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To clarify certain nonlinear properties of strong gravitational field, we investigate cylindrically
symmetric gravitational waves that are localized as regular wave packets in the space of radial and time
coordinates. The waves are constructed by applying a certain kind of harmonic mapping method to the seed
solutions with linear polarization, which are generalizations of the solution representing a cylindrical
gravitational pulse wave discussed by Weber, Wheeler, and Bonnor. The solutions obtained here, though
their form is rather simple, show occurrence of strong mutual conversion between a linear mode and a cross
mode apparently. The single localized wave shows the conversion in the vicinity of the symmetric axis
where the self-interaction is strengthened, and the collision between multiple waves also causes the
conversion. These phenomena can be thought to be the emergence of genuine nonlinearity that the Einstein
gravity holds. Finally we discuss a simple, but interesting application of the solutions to the case of the
Einstein-Maxwell system.

DOI: 10.1103/PhysRevD.96.024023

I. INTRODUCTION

Just before the elapse of a hundred years since Einstein
predicted the existence of gravitational waves, the predic-
tion was directly confirmed at last [1]. Needless to say, the
success of the discovery is owed to heroic experimental
efforts [2]. At the same time, the success has also been
supported by the sustained great theoretical developments
of general relativity, directly or indirectly. This epoch-
making discovery must open up a new astronomical
window in the near future, and also may bring us the
clues to unlock the secret of gravitation and spacetime in
the Universe. The new progress brought by the discovery
will also urge the study based on the exact solutions of the
Einstein equations (one of most traditional approaches) to
enter into a new phase wherein strong nonlinear effects that
have not been discovered so far can be found as new
observational phenomena in gravitational waves.
Actually, however, as pointed out by [3], most of the

traditional studies done so far mainly have focused on the
geometric analysis of spacetime structure, and compara-
tively the studies treating dynamical effects of gravitational
interaction are not so many. For example, as the main
stream of study of general relativity that once existed, we
easily come up with the studies made intensively from the
1970s to the 1980s by using the exact solutions that
represent colliding plane waves (for more details, see [4]
and references therein). Most of the studies were devoted

to rather restricted aspects of nonlinearity originating
from the Einstein gravity, for example, the global structure
of spacetimes or formation of singularities. Relatively
recently, several researchers have studied the physical wave
phenomena related to nonlinear interaction of gravitational
waves itself: the gravitational Faraday effect [5,6], the time
shift phenomena [7,8], and so on (for more details, see [9]
and references therein). From the present standpoint after
the direct discovery of gravitational waves, it is not too
much to say that many physically interesting solutions,
regardless of whether or not they are known, still remain
without being thoroughly investigated in different ways
than before.
To shed some new light on nonlinear features of

gravitational waves, in previous works [10–13], we studied
cylindrically symmetric gravitational solitonic waves with
nonaligned polarizations that are constructed on flat and
Levi-Cività spacetime backgrounds by the inverse scatter-
ing method [14,15]. Through those studies, some interest-
ing behaviors of the waves (time shift, gravitational
Faraday effect, etc.) were examined. Related to the present
work, it is noteworthy that the solutions dealt with
especially in the second paper [11] have important char-
acteristics to observe the nonlinear features of the waves
clearly. In summary, the characteristics of these waves are
as follows: the background where the gravitational inter-
actions occur is a regular flat spacetime; the waves are
regular and localized on a one-dimensional space of a radial
coordinate in a cylindrical coordinate system, and are
asymptotically well behaved; even single waves must
become inevitably strong when concentrated on the axis
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of symmetry at the reflection. These characteristics may be
advantageous to the deduction of more detailed information
about the effects of strong gravitational interactions, in
comparison with other types of exact solutions like plane
symmetric waves on flat backgrounds or cosmological
backgrounds. Actually, the solutions concerned here can be
considered to represent regular and localized waves propa-
gating in the one-dimensional space, so that we can take a
simple viewpoint of one-dimensional wave phenomena, for
example, reflection of a wave at a boundary (i.e., a
symmetric axis), or collision of an ingoing wave and an
outgoingwave. Thenwe just need to analyze the behavior of
the one-dimensional wave by tracing the time sequence of
the so-called cylindrical energy (C-energy) and its deriva-
tives (i.e., density and fluxes) [16]. To be able to use thewell-
defined gravitational energies like the C-energy is another
advantage of cylindrical symmetric cases. The work of [17]
presented another type of energy that is mathematically
established. In the rest of this article, however, we use the
C-energy only, because both of the two energies show the
same behavior qualitatively as shown in the last section. We
can therefore perform unambiguously the analysis to extract
physical characteristics based on these quantities.
Standing on the above-mentioned viewpoint, we advance

the investigation of nonlinear features of gravitational
waves. The solitonic waves considered previously have rich
structure, but are rather complicated for systematic handling.
To develop the study, we need a different type of solution.
Hence we adopt, as research objects in this paper, some
variations of the famous exact solution that was discussed by
Weber, Wheeler, and Bonnor (WWB) in the early period
[18,19]. The original WWB solution represents the cylin-
drical gravitational wave that can be considered to be
localized on the one-dimensional space. TheWWB solution
belongs to a class of Einstein-Rosen-type solutions [20],
which is given by solving a linear wave equation directly,
and further has a simple expression described with elemen-
tary functions. So theWWBsolution has been used to clarify
physical features of gravitational waves for a long time (for
example, see [21]). Recently, the cylindrical wave solution
was used to study dragging effects by gravitational waves
[22–24]. However, in principle, the Einstein-Rosen-type
solutions have only a linear polarization mode (i.e., þ
mode), so that genuine nonlinearity that originates from
the interaction of independent two modes (i.e., þ and ×
modes) of gravitationalwaves cannot be treated by using this
type of solution. To advance the study, we therefore need to
extend the WWB solution to include both modes [7].
To construct variations of the WWB solution, we use one

of the techniques based on harmonic maps [25]. As is well
known, if a spacetime has two commuting Killing vectors,
the Einstein equations are reduced to the so-called Ernst
equation, which can be considered from a mathematical
viewpoint as the equation that determines a certain kind of
harmonic map. In brief, the harmonic map is defined as the

map that gives an extremum of a so-called “energy func-
tional” for any maps from a base manifold to a target
manifold. This mathematical scheme is also used under the
name of nonlinear sigma model in theoretical physics. The
energy functional just corresponds to an “action functional.”
In the case of vacuumEinstein equations, gravitational fields
can be described compactly with one complex field called
Ernst potential, which corresponds to the harmonic map
from a virtual three-dimensional Minkowski space to a
one-dimensional complex hyperbolic space. Because of the
nonlinearity of the basic equations to determine such
harmonic maps, the explicit construction of the correspond-
ing solutions is a quite difficult task, though the equation has
a simple form. Nevertheless, the construction of the exact
solutions has a long history to overcome the nonlinearity,
and several useful methods are now available.
Among these methods, here we adopt the most simple

one, which is based on the mathematical fact that a
composite map of a geodesic curve in a target space and
an appropriate harmonic scalar function is a harmonic map
required [25]. In both axially symmetric stationary cases
and plane symmetric cases, similar methods have often
been used, and many important solutions that describe
charged black holes or colliding plane waves have been
derived [4,26]. On the other hand, in the cylindrically
symmetric case, though solitonic methods [15] or complex
coordinate transformations [27–29] have been used, there
seem to be few works that treat the solutions derived by the
simple composite harmonic map. In an exceptional work,
Halilsoy once used this method to derive some cross-
polarized solutions from the Einstein-Rosen-type solutions
including the WWB solution [30]. However, it seems that
such solutions have not yet been physically investigated
enough, and have been neglected for a long time, probably
due to rather simple expressions of the solutions.
Hence as a first step from the point of view mentioned

above, we construct new variations of the WWB solution
including Halilsoy’s one by using the method of composite
harmonic mapping. As described in Sec. III, the solutions
considered here have four main parameters ða; c; δ; AÞ:
Using these parameters, we can explore the physical
behavior of the gravitational waves corresponding to the
solutions. Through the systematic analysis of the solutions,
we can clarify the nonlinear properties of the gravitational
waves, especially by observing the time variation of mutual
transformation between the linear mode and the cross mode.
As a further application of the generated solutions, it is

