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In this article the study of four-dimensional spaces with NUT charges and their ground states is
continued. In particular, through the introduction of an improved action principle containing topological
densities, it is shown that these spaces have simple and sound thermodynamical relations. As an example,
the entropy of the Taub-bolt-AdS solution is computed in terms of a Noether charge.
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I. INTRODUCTION

In general terms, within a family of solutions charac-
terized by a set of parameters, a ground state can be
identified with a solution in the family whose number of
symmetries is larger due to the fact that a subset of those
parameters vanish, or satisfy a particular condition that
reduces the dimension of the space of parameters. For
gravity this usually leads to constant-curvature spaces or
identified constant-curvature spaces without fixed points
[1]. Now, it is tempting to try to identify those parameters
with conserved charges; however, this is not general as that
requires being able to define conservation in the space. For
that, the space must have (at least asymptotically) a time-
like symmetry.
Once conserved charges can be defined it becomes

necessary to identify them. Among the different approaches
to identify the conserved charges the Noether method
definitively has a prominent role. It is worth recalling that
the Noether charges are constructed out of symmetries
of the solutions, or equivalently, from the subset of the
symmetries of the theory with parameters satisfying some
Killing conditions. In the case of gravity the symmetry of
interest is the invariance under diffeomorphisms, and the
Killing conditions define the Killing vectors.
It is usually overlooked that the soundness of the Noether

charges relies on the action principle considered, and thus
some pathologies might arise if the action principle is not
adequate for the problem. For instance, the Noether charges
computed out of the plain Einstein-Hilbert action, some-
times called Komar charges, have two major drawbacks.
Different normalizations are required to compute the mass
and the angular momenta of the solutions. They also
diverge for asymptotically anti–de Sitter (AdS) spaces.
In the context of the AdS/CFT conjecture this is certainly
something that needs to be addressed. For instance, the
holographic renormalization method [3] handles those
divergences by the addition of boundary terms that preserve
Dirichlet boundary conditions for the metric.
Finally, in the context of this work, it is worth mention-

ing that the first law of thermodynamics for stationary black
holes can also be obtained in terms of Noether charges as
well as an expression for their entropies [4].

The other version of the problem of charges corresponds
to the Hamiltonian approach. In 1974, it was shown in
Ref. [5] that the Hamiltonian generators of diffeomor-
phisms, besides having a bulk density (which actually
vanishes on shell), must have as well a boundary part. It is
precisely this boundary part that is responsible for the
Hamiltonian charges, as its on-shell value evaluated on the
different Killing vectors of the solution yields the mass or
the angular momenta. Remarkably, the problem of different
normalizations for the mass and angular momenta is absent
in this approach. This discrepancy between the Komar
charges and their Hamiltonian counterpart was clarified in
Ref. [6] using phase-space techniques. The divergences
mentioned above for asymptotically AdS spaces can be
tamed at the expense of the introduction of an ah hoc
background. In Ref. [7], a different solution based on the
exterior curvature of the infinity was proposed.
In Ref. [8], a different approach to the problem of

charges and the regularization of the action principle was
proposed. This approach is based on the addition of
topological densities and provides a regularized and
well-defined action principle for asymptotically locally
AdS spaces and simultaneously sound Noether charges.
Moreover, these Noether charges are in one-to-one corre-
spondence with their Hamiltonian (charges) counterpart
[9], unlike those constructed out of the Komar potentials.
Finally, the Noether charges (constructed out of this new
action principle) coincide [10] with the (generalization
of) Brown-York boundary charges defined in Ref. [11].
Remarkably, there is a natural way to extend this approach
to any higher even dimension [12]. This was extended even
further in Refs. [13,14], where its equivalence with the
holographic renormalization method for all known cases
was also shown.

