Addendum to "Violating the string winding number maximally in anti-de Sitter space"

Gaston Giribet

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453 USA
(Received 26 May 2017; published 17 July 2017)

Abstract

We revisit the computation of maximally winding violating string amplitudes in three-dimensional antide Sitter space discussed in Ref. G. Giribet, Violating the string winding number maximally in anti-de Sitter space, Phys. Rev. D 84, 024045 (2011). Here, we give an alternative derivation of these observables. This derivation, the simplest to the best of our knowledge, follows from identities between spectrally flowed representations of $\hat{s l}(2)_{k}$ Kac-Moody algebra and, in contrast to G. Giribet, Violating the string winding number maximally in anti-de Sitter space, Phys. Rev. D 84, 024045 (2011), it does not resort to conjugate representations with auxiliary fields, but it rather involves the standard Wakimoto free field representation.

DOI: 10.1103/PhysRevD.96.024024

I. INTRODUCTION

We reconsider the problem of computing tree-level scattering amplitudes of winding string states on Lorentzian three-dimensional anti-de Sitter $\left(\mathrm{AdS}_{3}\right)$ spacetime, focusing on processes that involve short strings and in which the total winding number conservation is violated maximally; that is, processes of n strings in which the total winding number $\left|\sum_{i=1}^{n} \omega_{i}\right|$ equals $n-2$ [1].

These amplitudes are given by n-point correlation functions of vertex operators that correspond to spectrally flowed representations of Kac-Moody algebra [2]. It was conjectured in [3] that these amplitudes are in correspondence with n-point correlation functions of Liouville theory, and a free field derivation of such correspondence was given in [4]. Here, we provided an alternative derivation. The advantage of the computation done here is that it is notably more succinct than the one of [4] as it does not resort to any conjugate representation of the vertex algebra; it rather involves the standard Wakimoto representation [5] with no need of auxiliary fields.

II. KAC-MOODY CURRENTS

The string σ-model on AdS_{3} is given by the $S L(2, \mathbb{R})$ Wess-Zumino-Witten (WZW) action at level $k=R^{2} / \alpha^{\prime}$, where R is the radius of AdS_{3}. The Hilbert space of string theory consists of Virasoro primary states organized in unitary representations of the $\hat{s l}(2)_{k}+\hat{s l}(2)_{k}$ Kac-Moody algebra that generates the affine symmetry of the WZW theory. More precisely, first one has to consider the universal covering of the $S L(2, \mathbb{R})$ discrete series $\mathcal{D}_{j}^{ \pm}$, usually labeled by $j \in \mathbb{R}$ and $m= \pm j, \pm j \mp 1, \pm j \mp 2, \ldots$, together with the principal continuous series \mathcal{C}_{j}^{α} with $j=-\frac{1}{2}+i \lambda$ with $\lambda \in \mathbb{R}, 0 \leq \alpha \leq 1$ and $m=\alpha, \alpha \pm 1, \alpha \pm 2, \ldots$ Then, one has to include the spectrally flowed extension of these representations, $\mathcal{D}_{j}^{ \pm, \omega}$ and $\mathcal{C}_{j}^{\alpha, \omega}$, which are needed to fully describe the string spectrum on the NS-NS AdS 3 background
[2]. Here, we focus on the states of discrete representations, the so-called short strings.

The generators of the Kac-Moody $\hat{s l}(2)_{k}$ algebra satisfy the Lie products

$$
\begin{align*}
{\left[J_{n}^{3}, J_{m}^{ \pm}\right] } & = \pm J_{n+m}^{ \pm} \\
{\left[J_{n}^{3}, J_{m}^{3}\right] } & =\frac{k}{2} m \delta_{n+m, 0} \\
{\left[J_{n}^{+}, J_{m}^{-}\right] } & =-2 J_{n+m}^{3}+k n \delta_{n=m, 0} \tag{1}
\end{align*}
$$

with $a=3, \pm$. These brackets, and its complex conjugate counterpart, are realized by defining the local currents

$$
\begin{align*}
& J^{a}(z)=\sum_{n \in \mathbb{Z}} J_{n} z^{-1-n} \\
& \bar{J}^{a}(\bar{z})=\sum_{n \in \mathbb{Z}} \bar{J}_{n} \bar{z}^{-1-n} \tag{2}
\end{align*}
$$

