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We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity’s rainbow
Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the
tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics
and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters
from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we
study the low frequency limit in order to find the modified energy spectrum around the source.
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I. INTRODUCTION

The meaning of the theory of general relativity (GR) has
been brilliantly resumed by J. A. Wheeler in a simple and
celebrated sentence: “Matter tells spacetime how to curve,
and spacetime tells matter how to move”. This aphorism
emphasizes the fulcrum of the Einstein’s theory, according
to which the gravitational field reveals itself as a curvature
of spacetime [1]. This picture works very well for a massive
body curving the spacetime where a (not very high-energy)
particle is moving in. However, at ultra high-energies the
theory needs serious revision for the concept of spacetime
coordinates itself has to be reconsidered.
Indeed, the formal necessity of a tiny-scale (so-called

UV) modification of GR arises from the nonrenormaliz-
ability of a quantum field theory of gravity. This can be
seen from the high-energy divergent diagrams in Feynman
loop-expansion [2]. Away to deal with this issue is to insert
higher-order derivative terms in the Lagrangian which
modify the UV graviton propagator [2]. But the problem
is that higher-order time derivatives in the equations of
motion lead to ghosts. In order to keep the good and remove

the bad, P. Horava introduced an asymmetric Lifshitz
scaling between space and time [3] such that higher order
spatial-derivatives are not accompanied by higher order
time- ones in the UV regime. This particular Lorentz
symmetry violation allows power-counting renormalizabil-
ity while avoids ghosts and GR arises as an infrared fixed
point.
An alternative approach is to modify the metric instead

of reshaping the action. This so-called rainbow gravity
scenario [4] radically changes the GR framework since,
according to it, the UV deformed metric introduces the
asymmetry between space and time but now it is done
through the energy of the probe. This correction has been
shown to fix one loop divergences, avoiding the need of a
renormalization scheme [5]. This is a great advantage
which makes the rainbow proposal a source of constant
investigation, e.g. [6] (a connection with the Horava-
Lifshitz gravity can be found in [7]).
Rainbow gravity can be obtained as a generalization to

curved spacetimes of the so-called doubly special relativity
(DSR) [8–10]. In DSR the transformation laws in energy-
momentum space are nonlinear. The dual space, ðx; tÞ, is
thus endowed with a nontrivial quadratic invariant, namely,
an energy-dependent metric tensor. It means that if a given
observer measures a particle (or wave) with energy E, then
he concludes that this probe feels a metric gabðEÞ. But, on
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the other hand, a different observer will measure instead
E0 ≠ E, and will therefore assign to the particle’s motion
different metric tensor elements gabðE0Þ. This argument,
valid in flat spacetime, carries over locally to curved
spacetimes using the equivalence principle. As a conse-
quence, the invariant norm is no longer bilinear and leads to
modified dispersion relations.
In DSR the laws of energy-momentum conservation still

hold in all inertial frames but then again they are nonlinear.
One important reason for the DSR proposal is that the
energy scale which establishes the boundary between the
quantum and classical characterization of spacetime, EP,
can be assumed as an invariant in the sense that all inertial
observers agree on whether a particle has more, or less,
than this energy. Interestingly, this works out an otherwise
inconvenience; namely, that the threshold between the
quantum and the classical description can depend on the
speed of the observer [4].
The first accomplishment in DSR [11] implies a

deformed Lorentz symmetry such that the standard
energy-momentum relations in flat spacetime are modified
by Planck scale corrections of the form

