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We obtain a family of exact solutions describing magnetized black holes in an external gravitational
field. Locally the solutions can be interpreted as representing the near-horizon region of a black hole, which
interacts with a surrounding matter distribution producing a strong magnetic field. Thus, the solutions
reflect the influence of both a gravitational and an electromagnetic external potential in the strong field
regime. The static members in the family are generalizations of the Schwarzschild solution in the described
environment, while the rotating ones generalize the magnetized Reissner-Nordström solution when the
influence of an external gravitational source is also taken into account. Technically, the solutions are
obtained by means of a Harrison transformation, applied on the (electro-)vacuum distorted black holes
constructed by Bretón et al. We examine the thermodynamical properties of the solutions, and compare
them with the corresponding isolated black holes, and with the particular cases when the interaction with
only one of the external potentials is taken into account. For the static black holes the influence of the
external gravitational and magnetic fields is factorized in a sense, both affecting different properties, and
leaving the rest intact. For the rotating solutions the external gravitational and magnetic fields are coupled
through the conditions for avoiding conical singularities. The Meissner effect is observed for extremal
rotating solutions only in the zero-charge limit, similar to the magnetized Reissner-Nordström black hole.
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I. INTRODUCTION

The stationary electrovacuum black hole solutions with
flat asymptotics were studied thoroughly within classical
general relativity, and many of their properties were
elucidated. Although of certain fundamental importance,
these solutions describe very idealized physical situations.
They represent isolated objects in equilibrium, which do
not interact with their environment, and any physical fields
are perceived as propagating in their background. In an
attempt to provide descriptions of some astrophysically
more relevant scenarios, two families of asymptotically
non-flat black hole solutions were considered. The family
of distorted black holes [1] includes a quasistationary
interaction with an external gravitational source. They
are interpreted as local solutions describing the near-
horizon region of a quasiequilibrium black hole and matter
configuration, such as a black hole and an accretion disk, or
a black hole in a binary system in the very initial stages of
the inspiral. The other family of solutions, the magnetized
black holes [2], involve interaction with a stationary
magnetic field aligned with the symmetry axis. The
magnetic field is interpreted as produced by some external
source, such as a surrounding accretion disk, and not as an
intrinsic characteristic of the black hole. Both families of
solutions describe the strong field regime of gravitational

and electromagnetic interactions, taking into account the
nonlinear backreaction of the black hole geometry on the
external potential.
Distorted black holes were already studied in the early

work of Doroshkevich, Zeldovich and Novikov [3], where
they obtained an exact solution for the Schwarzschild black
hole in an external quadrupole gravitational field, and
interpreted the horizon deformation as resulting from the
interaction with the external potential. Geroch and Hartle
[1] considered the most general static vacuum distorted
black hole solution with a regular event horizon in classical
general relativity. They investigated its geometrical struc-
ture and the resulting physical properties, such as the black
holes thermodynamics and Hawking radiation. Their analy-
sis does not resort to the explicit form of the metric,
describing the static distorted solutions, which was com-
pletely derived by Bretón, Denisova and Manko in [4].
The static distorted black holes were generalized to charged
and rotating solutions by means of solution generation
transformations [4–8], and extended to higher dimensions
[9–11]. Recent work demonstrated that distorted black
holes can possess properties, which are qualitatively differ-
ent from their isolated counterparts. For example, they can
violate the Kerr bound of the angular momentum/mass
ratio, without leading to the formation of naked singular-
ities [12].
The magnetized black holes were introduced by con-

sidering a nonlinear superposition of the Schwarzschild
black hole and the Melvin’s magnetic universe [13].
The resulting solution describes a black hole situated in
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a large-scale self-gravitating magnetic field, which is
approximately uniform at large distances. The solution
does not possess a magnetic charge, but is characterized by
a nontrivial magnetic flux through the horizon, which is
considered to be generated by an external source.
Therefore, such configurations are interpreted as black
holes interacting with an external magnetic field. The
Schwarzschild-Melvin solution constitutes the unique static
axisymmetric black hole solution of the Einstein-Maxwell
equations, which possesses the Melvin asymptotics
[14,15]. Rotating and charged magnetized black holes,
constructed as its generalizations, are characterized with
much more complicated asymptotic behavior [16–18]. The
interaction of the gravitational and magnetic fields causes a
global rotation of the spacetime, which can be avoided only
in special cases. This leads to nonuniqueness in the choice
of the asymptotically timelike Killing vector, resulting in
possible qualitatively different ergoregion configurations
[19]. The definition of global charges for stationary
magnetized black holes is also a nontrivial problem, and
different constructions proposed recently lead to non-
equivalent results [20,21] (see also [22–24]).
Themagnetized black holes receivedmuch attention in an