and computing the operator product expansion (OPE) among them. A useful representation of these local currents has been given by Wakimoto [5], who proposed

$$
\begin{gather*}
J^{+}(z)=\beta(z) \tag{3}\\
J^{3}(z)=-\beta(z) \gamma(z)-\sqrt{\frac{k-2}{2}} \partial \phi(z) \tag{4}\\
J^{-}(z)=\beta(z) \gamma^{2}(z)+\sqrt{2 k-4} \gamma(z) \partial \phi(z)+k \partial \gamma(z), \tag{5}
\end{gather*}
$$

with the free field propagators

$$
\begin{align*}
\langle\phi(z) \phi(w)\rangle & =-\log (z-w) \\
\langle\beta(z) \gamma(w)\rangle & =\frac{1}{(z-w)} \tag{6}
\end{align*}
$$

and analogously for the anti-holomorphic contributions.

III. SPECTRAL FLOW

Algebra (1) is invariant under the spectral flow operation

$$
\begin{equation*}
J_{n}^{3} \rightarrow J_{n}^{3}+\frac{k}{2} \omega \delta_{n, 0}, \quad J_{n}^{ \pm} \rightarrow J_{n \pm \omega}^{ \pm} \tag{7}
\end{equation*}
$$

This generates a whole family of new representations, usually denoted $\mathcal{C}_{j}^{\alpha, \omega}$ and $\mathcal{D}_{j}^{ \pm, \omega}$, and hereafter called spectrally flowed representations. More precisely, for $|\omega|>1$, automorphism (7) does generate new representations; however, the cases $\omega= \pm 1$ are special in the sense that the highest (and lowest) weight representations of the sector $\omega=0$ coincide with lowest (resp highest) weight representations of the sector $\omega=-1$ (resp. $\omega=+1$). This results in the identification of the discrete representations

$$
\begin{equation*}
\mathcal{D}_{j}^{ \pm, \omega=0} \leftrightarrow \mathcal{D}_{\substack{-\frac{k}{2}-j}}^{\mp, \omega= \pm 1} \tag{8}
\end{equation*}
$$

which will be crucial for the argument herein.
The new Kac-Moody primaries $|j, m, \omega\rangle$, which are annihilated by the positive modes of the new (spectrally flowed) currents, are essential to construct the string spectrum [2]. Algebraically, these states are defined as those that obey

$$
\begin{align*}
J_{0}^{3}|j, m, \omega\rangle & =\left(m+\frac{k}{2} \omega\right)|j, m, \omega\rangle \\
\bar{J}_{0}^{3}|j, \bar{m}, \omega\rangle & =\left(\bar{m}+\frac{k}{2} \omega\right)|j, \bar{m}, \omega\rangle \tag{9}
\end{align*}
$$

together with

$$
\begin{equation*}
J_{n>\mp \omega}^{ \pm}|j, m, \omega\rangle=0, \quad \bar{J}_{n>\mp \omega}^{ \pm}|j, \bar{m}, \omega\rangle=0 . \tag{10}
\end{equation*}
$$

In the case of long strings, corresponding to states of the continuous representations $\mathcal{C}_{j}^{\alpha, \omega}$, the parameter ω of the spectral flow transformation is interpreted as the winding number of the asymptotic states, associated to the presence of a nonvanishing B-field in the background. In the case short strings, those described by states of the discrete representations $\mathcal{D}_{j}^{ \pm, \omega}$, the geometrical interpretation of ω is less clear, but it still contributes to the mass-shell condition in a way that resembles a winding number.

