg = r(f'r'0R) , > e ¥ f'R (KU, +JU,)
1 _
~ /"R, 0p =3 f"K(K ,0R + J ,3R)

1, - ]
+5./"(77,0R + JK ,3R), (46)

1 L _ R I _
f'My = =5 rf"e R (00 + 8U) ~ rf"e”(UOR + USR) ~ 2 f"[8(J3R) + 0(JOR)]

1

——f"[J(dR)*> — 2KORIR + J(OR)*] + 2f"e (R, V — rR )

2

2

+ % £"(3R3K + GROK) + f"KBOR — % (f = 2f'R), (47)

1 } . ] B} 3
My = f"00R + f"(OR)* ~ 3 f"(JOIOR + JOJOR + KOJOR ~ KOJOR ~ 2J0KIR)

1

-5 e~ " (r*J) [UOR + UOR] + f"e R ,Vr=(r2]),

1 _ S
-3 e r’R ,(2KOU + 2J0U + UdJ + UdJ) — f"e R ,(r*]),

—r’f"e R J .

As in the 3 + 1 case, it may be necessary to define y = R,
so that the hypersurface equations contain no u derivatives.

VI. LINEARIZED PERTURBATIONS

In the following, we specialize the above nonlinear
equations to situations where the spacetime is almost

(48)

[

Schwarzschild and almost Minkowski. In outgoing null
coordinates, the Schwarzschild metric takes the Eddington-
Finkelstein form

2M
ds2 = —(1 >du2 - 2dudr + rqudeAdXB’ (49)

r

024028-6



CHARACTERISTIC FORMULATION FOR METRIC f(R) ...

where it is to be understood that M = 0 corresponds to
Minkowski space. The existence and stability of both
Schwarzschild and Minkowski spacetimes in f(R) gravity
can be found in, for example, [42-45]. The line element
(49) corresponds to J =U = =0 and W = -2M. We
therefore designate the following quantities and their
derivatives as first order:

J,J, U, U,w,B=0e) (50)

with W = —2M + w. We note that the scalar K is unity to
linear order because of the determinant condition (34).
The linearization procedure proceeds by discarding terms
of order (’)(62) and higher, i.e., terms involving products of
the first order quantities (50). We note that the Ricci scalar
R vanishes for the background metric (49). In order to deal
with the f(R) corrections, we therefore perform a Taylor
expansion about the background such that, to linear order,”

F(R) = flo R. (51)

where f ’(0> is a background quantity and R = O(¢). To avoid

having to write prefactors f° /(0) and f E/O)’ we note that one can
define an effective mass for the scalaron field as
LS
The linearized main Eqs. (40) then become
1
ﬁ’r - WR’N = O, (533)
PU,, + 47U, + rdJ . + 40 — 2rdp,,
2 2r
~_ R-""R,=0, 53b
* 3m? 3m? " (53)

48 — 200 + = (621 +3%)) +

r2 2r 2M 2
TR=S (1= )R, + 5 R, =0,
r ' 3m= -

2[00 +80)],

2w 3 3m?

(53¢)
|

2r
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2r(rd) ,p — 20° + 2rdU + 120U , = 2(r — M)J ,
2M 1
1=, - — 00R =
< . )J.,r i 00R =0, (53d)
2M 2 2 M
(1 - _)R,rr - (R,u + rR.ur) +- <1 - _> R,
r r r r
+ r7200R — m*R = 0. (53e)

A noteworthy feature of the above equations is that the f(R)
terms have prefactors of 1/m?. Therefore, as m — co, the
equations will resemble those of general relativity. This is the
basic principle behind screening mechanisms that allow
modified gravity to behave like general relativity in certain
environments by suitably altering the mass of the scalaron
field.
The trivial Eq. (24) simplifies to