astrophysical context. The magnetic field produced by the
accretion disk is considered to be a crucial ingredient in
astrophysical processes, such as the formation of relativistic
jets from galactic nuclei and microquasars. One of the most
relevant models for jet formation, the Blandford-Znajek
mechanism [25], suggest that the magnetic lines threading
the horizon are dragged by the rotating black hole, pushing
plasma along the black hole rotation axis in the form of two
opposite jets. The power radiated from the black hole is
proportional to the spin parameter, and achieves its highest
values for extremal rotation. In this regime, however, a
counteracting mechanism is activated. Magnetic field lines
are expelled from the extremal horizons, similar to the
Meissner effect for superconductors, quenching the forma-
tion of relativistic jets. It is still an open questionwhether jets
can be produced by black holes with near-extremal rotation.
The Meissner effect is considered a fundamental prop-

erty of the extremal horizons, connected with the fact that
the length of the black hole throat gets infinite in the
extremal limit, and the modes on the both sides of the
horizon become disentangled [26]. In support of the latter
interpretation, it was derived from the properties of the
Hartle-Hawking vacuum at the low temperature limit [27].
The Meissner effect is observed for extremal black holes in
various gravitational theories [28]. However, it can be
suppressed in certain physical situations, as for example
when the external magnetic field is not aligned with the
symmetry axis [29], or the black hole possesses intrinsic
electric charge [28]. In such cases the magnetic flux
through the extremal horizon does not vanish.
The purpose of this paper is to construct exact solutions

which reflect the influence of both external gravitational and

magnetic potentials. The solutions model to some extent
relevant astrophysical situations, such as a black hole
surrounded by a massive accretion disk, which produces a
strong magnetic field. They are also of fundamental impor-
tance since they provide intuition how the described gravi-
magnetic interaction modifies the black hole properties.
The magnetized black holes are constructed technically

by performing a Harrison transformation on an appropriate
seed solution [30]. For our purposes we choose seeds,
which represent distorted black holes. Thus, the resulting
solutions are interpreted as local solutions describing the
near-horizon region of black holes, which interact with an
external gravitational potential and a large-scale magnetic
field, not produced by the central object. We realize the
described idea by constructing a static family of solutions,
which generalize the Schwarzschild black hole. The sol-
ution reduces to the magnetized Schwarzschild black hole
in the limit when the external gravitational potential
vanishes, and to the vacuum distorted black hole con-
structed by Bretón, Denisova and Manko in [4] when the
external magnetic field is switched off. In the class of
magnetized black holes obtained by a Harrison trans-
formation, this solution represents the most general static
black holes with a regular horizon. As an example for a
stationary solution, we construct a generalization of the
Reissner-Nordström black hole. The solution is obtained by
performing a Harrison transformation on the distorted
Reissner-Nordström black hole constructed by Bretón et al.
in [8]. The Harrison transformation applied on a charged
seed generates rotation, thus the constructed solution is
stationary, rather than static.
The paper is organized as follows. In Sec. II we review

the Schwarzschild and the Reissner-Nordström black holes
in an external gravitation field. We represent the solutions
in prolate spheroidal coordinates for convenience for
further calculations. In Sec. III we describe the Harrison
transformation used for the construction of magnetized
black holes. We consider in detail the case when the
Harrison transformation is performed on a static electro-
vacuum seed. In Secs. IV and V we obtain the magnetized
Schwarzschild and Reissner-Nordström black holes in an
external gravitational field and examine their thermody-
namical properties. In the construction of the magnetized
distorted Reissner-Nordström black hole we derive general
expressions for the metric functions and electromagnetic
potentials, resulting from the application of the Harrison
transformation on an arbitrary electrovacuum Weyl seed.
We discover certain differential relations valid for the
electrovacuum Weyl class, which facilitate considerably
the integration procedure. Section VI contains conclusions.

II. STATIC BLACK HOLES IN AN EXTERNAL
GRAVITATIONAL FIELD

Currently, two families of static solutions describing
black holes in an external gravitational fields are obtained
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in the classical general relativity, which belong to the class
of (electro-) vacuum Weyl solutions. A vacuum solution,
which generalizes the Schwarzschild black hole in the
presence of a gravitational interaction, was investigated in
[1,4], and an electrovacuum one corresponding to the
Reissner-Nordström solution was considered in [6,8].
While the former represents the most general distorted
vacuum black hole with a regular event horizon, the latter is
a particular solution describing electrovacuum distorted
black holes, which possess a similar structure as the
Reissner-Nordström solution.