E2f2ðω=ωPÞ − ðpcÞ2g2ðω=ωPÞ ¼ m2c4; ð1Þ

where m is the rest frame mass of the particle with energy-
frequency ω as seen by an inertial observer, and ωP is the
Planck energy-frequency EP ¼ ℏωP. Global Lorentz
invariance is in fact an accidental symmetry related to a
particular solution of general relativity. Thus, whether it is
broken or modified it is only a symmetry emerging at
low energies from a quantum theory of gravity and is just
approximate.
It is generally accepted that at sufficiently high energies

the geometry of spacetime should be described by a
quantum theory in which general relativity is replaced
by a quantum mechanical description of the spacetime
coordinates. It is also believed that the Planck energy EP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
establishes the threshold that separates the

classical description from the quantum description of
gravity. Above the Planck scale a continuous spacetime
manifold loses consistency for quantum effects become
uncontrollable and a metric approach becomes impracti-
cable. Thus, rainbow gravity is concerned with the effects
on the propagation of particles with energies below EP but
whose wavelengths are much shorter than the local radius
of curvature of spacetime. Of course, to be consistent with
the standard theory, the functions fðω=ωPÞ and gðω=ωPÞ
which appear in Eq. (1) must tend to unity near EP. In this
context, a generalized uncertainty principle (GUP) is often
introduced in order to account for this fuzzy microscopic
structure of spacetime and to avoid the singularities of the
general relativity [12,13].
In this work we will adopt a semiclassical approach

inspired in loop quantum gravity [14] to study an uncharged

scalar field placed in a spherically symmetric spacetime
characterized by the aforementioned MDR functions
defined as

fðω=ωPÞ ¼ 1; gðω=ωPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξðω=ωPÞs

p
; ð2Þ

where ξ > 0, and s is a positive integer of order one. We will
obtain the exact wave solutions to the scalar field and later on
analyze them near the event horizon in order to compute
the Hawking radiation via quantum tunneling through this
frontier. Constraints on these rainbow parameters will be
obtained by considering particle physics experiments related
to negative results regarding the creation of microscopic
black holes in the LHC as well as galactic measurements of
the fine-structure constant made by the Hubble Space
Telescope (STIS) from a white dwarf spectrum.
The paper is organized as follows: In Sec. II we obtain

the exact solutions of a massive scalar field in the rainbow
Schwarzschild metric, then study the Hawking radiation,
and thereafter calculate the energy eigenspectrum and infer
new constraints on the rainbow parameters. Finally, in
Sec. III, we draw the conclusions.

II. MASSIVE SCALAR FIELD IN RAINBOW
SCHWARZSCHILD SPACETIME

Although it has been a long-studied subject, the massive
scalar field in a Schwarzschild spacetime (see [15] and
references therein) lacked of an exact solution until recently
[16]. Now, it is known that its whole space spectrum is
formally given in terms of Heun’s functions [17] combined
with elementary functions. Here we will employ an analytic
approach in order to solve such a problem, this time
considering a gravity’s rainbow metric.

A. Solutions

Our task is solving the rainbow gravity covariant Klein-
Gordon equation of massive scalars minimally coupled to
the Schwarzschild gravitational field�

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νÞ þm2

�
Ψ ¼ 0; ð3Þ

(where natural units c≡ ℏ≡ 1 are used).
The gravitational background generated by a static

uncharged compact object is given by the Schwarzschild
metric now depending on the rainbow functions fðω=ωPÞ
and gðω=ωPÞ. In spherical coordinates the square line-
element invariant reads [18]

ds2 ¼ f−2ðω=ωPÞhðrÞdt2
− g−2ðω=ωPÞ½hðrÞ−1dr2 − r2dΩ2�; ð4Þ

where hðrÞ ¼ ð1 − rs
r Þ, rs ¼ 2MG is the Schwarzschild

radius, dΩ2¼ dθ2þ sin2 θdϕ2, G ¼ Gð0Þ is the Newton’s
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universal gravitational constant and M is the mass of the
source. By symmetry arguments we assume that solutions
of Eq. (3) can be factored as follows

Ψðr; tÞ ¼ RðrÞYml
l ðθ;ϕÞe−iωt; ð5Þ

where Yml
l ðθ;ϕÞ are the spherical harmonic functions.