1 1
p{2(r—M)ﬁ!,+r2< __>ﬂrr rwrr+aaﬁ
5 1
21 = 5 [P (00 +30)]
(& R Tk (54)
S 3m? \ U 6

while the constraints (25) respectively become

1 _
— [-4r*0p,, +2r*0J , —2r*U ,, +4r*U +2rdw , — 20w
, :

r2(d0U —ddU) +2r*(r—2M)(4U . +rU ,,)]
1

and

1 _ _
s [~4r(r =2M)B, + 2(r —2M)33P + r(r — 2M)w,,, + 0w + 2rw,,

—Mr(dU 4+ 0U) — r*(0U +dU) ,, — 4r*(r —=2M)p.,, + 2r(r —2M)*B,,,

1 M M 2M
+4(r=2M)(r-M)p,| = I [R,uu toRi-3 (1 - T)R,r:|

(56)

>We use the fact that f(0) = 0, which is one of the conditions for the stability of the Schwarzschild solution in f(R) gravity [44].
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Finally, one can derive an expression for the linearized
Ricci scalar R from the metric variables. One is free to do so
since in metric f(R) gravity, one assumes that the Chris-
toffel symbols are related to derivatives of the metric in the
usual way, unlike in Palatini f(R) gravity. Therefore, from
R = ¢“*R,, one obtains

4 - aMm 4 2M
R:__géaﬁ__zﬁ,r+_2ﬂ_2 I-— ﬂ.rr+4ﬂ,ur

r r I r

1

R o1 _ -
——=(rw,) r+F (0°J + 0%J)+— (r°dU + r*0U),.
: r r :
(57)

This expression can be used as a consistency check with the
result obtained by integrating the trace Eq. (53e).

A. Eigenfunction decomposition

It is convenient to write the metric quantities in terms of
eigenfunctions of the d and d operators. Without loss of
generality, we assume that the linearized variables can be
written as [47]

R = Ry(r)Re(e™)Zy,,, (58a)
B = Bo(r)Re(e™)Zs,,, (58b)
w = wo(r)Re(e™)Zy,,, (58¢)
U = Up(r)Re(e)0Z,,,. (584)
J = Jo(r)Re(e" ) Zy,,. (58e)

A more consistent representation would be in terms of
a multipolar series involving sums over £ and m as is done
in, for example, [50]. The above corresponds to having
these quantities fixed, which is sufficient for our purposes.
In (58) the ,Z,, are orthonormal real-valued spin s
spherical harmonics defined as [68]

\/Li (=)™ Ysm+ Ys] form<0
Sme = SYt’m form=0 (59)
\/% [(=D)" Y+ Yp_p] form>0.

The ,Y,, are the standard spin-weighted spherical
harmonics
Y 4 for s >0
sY ‘m (60)

(=1)%4 /E?jr“s';!!é““Yfm for s < 0.
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B. Master equation

Using the ansatz (58), we are able to reduce the
linearized Egs. (53) into a set of linear ordinary differential
equations in r, for the quantities f,, U, wy, Jo and R. For
brevity, we shall henceforth drop the zero subscript on these
quantities. In the following, we restrict our attention to the
particular case of £ = 2. We emphasize that this choice is
motivated by simplicity; it is possible to consider other ¢
values. We further make the change of variable r = 1/x.
With these simplifications, the linearized equations become

2 2x

X
4 >5Ru+5R, =0, 61
xﬁ.x + 3m2 XX + 3m2 X ( a)
2
A4+ 2xp  + xU o = 2U , +4xJ +ﬁR
m
2x
—~_R.=0, 61b
R, (61b)
2
16xp + 24xJ — 24U + 6xU , + 2x*w , — TR
2 . 2x2
+W(ZU+SX)R+W(1 —2xM)R, =0, (61c)

—4xf+4U = 2xU , + 4x°MJ , = 2x3(1 = 2xM)J .