worth noting that we can easily set up collision between
multiple cylindrically symmetric waves as a kind of
theoretical experiment, owing to the convenience of the
solution-generation technique adopted here. For example,
the solution representing collision of one localized wave
against a pulselike wave train can be constructed easily. The
solution itself is a rather restricted one; however, its
behavior may be interesting enough.
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To extend the present analysis to other cylindrically
symmetric gravitational systems, the Einstein-Maxwell
system in four-dimensional spacetime, as a next step, is
interesting and appropriate for the applicationof theharmonic
mapping method, though the system is more complicated
than the Einstein vacuum case. In this place, instead of using
the same approach as above, we pay attention to a simple, but
useful mathematical fact as follows: when four physical
degrees of freedom of the Einstein-Maxwell equations are
consistently reduced to two physical degrees of freedom (one
is for gravitational fields, and the other is forMaxwell fields),
these truncated Einstein-Maxwell equations are mathemati-
cally equivalent to the vacuum Einstein equations. Using this
fact, one can show that the set of solutions of the vacuum
Einstein equations considered above is directly transformed
into a subset of solutions of the Einstein-Maxwell equations.
As discussed in Sec. VI, this transformation is a rather trivial
one fromamathematical viewpoint, but once the solutions are
interpreted as solutions of Einstein-Maxwell equations, the
solutions have a different meaning physically, and further
may become important in some situations.
This paper is organized as follows. In Sec. II, we first

introduce the basic equations reduced from the vacuum
Einstein equations under the assumption of cylindrical
symmetry. After we briefly explain the composite harmonic
mapping method to solve the basic equations, we give a
formal expression of the solution to the basic equations using
a harmonic function (speaking more exactly, a wave func-
tion). In Sec. III, following thework inRef. [5], we define the
amplitudes of cylindrical gravitational waves as useful tools
for analysis. The amplitudes are simply expressed using the
harmonic function prepared.Next,weproceed to the analysis
under these preparations. In Sec. IV,wegeneralizeHalilsoy’s
solution, by extending theWWB solution to include the time
asymmetry. The explicit expression of the obtained solution
is summarized. In Sec. V, using the solution in Sec. IV, we
investigate nonlinear features of the waves. This section
splits into three parts: in Sec. A, the asymptotic behaviors of
the waves are considered, in Sec. B, the behaviors of single
waves near a symmetric axis at reflection are examined, and
in Sec. C, the collisions of gravitational wave pulses are
treated. In Sec. VI, as further generalizations, we give two
other solutions that have explicit expressions. On the whole,
the analysis is conducted with attention to conversion
phenomena between two different polarization modes
(þ mode and × mode). The final Sec. VI is devoted to
summary and discussion, where as stated above, physical
meaning of mutual transformation between one gravitational
mode and one electromagnetic mode is also considered.

II. BASIC EQUATIONS AND FORMAL
EXPRESSION OF GENERAL SOLUTIONS

For the spacetimes corresponding to cylindrically sym-
metric vacuum Einstein equations, we can use the follow-
ing Kompaneets-Jordan-Ehlers form [31],

ds2 ¼ e2ψðdzþ ωdϕÞ2 þ ρ2e−2ψdϕ2

þ e2ðγ−ψÞð−dt2 þ dρ2Þ; ð1Þ

where the functions ψ , ω, and γ depend on the time
coordinate t and the radial coordinate ρ only. Using this
metric form, the vacuum Einstein equations are reduced to
the following set of equations:

ψ ;tt −
1

ρ
ψ ;ρ −ψ ;ρρ¼

e4ψ

2ρ2
½ðω;t Þ2 − ðω;ρ Þ2�; ð2Þ

ω;tt þ
1

ρ
ω;ρ −ω;ρρ¼ 4ðω;ρ ψ ;ρ −ω;t ψ ;t Þ; ð3Þ

γ;ρ¼ ρ½ðψ ;t Þ2 þ ðψ ;ρ Þ2� þ
e4ψ

4ρ
½ðω;t Þ2 þ ðω;ρ Þ2�; ð4Þ

γ;t¼ 2ρψ ;t ψ ;ρþ
e4ψ

2ρ
ω;t ω;ρ : ð5Þ

We further introduce the following quantity E (called Ernst
potential):

E ¼ e2ψ þ iΦ: ð6Þ

Here the imaginary part Φ is defined with ω through

Φ;t ¼
1

ρ
e4ψω;ρ ; Φ;ρ¼

1

ρ
e4ψω;t ; ð7Þ

whose integrability is ensured by Eq. (3). From the
compatibility of the above definition, Φ satisfies the
following equation:

Φ;tt −
1

ρ
Φ;ρ −Φ;ρρ¼ 4ðΦ;t ψ ;t −Φ;ρ ψ ;ρ Þ: ð8Þ

The equations for the Ernst potential therefore can be
combined into a single equation,

∇2E −
2

Eþ Ē
∇E ·∇E ¼ 0; ð9Þ

where the operators ∇ and ∇2 are defined as the gradient
and the d’Alembertian on a three-dimensional Minkowski
spacetime with cylindrical symmetry. This equation may
be considered a cylindrical symmetric version of the
Ernst equation originally introduced on a stationary axis-
symmetric spacetime, so we also call the above equation
the Ernst equation. The Ernst equation gives harmonic
maps from a hypothetical three-dimensional Minkowski
space(M3) to a two-dimensional hyperbolic space (H2).
Actually the potential space has the following line element,
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ds2 ¼ 2

ðEþ ĒÞ2 dEdĒ ¼ dx2 þ dy2

y2
; ð10Þ

which corresponds to the so-called Poincaré’s upper half-
plane model, whenΦ and e2ψ are assigned to the horizontal
axis x and the vertical axis y of the half plane, respectively.
As stated in Sec. I, we use the fact that composition
of geodesics in a potential space and an appropriate
harmonic scalar function is a harmonic map. Let us
consider composition of τðxÞ∶M3 →R and EðτÞ∶R→H2.
Equation (9) then is written as follows:

�
d2E
dτ2

−
2

Eþ Ē

�
dE
dτ

�
2
�
∇τ ·∇τ þ dE

dτ
∇2τ ¼ 0: ð11Þ

So the composite mapping function EðτðxÞÞ gives a
harmonic map when the function τ and the mapping
function E satisfy the following equations,

∇2τ ¼ 0;
d2E
dτ2

−
2

Eþ Ē

�
dE
dτ

�
2

¼ 0; ð12Þ

respectively. The first equation is just a linear wave
equation in a cylindrically symmetric flat spacetime, so
that general solutions can be represented with Bessel
functions formally. On the other hand, the nonlinearity is
confined into the second equation, which has been reduced
to a geodesic equation in the hyperbolic space H2. For the
latter equation the variable τ plays the role of an affine
parameter. As a well-known fact, when considering the
Poincaré half-plane model, the geodesics corresponding to
the latter equation are represented as semicircles, whose
centers are on the real axis assigned to Φ, and hence the
general expression of the geodesics is given as follows,

ðΦ;e2ψ Þ¼
�
x0þR

1−s2

1þs2
;R

2s
1þs2

�
∶ s¼e2ðτþτ0Þ; ð13Þ

where R is a positive constant (i.e., radius of the semicircle)
and τ0 is a real constant. As a result, once the linear wave
function τ is specified, the corresponding new Ernst
potential can be obtained directly. The above expression
still has some gauge redundancy: the parameters x0 and τ0
can take any real number, independently. Using this
arbitrariness, one can show that after setting x0 to R and
replacing s with s=A, the Ernst potential has an overall
factor 2RA. This factor can be absorbed by scaling the
coordinates z and ϕ, and renormalizing the metric coef-
ficient γ. Finally, as a general expression, E is reduced to
the following simple form:

E ¼ s
s2 þ A2

þ i
A

s2 þ A2
: ð14Þ

It is noted here that if we take s−1 as the seed of the Ernst
potential, the same expression is also derived by the Ehlers

transformation. For later convenience, some useful formu-
las are presented. From Eq. (14), each part of the Ernst
potentials is given,

e2ψ ¼ 1

e−2τ þ A2e2τ
; Φ ¼ Ae2τ

e−2τ þ A2e2τ
; ð15Þ

with s ¼ e−2τ, respectively. From Eq. (7), the metric
component ω can be expressed as a contour integral along
an appropriate path,

ω ¼ 4A
Z

ρ½τ;t dρþ τ;ρ dt�: ð16Þ

The following formulas are also useful:

�
ψ ;t
ψ ;ρ

�
¼ e−2τ − A2e2τ

e−2τ þ A2e2τ

�
τ;t
τ;ρ

�
;

e2ψ

2ρ

�
ω;t
ω;ρ

�
¼ 4A

e−2τ þ A2e2τ

�
τ;ρ
τ;t

�
: ð17Þ

Using the above formulas, we can easily derive the
equations that determine γ as follows:

γ;t ¼ 2ρτ;t τ;ρ ; γ;ρ ¼ ρ½ðτ;t Þ2 þ ðτ;ρ Þ2�: ð18Þ

The metric function γ is the so-called C-energy, which is
very useful for the later analysis, which plays a role of
“gravitational energy” [16]. It is hence shown from the
above equations that this C-energy has no dependence on
the parameter A. In fact, this is ensured by the fact that the
right-hand sides of Eqs. (4) and (5) are invariants under the
isometry of the potential space.