Due to the duality among different representations (8), it will be enough for our purpose to consider the spectral flow sector $\omega=0$. In terms of the Wakimoto fields, the vertex operators that create the states of this sector take the form

$$
\begin{equation*}
\Phi_{j, m, \bar{m}}^{\omega=0}(z)=c_{0} \gamma^{j-m}(z) \bar{\gamma}^{j-\bar{m}}(\bar{z}) e^{\sqrt{\frac{2}{k-2} j \phi(z, \bar{z})}} \tag{11}
\end{equation*}
$$

where c_{0} is a normalization constant that here we will set to 1 for convention. It can be easily checked that operators (11) of the spectral flow sector $\omega=0$ have the following OPE with the $\operatorname{sl}(2)_{k}$ Kac-Moody currents

$$
\begin{equation*}
J^{3}(z) \Phi_{j, m, \bar{m}}^{0}(w) \simeq \frac{m}{(z-w)} \Phi_{j, m, \bar{m}}^{0}(w)+\cdots \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
J^{ \pm}(z) \Phi_{j, m, \bar{m}}^{0}(w) \simeq \frac{(\pm j-m)}{(z-w)} \Phi_{j, m \pm 1, \bar{m}}^{0}(w)+\cdots \tag{13}
\end{equation*}
$$

which realize (9)-(10) for $\omega=0$.
Vertex operators $\Phi_{j, m, \bar{m}}^{\omega}$ are the objects that create the states $|j, m, \omega\rangle \times|j, \bar{m}, \omega\rangle$ out of the $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ invariant vacuum $|0\rangle$; namely

$$
\begin{equation*}
\lim _{z \rightarrow 0} \Phi_{j, m, \bar{m}}^{\omega}(z, \bar{z})|0\rangle=|j, m, \omega\rangle \times|j, \bar{m}, \omega\rangle \tag{14}
\end{equation*}
$$

The conformal dimension of these states is given by

$$
\begin{align*}
& h_{j, m}^{\omega}=-\frac{j(j+1)}{k-2}-m \omega-\frac{k}{4} \omega^{2} \\
& h_{j, \bar{m}}^{\omega}=-\frac{j(j+1)}{k-2}-\bar{m} \omega-\frac{k}{4} \omega^{2} \tag{15}
\end{align*}
$$

Notice that, indeed, the states $|j, \pm j, 0\rangle$ and $\mid-k / 2-$ $j, \pm k / 2 \pm j, \mp 1\rangle$ have the same quantum numbers, in accordance to (8). That is, they have the same eigenvalue under J_{0}^{3}, namely $\pm j$, and the same conformal weight $h_{j, \pm j}^{0}=h_{-k / 2-j, \pm k / 2 \pm j}^{\mp 1}$. The formula for the conformal weight (15) also remains unchanged under the Weyl reflection $j \rightarrow-1-j$. That is, the states $|j, m, \omega\rangle$ and $|-1-j, m, \omega\rangle$ have the same quantum numbers, and in particular $h_{j, m}^{\omega}=h_{-1-j, \pm m}^{ \pm \omega}$.

IV. CORRELATION FUNCTIONS

Consider the maximally winding violating correlation function
$X_{n}^{2-n}=\left\langle\prod_{a=1}^{2} \Phi_{-1-j_{a}, m_{a}, m_{a}}^{0}\left(z_{a}, \bar{z}_{a}\right) \prod_{i=3}^{n} \Phi_{j_{i}, j_{i}, j_{i}}^{+1}\left(z_{i}, \bar{z}_{i}\right)\right\rangle$
which involves $n-2$ highest-weight states of the spectral flow sector $\omega=1$ (the argument works for $\omega=-1$ as well). In virtue of (8) we can equal this correlator to the following one

$$
\begin{align*}
X_{n}^{2-n}= & c^{2-n}\left\langle\prod_{a=1}^{2} \Phi_{-1-j_{a}, m_{a}, m_{a}}^{0}\left(z_{a}, \bar{z}_{a}\right)\right. \\
& \left.\times \prod_{i=3}^{n} \Phi_{-\frac{k}{2}-j_{i}, \frac{k}{2}+j_{i}, \frac{k}{2}+j_{i}}^{0}\left(z_{i}, \bar{z}_{i}\right)\right\rangle \tag{17}
\end{align*}
$$

which only involves vertices (11), of the sector $\omega=0$. This is different to the computation done in [4], where the presence of vertices with $\omega \neq 0$ demands the inclusion of extra fields. The factor c^{2-n} in (17) stands for the relative normalization between the operators $\Phi_{j, \pm j, \pm j}^{0}$ and $\Phi_{-\frac{k}{2}-j, \pm \frac{k}{2} \pm j, \pm \frac{k}{2} \pm j}^{\mp 1}$, which remains unspecified [3].