A. Schwarzschild black hole in an external
gravitational field

The Schwarzschild black hole in an external gravita-
tional field is a static axisymmetric solution to the Einstein
equations in vacuum with nonflat asymptotics. Its metric
was derived by Bretón, Denisova and Manko in [4], and
possesses the following form in the prolate spheroidal
coordinates ðx; yÞ

ds2 ¼ −e2ψ0dt2 þ σ2e−2ψ0

�
ðx2 − y2Þe2γ0

�
dx2

x2 − 1
þ dy2

1− y2

�

þ ðx2 − 1Þð1− y2Þdϕ2

�
;

ψ0 ¼ ψS þ eψ0; ψS ¼
1

2
ln

�
x− 1

xþ 1

�
;

~ψ0 ¼
X∞
n¼0

anRnPn

�
xy
R

�
; R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
; ð1Þ

where x ≥ 1, and −1 ≤ y ≤ 1 in the domain of outer
communication. The physical infinity is located at
x → ∞. The function ψ0 is a harmonic function in an
auxiliary nonphysical flat space. It represents a super-
position of the potential ψS corresponding to the isolated
Schwarzschild black hole, and the potential ~ψ0, which
characterizes the external gravitational source. The poten-
tial ~ψ0 is expressed in terms of the Legendre polynomials
Pn, and is determined by a discrete set of real constants an,
n ∈ N . The metric function γ0 is a solution to the linear
system

∂xγ0 ¼
1 − y2

x2 − y2
½xðx2 − 1Þð∂xψ0Þ2 − xð1 − y2Þð∂yψ0Þ2

− 2yðx2 − 1Þ∂xψ0∂yψ0�;

∂yγ0 ¼
x2 − 1

x2 − y2
½yðx2 − 1Þð∂xψ0Þ2 − yð1 − y2Þð∂yψ0Þ2

þ 2xð1 − y2Þ∂xψ0∂yψ0�: ð2Þ

It can also be represented as a contribution from the
isolated Schwarzschild solution γS and a term ~γ0 introduced
by the interaction with the external gravitational field

γ0 ¼ γS þ ~γ0; γS ¼
1

2
ln

x2 − 1

x2 − y2
;

~γ0 ¼
X∞
n;k¼1

nk
nþ k

anakRnþkðPnPk − Pn−1Pk−1Þ

þ
X∞
n¼1

an
Xn−1
k¼0

½ð−1Þn−kþ1ðxþ yÞ − xþ y�RkPk

�
xy
R

�
:

ð3Þ

The prolate spheroidal coordinates are connected to the
conventional Schwarzschild coordinates ðr; θÞ by the
relations

x ¼ r
σ
− 1; y ¼ cos θ: ð4Þ

The solution contains a Killing horizon located at x ¼ 1,
and the symmetry axis consists of two disconnected
components at y ¼ 1 and y ¼ −1. It is characterized by
the real parameter σ, which is equal to the Komar mass on
the black hole horizon, and the discrete set of constants an,
n ∈ N , which determine the external gravitational field.
The isolated Schwarzschild black hole is recovered in the
limit when all the parameters an vanish. For balanced
solutions the external matter is restricted by the condition
for absence of conical singularities on the axis. It reduces to
the following constraint on the solution parameters

X∞
n¼0

a2nþ1 ¼ 0: ð5Þ

The interaction with the external potential leads to
deformation of the horizon geometry with respect to the
spherical one. The metric on the horizon cross section is
given by

ds2H ¼ 4σ2e~γ0ðyÞ−2 ~ψ0ðyÞ
�
e−~γ0ðyÞð1 − y2Þdϕ2 þ e~γ0ðyÞ

dy2

1 − y2

�

¼ 4σ2e~γ0ðθÞ−2 ~ψ0ðθÞ½e−~γ0ðθÞsin2θdϕ2 þ e~γ0ðθÞdθ2�;
y ¼ cos θ: ð6Þ

As a result of the field equations (2), the combination of
metric functions ~ψ0 − 1