2
+ 4iv] — dxivd - —5R =0, (61d)
© 3m
x*(1 = 2xM)R ,, — 2x*(x?M — iv)R ,
— (2xiv — 6x* + m*)R = 0. (61e)

Using standard techniques, it is possible to derive a master
equation for the Bondi-Sachs variable J. Interestingly, this
takes the same form as that obtained in the general relativity
case [47],

X1 =2XM)J yiex + (432 + 2ivx — 1453 M) J

— (4x + 16Mx* 4 2iv)J ., = 0. (62)
This master equation can be further simplified by defining
an auxiliary variable J ., = J, [47]. Then, J, obeys
X3(1=2xM)J 5 o + (4% + 2ivx — 143 M) J 5,

— (4x + 16Mx* + 2iv)J, = 0. (63)
We are now in a position to solve the above linearized

ordinary differential equations for the various metric
quantities.

C. Solutions

The solution procedure proceeds in a hierarchical order,
mirroring that of a numerical scheme. First, we obtain
solutions for J and R from Egs. (63) and (61e). Having

024028-8



CHARACTERISTIC FORMULATION FOR METRIC f(R) ...

obtained R, Eq. (61a) can be solved for . Having 3, R and
J, Eq. (61b) can be solved for U, and finally Eq. (61c¢) is
solved for w. In the following sections, we consider
separately the cases of Minkowski (M =0) and
Schwarzschild (M # 0) backgrounds. In all cases, we
verify that the R obtained by solving (61e) is consistent
with that reconstructed from (57). We also evaluate the
constraints by plugging in the obtained solutions.

1. Minkowski background

Following the above procedure, we first consider the
static case, v = 0, obtaining the solutions

PHYSICAL REVIEW D 96, 024028 (2017)

w = ——2—e%(6x7m — 6x° + m> — 3m’x)

10 12
~62°Cr = — G5+ G

g 2 e (6x7m + 6x° + m® + 3m’x)

m>x

6

- Cs+Cy. (68)

_|_

As expected, the trivial Eq. (54) is identically satisfied.
The constraints (55) and (56) respectively lead to

R = C\xe™*(m? — 3xm + 3x?) Cs =0, (69)
—m/x 2 2
+ Coxe™*(m? + 3xm + 3x?), (64) 420, —3C,) — Cyx = 0. 70)
C m
p= 12;12 ex(12x*m = 5xm? = 12x° + m?) For the dynamic case, v # 0, we obtain
C .
_12’; “(12x%m + 5xm® + 12x3 + m?) + C3, R_iCIxexp(M>
(65) *
x (m? =12 4 3xV'm? — 2 + 3x?)
Cs
J = C4 + + C6.x + C7.x (66) iv + m
+ iCyxexp (—>
X
2C;5
U= 67R +—+ 2x2C6 + ZXC3 3x4C7, (67) X (m2 _ 1/2 —3x /m2 _ 1/2 + 3.X2), (71)
C o 7_ 2
p=- lzexp v moy [Six(m? —v?) + 3x(dix + v)(x + Vm? —1?)
12m X
C S 2
—|—(m2 _1/2)(1/ +ivVm?— 1/2)] _ 2 exp w—+vm 1% [5ix(m2 —1/2)
12m X
+3x(4zx + U)(x —Vm? - IJZ) 4 (m _ y2)(y +i /m — )} + C3, (72)
Cex* C 2i
J=Cy+ Csx+ = 4 Texp( Z2) (x — iv)2x, (73)
6 2 X
X ; 2 Cex® . Cyx3 2i\ .
U=—5R—ivCy+2Csx> +2xCs — —>— (4iv + 3x) + exp|{ — | (2iv = 3x), (74)
6m 6 2 X

C, <i1/— m2—1/2> )
W= ———>—exp [(m —v

6m-x X

2)(u—3ix—i m2—1/2)

+3x(2ix—1/)( m?> —v +x>] —

ex
6m-x

p(w + \/mz——uz)

X

x [(m? =2 )<1/—3lx+l\/m —v ) +3x(2ix—y)<\/m2—y2—x)}

6C.
+ x—24 (iv+ 2x) —

10C5
C6(2ll/ + .X') - T - C7

p(%) + Cs. (75)
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Again, the trivial Eq. (54) is identically satisfied. The
constraints (55) and (56) lead to

C8 - 21/2C6 = O, (76)
12ivCs + 6x1*Cq + 12(2C5 — 3C,) — (3x — iv)Cg.  (77)

We note that one can recover the static solutions by simply
setting v = 0 in the dynamical solution. With this in mind,
we will only consider the dynamic case in the next section.