III. AMPLITUDES

When one considers the propagation of cylindrically
symmetric gravitational waves with two polarization
modes, it is of great convenience to use the definitions
for the amplitudes of the nonlinear waves in Ref. [5],
which are defined as follows: The ingoing amplitudes
ðAþ; A×Þ and outgoing amplitudes ðBþ; B×Þ are given,
respectively, by

Aþ ¼ 2ψ ;v; ð19Þ

Bþ ¼ 2ψ ;u; ð20Þ

A× ¼ e2ψω;v

ρ
; ð21Þ

B× ¼ e2ψω;u

ρ
; ð22Þ

where the ingoing and outgoing null coordinates u and v
are defined by u¼ðt−ρÞ=2 and v¼ðtþρÞ=2, respectively.
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The indices þ and × denote the quantities associated with
the respective polarizations. Then, the vacuum Einstein
Eqs. (2)–(5) can be written only in terms of these quantities;
actually, the nonlinear differential Eqs. (2) and (3) for the
functions ψ and ω are replaced by

Aþ;u ¼
Aþ − Bþ

2ρ
þ A×B×; ð23Þ

Bþ;v ¼
Aþ − Bþ

2ρ
þ A×B×; ð24Þ

A×;u ¼
A× þ B×

2ρ
− AþB×; ð25Þ

B×;v ¼ −
A× þ B×

2ρ
þ A×Bþ; ð26Þ

and a couple of the Eqs. (4) and (5) that determine the
function γ can be rewritten in terms of the amplitudes as

γ;ρ ¼
ρ

8
ðA2þ þ B2þ þ A2

× þ B2
×Þ; ð27Þ

γ;t ¼
ρ

8
ðA2þ − B2þ þ A2

× − B2
×Þ: ð28Þ

In particular, if the metric takes a diagonal form, i.e.,
A× ¼ B× ¼ 0, Eqs. (23)–(26) are reduced to the set of the
linear equations,

Aþ;u ¼
Aþ − Bþ

2ρ
; ð29Þ

Bþ;v ¼
Aþ − Bþ

2ρ
; ð30Þ

which is another form of the wave equation ∇2ψ ¼ 0.
From Eq. (27), γ;ρ can be naturally interpreted as the total

energy density of cylindrical waves, which we denote by E
in what follows. The energy densities assigned to the þ
mode and × mode, respectively, as

Eþ ≔
ρ

8
ðA2þ þ B2þÞ; ð31Þ

E× ≔
ρ

8
ðA2

× þ B2
×Þ: ð32Þ

This C-energy density γ;ρ is locally measurable for an
observer along the world line ρ ¼ const. According to
Thorn [16], the total energy per unit length of z contained
within the radius ρ0 (: constant) at a certain time t is defined
with E as

Eðt; ρ0Þ ¼
Z

ρ0

0

Edρ ¼ γðt; ρ0Þ − γðt; 0Þ: ð33Þ

Similarly, the total energies assigned to the þ and × modes
can be defined, respectively, as

Eþðt; ρ0Þ ¼
Z

ρ0

0

Eþdρ; ð34Þ

E×ðt; ρ0Þ ¼
Z

ρ0

0

E×dρ: ð35Þ

Note that for the expression obtained in the previous
section, the wave amplitudes can be generally written as

Aþ ¼ 2e2ψðe−2τ − A2e2τÞðτ;t þ τ;ρÞ; ð36Þ

Bþ ¼ 2e2ψ ðe−2τ − A2e2τÞðτ;t − τ;ρÞ; ð37Þ

A× ¼ 4Ae2ψðτ;t þ τ;ρÞ; ð38Þ

B× ¼ −4Ae2ψðτ;t − τ;ρÞ: ð39Þ

Therefore, the ratios of the × mode to the þ mode are
given by

B2
×

B2þ
¼ 4A2

ðe−2τ − A2e2τÞ2 ;
A2
×

A2þ
¼ 4A2

ðe−2τ − A2e2τÞ2 : ð40Þ

It immediately turns out from the above equations that
the ratios Eþ=E and E×=E can be expressed, respectively, as

Eþ
E

¼
�
e−2τ − A2e2τ

e−2τ þ A2e2τ

�
2

; ð41Þ

E×

E
¼

�
2A

e−2τ þ A2e2τ

�
2

; ð42Þ

and the necessary and sufficient condition for E× > Eþ is

1

2
ln

ffiffiffi
2

p
− 1

A
< τ <

1

2
ln

ffiffiffi
2

p þ 1

A
; ð43Þ

which is of great use for the later analysis of the exact
solutions.

IV. GENERALIZATION OF THE
HALILSOY SOLUTION

In this section, we generalize the Halilsoy pulse solution
in Ref. [30], which was obtained by performing the
harmonic mapping method for the WWB pulse. To this
end, first, we generalize the WWB solution to have the
additional parameter that presents the extent of time
asymmetry. Next, by regarding the generalized WWB
solution as a seed, we can present the generalization of
the Halilsoy pulse solution with the additional parameter.
Let us recall that for the 0th order Bessel function J0ðxÞ,

the following integral formula holds,
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Z
∞

0

e−αkJ0ðkρÞdk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ α2

p ; ð44Þ

where α is a constant. If one considers the constant α to be a
complex number and puts α ¼ a − it (t and a are a time
coordinate and a positive constant, respectively), one can
obtain the following formal expression:Z

∞

0

e−kða−itÞJ0ðkρÞdk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ða − itÞ2

p : ð45Þ

The real and imaginary parts of the above equation are
written, respectively, asZ

∞

0

e−kaJ0ðkρÞ cosðktÞdk

¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 − ρ2 − a2Þ2 þ 4a2t2

p
− ðt2 − ρ2 − a2Þ

ðt2 − ρ2 − a2Þ2 þ 4a2t2

s
;

ð46Þ

Z
∞

0

e−kaJ0ðkρÞ sinðktÞdk ¼
ffiffiffi
2

p
atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt2 − ρ2 − a2Þ2 þ 4a2t2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt2 − ρ2 − a2Þ2 þ 4a2t2
p

− ðt2 − ρ2 − a2Þ
q : ð47Þ

In terms of the new coordinates ðx; yÞ defined as

ρ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þðy2 − 1Þ

q
; t ¼ axy; ð48Þ

the real part and the imaginary part multiplied by the
constants c and c=

ffiffiffi
2

p
, respectively, can be written in the

considerably simple forms

τeven ¼ c
Z

∞

0

e−kaJ0ðkρÞ cosðktÞdk ¼ c
a

y
x2 þ y2

; ð49Þ

τodd ¼
cffiffiffi
2

p
Z

∞

0

e−kaJ0ðkρÞ sinðktÞdk ¼ c
a

x
x2 þ y2

: ð50Þ

Moreover, superposing the two solutions to the wave
equation, we can obtain themore general solution as follows,

τ ¼ cðτeven cos δþ τodd sin δÞ ð51Þ

¼ c
a
y cos δþ x sin δ

x2 þ y2
; ð52Þ

where δ is a real constant. Substituting the above τ for the
right-hand side of Eq. (16), we can integrate ω to find

ω ¼ ωeven cos δþ ωodd sin δ; ð53Þ
where ωeven and ωodd are obtained by the substitutions
of τeven and τodd, respectively, for the right-hand side of
Eq. (16), to be determined, up to a constant, as