A. Topological charges as Noether charges

To fix some ideas one can recall the case of electro-
magnetism. The action principle

R
F ∧� F, through the

gauge symmetry A → Aþ dλ, gives rise to

QðλÞ ¼
Z
∂Σ∞

λ�F;
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where ∂Σ∞ is the radial infinity of a constant time slice of
the space. To identify the electric charge as a Noether
charge the parameter of the gauge transformation λ must
satisfy dλ̂ ¼ 0 ↔ λ̂ ¼ const, which corresponds to the
Killing condition for Uð1Þ. The electric charge is given
by qe ¼ Qðλ̂Þ=λ̂.
In four dimensions the presence of a nontrivial Uð1Þ

fiber bundle determines the presence of magnetic charges
whose value can be obtained from

qm ¼
Z
Σ∞

F:

Remarkably, this charge can be incorporated into a Noether
charge provided the Pontryagin density,

R
F ∧ F, is added

to the action principle. Notice that this does not change the
equations of motion. By considering

I ¼
Z

F ∧ �F þ β

Z
F ∧ F;

the integral of the Noether current is given by

QðλÞ ¼
Z
Σ∞

λð�F þ βFÞ;

and therefore Qðλ̂Þ=λ̂ ¼ qe þ βqm.
A ground state can be defined by the vanishing of both

the electric and magnetic charges, i.e., qe ¼ 0 and qm ¼ 0.
However, this is not the only possibility. It can be noticed
that by fixing β ¼ �1 the action can be rewritten as

I ¼ � 1

2

Z
ð�F � FÞ ∧ ð�F � FÞ;

and therefore for the (anti-)self-dual case �F ¼ �F the
action vanishes. Furthermore, considering the Euclidean
version of the action principle, this has its minimum value
in this case. This also defines Qðλ̂Þ ¼ 0. With this in mind,
any (anti-)self-dual solution can be cast as a ground state
as well.
In Ref. [15], the ideas above were extended to gravity in

terms of the separation of the Weyl tensor into its electric
and magnetic parts. There, the idea that spaces whose
associate Weyl tensors are nontrivially (anti-)self-dual can
be cast as proper ground states was proposed and justified.
For this an improved action principle is introduced. This
action is regularized for asymptotically locally AdS spaces
with topological defects and the associated Noether charges
vanish for spaces whose Weyl tensor is (anti-)self-dual.
In four dimensions the simplest nontrivial examples

whose Weyl tensors are (anti-)self-dual are the Taub-
NUT and Taub-NUT-AdS solutions. These solutions con-
tain what is usually called a NUT charge (see, for instance,
Ref. [16]), but they are still asymptotically locally flat and

asymptotically locally AdS, respectively. For the AdS/CFT
conjecture, this opened the possibility to address conformal
field theories defined on conformal manifolds with topo-
logical nontrivial defects. For a discussion about this,
see Ref. [17].
This article aims to proceed with the analysis of the

action principle presented in Ref. [15]. Here it is shown
that its Noether charges are in one-to-one correspondence
with their Hamiltonian counterpart. As an example, we also
compute the entropy of the Taub-bolt-AdS solution in terms
of a Noether charge.
Before we proceed it is worth stressing that the spaces we

consider in this work are Euclidean and have a well-defined
asymptotically locally AdS region. In general, these spaces
will be considered to have a well-defined split as
M ¼ S1 × Σ, where Σ corresponds to a three-dimensional
spacelike hypersurface and R stands for the time direction.
In addition, ∂Σ will be considered as the union of an
exterior and an interior surface; thus, ∂Σ ¼ ∂Σ∞ ⊕ ∂ΣH.
To keep the notation as close as possible to a gauge

theory, the computation will be expressed in the first-order
formalism. However, changing to the second-order formal-
ism is simple.

II. ADDITION OF TOPOLOGICAL INVARIANT
DENSITIES AND CHARGES

Let us start by reviewing the original proposal in four
dimensions [8]. This corresponds to adding the Euler
density to the Einstein-Hilbert action (plus a negative
cosmological constant). This allows us to express the
action principle, either at first or second order, as