2
~γ0 reduces to a constant on the

horizon, which is equal to the value of the metric function
~ψ0 at the intersection of the horizon with the rotational axis
x ¼ 1, y ¼ �1. Hence, the horizon geometry is determined
by a single function ~ψ0ðyÞ [or alternatively ~γ0ðyÞ], con-
trolling the deviation from the geometrical sphere, which
can be interpreted as a shape function [31]. It restricts to the
expression
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~ψ0jH ¼
X∞
n¼0

anyn; −1 ≤ y ≤ 1; ð7Þ

on the horizon, and for balanced solutions takes equal
values on the horizon intersection with the two axis
components ~ψ0ðx ¼ 1; y ¼ �1Þ ¼ P∞

n¼0 a2n. The horizon
area takes the form

AH ¼ 16πσ2e−2 ~ψ0 jx¼1;y¼�1 ¼ 4πR2
H;

RH ¼ 2σ exp

�
−
X∞
n¼0

a2n

�
: ð8Þ

The scalar quantity RH, appearing also as a scale factor in
(6), is interpreted as an effective horizon radius in analogy
with the spherical case.

B. Reissner-Nordström black hole in an external
gravitational field

The Reissner-Nordström black hole in an external
gravitational field is a static electrovacuum solution with
nonflat asymptotics obtained by Bretón et al. in [8]. It
contains the Reissner-Nordström black hole as a limiting
case, when asymptotic flatness is achieved, and the dis-
torted Schwarzschild solution in the limit, when its charge
vanishes. The solution belongs to the electrovacuum Weyl
class of solutions [32]. It is characterized by two potentials,
a gravitational and an electromagnetic one, which are
assumed to be related by a functional dependence. Due
to this relation the electrovacuum field equations acquire
the same form as for the vacuumWeyl class. They reduce to
a Laplace equation for a certain generalized potential, and a
decoupled linear system corresponding to (2). This obser-
vation is used to construct a map between vacuum and
electrovacuum Weyl solutions and to generate charged
solutions by applying an algebraic transformation on a
vacuum seed [32,33].
Describing electrovacuum solutions, we consider the

general form of the metric for the Weyl class in the prolate
spheroidal coordinates

ds2 ¼ −e2ψdt2 þ σ2e−2ψ
�
ðx2 − y2Þe2γ

�
dx2

x2 − 1
þ dy2

1 − y2

�

þ ðx2 − 1Þð1 − y2Þdϕ2

�
; ð9Þ

and denote the electromagnetic field by F ¼ dχ ∧ dt. If we
assume a functional relation between the gravitational and
electromagnetic potentials ψ ¼ ψðχÞ, it follows from the
field equations that it should possesses the explicit form

e2ψ ¼ 1 − 2Cχ þ χ2; ð10Þ

where C is an arbitrary constant. The parameter C is
interpreted physically as the ratio between the charge and

the mass of the gravitational source. We consider a vacuum
Weyl solution characterized by a gravitational potential ψ0.
Then, using the map which we discussed, it determines the
gravitational potential of an electrovacuum Weyl solution
by the relation

e−ψ ¼ 1

2

��
1þ Cffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 − 1
p

�
e−ψ0 þ

�
1 −

Cffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − 1

p
�
eψ0

�
:

ð11Þ

The map between the two solutions preserves the
metric function γ, i.e. it will possess the same form for
the constructed charged solution as for the vacuum seed.
The Reissner-Nordström black hole can be obtained by

applying the described transformation on the Schwarzschild
solution. A charged black hole in an external gravitational
field can be constructed in the same way by applying the
transformation on the distorted Schwarzschild black hole
(1) instead. The solution was derived in explicit form by
Bretón et al. [8], and its physical properties were inves-
tigated in [6]. For our purposes wewill present it in a slightly
different form. Themetric is given by the general expression
in the prolate spheroidal coordinates (9), and the gravita-
tional potential is expressed by

eψ ¼ 2σeψ0

σ þM þ ðσ −MÞe2ψ0
; ð12Þ

where ψ0 is the potential for the distorted Schwarzschild
solution (1). It contains an asymptotically nonflat part,
which describes the interaction with an external gravita-
tional source. The remaining metric function satisfies
γ ¼ γ0, where γ0 is given by (2), and the electromagnetic
field can be represented in the form

F ¼ dχ ∧ dt;