ωeven ¼ −4Ac
xðy2 − 1Þ
x2 þ y2

; ð54Þ

ωodd ¼ −4Ac
yðx2 þ 1Þ
x2 þ y2

: ð55Þ

Also, replacing τ in Eq. (18) with Eq. (52), we can integrate γ
to give

γ ¼ γevencos2δþ γoddsin2δþ γcross sin 2δþ
c2

4a2
; ð56Þ

where

γeven ¼
c2ðx2 þ 1Þ½−x6 þ x4ð1 − 4y2Þ þ 3x2y2ðy2 − 2Þ − 2y6 þ y4�

4a2ðx2 þ y2Þ4 ; ð57Þ

γodd ¼ −
c2ðx2 þ 1Þ½x6 þ x4ð2y2 þ 1Þ þ x2ð9y4 − 6y2Þ þ y4�

4a2ðx2 þ y2Þ4 ; ð58Þ

γcross ¼
4c2xyðx2 þ 1Þðy2 − 1Þðx2 − y2Þ

4a2ðx2 þ y2Þ4 : ð59Þ

Thus, regarding the generalized WWB pulse solution as the
seed of the harmonic mapping, we have obtained the
generalization of the Halilsoy solution given by the three
functions ðτ;ω; γÞ, which depends on only t and ρ, and has

the four parameters ða; c; δ; AÞ. The first two parameters a
and c are already held by the WWB solution, and are
related to the width and amplitude of the wave, respectively.
The third parameter δ is first introduced here to show the
extent of time asymmetry of the solutions. The fourth
parameter A implies the measurement of the extent of
nonlinearity, in particular, the case A ¼ 0 corresponds to
the Einstein-Rosen-type linear waves. Note that the case
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δ ¼ 0 [namely, the solution expressed by only
ðτeven;ωeven; γevenÞ] corresponds to the Halilsoy solution
[18,19]. In the following section, by varying these param-
eters, we see the physical behavior of the gravitational
waves that the solutions describe.

V. ANALYSIS

In this section, we study the nonlinear properties of the
gravitational waves through the analysis of the exact
solutions obtained in the previous section, especially by
observing the time variation of the mutual transformation
between the þ mode and × mode. First of all, we focus on
the asymptotic behaviors of gravitational pulse waves in the
neighborhood of the spacetime boundaries, the axis ρ ¼ 0
with t ¼ constant, spacelike infinity ρ → ∞with t constant,
future null infinity v → ∞ with u constant, and past null
infinity u → −∞ with v constant. Next, we also consider
how much the nonlinear interaction converts the þ mode
(× mode) pulse wave to the × mode (þ mode) pulse wave
(such a nonlinear effect is often called the gravitational
Faraday effect) at the reflection of the gravitational pulse
waves at the axis. Finally, we numerically study how the
mode conversion occurs when two single pulses, an out-
going gravitational pulse and an ingoing pulse, collide,
and also when a single outgoing pulse and multi-ingoing
pulses collide.

A. Asymptotics

Near the axis ρ ¼ 0 ðt ¼ constÞ, the metric is approxi-
mated by

ds2≃e
2cðacosδþtsinδÞ

a2þt2

�
1þA2e

4cðacosδþtsinδÞ
a2þt2

�
−1
ðdz−4AcsinδdϕÞ2

þρ2e−
2cðacosδþtsinδÞ

a2þt2

�
1þA2e

4cðacosδþtsinδÞ
a2þt2

�
dϕ2

þe−
2cðacosδþtsinδÞ

a2þt2

�
1þA2e

4cðacosδþtsinδÞ
a2þt2

�
ð−dt2þdρ2Þ:

ð60Þ

From this asymptotic form, it is straightforward to show the
absence of the deficit angle Δϕ, namely,

Δϕ ≔ 2π − lim
ρ→0

R
2π
0

ffiffiffiffiffiffiffigϕϕ
p dϕR ρ

0

ffiffiffiffiffiffigρρ
p dρ

ð61Þ

¼ 0: ð62Þ

This means that if one chooses the periodicity of the
angular coordinate ϕ to be 0 ≤ ϕ < 2π, no deficit angle is
present on the axis. Near the axis ρ ¼ 0, the energy
densities corresponding to the þ mode and × mode waves
behave, respectively, as

ρ

8
A2þ ≃ ρ

8
B2þ ≃

c2
�
1 − A2e

2cð2a cos δþt sin δÞ
a2þt2

�
2ð−4at cos δþ ða2 − t2Þ sin δÞ2

8
�
1þ A2e

2cð2a cos δþt sin δÞ
a2þt2

�2ða2 þ t2Þ4
ρ; ð63Þ

ρ

8
A2
× ≃ ρ

8
B2
× ≃ c2A2e

2cð2a cos δþt sin δÞ
a2þt2 ð−4at cos δþ ða2 − t2Þ sin δÞ2

2
�
1þ A2e

2cð2a cos δþt sin δÞ
a2þt2

�
2ða2 þ t2Þ4

ρ: ð64Þ

At spacelike infinity ρ → ∞ðt ¼ constÞ, we have the
asymptotic form of the metric

ds2 ≃ 1

1þ A2
dz2 þ ρ2ð1þ A2Þdϕ2

þ ð1þ A2Þe− c2

2a2ð−dt2 þ dρ2Þ: ð65Þ

It turns out that the spacetime is locally Minkowski
spacetime since this metric can be written as

ds2 ≃ ðdz0Þ2 þ ρ02ðdϕ0Þ2 − ðdt0Þ2 þ ðdρ0Þ2; ð66Þ

where we have defined the new coordinates ðz0;ϕ0; t0; ρ0Þ
such that

z0 ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p ; ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e

c2

4a2ϕ;

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e−

c2

4a2t; ρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e−

c2

4a2ρ: ð67Þ
However, the periodicity of ϕ0 cannot be 2π as long as one
assumes the periodicity of ϕ is 2π. In fact, at infinity, the
deficit angle can be computed as

Δϕ ≔ 2π − lim
ρ→∞

R
2π
0

ffiffiffiffiffiffiffigϕϕ
p dϕR ρ

0

ffiffiffiffiffiffigρρ
p dρ

ð68Þ

¼ 2π
�
1 − e−

c2

4a2

�
: ð69Þ

It is obvious that the presence of this deficit angle is due to
the energy of the gravitational pulse waves. At infinity, the
energy densities behave as
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ρ

8
A2þ ≃ ρ

8
B2þ ≃ c2ð1 − A2Þ2cos2δ

2ð1þ A2Þ2ρ3 ; ð70Þ

ρ

8
A2
× ≃ ρ

8
B2
× ≃ 2c2A2cos2δ

ð1þ A2Þ2ρ3 ; ð71Þ

which become swiftly smaller as ρ becomes larger.
Let us consider the asymptotic behaviors of the pulse

waves at timelike infinity t→�∞ (ρ ¼ const). At t → �∞,
we have

ds2 ≃ 1

1þ A2
ðdz − 4Ac sin δdϕÞ2 þ ρ2ð1þ A2Þdϕ2

þ ð1þ A2Þe− c2

2a2ð−dt2 þ dρ2Þ; ð72Þ

which shows that at late (early) time, the spacetime
approaches Minkowski spacetime. Actually, in terms of
the new coordinates ðz00;ϕ00; t00; ρ00Þ

z00 ¼ z − 4A sinðδÞϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p ; ϕ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e

c2

4a2ϕ;

t00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e−

c2

4a2t; ρ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
e−

c2

4a2ρ; ð73Þ
the asymptotic form of the metric turns out to be written as

ds2 ≃ ðdz00Þ2 þ ρ002ðdϕ00Þ2 − ðdt00Þ2 þ ðdρ00Þ2: ð74Þ
Since at both late and early times, the energy densities
behave as

ρ

8
A2þ ≃ ρ

8
B2þ ≃ ðA2 − 1Þ2c2ρsin2δ

8ðA2 þ 1Þ2t4 ; ð75Þ

ρ

8
A2
× ≃ ρ

8
B2
× ≃ A2c2ρsin2δ

2ðA2 þ 1Þ2t4 ; ð76Þ

the tails of thegravitationalwavesbecomesmaller and smaller.
At future null infinity v → ∞ (u ¼ const), the metric

behaves as

ds2≃ 1

1þA2

�
dz−2Ac

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð−uÞp

FðuÞcosδ− ffiffiffiffiffiffiffiffiffiffi
FðuÞp

Fð−uÞsinδÞ ffiffiffi
v

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þu2

p dϕ

�2
þρ2ð1þA2Þdϕ2þð1þA2ÞeFþð−dt2þdρ2Þ;

ð77Þ

where FðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4x2

p
þ 2x and

Fþ ¼ c2½a2ða2 − 4u2Þ cos 2δ − 4a3u sin 2δ − 2ða2 þ 4u2Þða2 þ 2uFðuÞÞ�
8ða2 þ 4u2Þ2a2 : ð78Þ