2. Schwarzschild background

When the background is Schwarzschild, we are not able
to find analytical solutions in closed form. This is true even
in general relativity for the case M # 0 and v # 0 [47,49].
In principle, one could write the solutions in terms of
confluent hypergeometric functions or as a power series
about the singular points of the concomitant ordinary
|

PHYSICAL REVIEW D 96, 024028 (2017)

differential equations (ODEs). Here, we opt for the latter.
The singular points of the ODEs (61e) and (63) are as
follows:

X :L, (78)

Regular: x =
egular: x = o0 i

Irregular: x = 0. (79)

In the following we compute series solutions about the
regular singular point x = 1/2M, corresponding to r = 2M.
We write z =x — 1/2M and expand the solutions about
z = 0, obtaining

4M(2ivM + 2m*M? + 3)
4ivM — 1

R=C, |1+ 2+ O(zz)}, (80)

AMPm? + 8ivM +5  4M*m* 4+ 8MPm?iv — 8U°M? + 12m*>M? + 23ivM + 6
p=C—C I o ; +0(z%) |, (81)
12m*(4ivM — 1) 3m*(4ivM — 1)(2ivM — 1)
J= it Cort €T |14 SMM 4 3) +0(2) (82)
TR TS T M —3) C T )
C,(2Mz + 1
U= Z(T”) — ivCy — 3C,(8MPZ3 + 2022M> + 2iuM + 14Mz + 3)
Cs(2ivM — 1) Mz + 1
— T T ] 4 4Mz 4+ M2 + O()] + R, 83
Ve [1+4Mz+ 2+ 0(2))+ DM (83)
40M?7C, Mz + 1+ 2Miv(Mz + 1) 8ivM(Mz + 1) +4Mz(Mz +3) + 5
=C - 48M%z + C. 6M
=St o 3{ (2Mz +1)? 2+ G (2Mz + 1) ¢

Lc 2M*(16MPm?iv + 160°M? + 36ivM — 1)
: 3m2(4ivM — 1)
— Cs(2ivM — 1)[6z — 12M 2% + 32M?Z3 + O(z%)].

This time, the trivial equation becomes a series in z, and is
identically satisfied order by order. The constraints (55) and
(56) respectively become

3M*m*Cy = M*(4Miv + 1)C, — 36M*m>C,
+ T2M*m*(Miv + 1)Cs
- 9Mm?*(2Miv + 3)C,
+ 6m?(3ivM + 20°M?* — 1)Cs, (85)
0 = 48M>C, — 72M*C; + 12M(2Miv + 3)C,

16i* M3 = 241*M? — 38ivM + 15
+ -
Miv + 2

Cs. (86)

+ (’)(zz)]

(84)

[

For the irregular singular point x = 0, it is still possible to
obtain a series solution for J [47]. However, the same
procedure does not work for R (61e); hence, a solution for
the other quantities is not possible. In any case, standard
methods for obtaining series solutions are not guaranteed to
work for irregular singular points.

VII. CONCLUDING REMARKS

In this work, we have presented a characteristic formu-
lation for metric f(R) gravity. We have cast the full nonlinear
system both in tensorial form using the language of [70,71]
and also in the eth formalism [68,69] that is commonly
used in numerical relativity codes. The nonlinear equations
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assume a simple structure as can be seen from § [Vand § V,
with f(R) modifications encoded in the variables My, M,
My, and M. This makes it straightforward to modify
existing codes that were originally built for general relativity
to include terms arising from f(R) gravity.