χ ¼ Qð1 − e2ψ0Þ
σ þM þ ðσ −MÞe2ψ0

: ð13Þ

The solution contains a Killing horizon located at x ¼ 1,
and the symmetry axis corresponds to y ¼ 1 and y ¼ −1. It
is characterized by the real parameters M and Q, which are
related to its mass and charge. Their ratio is equal to the
parameter C ¼ M=Q introduced by the Weyl transforma-
tion. The real constant σ is the mass parameter of the
vacuum seed solution, which satisfies the relation
σ2 ¼ M2 −Q2 ¼ Q2ðC2 − 1Þ. It is also equal to the half-
length of the horizon interval in the factor space of the
solution manifold with respect to the isometry group.
Considering the relations between the solution parameters,
we can see that the expressions for the gravitational and
electromagnetic potentials are equivalent to the general
expressions (10)–(11). The interaction with the external
gravitational field is encoded in the asymptotically nonflat
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part of the seed potential ψ0. As in the vacuum case, it is
determined by a set of real constants an, n ∈ N . In the
limit when all the constants an vanish, and ψ0 reduces
to the potential of the isolated Schwarzschild solution,
we obtain the isolated Reissner-Nordström solution. The
Schwarzschild black hole in an external gravitational field,
which we descried in the previous section, is recovered
when we set Q ¼ 0. The solution is in equilibrium when
the external matter parameters satisfy the same balance
condition (5) as for the distorted Schwarzschild solution.
The prolate spheroidal coordinates are connected to the

conventional Reissner-Nordström coordinates ðr; θÞ by the
relation

x ¼ r −M
σ

; y ¼ cos θ: ð14Þ

The external gravitational field deforms the horizon from
the spherical geometry in a similar way as for the distorted
Schwarzschild solution. The horizon geometry is deter-
mined by the metric

ds2H ¼ ðσ þMÞ2e~γ0ðyÞ−2 ~ψ0ðyÞ
�
e−~γ0ðyÞð1 − y2Þdϕ2

þ e~γ0ðyÞ
dy2

1 − y2

�

¼ ðσ þMÞ2e~γ0ðθÞ−2 ~ψ0ðθÞ½e−~γ0ðθÞsin2θdϕ2 þ e~γ0ðθÞdθ2�;
y ¼ cos θ; ð15Þ

where the metric functions ~ψ0 and ~γ0 characterize the
distorted Schwarzschild solution. The horizon area is given
by the expression

AH ¼ 4πðσ þMÞ2e−2 ~ψ0 jx¼1;y¼�1 ¼ 4πR2
H;

RH ¼ ðσ þMÞ exp
�
−
X∞
n¼0

a2n

�
; ð16Þ

where we have introduced an effective horizon radius RH.
Hence, the horizon is deformed by the same shape function
as for the distorted Schwarzschild solution, and the horizon
radius deviates in the same way from its value in the
isolated case.

III. CONSTRUCTION OF MAGNETIZED
BLACK HOLES

We consider stationary axisymmetric solutions of the
Einstein-Maxwell equations. The metric is expressed in the
prolate spheroidal coordinates in terms of the gravitational
potential with respect to the spacelike Killing field as

ds2 ¼ e2uðdϕþ ωdtÞ2 þ σ2e−2u

×

�
ðx2 − y2Þe2γ

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
; ð17Þ

and the electromagnetic field is in the form

F ¼ dAt ∧ dtþ dAϕ ∧ dϕ; ð18Þ

where all the functions depend on the prolate spheroidal
coordinates ðx; yÞ. The problem can be equivalently
described by introducing two complex potentials, a gravi-
tational one E and an electromagnetic potential Φ, defined
as [34]

E ¼ −e2u − jΦj2 þ if;

Φ ¼ Aϕ þ iBϕ; ð19Þ

We denote by f the twist potential, and Bϕ is the dual
electromagnetic potential. It is determined by means of the
Maxwell 2-form F as dBϕ ¼ iη⋆F, where η is the Killing
vector generating the azimuthal symmetry η ¼ ∂

∂ϕ. Using
the complex potentials the stationary and axisymmetric
Einstein-Maxwell equations can be reduced to two non-
linear Ernst equations for E andΦ [34]. The Ernst equations
are invariant under the group SUð2; 1Þ and solutions can be
constructed by its action on the potential space. The group
transformation generates a new pair of complex potentials,
which determine a new solution to the Einstein-Maxwell
equations. A particular 1-parameter transformation
obtained by Harrison [30] was observed to lead to solutions
containing a large-scale magnetic field [13–16]. Its param-
eter, which we will denote by B, is associated with the
strength of the magnetic field at infinity. These solutions
are interpreted as located in an external magnetic field.
If we consider an already known seed solution to the
Einstein-Maxwell equations with potentials E0 and Φ0,
the Harrison transformation generates new potentials by the
relations [13]

E ¼ Λ−1E0;