The energy densities of the outgoing waves corresponding to the þ and × modes behave as, respectively,

ρ

4
B2þ ≃ c2ð1 − A2Þ2½−2ða2 þ 2uFð−uÞÞ cos δþ aðFð−uÞ − 2uÞ sin δ�2

16ð1þ A2Þ2ða2 þ 4u2Þ3Fð−uÞ ; ð79Þ

ρ

4
B2
× ≃ c2A2½−2ða2 þ 2uFð−uÞÞ cos δþ aðFð−uÞ − 2uÞ sin δ�2

4ð1þ A2Þ2ða2 þ 4u2Þ3Fð−uÞ : ð80Þ

At past null infinity u → −∞ (v ¼ const), the metric behaves as

ds2≃ 1

1þA2

�
dzþ2Ac

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð−vÞp

FðvÞcosδ− ffiffiffiffiffiffiffiffiffiffi
FðvÞp

Fð−vÞsinδÞ ffiffiffiffiffiffi
−u

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þv2

p dϕ

�2
þρ2ð1þA2Þdϕ2þð1þA2ÞeF−ð−dt2þdρ2Þ;

ð81Þ

where

F− ¼ c2½a2ða2 − 4v2Þ cos 2δ − 4a3v sin 2δ − 2ða2 þ 4v2Þða2 − 2vFð−vÞÞ�
8ða2 þ 4v2Þ2a2 : ð82Þ

Similarly, the energy densities of the ingoing waves corresponding to the þ and × modes behave as, respectively,

ρ

4
A2þ ≃ c2ð1 − A2Þ2½2ða2 − 2vFðvÞÞ cos δþ aðFðvÞ þ 2vÞ sin δ�2

16ð1þ A2Þ2ða2 þ 4v2Þ3FðvÞ ; ð83Þ
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ρ

4
A2
× ≃ c2A2½2ða2 − 2uFðvÞÞ cos δþ aðFðvÞ − 2vÞ sin δ�2

4ð1þ A2Þ2ða2 þ 4v2Þ3FðvÞ :

ð84Þ

Therefore, it turns out that the ratios of the × mode to theþ
mode at future and past null infinities are, respectively,

B2
×

B2þ
¼ 4A2

ð1 − A2Þ2 ;
A2
×

A2þ
¼ 4A2

ð1 − A2Þ2 : ð85Þ

This means that these two ratios are exactly equal. It is
worth noting that this is a general fact because the result can
be derived directly from Eq. (40) if the harmonic function τ
vanishes at future and past null infinities, respectively, as

τ≃Oðð−uÞ−1
2Þ; ð86Þ

τ ¼ Oðv−1
2Þ: ð87Þ

B. Reflection

By observing the behaviors of the total energy density E,
the þ mode portion Eþ and the × mode portion E× around
the axis, we show, here, some interesting behaviors of the
gravitational waves that embody genuine nonlinearity of
gravitational interaction.

As a characteristic parameter set, we take ða; c; A; δÞ ¼
ð1; 2; 0.05; 0Þ, for example. The left, middle, and right
graphs in Fig. 1 display the time evolution of E, Eþ, and
E×, respectively, where gray, red, and blue ones in each
graph show the instantaneous figures corresponding to
t ¼ −15, 0, 14, respectively. From these behaviors of the
energy densities, we may consider that the gravitational
pulse is a regular wave packet that first comes into the
region near the symmetric axis from past null infinity and
leaves the axis after reflection for the future null infinity.
It should be especially remarked from Fig. 1 that the
latter two graphs are different from the first graph, which
shows the behavior of total energy density, namely, the þ
mode is dominant away from the axis of symmetry,
whereas the × mode can be comparable to the þ mode
near the axis.
The three graphs in Fig. 2 show the time dependence of

the ratio of the energy density of the þ mode wave to the
total energy density, Eþ=E, at each time of t ¼ −10, 0, 10.
It can be found that when the þ mode wave that comes in
from infinity reflects at the axis, the pulse with the × mode
is generated just for a moment but it soon vanishes, and the
pulse of almost theþmode goes out to the infinity. We
have numerically confirmed that in each case of A ≪ 1, the
behaviors of a pulse wave are considerably similar.
Next, by observing the time dependence of the ratio

Eþðt; ρ0Þ=Eðt; ρ0Þ, let us see how the C-energy is converted

FIG. 1. Time dependence of the energy densities E, Eþ, and E× for ða; c; A; δÞ ¼ ð1; 2; 0.05; 0Þ. Each figure displays the snapshots of
E, Eþ, and E× in the order from left to right, where the gray, red, and blue graphs show the pulses corresponding to t ¼ −15, 0, 14,
respectively.

FIG. 2. Time dependence of the ratio Eþ=E for ða; c; A; δÞ ¼ ð1; 2; 0.05; 0Þ. In the figures from left to right, the red graph display the
ratio at t ¼ −10, 0, 10
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between theþmode and × mode. The left graph in Fig. 5
shows the time dependence of Eþðt; 1000Þ=Eðt; 1000Þ for
−30 ≤ t ≤ 30. It can be seen from this graph that only
when the incident pulse with the þ mode that comes in
from infinity reflects at the axis around t ¼ 0, a large
amount of energy of the þ mode is transformed into the
energy of the × mode.
In contrast, for A ¼ 1, displayed numerically in Fig. 3,

Fig. 4, and in the right graph in Fig. 5, the behaviors of
gravitational pulses are quite different. From these figures,
it can be seen that the pulse of the × mode becomes
dominant at infinity ρ ¼ ∞, whereas at reflection at the

axis, the pulse of the þ mode only is just temporally
generated near the axis but decays far off the axis, and then
at last completely vanishes at infinity.
As has been studied by several researchers for two

decays [5,6], this conversion between the different polari-
zation modes is considered to be due to the nonlinear term.
In this present case, the parameter A physically represents
the extent of nonlinear interaction. In particular, for A ¼ 0,
the solution is reduced to the Einstein-Rosen type, which
describes the linear cylindrical waves of only almost the þ
mode. For A ≪ 1, only theþ mode is present at infinity far
from the axis of symmetry, whereas it is transformed into

FIG. 3. Time dependence of the energy densities E, Eþ, and E× for ða; c; A; δÞ ¼ ð1; 2; 1; 0Þ. Each figure displays the snapshots of E,
Eþ, and E× in the order from left to right, where the gray, red, and blue graphs show the pulses corresponding to t ¼ −15, 0, 14,
respectively.

FIG. 4. Time dependence of the ratio Eþ=E for ða; c; A; δÞ ¼ ð1; 2; 1; 0Þ. In the figures from left to right, the graphs display the ratio at
t ¼ −10, 0, 10.

FIG. 5. The left and right figures display the time dependence of the ratio Eþðt; 1000Þ=Eðt; 1000Þ for ða; c; A; δÞ ¼ ð1; 2; 0.05; 0Þ and
ða; c; A; δÞ ¼ ð1; 2; 1; 0Þ, respectively.
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the × mode during the reflection at the axis because the
nonlinear self-interaction is rather enhanced. For A≃ 1,
most only the × mode is present at infinity, whereas it is
transformed into the þ mode in the vicinity of the axis. We
have checked that for δ ≠ 0, the nonlinear effect, which
causes the conversion between the different two modes,
becomes much smaller than for δ ¼ 0.
For simplicity, we put δ ¼ 0. τ vanishes at both past and

future null infinities, so that it turns out from Eq. (43) that
E× > Eþ at null infinities if and only ifffiffiffi

2
p

− 1 < A <
ffiffiffi
2

p
þ 1: ð88Þ

On the other hand, near the axis, the behavior of τ is much
more complicated, since it has time dependence as

τ≃ ac
t2 þ a2

: ð89Þ

For example, if the parameters ða; c; AÞ satisfyffiffiffi
2

p
− 1 < A < ð

ffiffiffi
2

p
þ 1Þe−2c

a ; ð90Þ
the × mode always dominates over the þ mode at the axis.
Also as another example, for the parameter set of

ða; c; AÞ such that

ð
ffiffiffi
2

p
þ 1Þe−2c

a < A <
ffiffiffi
2

p
− 1; ð91Þ

at early time and late time, the þ mode is dominant at the
axis, whereas during the reflection of the pulse, the
dominant mode is, first, the × mode, then varies from
the × mode to theþmode, and returns to the ×mode again.