Ireg ¼
l2

64πG

Z
R̄abR̄cdεabcd

¼ l2

64πG

Z
δμ1μ2μ3μ4ν1ν2ν3ν4 R̄

ν1ν2
μ1μ2R̄

ν3ν4
μ3μ4

ffiffiffi
g

p
d4x; ð1Þ

where

R̄ν1ν2
μ1μ2 ¼ Rν1ν2

μ1μ2 þ
1

l2
δμ1μ2ν1ν2 ; ð2Þ

where Rν1ν2
μ1μ2 is the Riemann tensor. The cosmological

constant is given by Λ ¼ −3l−2. In Eq. (1),

Rab ¼ 1

2
eaν1e

b
ν2R

ν1ν2
μ1μ2dx

μ1 ∧ dxμ2

is called the curvature two-form. Here feaνg is a ortho-
normal basis of four-dimensional (co)vectors of the
cotangent space of the manifoldM. This defines a vielbein,
ea ¼ eaνdxν.
To continue with the discussion one can observe that

the action principle (1) vanishes for any locally AdS space.
In this way, this action principle is tailored such that any
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locally AdS spaces can be cast as ground states. Moreover,
this is finite for any asymptotically locally AdS solution.
One remarkable fact about the action principle (1) is that

on shell it can be cast as

Iregjon shell ¼
l2

64πG

Z
Cν1ν2

μ1μ2C
μ1μ2

ν1ν2
ffiffiffi
g

p
d4x; ð3Þ

where Cν1ν2
μ1μ2 is the Weyl tensor. This connects this action

principle with Weyl gravity in the same fashion as in
Ref. [18]. In this context it is worth mentioning Ref. [14],
where the connection between Eq. (3) and the standard
electromagnetic action,

R
F�F, was originally discussed in

these terms.
Here it is worth mentioning that the values of the masses

of Taub-Nut-AdS and Taub-bolt-AdS solutions were dis-
cussed in Ref. [8]. This was done in the context of the
previous results by Hawking [19] where the mass of Taub-
bolt-AdS was computed with respect to the Taub-Nut-AdS
solution. The result in Ref. [8] showed that both masses can
be computed separately and that actually their difference
reproduces the result in Ref. [19]. Because of this, the mass
computed with the action principle (1) can be cast as the
electric mass of the solution (see Ref. [15]).

A. On gravitational solitons

In Ref. [15] the previous analysis was continued for
spaces whose Weyl tensor is (anti-)self-dual. In this section
these ideas are reexpressed in the first-order formalism. The
Einstein-Hilbert action is not only regularized for asymp-
totically locally AdS spaces, by the addition of the Euler
density, but it is also complemented by the addition of the
Pontryagin density such that

IGP ¼ Ireg þ α

Z
RabRab; ð4Þ

where α is a constant. This term can be identified withR
F ∧ F for electromagnetism.
As discussed in detail in Ref. [15], the addition of the

Pontryagin density—which in principle alters the value of
the action principle—does not modify the finiteness of the
action principle. Moreover, it must be stressed that most of
the renowned analytic solutions (such as Schwarzschild or
Kerr AdS) have a vanishing Pontryagin density. Therefore,
any ground state of these solutions can be cast as a ground
state of the action principle (4). This is in complete analogy
to electromagnetism where, in the absence of magnetic
charges, the ground state is defined by the vanishing of the
electric charge.
It must be noticed that, due to the fact that the solutions

are Einstein manifolds,

RabRab ¼ R̄abR̄ab:

It is worthwhile to notice the presence of an AdS
pedigree in this case. Provided one defines an AdS4
connection in terms of the vielbein and the spin connection
as WAB ¼ ðωab; ea=lÞ (see, for instance, Ref. [20]), the
AdS4 Pontryagin density FABFAB can be expressed as

FABFAB ¼ R̄abR̄ab − 2Ta;

where Ta is the torsion two-form. In the case at hand,
Ta ¼ 0 and therefore one has the identity

FABFAB ¼ R̄abR̄ab:

Now one can return to address how to define a ground
state for solutions with a nonvanishing Pontryagin R̄abR̄ab
density. This arises by observing that

Z
RabRab

����
on shell

¼
Z

R̄abR̄ab

����
on shell

¼ 4

Z
ðCÞν1ν2μ1μ2ðC�Þμ1μ2ν1ν2

ffiffiffi
g

p
d4x;

where ðC�Þμ1μ2ν1ν2 ¼ 1
2
Cν1ν2αβε

αβμ1μ2 can be identified with
the dual of the Weyl tensor. The dual of R̄ab is given
by ðR̄abÞ� ¼ 1

2
εabcdR̄cd.