Inserting Eq. (5) and the metric given by Eq. (4) into
(3), we obtain the following radial equation

d
dr

�
rðr − 2GMÞ dR

dr

�
þ
�

r3 ~ω2

r − 2GM
− ~m2r2 − λlml

�
R ¼ 0;

ð6Þ

where λlml
¼ lðlþ 1Þ and

~ω ¼ ω

gðω=ωPÞ
;

~m ¼ m
gðω=ωPÞ

: ð7Þ

The expression given by Eq. (6) has singularities at r ¼
ða1; a2Þ ¼ ð0; 2GMÞ and ∞, and can be transformed into a
Heun equation by using

x ¼ r − a1
a2 − a1

¼ r − 2GM
2GM

: ð8Þ

Let us introduce the function ZðxÞ such that

RðxÞ ¼ ZðxÞ½xðx − 1Þ�−1=2; ð9Þ

and set henceforth G ¼ 1. Then, differential Eq. (6) trans-
forms into

d2Z
dx2

þ
�
A1 þ

A2

x
þ A3

x − 1
þ A4

x2
þ A5

ðx − 1Þ2
�
Z ¼ 0; ð10Þ

where the coefficients A1, A2, A3, A4, and A5 are given by

A1 ¼ −4M2ð ~m2 − ~ω2Þ; ð11Þ

A2 ¼
1

2
þ λlml

þ 4M2ð ~m2 − 2 ~ω2Þ; ð12Þ

A3 ¼ −
1

2
− λlml

; ð13Þ

A4 ¼
1

4
þ 4M2 ~ω2; ð14Þ

A5 ¼
1

4
: ð15Þ

The general solution to Eq. (10) over the entire range
0 < x ≤ ∞ is given by [19]

RðxÞ ¼ C1e
1
2
αxx

1
2
βHeunCðα; β; γ; δ; η; xÞ

þ C2e
1
2
αxx−

1
2
βHeunCðα;−β; γ; δ; η; xÞ; ð16Þ

where C1 and C2 are constants, and the parameters α, β, γ,
δ, and η explicitly written in terms of the rainbow’s function
are given by:

α ¼ −4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

1 − ξðω=ωPÞs

s
; ð17aÞ

β ¼ i4Mωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξðω=ωPÞs

p ; ð17bÞ

γ ¼ 0; ð17cÞ

δ ¼ 4M2ðm2 − 2ω2Þ
1 − ξðω=ωPÞs

; ð17dÞ

η ¼ −lðlþ 1Þ − 4M2ðm2 − 2ω2Þ
1 − ξðω=ωPÞs

: ð17eÞ

This is the sum of two linearly independent solutions of the
confluent Heun differential equation provided β is not an
integer [17].
It is also worth mentioning some pioneering work done

in this direction [20], where analytic solutions to the
(massless) Regge-Wheeler and Teukolsky equations are
found as a series of hypergeometric and Coulomb wave
functions with different regions of convergence. This has
been used in [21] to compute the post-Minkowskian
expansion of Regge-Wheeler-Zerilli black hole perturba-
tion theory to calculate a fourth order post-Newtonian
approximation of the main radial potential describing the
gravitational interaction of two bodies. For a massive scalar
particle, the effects of the self-force upon the orbits of a
Schwarzschild black hole have been computed in [22].

B. Uncompleted Hawking radiation

The exterior outgoing wave solutions at the event
horizon of a Schwarzschild black hole are obtained by
taking x → 0þ in Eq. (16) for positive frequencies. If we
also consider the temporal part of the wave function, the
result is

Ψoutðr≃ 2MþÞ≃ C1e−iωtðr − 2MÞ2iM ~ω: ð18Þ

Let us now examine the variable

r� ¼ g−1ðω=ωPÞ
�
rþ 2M log

���� r − 2M
2M

����
�

ð19Þ

inspired in the conventional (ξ ¼ 0) tortoise coordinate
(which approaches −∞ when r → rs), appropriate to
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analyze perturbations in the spherically symmetric gravi-
tational field [15]. Considering Eddington-Finkelstein
coordinates, we define v ¼ tþ r� yielding