C. Collision

First, with the generalized Halilsoy solution obtained in
Sec. IV, let us construct the solutions that represent the
collision of multiple gravitational pulses and see numeri-
cally how the conversion between both the modes occurs
by the nonlinear interaction. Note that from the linearity
of τ and the formula (16) for ω, it can be easily shown
that if ðτ1;ω1; γ1Þ and ðτ2;ω2; γ2Þ are arbitrary solutions
generated by the harmonic mapping for the same A,
ðτ1 þ τ2;ω1 þ ω2; γÞ is also a solution, where γ is deter-
mined by replacing ðτ;ωÞ with ðτ1 þ τ2;ω1 þ ω2Þ in
Eq. (18). For instance, provided that ðτðtÞ;ωðtÞ; γðtÞÞ is
a solution with the parameters ða; c; A; δÞ generated by
the harmonic mapping, one can superpose two different
solutions obtained by time shifts t1, t2: ðτðt − t1Þ;
ωðt − t1Þ; γðt − t1ÞÞ and ðτðt− t2Þ;ωðt− t2Þ;γðt− t2ÞÞ for
the same ða; c; A; δÞ. Furthermore, in general, one can
superpose an arbitrary number of different solutions
with arbitrary parameters ðai; ci; δiÞ and time shifts ti:
ðτðt − tiÞ;ωðt − tiÞ; γðt − tiÞ; ai; ci; δiÞ for the same A, so
that by arranging the time shifts appropriately, the colli-
sional solutions required are obtained.
In the following, we set δ to 0 for simplicity. The upper

graphs in Fig. 6 show the collision of an outgoing small
pulse with ðt1; a1; c1Þ ¼ ð−45; 1; 2Þ and an ingoing large
pulse with ðt2; a2; c2Þ ¼ ð55; 1; 3Þ for A ¼ 0.05. The three
graphs are taken at t ¼ 0, 4.6, 10, respectively. The lower
graphs show how the ratio of the energy density of the þ
mode to the total energy density, Eþ=E, changes in the
collision process. It is numerically shown that before
the collision, the ratio Eþ=E is almost 1, whereas only at

FIG. 6. The upper graphs show the snapshots of pulses at the collision for ða1; a2; c1; c2; t1; t2; A; δÞ ¼ ð1; 1; 2; 3;−45; 55; 0.05; 0Þ,
where from left to right, the three graphs correspond to t ¼ 0, 4.6, 10. The lower graphs show the ratio Eþ=E at each time.
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the moment they collide, it is slightly decreased, and
after the collision, it again returns to 1. Moreover, the
left graph in Fig. 7 shows the time development of
Eþðt; 1000Þ=Eðt; 1000Þ. It can be seen that only when
two pulses with the þ mode collide at t≃ 4.6, just a little
amount of energy of the þ mode is transformed into the
energy of the × mode.
Next, we consider the collision of a single outgoing large

gravitational pulse with ðt0; a0; c0Þ and six ingoing small
gravitational pulses with ðti; ai; ciÞði ¼ 1;…; 6Þ and see
how they mutually interact. The upper graphs in Fig. 8
(Fig. 9) display the snapshots of the total energy density E at

each time of t ¼ 0, 13, 20 when a large pulse with
ðt0;a0;c0Þ¼ð−40;1=7;2Þ and small pulseswith ðti; ai; ciÞ ¼
ð56þ 4i; 1; 3Þ [ðti; ai; ciÞ ¼ ð58þ 2i; 1; 3Þ in Fig. 9]
for A ¼ 0.05, and the lower graphs show how the
ratio Eþ=E changes in the collision process for the corre-
sponding parameters. It is shown that when they collide, the
× mode is temporarily increased but is decreased shortly
afterward, and the þ mode becomes dominant at late time.
Also the left and right graphs in Fig. 10 display the time
development of Eþðt; 1000Þ=Eðt; 1000Þ for 0 ≤ t ≤ 20
for ða0;ai;c0;ci;A;δ;t0;tiÞ¼ð1=7;1;2;3;1;0;−40;56þ4iÞ
and ða0;ai;c0;ci;A;δ;t0;tiÞ¼ð1=7;1;2;3;1;0;−40;58þ2iÞ,

FIG. 7. The time dependence of the ratio Eþðt; 1000Þ=Eðt; 1000Þ when an outgoing pulse with ða1; c1; t1Þ ¼ ð1; 2;−45Þ and an
ingoing pulse with ða2; c2; t2Þ ¼ ð1; 3; 55Þ collide at t≃ 5, where the left and right graphs display the ratio for ðA; δÞ ¼ ð0.05; 0Þ and
ðA; δÞ ¼ ð1; 0Þ, respectively.

FIG. 8. The snapshots at the collision of a single large gravitational pulse with ðt0; a0; c0Þ ¼ ð−40; 1=7; 2Þ and six small gravitational
pulses with ðti; ai; ciÞ ¼ ð56þ 4i; 1; 3Þði ¼ 1;…; 6Þ for A ¼ 0.05 and δ ¼ 0, where from left to right, the three graphs correspond to
t ¼ 0, 13, 20. The lower graphs show the ratio Eþ=E at each time.
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respectively. Only at the moment the pulses collide, the
energy of the þ mode is converted to that of the × mode,
while the energy of the þ mode comes to dominate that of
the ×mode once they go away from each other. For δ ≠ 0, it
can be numerically confirmed that the rate of the conversion
from the þ mode to the × mode becomes smaller than
for δ ¼ 0.
For A≃ 1, the situation is considerably different. The

upper ones in Fig. 11 show the snapshots of t ¼ 0, 4.6, 10
at the collision of an outgoing small pulse with
ðt1; a1; c1Þ ¼ ð−45; 1; 2Þ and an ingoing large pulse with
ðt2; a2; c2Þ ¼ ð55; 1; 3Þ for A ¼ 1, and the lower ones
show the ratio Eþ=E at the respective times. From the

right graph in Fig. 7, it can be observed that the × mode is
dominant far away from the axis, whereas the × mode is
transformed into the þ mode only when two pulses
meet t≃ 4.6.
Figure 12 (Fig. 13) displays the snapshots of t ¼ 0, 13,

20 at the collisions of a large pulse with ðt0; a0; c0Þ ¼
ð−40; 1=7; 2Þ and six small pulses with ðti; ai; ciÞ ¼
ð56þ 4i; 1; 3Þ [ðti; ai; ciÞ ¼ ð58þ 2i; 1; 3Þ in Fig. 13]
for A ¼ 1 and the left (right) graph in Fig. 14 shows
the time development of the ratio Eþðt; 1000Þ=Eðt; 1000Þ
for 0 ≤ t ≤ 20. As is shown in these graphs, when
their pulses collide, the × mode is converted to the þ
mode by the nonlinear effect but it is soon decreased, and

FIG. 9. The upper graphs show the snapshots at the collision of a single large gravitational pulse with ðt0; a0; c0Þ ¼ ð−40; 1=7; 2Þ and
six small gravitational pulses with ðti; ai; ciÞ ¼ ð58þ 2i; 1; 3Þði ¼ 1;…; 6Þ for A ¼ 0.05 and δ ¼ 0, where from left to right, the three
graphs correspond to t ¼ 0, 13, 20. The lower graphs show the ratio Eþ=E at each time.

FIG. 10. The time dependence of the ratio Eþðt; 1000Þ=Eðt; 1000Þ when an outgoing pulse with ða0; c0; t0Þ ¼ ð1=7; 2;−40Þ and six
ingoing pulses with ðai; ciÞ ¼ ð1; 3Þ collide for (A ¼ 0.05, 0), where the left and right graphs display the ratio for ti ¼ 56þ 4i and
ti ¼ 58þ 2i (i ¼ 1;…; 6), respectively.
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after that collision, the þ mode becomes dominant at
late time.
We can summarize as follows. For 0 < A ≪ 1, the þ

mode is dominant at infinity far from the axis of symmetry,

whereas during the collision of their pulses, the mode is
transformed into the × mode due to the nonlinear
interaction between the pulses. On the other hand, for
A≃ 1, only the × mode exists at infinity, whereas it is

FIG. 11. The upper graphs show the snapshots of pulses at the collision for ða1; a2; c1; c2; t1; t2; A; δÞ ¼ ð1; 1; 2; 3;−45; 55; 1; 0Þ,
where from left to right, the three graphs correspond to t ¼ 0, 4.6, 10. The lower graphs show the ratio Eþ=E at each time.