A numerical implementation of the equations presented
in this work will pave a way for Cauchy characteristic
extraction methods in modified gravity. The recent detec-
tions of gravitational waves [72,73] has opened up the
possibility of constraining modified theories of gravity
with gravitational wave data. This topic has revived some
interest in the characterization of gravitational radiation in
f(R) gravity theories [74,75]. On the mathematical side,
we have not addressed the Well-posedness of the timelike-
null cone problem, upon which CCE is based. Interestingly,
this is still an open question, even in general relativity.
However, there have been encouraging results [76,77].

The linearized solutions presented in §VI C 1 will serve as
testbed solutions for validating numerical codes. Another
interesting area of application is in the linearized description
of the binary black hole problem [46,50,51]. A potential
application for this scenario is in the context of wave-form
extraction. Generally, one needs initial data on the null cone
in some far field region exterior to a timelike worldtube. In
this case, a linearized solution for the binary black hole
problem presents a consistent approximation to the initial
data [46]. On the other hand, the series solutions in § VIC 2
are of somewhat limited use as testbed solutions. This is
largely due to their finite radius of convergence. However,
they may still find analytical use in the study of gravitational
wave scattering off a Schwarzschild black hole, which is a
topic of broad interest; see [78] and references therein.

Finally, we note that, in principle, applications of the
characteristic formulation of the field equations can go
beyond numerical simulations. For example, one could
use the formulation as an analytical tool to investigate
various aspects of spherically symmetric solutions and their
perturbations in f(R) gravity [79-83]. Using the character-
istic formulation in this way will allow for a transparent
interpretation and generalization of analytical results by
using ready-built characteristic codes. It would also be of
interest to pursue comparisons with the covariant 1 + 1 4 2
semitetrad formalism [84].
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APPENDIX: CHRISTOFFEL SYMBOLS

In the following we present the Christoffel symbols for
the Bondi-Sachs metric (14):

PHYSICAL REVIEW D 96, 024028 (2017)

1

Map = Ee_zﬂar(rzhAB) (A1)

Frrr = 2arﬁ (Az)

M5 == (r2h*€)d,(r*hep) (A3)

N =

1
[y = =5 P 0,(~e%) + 0, Ve¥)

- ar(rzhABUAUB)]

Iy = %e_zﬁ[aA(ezﬁ) + r*hyp0,(UP))

1
Frru = —56_2/}[(%(—7”_1‘/62/’ + rzhABUAUB)]

1

=5 VN (~rPhapUP) + Oy () (A6)

s = %e_zﬁ[aA(ezﬁ) - UBar(rzhAB) - VzhABar(UB)]

(A7)

1
| —Ee_zﬁau(—ezﬁr_lV + rPhy g UAUB)

1

-5 e Fr'v[20,(e7%)

+ 0,(=e?r 'V + rPh g UAUB))
1

t5 e U120, (r*h g UB)

+8A(—€2ﬂ}’_lv+ rzhCDUCUD)} (Ag)

1
g = =5 2 [04(=€ 17V + P hypUNUP))

1
- Er_lVe_zﬁ[aA(ey) —9,(r’hypU")]

1
- Ee_zﬁUB[au(rzhAB) — 94(r’hepUc)

+ Op(r*hycUC)) (A9)

1
INVES 53_2ﬁ[28A(72h3cUc) + 0,(r*hyp))

1
—E’”_lve_zﬁ[ar(rzhwﬂ — e U, AP

(A10)
1
M, = Ee_zﬁUA [20,(e*) 4+ 0,(—e*’ r'V + r*he, UCUP)]
1
—Er_2hAB[28u(r2hCBUC)
+0p(=e?r 'V + rPhep UCUP)) (A1)
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1

l—‘Aur = E r_zhAC[ar(_rzhCD UD) + aC(ezﬂ)] (A12)
1 1

Mg, = Ee_zﬂUA[GB@zﬂ) — 8,(r*hcpUC)] +§r_2hAc[8B(—”2hCDUD) + 0, (rPhpe) + Oc(rPhppUP)]  (A13)
1

Mpe == e U0, (rPhpe)] + PT e (Al4)

2

In the above, P)T" 5 represents the Christoffel symbols of the 2-metric /4.
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