Ψoutðr≃ 2MþÞ ¼ C1e−iðωv− ~ωrÞð2MÞ−2iM ~ωðr − 2MÞ4iM ~ω:

ð20Þ
Following [23] we now consider the analytic extension of
the solution to the interior region (r≃ 2M−) by means of a
rotation in the complex plane ðr − 2MÞ → ð2M − rÞe−iπ in
Eq. (20). Thus, one has

Ψoutðr≃ 2M−Þ
¼ C1e−iðωv− ~ωrÞð2MÞ−2iM ~ωð2M − rÞ4iM ~ωe4πM ~ω: ð21Þ

With these two expressions we can calculate the trans-
mission coefficient through the horizon, namely the tun-
neling rate, defined as

Γev ¼
����Ψoutðr≃ 2MþÞ
Ψoutðr≃ 2M−Þ

����2 ¼ exp

�
−

8πMω

gðω=ωPÞ
�
: ð22Þ

It is worth noting that rainbow gravity black holes never
evaporate completely. Unlike the ordinary Schwarzschild
black hole, the rainbow one halts outwards tunneling when
it reaches a certain nonzero minimal value which equals
the critical mass (i.e., the mass which avoids the BH
temperature turning imaginary) [24]. This remnant mass
can be calculated by making Γev ¼ 0 in Eq. (22) assuming
a generalized position-momentum uncertainty principle.
This generalized uncertainty principle (GUP) can be

motivated on general grounds by the intuition that the
solution of the quantum gravity problem would need an
absolute Planckian limit of the size of the collision region
[25,26]. So far, it is consensual both in string theory and
loop quantum gravity that a GUP compatible with a
(leading order correction) logarithmic-area growth of BH
entropy should be of the form

δx ≥
1

δp
þ λL2

PδpþOðL3
Pδp

2Þ ð23Þ

where the coefficient λ should take a value of roughly the
ratio between the square of the string length and the square
of the Planck length LP. While in nonrelativistic quantum
mechanics a particle of any energy can always be sharply
localized (at the price of losing any information on the
conjugate momentum), within quantum field theory it can
only happen in the infinite-energy limit. However, at the
quantum gravity level the intuition is that such a sharp
localization should disappear and uncertainty could be
recoded in a relation of the type

E ≥
1

δx
½1 − ΔðLP; δxÞ� ð24Þ

where ΔðLP; δxÞ should be such that E → ∞ at some
nonzero δx. According to the usual argument of quantum
mechanics, when the position of a particle of mass M (at
rest) is being measured by a procedure involving a collision
with a photon of momentum pγ , we have δpγ ≥ 1=δx
where δpγ is the photon momentum uncertainty and δx is
the position uncertainty of theM particle. Using the special
relativity Heisenberg’s uncertainty principle, it also means
that δEγ ≥ 1=δx which yields naturallyM ≥ 1=δx since we
need δEγ ≤ M in order not to disturb completely the system
being measured. Applying a boost the relation results in
E ≥ 1=δx, which on a rainbow gravity basis carries into
E ≥ ½1þP

akðLP=δxÞk�=δx, as stated in Eq. (24).
In our context, assuming that the test particle is a

massless scalar localized within the BH event horizon
rs ¼ 2M, its frequency uncertainty results δω ≥ ð2MÞ−1
which at leading order implies then again ω ≥ ð2MÞ−1 [27].
The remnant mass of the BH,Mr, can be therefore obtained
by making gðω=ωPÞ ¼ 0 in Eq. (22), i.e., considering null
evaporation rate for the minimal ω value. After some
straightforward calculation, we obtain the following expres-
sion for M ¼ Mr as a function of the rainbow parameters