Involving only operators of the unflowed sector, correlator (17) admits to be computed by using the Wakimoto representation (11), straightforwardly applying
the techniques described in reference [6], with no need of auxiliary fields cf. [7,8]. This results in

$$
\begin{align*}
X_{n}^{2-n}= & c^{2-n} \prod_{a=1}^{2} \frac{\Gamma\left(-j_{a}-m_{a}\right)}{\Gamma\left(1+j_{a}+m_{a}\right)} \prod_{i<j}^{n}\left|z_{i}-z_{j}\right|^{-\frac{4}{k-2}\left(j_{i}+\frac{k}{2}\right)\left(j_{j}+\frac{k}{2}\right)+2 b_{i j}} \\
& \times \Gamma(-s) \int \prod_{r=1}^{s} d^{2} w_{r} \prod_{r=1}^{s} \prod_{i=1}^{n} \mid z_{i} \\
& -\left.w_{r}\right|^{-\frac{4}{k-2}\left(j_{i}+\frac{k}{2}\right)} \prod_{r<t}^{s}\left|w_{t}-w_{r}\right|^{-\frac{4}{k-2}} \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
s=-1-\sum_{i=1}^{n} j_{i}-\frac{k}{2}(n-2) \tag{19}
\end{equation*}
$$

and $b_{i j}=0$ for $i, j>3,4, \ldots n ; b_{a i}=j_{a}$ for $a=1,2$ and $i>2 ; b_{a b}=j_{a}+j_{b}-2 b^{2}$ for $a, b=1,2$.

The integrand in (18) follows from the operator product expansions

$$
\begin{aligned}
& \gamma\left(z_{a}\right)^{j_{a}-m_{a}} \bar{\gamma}\left(\bar{z}_{a}\right)^{j_{a}-m_{a}} \prod_{r=1}^{s} \beta\left(w_{r}\right) \bar{\beta}\left(\bar{w}_{r}\right) \\
& \quad \simeq \frac{\Gamma^{2}\left(1+j_{a}+m_{a}+s\right)}{\Gamma^{2}\left(1+j_{a}+m_{a}\right)} \prod_{r=1}^{s}\left|z_{a}-w_{r}\right|^{-2}+\cdots
\end{aligned}
$$

and

$$
\begin{gathered}
e^{-\sqrt{\frac{2}{k-2}}\left(j_{a}+1\right) \phi\left(z_{a}, \bar{z}_{a}\right)} \prod_{r=1}^{s} e^{-\sqrt{\frac{2}{k-2}} \phi\left(w_{r}, \bar{w}_{r}\right)} \\
\simeq \prod_{r=1}^{s}\left|z_{a}-w_{r}\right|^{-\frac{4}{k-2}\left(j_{a}+1\right)}+\cdots, \\
e^{-\sqrt{\frac{2}{k-2}}\left(j_{i}+\frac{k}{2}\right) \phi\left(z_{i}, \bar{z}_{i}\right)} \prod_{r=1}^{s} e^{-\sqrt{\frac{2}{k-2}} \phi\left(w_{r}, \bar{w}_{r}\right)} \\
\simeq \prod_{r=1}^{s}\left|z_{i}-w_{r}\right|^{-\frac{4}{k-2}\left(j_{i}+\frac{k}{2}\right)}+\cdots,
\end{gathered}
$$

where the ellipses stand for subleading contributions with less Wick contractions. Recall that the β-dependent operators

$$
\begin{equation*}
\int d^{2} w \beta(w) \bar{\beta}(\bar{w}) e^{-\sqrt{\frac{2}{k-2}} \phi(w, \bar{w})} \tag{20}
\end{equation*}
$$

come from the interaction term of the $S L(2, \mathbb{R})$ WZW action when written in the Wakimoto representation [6] and, in the Coulomb gas approach, they act as certain amount (s) of screening operators needed to compensate the dilatonic background charge.