FIG. 12. The upper graphs show the snapshots at the collision of a single large gravitational pulse with ðt0; a0; c0Þ ¼ ð−40; 1=7; 2Þ and
six small gravitational pulses with ðti; ai; ciÞ ¼ ð56þ 4i; 1; 3Þði ¼ 1;…; 6Þ for A ¼ 1 and δ ¼ 0, where from left to right, the three
graphs correspond to t ¼ 0, 15, 30. The lower graphs show the ratio Eþ=E at each time.
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transformed into the þ mode at the collision of the pulses.
Compared with the reflection at the axis of symmetry,
however, for the collision, the ratio of one mode to the
other mode turns out to be smaller. It may be expected
from this result that the more a gravitational wave is
concentrated, the greater its nonlinear interaction influ-
ence on the mode conversion.

VI. FURTHER GENERALIZATIONS

In the previous sections, we have studied the generalized
Halilsoy pulse solution, which is obtained from the
generalized WWB pulse solution. Furthermore, we can

consider more general pulse solutions that are obtained
from the general form of the extended seeds τ,

τ ¼ c
Z

∞

0

½fðkÞe−akJ0ðkρÞ cosðktÞ

þ gðkÞe−akJ0ðkρÞ sinðktÞ�dk; ð92Þ
where we consider that fðkÞ and gðkÞ are the arbitrary
functions of k such that this integral converges. The
generalized Halilsoy pulse solution obtained in the pre-
vious sections corresponds to fðkÞ¼ cosδ;gðkÞ¼ 1ffiffi

2
p sinδ.

In the following, we present three different types of
solutions.

FIG. 13. The upper graphs show the snapshots at the collision of a single large gravitational pulse with ðt0; a0; c0Þ ¼ ð−40; 1=7; 2Þ and
six small gravitational pulses with ðti; ai; ciÞ ¼ ð58þ 2i; 1; 3Þði ¼ 1;…; 6Þ for A ¼ 1 and δ ¼ 0, where from left to right, the three
graphs correspond to t ¼ 0, 13, 30. The lower graphs show the ratio Eþ=E at each time.

FIG. 14. The time dependence of the ratio Eþðt; 1000Þ=Eðt; 1000Þ when an outgoing pulse with ða0; c0; t0Þ ¼ ð1=7; 2;−40Þ and six
ingoing pulses with ðai; ciÞ ¼ ð1; 3Þ collide for (A ¼ 1, 0), where the left and right graphs display the ratio for ti ¼ 56þ 4i and
ti ¼ 58þ 2i (i ¼ 1;…; 6), respectively.
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A. f ðkÞ, gðkÞ: polynomial functions of k

If fðkÞ and gðkÞ are polynomial functions of k, it is direct
to obtain the integral expression of τ from the derivatives of
τeven and τodd with respect to the parameter a as follows:

τp ¼ cfð−∂aÞ
Z

∞

0

e−akJ0ðkρÞ cosðktÞdk

þ cgð−∂aÞ
Z

∞

0

e−akJ0ðkρÞ sinðktÞdk ð93Þ

¼ fð−∂aÞτeven þ
ffiffiffi
2

p
gð−∂aÞτodd: ð94Þ

It can be immediately shown from Eq. (85) that the two
ratios Eþ=E at future and past null infinities are the same
because τp vanishes at both null infinities, which is easily
derived from the fact that τeven and τodd vanish there.

B. f ðkÞ= 0, gðkÞ= 1=k
Next, let us consider the case of fðkÞ ¼ 0 and gðkÞ ¼

1=k as a seed solution for the harmonic map, in which case
the corresponding pulse solution τs can be written as

τs ≔ c
Z

∞

0

1

k
e−akJ0ðkρÞ sinðktÞdk

¼ csin−1
�

2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðtþ ρÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðt − ρÞ2

p �
þ π

2
α;

ð95Þ

where α is a constant and to obtain this integration
expression, we have used the formula for the Bessel
function in Ref. [32]. If one replaces τ in Eqs. (15), (16)
and (18) with τs, one can get a new pulse solution including
the four parameters ða; c; A; αÞ. At past null infinity
u ¼ −∞, the amplitudes behave as

ρ

4
A2þ ≃ c2

�
1 − A2e−2πðc−αÞ

1þ A2e−2πðc−αÞ

�
2 FðvÞ
a2 þ 4v2

þOðð−uÞ−1
2Þ;

ð96Þ

ρ

4
A2
× ≃ c2

�
2Ae−πðc−αÞ

1þ A2e−2πðc−αÞ

�
2 FðvÞ
a2 þ 4v2

þOðð−uÞ−1
2Þ;

ð97Þ

whereas at future null infinity v ¼ ∞, the outgoing ampli-
tude behaves as

ρ

4
B2þ ≃ c2

�
1 − A2e2πðcþαÞ

1þ A2e2πðcþαÞ

�
2 Fð−uÞ
a2 þ 4u2

þOðv−1
2Þ; ð98Þ

ρ

4
B2
× ≃ c2

�
2AeπðcþαÞ

1þ A2e2πðcþαÞ

�
2 Fð−uÞ
a2 þ 4v2

þOðv−1
2Þ: ð99Þ

It turns out that the ratios of the ×mode to theþmode yield

B2
×

B2þ
¼ 4A2e2πðcþαÞ

ð1 − A2e2πðcþαÞÞ2 ;
A2
×

A2þ
¼ 4A2e−2πðc−αÞ

ð1 − A2e−2πðc−αÞÞ2 ;

ð100Þ

which can be immediately obtained from Eqs. (40). This
result implies that the ratio of the þ mode to the × mode
for the ingoing pulse from past null infinity is different
from that for the outgoing pulse to future null infinity. This
difference may be considered to be due to the self-
interaction at the reflection at the axis. It is worth noting
that in general, this spacetime is not asymptotically
flat because the mathematical analysis in Ref. [33] shows
that τs must vanish at infinity for an asymptotically flat
spacetime.
Furthermore, as in the previous section, let us consider

the collision of two pulses, an outgoing pulse with
ða1; c1; α1; t1Þ and an ingoing pulse with ða2; c2; α2; t2Þ
for the same value of A. In particular, it is of physical
interest to impose the additional condition c1 ¼ −c2 to
guarantee asymptotic flatness at null infinity for the
solution corresponding to the collision of the two pulses.
The upper figures in Fig. 15 display the snapshots of t ¼ 0,
6.5, 10 at the collision of an outgoing pulse with
ða1; c1; α1; t1Þ ¼ ð1; π=2; 1;−43Þ and an ingoing pulse
with ða2; c2; α2; t2Þ ¼ ð1;−π=2; 1; 57Þ for A ¼ 10−7. As
seen in the lower figures, when an outgoing pulse with the
× mode and an incoming pulse with the þ mode collide,
they seem to bounce in mutually opposite directions.

C. f ðkÞ= 1= ffiffiffi
k

p
, gðkÞ= 0 or f ðkÞ= 0, gðkÞ= 1= ffiffiffi

k
p

Finally, let us consider the case of fðkÞ ¼ 1=
ffiffiffi
k

p
, gðkÞ ¼

0 or fðkÞ ¼ 0, gðkÞ ¼ 1=
ffiffiffi
k

p
. The explicit expression of τ

can be derived by using the formula in Ref. [34],

Z
∞

0

1ffiffiffi
k

p e−αkJ0ðkρÞdk ¼
ffiffiffi
π

p

ðα2 þ ρ2Þ14 P
0
−1
2

�
α

ðα2 þ ρ2Þ12
�
;

ð101Þ

and introducing the ðx; yÞ coordinates in (48),

τc ≔ c
Z

∞

0

1ffiffiffi
k

p e−akeiktJ0ðkρÞdk ð102Þ

¼ c
ffiffiffi
π

p

½ða − itÞ2 þ ρ2�14 P
0
−1
2

�
a − it

½ða − itÞ2 þ ρ2�12
�

ð103Þ

¼ c
ðyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ12 þ ixðyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ−1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aðx2 þ y2Þ

p P0
−1
2

×

�ð1þ x2Þy − iðy2 − 1Þx
x2 þ y2

�
; ð104Þ
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where P0
−1
2

ðxÞ is a Legendre function of x and we have

put α ¼ a − it. From the real and imaginary parts of τc,
one can obtain the harmonic functions ðτr; τiÞ correspond-
ing to fðkÞ ¼ 1=

ffiffiffi
k

p
, gðkÞ ¼ 0 or fðkÞ ¼ 0, gðkÞ ¼ 1=

ffiffiffi
k

p
,

namely, as

τr ≔ ℜ½τc�; τi ≔ ℑ½τc�: ð105Þ

At past null infinity u → −∞ and future null infinity
v → ∞, vc behaves as, respectively,