Mr ¼
ξ1=s

2
MP; ð25Þ

where MP is the Planck mass.
Should we know the phenomenological mass value of

the remnant, we could calculate a lower bound to the
rainbow parameters. From recent negative results regarding
microscopic black holes in the CMS experiment at CERN’s
Large Hadron Collider we can so far exclude BH masses
below 6.2 TeV [28]. This allows establishing a constraint
in the parameters given by

6.2 TeV <
ξ1=s

2
2 × 1016 TeV ⇒ ξ1=s > 6.2 × 10−16;

ð26Þ

which for a conservative (simple) assumption of s ¼ 1 and
s ¼ 2, result in ξ > 6.2 × 10−16 and ξ > 3.8 × 10−31,
respectively. Other constraints on this parameter calculated
from data obtained in the ATLAS experiment were pointed
out in [29], including those related to extradimensional
considerations.
Let us now focus on the grey-body spectrum emitted

from the rainbow black hole. Its distribution function, or
occupation number nω, is given by [30]

nω ¼ Γev

1 − Γev
¼ 1

eqðωÞ8πMω − 1
; ð27Þ

where qðωÞ ¼ g−1ðω=ωPÞ happens to be the Tsallis
parameter associated with an incomplete nonextensive
entropy (see [31] and references therein) and 8πM is the
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inverse of the usual Hawking temperature associated with a
black-body (Planck) spectrum, T−1

H .
Nonextensivity has already been found in astrophysical

contexts associated with the dynamics of systems under
long range interactions at long and short distances [32–36].
The nonextensive statistical parameters have been shown to
have important physical meaning in dictating the final mass
of the formed black hole through the scaling laws found in
the asymptotic regimes of strong and weak rates of mass
loss, respectively [35].
At ultra high energies, there is an alternative to the GUP

above discussed. Since gravitational back reaction dodge
testing spacetime, its description as a smooth manifold
appears as a practical mathematical hypothesis. It comes
then natural to soften this assumption and conceive a more
general noncommutative discretized spacetime endowed
with uncertainty relations among the spacetime coordinates
themselves. Thus, noncommutative geometry gets into
matter also. A possible connection between results in these
two scenarios is found in [34] by means of a relation
between the parameters of the corresponding theories
through nonextensive thermodynamics outcomes.
Note that differently from previous work on the subject,

the expression found above, Eq. (27), shows a significant
deviation from the usual spectrum, particularly because the
parameter now depends on the particle’s energy. Indeed,
from Eq. (27) we can see that the Hawking temperature in
rainbow gravity can be defined by

~TH ¼ 1

8πMqðωÞ ¼
1

8πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ

�
ω

ωP

�
s

s
; ð28Þ

which as expected returns the standard TH value for ξ ¼ 0.
In Fig. 1 below we show (a magnification of) the depend-
ence of the emitted energy density per frequency unit,
ρðωÞ ¼ ω3nω for some values of ξ. Notice that the resulting

UV energy density (above 0.2) gets lower as the rainbow
parameter grows. It might be interpreted as a shift resulting
from the fact that the particle’s energy is being partially
spent in deforming the spacetime otherwise unaffected, as
in ordinary GR. On the other hand, the spectral emissivity
grows in the middle region, near the maximum. As expected,
the curves are practically indistinguishable at low non-
Planckian energies.