With this in mind, the constant α in Eq. (4) can be fixed
by requiring that the action principle satisfies (on shell)

IGPjon shell ∽
Z

ðC� C�Þ2:

This is done in order to identify any solution with a (anti-)
self-dual Weyl tensor as the ground state.
With α ¼ �1 the solutions with a (anti-)self-dual Weyl

tensor can be considered, in a broad sense, as instantons
of a conformal theory of gravity. On the other hand, this
choice of α gives rise to a natural extension of the previous
action principle (1). Finally, in the first-order formalism, the
action principle is given by

IGP ¼ Ireg �
l2

32πG

Z
R̄abR̄ab: ð5Þ

To finish this section, one can notice that the two-form
Fab ¼ R̄ab � 1

2
ηaa

0
ηbb

0
εa0b0cdR̄cd can be defined such that

FabFab ¼ ðR̄ab � ðR̄abÞ�ÞðR̄ab � ðR̄abÞ�Þ
¼ ðR̄abR̄cdεabcd � 2R̄abR̄abÞ;

which allows to rewrite the action principle as

IGP ¼ l2

64πG

Z
FabFab:
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III. HAMILTONIAN CHARGES VERSUS
NOETHER CHARGES

In Ref. [15] it was shown that the Noether charges
associated with the Killing vectors are given by

QðξÞ ¼ l2

32πG

Z
∂Σ

IξωabðR̄cdεabcd � 2R̄abÞ: ð6Þ

As mentioned above, the Noether charges of the action
principle (1) are exactly the Hamiltonian charges [9]. In
order to analyze this for the Noether charge (6) [defined
from the action principle (5)], it is enough to follow
Ref. [6]. It is easy to demonstrate that the variation along
the parameters—say, δ̂ [6]—of the Hamiltonian generator
associated with a diffeomorphism defined by x → xþ ξ is
given on shell by

δ̂HðξÞjon shell ¼ δ̂GðξÞ ¼ δ̂ðQðξÞÞ

þ
Z
∂Σ∞⊕∂ΣH

Iξðδ̂ωabðR̄cdεabcd � R̄abÞÞ:

ð7Þ

One can recognize that the contribution from ∂Σ∞ of the
second term vanishes for any space whose Weyl tensor
asymptotically becomes (anti-)self-dual. To address the
internal boundary ∂ΣH, it is necessary to impose boundary
conditions. As discussed in Ref. [9], δωabj∂ΣH

¼ 0 is
indeed a proper boundary condition and therefore the
Noether charges of the action (5) can be fixed as

GðξÞ ¼ QðξÞ;

proving that the Noether charges (6) are indeed equivalent
to the Hamiltonian charges.
It must be noticed that the boundary condition

δωabj∂ΣH
¼ 0 fixes the temperature in the case that ∂ΣH

is connected with the presence of a Killing horizon defined
by ξ. To observe this, one can notice that the temperature of
the Killing horizon can be read from the relation [21]

Iξωa
bξ

bjR×∂ΣH
¼ κξb; ð8Þ

where κ is the surface gravity. The temperature is given
by T ¼ κ=4π.

IV. ENTROPY IN A NOETHER CHARGE

To obtain the thermodynamics defined by the action
principle in Eq. (5), one can follow the ideas in Ref. [4]. As
a detailed discussion about this in the first-order formalism
can be found in Ref. [10], only the highlights will be
discussed here. To obtain the first law it is enough to notice
(see Ref. [6] for the general expression) that the conserva-
tion of the flux along trajectories defined by the variations

of parameters of the solutions, within the space configu-
rations, implies that

δ̂
l2

32πG

Z
∂ΣH

IξωabðR̄cdεabcd � 2R̄abÞ

¼ δ̂
l2

32πG

Z
∂Σ∞

IξωabðR̄cdεabcd � 2R̄abÞ:

Next, one can observe that the rhs corresponds to the
variation of the Noether charges evaluated in ∂Σ∞, such as
the mass and the rest of the conserved charges, i.e.,

δ̂

�
l2

32πG

Z
∂ΣH

IξωabðR̄cdεabcd � 2R̄abÞ
�

¼ δ̂M þ � � � ;

ð9Þ

which allows to identify, due to the fact that
Tδ̂S ¼ δ̂M þ � � � ,

Tδ̂S ¼ δ̂

�
l2

32πG

Z
∂ΣH

IξωabðR̄cdεabcd � 2R̄abÞ
�
:

Now, due to the boundary condition at the horizon [Eq. (8)],
it is possible to single out the period [4,10]. This yields a
similar expression for the entropy,

S¼ Ŝþ βl2

32πG

Z
∂ΣH

IξωabðR̄cdεabcd� 2R̄abÞ; ð10Þ

where β−1 is the inverse of the period and S0 is an extensive
constant independent of the parameters of the solution. As
Ŝ cannot depend on the parameters of the solution (such as
the mass) but must depend on l, it can be argued that
Ŝ ∼ P0V

reg
0 . In this case the mass must be identified with the

enthalpy of the system instead of the energy. For a
discussion, see Ref. [22].

V. GEOMETRY OF TAUB-NUT-ADS
AND TAUB-BOLT-ADS SOLUTIONS

The four-dimensional Taub-bolt-AdS and Taub-NUT-
AdS solutions are known to be described by

ds2 ¼ fðrÞ2ðdτ þ 2n cosðθÞdφÞ2 þ dr2

fðrÞ2
þ ðr2 − n2Þðdθ2 þ sinðθÞ2dφ2Þ; ð11Þ

where

fðrÞ2 ¼ ðr2 þ n2Þ − 2mrþ l−2ðr4 − 6n2r2 − 3n4Þ
r2 − n2

:

It is easy to notice that ∂φ and ∂τ are two Killing vectors of
the geometry.
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The different between Taub-NUT-AdS and Taub-bolt-
AdS solutions relies on the structure of the function fðrÞ2,
the norm of the Killing vector ∂τ. Indeed, depending on the
form of fðrÞ2 its largest zero, say r ¼ rþ, either corre-
sponds to a point or a two-dimensional surface in the
geometry. This latter case is called the bolt of the solution
and is the case for a typical stationary black hole.
The mass of this solution [15] is given by

M ¼ Qð∂τÞ ¼
l2

32πG

Z
∂Σ∞

I∂τωabðR̄cdεabcd � 2R̄abÞ

¼ m − jnj
�
1 −

4n2

l2

�

¼ ðrþ − jnjÞ2
2rþl2

ððrþ þ jnjÞ2 − ðl2 − 4n2ÞÞ: ð12Þ

A. Asymptotical geometry and squashed S3

It is easy to confirm that this solution is asymptotically
locally AdS, and for m ¼ 0 it corresponds to a locally AdS
solution, as expected. This motivated the identification ofm
as a mass parameter in Ref. [19]. The presence of the NUT
charge can be noticed on the geometry of the asymptotical
transverse section to the radial direction which tends to a
squashed S3 (see, for instance, ref. [23]).
After redefining τ ¼ 2nψ in Eq. (11) a suitable vierbein

can be defined in terms of the dreibein ~ei for S3 depicted in
the Appendix. This vierbein is given by

ea ¼
�

dr
fðrÞ ; g

1ðrÞ~e1; g2ðrÞ~e2; g3ðrÞ~e3
�
; ð13Þ

with a ¼ 0, 1, 2, 3. Here,

g3 ¼ 4nfðrÞ;
g1 ¼ g2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − n2

p
:

For simplicity, one can use the convention

giðrÞ~ei ¼ ðg1ðrÞ~e1; g2ðrÞ~e2; g3ðrÞ~e3Þ;

where the repetition of i indices does not imply summation.
For the rest of this article the same convention will be used.
In terms of this vielbein, it is easy to observe that

lim
r→∞

ds2 ≈
l2dr2

r2
þ r2

��
2n
l

�
2

ðe3Þ2 þ ð~e1Þ2 þ ð~e2Þ2
�
;

making explicit the presence of the NUT in this solution.
Indeed, for n ¼ �l=2 this condition disappears and the
transverse section becomes a sphere.