The integral on the right-hand side of (18) can also be identified as a correlation function in Liouville field theory. More precisely, the n-point function of exponential primary
operators in Liouville theory takes the form [9]

$$
\begin{align*}
\left\langle\prod_{i=1}^{n} V_{\alpha_{i}}\left(z_{i}, \bar{z}_{i}\right)\right\rangle_{\mathrm{L}}= & \Gamma(-s) \prod_{i<j}^{n}\left|z_{i}-z_{j}\right|^{-4 \alpha_{i} \alpha_{j}} \\
& \times \int \prod_{r=1}^{s} d^{2} w_{r} \prod_{r=1}^{s} \prod_{i=1}^{n} \mid z_{i} \\
& -\left.w_{r}\right|^{-4 b \alpha_{i}} \prod_{r<t}^{s}\left|w_{t}-w_{r}\right|^{-4 b^{2}} \tag{21}
\end{align*}
$$

with

$$
\begin{equation*}
b s+\sum_{i=1}^{n} \alpha_{i}=Q, \quad Q=b+\frac{1}{b} \tag{22}
\end{equation*}
$$

In these variables, the Liouville central charge reads $c=1+6 Q^{2}$. Then, the dictionary between (18) and (21) is simple and is the one of [3]; namely

$$
\begin{equation*}
\alpha_{i}=b\left(j_{i}+\frac{b^{2}}{2}+1\right), \quad b^{2}=\frac{1}{k-2} \tag{23}
\end{equation*}
$$

In conclusion, we arrive to the formula

$$
\begin{align*}
X_{n}^{2-n}= & c^{2-n} \prod_{i=1}^{2} \frac{\Gamma\left(-j_{i}-m_{i}\right)}{\Gamma\left(1+j_{i}+m_{i}\right)} \prod_{i<j}^{n}\left|z_{i}-z_{j}\right|^{2 b_{i j}} \\
& \times\left\langle\prod_{i=1}^{n} V_{\alpha_{i}}\left(z_{i}, \bar{z}_{i}\right)\right\rangle_{\mathrm{L}}, \tag{24}
\end{align*}
$$

which is analogous to the one conjectured in [3] and what we actually wanted to prove.

V. CONCLUSIONS

We have derived formula (24), which expresses the n point function of maximally winding violating processes in AdS_{3} in terms of n-point correlation functions of Liouville field theory. This is analogous to the expressions proposed in [3,4], here obtained in a remarkably succinct way without resorting to nothing but well-known dualities among spectrally flowed representations and to the standard Wakimoto fields, with no need of auxiliary fields cf. [4,7,8].

Despite its simplicity, the derivation presented here has to be regarded as complementary to that in [4] and by no means as its generalization. This is because the one here has its limitations as well: it only involves states with winding numbers $\omega=0, \pm 1$ and deals with the cases in which the $n-2$ states with $\omega \neq 0$ belong to the highest or lowest weight representations. Still, this is the simplest derivation of winding violating processes in AdS_{3} and the simplest example of WZW-Liouville correspondence given so far.
[1] J. M. Maldacena and H. Ooguri, Strings in AdS_{3} and the SL (2,R) WZW model. Part 3: Correlation functions, Phys. Rev. D 65, 106006 (2002).
[2] J. M. Maldacena and H. Ooguri, Strings in AdS_{3} and the SL ($2, \mathrm{R}$) WZW model. Part 1: The spectrum, J. Math. Phys. (N.Y.) 42, 2929 (2001).
[3] S. Ribault, Knizhnik-Zamolodchikov equations and spectral flow in AdS3 string theory, J. High Energy Phys. 09 (2005) 045.
[4] G. Giribet, Violating the string winding number maximally in anti-de Sitter space, Phys. Rev. D 84, 024045 (2011).
[5] M. Wakimoto, Fock representations of the affine Lie algebra A(1) ${ }^{1}$, Commun. Math. Phys. 104, 605 (1986).
[6] K. Becker and M. Becker, Interactions in the SL(2,R)/U(1) black hole background, Nucl. Phys. B418, 206 (1994).
[7] G. Giribet and C. Núñez, Aspects of the free field description of string theory on AdS_{3}, J. High Energy Phys. 06 (2000) 033.
[8] G. Giribet and C. Núñez, Correlators in AdS_{3} string theory, J. High Energy Phys. 06 (2001) 010.
[9] M. Goulian and M. Li, Correlation Functions in Liouville Theory, Phys. Rev. Lett. 66, 2051 (1991).