C. Variable fine structure constant

Now, our aim is setting an upper bound on ξ from current
astrophysical measurements. Making explicit the linear
dependence of ~TH with ℏ in Eq. (28), we can ascribe all
the rainbow dependence to a modified Planck constant,
and define

~ℏ ¼ ℏgðω=ωPÞ ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ

�
ω

ωP

�
s

s
: ð29Þ

Now, since the fine structure constant α is inversely
proportional to ℏ we can define a modified fine structure ~α

~α ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð ω

ωP
Þs

q ≈ α

�
1þ ξ

2

�
ω

ωP

�
s
�

ð30Þ

to take place in strong gravitational scenarios.
Hence, considering the most recent data on the relative

fine structure constant in the gravitational field of a white
dwarf, one verifies that Δα=α ≈ 10−5 [37] as registered by
the Hubble Space Telescope STIS from the absorbtion
spectra of metal lines of G191-B2B. From this we can get a
constraint on ξ given by

10−5 ≳ ξ

2

�
ω

ωP

�
s
⇒ ξ≲ 2 × 10−5

�
ωP

ω

�
s
: ð31Þ

For a surface temperature of 60,000–70,000 K [38], this
yields ξ≲ 4 × 1022 for s ¼ 1. This upper bound gets of
course higher for higher values of s (see [39] for a
discussion of some theoretical models). A comprehensive
investigation in Ref. [40] suggests that a spatial variation of
jΔα=αj is in general compatible with 10−5 which puts the
same upper bound on ξ. Finally, in the domain of atomic
physics the authors of [41] obtain a bound to the uncer-
tainty in the gravitational gradient in an experiment
involving the recoil velocity of 87Rb atoms in a vertical
lattice. In this case it yields ξ≲ 2.8 × 1023 for s ¼ 1.
Constraints on s are also exhibited in Table I below, for
these scenarios.

D. Gravitational quantum energy levels

In this subsection, we will determine the energy eigen-
values of the massive scalar in a strong gravitational field

2
1

0

0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

6

FIG. 1. Energy density ρðωÞ ¼ ω3nω emitted by a rainbow
black hole for growing values of the rainbow parameter, ξ,
as a function of the frequency. We set s ¼ 2 and T ¼ 0.1 in
Planck units.

EXACT SOLUTIONS AND PHENOMENOLOGICAL … PHYSICAL REVIEW D 96, 024018 (2017)

024018-5



by setting boundary conditions at the asymptotic region.
In order to annul the general solution at infinity we impose
a necessary condition in Eq. (16) which guarantees RðxÞ to
be a finite polynomial.
We start considering the confluent solution in the disk

jzj < 1 defined by the series expansion

HeunCðα; β; γ; δ; η; zÞ ¼
X∞
n¼0

vnðα; β; γ; δ; ηÞzn; ð32Þ

together with the condition HeunCðα; β; γ; δ; η; 0Þ ¼ 1. The
coefficients vnðα; β; γ; δ; ηÞ are determined by a three-term
recurrence relation

Anvn ¼ Bnvn−1 þ Cnvn−2 ð33Þ

with initial conditions v−1 ¼ 0, v0 ¼ 1 [43]. Here

An ¼ 1þ β

n
ð34Þ

Bn ¼ 1þ −αþ β þ γ − 1

n

þ η − ð−αþ β þ γÞ=2 − αβ=2þ βγ=2
n2

ð35Þ

Cn ¼
α

n2

�
δ

α
þ β þ γ

2
þ n − 1

�
: ð36Þ

Thus, in order to have a polynomial confluent Heun
function (16), we must impose the so called δN and ΔNþ1

conditions

δ

α
þ β þ γ

2
þ 1 ¼ −N ð37Þ

ΔNþ1 ¼ 0 ð38Þ

where N is a non-negative integer [17]. For further details
see also [43]. From Eq. (37), we obtain the following
expression for the energy levels

nþ g−1ðω=ωPÞ
�
2iMω −

Mð2ω2 −m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
�
¼ 0; ð39Þ

where n ¼ N þ 1.