The torsion-free connection of this vielbein is given by

ω0i ¼ −fðrÞ dg
i

dr
~ei;

ωij ¼ Cij
k ~ek; ð14Þ

where

Cij
k ¼

ðgiÞ2 þ ðgjÞ2 − ðgkÞ2
gigj

εijk:

Finally, R̄ab is given by

R̄0i ¼
�
−

d
dr

�
f
dgi

dr

�
f
gi
þ 1

l2

�
e0ei

þf

�
Ci

kl
dgk

dr
− εikl

dgi

dr

�
~ek ~el;

R̄ij ¼
�
gigj

l2
−f2

dgi

dr
dgj

dr

�
~ei ~ejþðCij

kε
k
lmþCi

klCkj
mÞ~el ~em

þ d
dr

Cij
kdr~ek: ð15Þ

VI. ENTROPY

As mentioned above, the asymptotical conserved charges
of the Taub-bolt-AdS solution were discussed in Ref. [15].
Following Ref. [4], in a manner of speaking, it only remains
to confirm that the entropy can be obtained as the Noether
charge associated with the Killing vector ∂τ on ∂ΣH.
Before we proceed, a general geometrical consideration

can be made concerning these solutions. Following the
standard approach, the periods are to be fixed to avoid a
conical singularity in the plane rψ at r ¼ rþ. As expressed
in Eq. (13), the period of ψ is fixed such that 0 ≤ ψ < 4π,
and therefore, independently of the particular value of rþ,
the following must be satisfied:

d
dr

ðf2ðrÞÞ
���
r¼rþ

¼ 1

2n
: ð16Þ

With this in mind, one must stress that the difference
between both geometries is that while for the NUT solution
rþ ¼ jnj, for the bolt solution rþ ¼ rb > jnj.
For the solution above it is easy to demonstrate that

I∂ψωab ¼ −fðrÞ dg
3

dr
δab01 þ

1

2
δabij C

ij
3

¼ −fðrÞ dg
3

dr
δab01 þ

�
2 −

ðg3Þ2
ðg2Þ2

�
δab12

¼ −2n
dfðrÞ2
dr

δab01 þ 2δab12

�
1 − 2n2

f2ðrÞ
r2 − n2

�
: ð17Þ

To study the behavior near r ¼ rþ, it is necessary to
separate the NUT and bolt cases.
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A. Taub-NUT

As mentioned above the Taub-Nut-AdS solution has a
(anti-)self-dual Weyl tensor. To satisfy such a condition the
value of m in Eq. (11) must be given by

m ¼ jnj
�
1 − 4

n2

l2

�
: ð18Þ

It is worth mentioning that the case m ¼ 0 ↔ n ¼ �l=2
corresponds to a (locally) AdS space [17]. In this case,

f2ðrÞNUT ¼
�
r − jnj
rþ jnj

��
1þ ðr − jnjÞðrþ 3jnjÞ

l2

�
; ð19Þ

where one can notice that rþ ¼ jnj explicitly. This deter-
mines that near r ¼ rþ ¼ jnj the geometry is given by

lim
r→n

ds2 ≈ 2jnj
�

dr2

r − jnj þ 4ðr − jnjÞds2S3
�

ð20Þ

≈ dρ2 þ ρ2ds2S3 : ð21Þ

One can readily notice that near r ¼ rþ ¼ jnj the geometry
acquires a SOð4Þ symmetry. Indeed, it can be noticed that
r ¼ �n defines a point in this geometry and thus no
horizon is presented in this case. Furthermore, every plane
between the orbit of a SO(4) symmetry and ρ becomes flat
as r → n. In fact, one can take any of the generators of these
orbits of symmetry and compute the period through Eq. (8)
and the result is 4π, as expected. This only confirms the
existence of nontrivial periods on the S3 as it shrinks to
a point.