τc ≃Oðð−uÞ−1
2Þ; ð106Þ

τc ¼ Oðv−1
2Þ: ð107Þ

Therefore, from (40), the obtained solution has

A2
×

A2þ
¼ B2

×

B2þ
¼ 4A2

ð1 − A2Þ2 : ð108Þ

VII. SUMMARY AND DISCUSSION

In this work, we have studied the nonlinear properties of
strong gravitational field, based on the analysis of the mode
conversion of the cylindrically symmetric gravitational
waves. The solutions that have been treated here are more
controllable and of a different type compared with the
previous solitonic ones. To construct the solutions, we have
first extended the WWB pulse solution [18,19] within a
class of the Einstein-Rosen waves, and then, regarding the
extended linear pulse solution as a seed, obtained the

generalization of the Halilsoy’s WWB solution with non-
aligned polarization in Ref. [30] by the harmonic mapping
method. The general features of the solutions are as follows:
the obtained solutions describe the nonlinear gravitational
pulsewaveswith the two polarizations (þ and×modes) that
come from past null infinity, reflect at the axis, and return to
future null infinity; among the four parameters that the
solutions have, especially the parameter A is used to control
the extent of the nonlinearity of gravitational waves.
By varying the parameter A, we have observed the time

variation of mutual transformation between theþmode and
the ×mode. In particular, through the reflection process of a
single pulse wave and collision process of two waves, we
have investigated the nonlinearity of the gravitationalwaves.
To summarize, we can conclude as follows:
(i) Reflection: for some parameters (for instance,

A ¼ 0.05), when a pulse with only almost the þ
mode comes from past null infinity and reflects at
the axis, it is converted temporarily to the pulse with
the × mode, soon back to the þ mode only, and
returns to future null infinity, whereas for other ones
(for instance, A ¼ 1), vice versa. We may consider
that this occurs due to the very strong nonlinearity
since the self-interaction is considerably enhanced
when a pulse reflects at the axis of symmetry.

(ii) Collision: when gravitational pulses collide, the
pulse with only almost the þ mode is slightly
converted to that of the × mode but gets back to
the þ mode only, and vice versa. We may consider
that the nonlinear interaction has a greater influence
on the mode conversion when gravitational waves
are concentrated in a line than when in a planar.

FIG. 15. The upper graphs show the plots of E at the collision of an outgoing pulse with ða1; c1; α1Þ ¼ ð1; π=2; 1Þ and an ingoing pulse
with ða2; c2; α2Þ ¼ ð1;−π=2; 1Þ for A ¼ 10−7, where from left to right, the three graphs correspond to t ¼ 0, 6.5, 15. The lower graphs
show the ratio Eþ=E at each time.
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In the collision of a single pulse and multipulses,
theþmode is more converted than in the collision of
two single pulses. This result implies that the longer
gravitational waves with the different modes interact
nonlinearly with each other, the more one mode is
converted to the other mode.

In the rest, we briefly comment on further investigations
based on the solution derived here. To set physically more
interesting problems, it is natural to introduce an appro-
priate observer (for example, a distant observer) and also
some probes interacting with the waves (i.e., test particles,
test rings, and so on). For a distant observer watching the
behavior of the waves in the strong interaction region, it
may be important to know, first of all, whether the
conversion phenomenon can be detected or not, and, if
possible, it may be interesting to determine how the
phenomenon take place. However, it is easily expected
that the observation may be difficult in the case of pure
vacuum where only the waves exist, because the rate of
mode mixing that the waves generally show returns to the
initial one quickly after the occurrence of the conversion.
Once the test objects are introduced we can know the
existence and more detailed characteristics of the phe-
nomenon through the motion of those objects. In fact, by
analyzing the effect of the waves on a test particle, the
precedent work [22] shows that the WWB linear polarized
wave causes strong “linear stretching” in the directions
transverse to its propagation as well as “linear dragging” in
the radial direction. If the conversion occurs at the position
where such a particle is placed, it may be expected that the
effect of the waves on the particle is qualitatively different
from the case of the original WWB wave. That is, the
ringing way of the particle varies depending on the way of
the conversion. Such approaches are useful to clarify
detailed nonlinear properties of gravitational waves.
For a further application, it is noteworthy that the mode

conversion of the Einstein vacuum system is closely related
to that of the Einstein-Maxwell system: the mode con-
version between two gravitational wave modes can be
interpreted as that of gravitational waves and electromag-
netic waves.
In fact, as is well known [26], the vacuum Einstein

equation with cylindrical symmetry is exactly equivalent
with the Einstein equation with whole-cylindrical sym-
metry in the presence of the Maxwell field with only a
magnetic potential Aϕ. To see this, let us assume that in the
Einstein-Maxwell system, the metric is written in the
diagonal form

ds2¼ e2 ~ψdz2þρ2e−2 ~ψdϕ2þe2ð~γ− ~ψÞð−dt2þdρ2Þ; ð109Þ

and furthermore, the Maxwell’s field strength is denoted by
F ¼ e−2 ~ψ � ðd ~Φ ∧ dξÞ, where ~Φ is a certain function,
and ξ ¼ gzμdxμ. Following, for example, Ref. [35], if one

replaces ( ~ψ ,Aϕ, ~Φ,~γ) with (2ψ , ω,Φ,4γ), respectively, then

the Einstein-Maxwell equation coincides with the vacuum
Einstein Eqs. (2)–(5) in the Kompaneets-Jordan-Ehlers
form (1). This fact gives us the physically interesting
phenomenon that a large portion of the gravitational pulse
wave with a single polarization mode can be converted to
the electromagnetic pulse wave with a single polarization
mode at the axis of symmetry in the same way as a large
portion of gravitational pulse with the þ mode is converted
to that of the × mode, as seen in Fig. 1.
Hence if there exists a charged test particle near the

symmetric axis, a distant observer can see easily the way of
the conversion between the gravitational wave and the
electromagnetic wave through characteristic changes of
glittering of the charged particle. From the viewpoint of the
initial value problem, further, the above fact may lead to a
possibility of a strong burst of electromagnetic waves: if the
concentration of gravitational waves with the þ mode
exists near the axis at the initial time, the gravitational
waves decay immediately, and at the same time, the strong
electromagnetic waves are generated with only the little
electromagnetic wave existing. Further analysis on this
point will also be interesting.
Finally, we briefly comment on the alternative cylindri-

cal gravitational energy mentioned in the introduction and
compare it with the C-energy. From a standpoint of
symmetry reduction, the other definitions of the energy
were given in Ref. [17] for (the Einstein-Rosen type of) a
diagonal metric and in Ref. [36] for an off-diagonal metric,
respectively. According to them, the energy density is
defined by

~E ¼ ρ

8
e−γγ;ρ ¼

ρ

8
e−γðA2þ þ B2þ þ A2

× þ B2
×Þ; ð110Þ

which leads us to the following natural definitions for the
energy densities corresponding to the þ and × modes,

~Eþ ¼ ρ

8
e−γðA2þ þ B2þÞ; ð111Þ

~E× ¼ ρ

8
e−γðA2

× þ B2
×Þ; ð112Þ

where one notes that the factor e−γ comes from the volume
element of the region symmetry reduced along the z
direction. The total energy contained within the radius
ρ0 (: constant) at a certain time t, the total energies assigned
to the þ and × modes are defined as, respectively,

~Eðt; ρ0Þ ¼
Z

ρ0

0

~Eðt; ρÞdρ; ð113Þ

~Eþðt; ρ0Þ ¼
Z

ρ0

0

~Eþðt; ρÞdρ; ð114Þ

~E×ðt; ρ0Þ ¼
Z

ρ0

0

~E×ðt; ρÞdρ: ð115Þ
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The behaviors of this ratio ~Eþ= ~E are exactly the same as
that of the ratio Eþ=E defined in terms of the C-energy
densities since this extra factor e−γ is reduced. Moreover, in
general, the ratio of total energy ~Eþðt; ρ0Þ= ~Eðt; ρÞ does not
coincide with the ratio Eþðt; ρ0Þ=Eðt; ρÞ but we have
numerically checked that there is no qualitative difference
from the results in this paper.
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