Let us now consider the low energy regime ωM ≪ 1,
in which the particle probe is not absorbed by the black
hole. According to Eq. (22), in the limit there will be no
tunneling into the event horizon of the rainbow black hole
since

lim
ωM→0

e−8πM ~ω ¼ 1 ð40Þ

and therefore Γabs ¼ 1 − Γev → 0.
Stationary bound-state solutions are formed by waves

that propagate in opposite directions, with ω ∈ ℜ. In the
present case, these are sums of outward matter waves
coming from the event horizon superposed with inward
matter waves moving toward the horizon, thereafter tun-
neling in through the Regge-Wheeler barrier [44].
Interestingly, the condition of no waves coming out from
(nor going into) the horizon introduces complex valued
frequencies which correspond to quasibound states [45].
Rewriting Eq. (39) for ωM ≪ 1, we obtain

ξωsþ2 − ξm2ωs − ω2 þ 2mωð0Þ
n þm2 ¼ 0; ð41Þ

where ωð0Þ
n ¼ −m3M2=2n2, with n ¼ 1; 2; 3…, are the

gravitational Bohr levels (recall that in the present
units, ωP ¼ 1).
Interestingly, for s ¼ 1 Eq. (41) has two complex omega

solutions and a real one but it diverges as ξ approaches zero
which we also disregard. For s ¼ 2 there is only one
relevant solution and it is given by

ωn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2
þ 1

2ξ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ξ2 − 2m2ξ − 8mξωð0Þ

n þ 1

q
2ξ

vuut
: ð42Þ

For ξ → 0 the corresponding bound state energies coincide
with the energy spectrum given in [46,47]. At first order in
ξ, the gravitational Bohr levels are given by

ω2
n ≈m2 þ 2mωð0Þ

n þ ξð2m3ωð0Þ
n þ 4m2ωð0Þ2

n Þ þ � � � : ð43Þ

III. CLOSING REMARKS

In this paper, we have presented the analytic solution
to the Klein-Gordon equation of a massive scalar in the
gravity’s rainbow Schwarzschild spacetime. Analyzing

TABLE I. Rainbow’s gravity parameter constraints.

Experiment On ξ (s ¼ 1Þ On ξ (s ¼ 2Þ On s (ξ ¼ 0.5Þ
Black holes in LHC >6 × 10−16 >4 × 10−31 <0.02
Variable α (white dwarfs) <4 × 1022 <1043 >0.16
Photon time delay [42] <1020 − −
Weak equivalence principle (rotating torsion balance) [42] <105 − −
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both the exterior and interior outgoing wave functions at
the event horizon of a black hole we calculated the
tunneling rate of test particles through this boundary. We
have demonstrated that black hole evaporation is incom-
plete and stops at a remnant mass compatible with a
generalized uncertainty principle. Next, we have evinced
that the scalar emission spectrum (emitted particle occu-
pation number) is associated with an incomplete non-
extensive statistics where the Tsallis parameter is the
rainbow function g−1ðE=EPÞ. Remarkably, nonextensivity
is here not merely realized through some constant q ≠ 1, as
in the available literature on BH, but by means of a function
of the particle’s energy and the rainbow parameters. The
Hawking temperature is thereby modified as exhibited in
Eq. (28). Using this connection, a lower constraint on ξ was
obtained by means of recent LHC negative results related to
microscopic black holes.
Thereafter, we calculated the gravity deformed fine

structure constant ~α in terms of the rainbow function
gðω=ωPÞ. Astrophysical measurements of Δα=α allowed
us setting an upper constraint on the rainbow parameters.

Finally, we computed the stationary eigenenergy modes of
the massive scalar field in the low energy regime Mω ≪ 1
in which the particle probe does not tunnel through the
horizon. Whence, we obtained the rainbow gravity cor-
rected analog of the Bohr levels for the hydrogen atom.
We have solved the corresponding equation for s ¼ 1 and
s ¼ 2 and found that no meaningful solution exists in
the first case. The second case has just one physically
relevant solution which converges to the ordinary levels as
ξ → 0 and whose rainbow first order correction is given
in Eq. (43).
The table below resumes our results on the constraints to

the gravity’s rainbow parameters, as compared with others
registered in the literature and collected from entirely
different experiments.
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