B. Taub-bolt

For Taub-bolt-AdS, as mentioned above, the form of the
metric is similar. However, the value of rþ > n. In fact,

fðrÞ2bolt ¼
1

r2 − n2

�
4

r4

n2l2
þ r2

n2

�
4 − 24

n2

l2

�

þ r
n

�
−4

n2s3

l2
þ
�
24

n2

l2
− 4

�
s

þ 1

s

�
12

n2

l2
− 4

�
þ 4 − 12

n2

l2

��
; ð22Þ

where s is a parameter (see, for instance, Ref. [24]). It is
worth stressing that the value ofm in Eq. (11) in this case is
given by

m ¼ 1

2

ðs4 − 6s2 − 3Þn3
l2s

þ 1

2

ðs2 þ 1Þn
s

; ð23Þ

which vanishes for n2

l2 ¼ s2þ1
6s2þ3−s4. In this case the solution is

a locally AdS space with squashing 4ðs2þ1Þ
6s2þ3−s4. Conversely, it

must be noticed for n ¼ �l=2 (the case where the
squashing disappears at the asymptotical region) that

m ¼ 1
16

ðs2−1Þ2
s . Obviously, for s ¼ �1 in this case the

AdS space case is recovered.
Because rþ > n the near-horizon geometry is

described by

lim
r→rþ

ds2 ≈ dρ2 þ ρ2

4
ðdψ þ cosðθÞdφÞ2

þ ðr2þ − n2Þðdθ2 þ sin2ðθÞdφ2Þ;

which is the generalization of a typical stationary
black hole.
Computing the temperature from Eq. (8) in this case is

unnecessary as this is fixed by f2ðrþÞ0 ¼ 1=ð2nÞ for any
value of rþ > jnj. However, there is another aspect. After a
direct computation for Taub-bolt-AdS,

I∂ψωabj∂ΣH
¼ −δab03 þ 2δab12 ; ð24Þ

which differs in δab12 from the analogous computation for
Taub-NUT-AdS. Since the eigenvalues are identical, this
difference indicates that the eigenvectors differ. This is
due to the fact that for Taub-bolt-AdS the orbits of the
symmetries on S2 do not shrink to points as r → rþ,
showing the presence of a genuine Killing horizon at rþ.

C. The entropy of Taub-bolt

Given the previous considerations, it is possible
to evaluate Eq. (10) with β−1 ¼ 8πn (the temperature),
yielding

STB ¼ 3

G
ðr2þ − n2Þπ ¼ 3

4G
AH; ð25Þ

where AH is the area of the horizon. The difference with
the usual area 1=4 law is due to the presence of the NUT
and has been noticed previously; see, for instance,
Refs. [23,25–27]. It can be noticed that for rþ → jnj this
expression vanishes. This is expected as this corresponds to
the Taub-NUT-AdS case. It is interesting to compare this
computation with the discussion in Refs. [19,28], where a
careful discussion was necessary to address the presence of
the NUT charge.

VII. FREE ENERGY

In order to compute the value of the action principle it is
natural to reexpress the action principle (5) in terms of the
fields

F0i ¼ R̄0i � 1

2
ε0ijkR̄jk and Fjk ¼ R̄jk � εjk0iR̄0i:
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In fact, this significantly simplifies the computations, as
F0iF0i ¼ FijFij and thus the action principle actually can
be merely rewritten as

I ¼ l2

16π

Z
F0iF0i: ð26Þ

The next step corresponds to analyzing the projection of
F0iF0i in terms of the vielbein. Through the identity

F0iF0i ¼ 2~e3I∂ψ ðF0iÞF0i;

where

I∂ψF0i ¼ −dr
d
dr

�
−f

d
dr

g3 � C12
3

�
;

the action principle can be written as

I ¼ l2

8π

Z
−~e3 ∧ dr

d
dr

×

�
−f

d
dr

g3 � C12
3

�
∞

rþ
∧ ð~e1 ∧ ~e2I ~E1∧ ~E2

F0iÞ; ð27Þ

where it must be noticed that

Z
∞

rþ
dr

d
dr

�
−f

d
dr

g3 � C12
3

�
¼

�
−f

d
dr

g3 � C12
3

�
∞

rþ
:

Moreover, it can be recognized that the expression for the
Noether charges [see Eq. (6)] can be identified. Therefore,

I ¼ 8nπðQð∂τÞj∂Σ∞
−Qð∂τÞj∂ΣH

Þ; ð28Þ
where 8nπ is the inverse of the temperature. Finally, this
yields

I ¼ 1

T
M − ðS − S0Þ ¼

F
T
; ð29Þ

where F can be cast as the free energy of the system.

VIII. CONCLUSIONS AND COMMENTS

In this article the discussion of the ground sates with nut
charges was continued. In particular, the discussion was
centered around the Taub-NUT-AdS solution. As already
noticed, this solution only has vanishing charges [15].
However, the presence of the NUT charge makes the
geometry differ significantly from the behavior of the
ground states of more renowned black holes. For instance,
Taub-NUT-AdS is not a locally AdS space and the number
of global symmetries is not increased with respect to the
Taub-bolt-AdS solution. Nonetheless, the Taub-Nut-AdS
solution has no horizon and is certainly smooth at r ¼ jnj.
In order to understand this one has to put it in the same

context as the presence of magnetic charges in electro-
magnetism, where the presence of electric charges is also
necessary to define the ground state.
Here it was shown that the improved action principle

presented in Ref. [15] is suitable for considering spaces with a
nontrivial (anti-)self-dualWeyl tensor as ground states. In fact,
it was shown that the action principle (5) provides a well-
defined thermodynamics in spite of the presence of a NUT
charge in the space. Moreover, it is also noteworthy that an
entropy can be recovered from the expression in Eq. (25).
The generalization of these results to the known exten-

sions of the Taub-bolt-AdS spaces with electric/magnetic
charge and angular momentum is clear. Furthermore, the
extension of these results to the topological black holes with
NUT charge (roughly speaking, solutions whose transverse
sections tend to squashed H3) is also clear.
Unfortunately the generalization to higher dimensions is

not obvious. The condition of (anti-)self-duality of the Weyl
tensor is a property of four dimensions and cannot be
extended univocally to dimensions higher than four.
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APPENDIX: A USEFUL AND NONTRIVIAL
VIELBEIN ON S3

In order to construct a suitable vielbein for S3, defined
by the quadratic form V2 þ X2 þ Y2 þ Z2 ¼ 1, one can use
the Euler angles such that

X þ iY ¼ cos

�
θ

2

�
e

i
2
ðψþφÞ;

Z þ iV ¼ sin

�
θ

2

�
e

i
2
ðψ−φÞ;

where 0 ≤ θ < π, 0 ≤ φ < 2π, and 0 ≤ ψ < 4π. This
defines the vielbein [29]

~e1 ¼ 1

2
ðsinðψÞdθ − sinðθÞ cosðψÞÞdφ;

~e2 ¼ 1

2
ðcosðψÞdθ þ sinðθÞ sinðψÞdφÞ;

~e3 ¼ 1

2
ðdψ þ cosðθÞdφÞ; ðA1Þ

which satisfies

d~ei ¼ εijk ~ej ~ek; ðA2Þ
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where εijk is the three-dimensional Levi-Civita symbol.
Therefore,

ds2S3 ¼
1

4
ððdψ þ cosðθÞdφÞ2 þ dθ2 þ sinðθÞ2dφ2Þ:

These last results show that this construction was made to
manifestly express S3 as a S1 fiber bundle on a S2.
The associated torsion-free connection is given by

~ωij ¼ εijk ~ek and thus

~Rij ¼ d ~ωij þ ~ωi
k ~ω

kj ¼ ~ei ~ej; ðA3Þ

proving that ~ei is indeed a sound vielbein for S3. Finally, it
is worth mentioning that this construction yields

~e1 ∧ ~e2 ¼ 1

4
sinðθÞdθ ∧ dφ ðA4Þ

and

ð~e1Þ2 þ ð~e2Þ2 ¼ 1

4
ðdθ2 þ sinðθÞ2dφ2Þ:
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