Φ ¼ Λ−1
�
Φ0 −

1

2
BE0

�
; ð20Þ

by means of a complex function

Λ ¼ 1þ BΦ0 −
1

4
B2E0: ð21Þ

The metric functions and the electromagnetic field are
further extracted from these expressions. The gravitational
potential u is determined from the real part of the Ernst
potential E in the form
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e2u ¼ jΛj−2e2u0 ; ð22Þ

where u0 is the corresponding potential for the seed
solution. The metric function ω is obtained as a solution
to the equations

∂ω
∂x ¼ 2σð1 − y2Þ

e2u0
½ImΛ∂yðReΛÞ − ReΛ∂yðImΛÞ�;

∂ω
∂y ¼ −

2σðx2 − 1Þ
e2u0

½ImΛ∂xðReΛÞ − ReΛ∂xðImΛÞ�: ð23Þ

The Harrison transformation leaves the metric function γ
invariant, i.e. it is satisfied that γ ¼ γ0. As a result we obtain
the metric of the new solution in the form

ds2 ¼ jΛj−2e2u0ðdϕþ ωdtÞ2

þ jΛj2σ2e−2u0
�
ðx2 − y2Þe2γ0

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
: ð24Þ

In the following we will consider only static electrically
charged seed solutions, i.e. possessing an electromagnetic
field in the form F0 ¼ dA0

t ∧ dt. The electromagnetic
potential Aϕ and the dual potential Bϕ of the magnetized
solution can be extracted directly from the real and
imaginary parts of the complex potential Φ. They are
given by the relations

Aϕ ¼ B
2jΛj2

�
−E0 þ

1

4
B2E2

0 þ 2ðB0
ϕÞ2

�
;

Bϕ ¼ B0
ϕ

jΛj2
�
1þ 1

4
B2E0

�
; ð25Þ

where B0
ϕ is the dual electromagnetic potential of the seed

solution, and E0 is its Ernst potential. In order to obtain the
potential At, it is convenient to consider the co-rotating
potential Σ, defined as Σ ¼ At þ ωAϕ. It is related to the
dual potential Bϕ by the equations

∂Σ
∂x ¼ σðy2 − 1Þ

e2u
∂Bϕ

∂y þ Aϕ
∂ω
∂x ;

∂Σ
∂y ¼ σðx2 − 1Þ

e2u
∂Bϕ

∂x þ Aϕ
∂ω
∂y : ð26Þ

These equations can be reduced to the relation

dΣ ¼ 3

2B
dωþ 2dA0

t ; ð27Þ

which allows us to obtain the explicit form of the potential
At generated by the Harrison transformation

At ¼ 2A0
t − ωAϕ þ

3

2B
ωþ const; ð28Þ

where A0
t is the corresponding potential for the seed

solution. We should note that the Harrison transformation
generates static solutions only from vacuum seeds. If we
consider an electrovacuum seed solution, it introduces
rotation due to the interaction of its electromagnetic
potential with the external electromagnetic field.

IV. MAGNETIZED SCHWARZSCHILD
BLACK HOLE IN AN EXTERNAL

GRAVITATIONAL FIELD

Static magnetized black holes are obtained in a particu-
larly simple way by means of the Harrison transformation.
In this case the transformation is applied on a static vacuum
seed, and it reduces purely to algebraic operations. The
solution is characterized only by the Ernst potential, which
is a real function, as well as the metric function Λ following
from it. In this section we construct a magnetized
Schwarzschild black hole in an external gravitational field.
This is achieved by applying the Harrison transformation
on the distorted Schwarzschild solution described in Sec. II.
The seed metric (1) is represented in an equivalent form by
means of the gravitational potential with respect to the
spacelike Killing field

ds2 ¼ e2u0dϕ2 þ σ2e−2u0
�
ðx2 − y2Þe2γ00

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
; ð29Þ

where the potential u0 and the metric function γ00 are related
to the original quantities ψ0 and γ0 as

e2u0 ¼ σ2ðx2 − 1Þð1 − y2Þe−2ψ0 ;

e2γ
0
0 ¼ σ2ðx2 − 1Þð1 − y2Þe2γ0−4ψ0 : ð30Þ

Then, the Ernst potential is given by

E0 ¼ −e2u0 ; ð31Þ

and the magnetized solution is constructed straightfor-
wardly

ds2 ¼ Λ−2e2u0dϕ2

þ Λ2σ2e−2u0
�
ðx2 − y2Þe2γ00

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
;

Λ ¼ 1 −
1

4
B2E0 ¼ 1þ 1

4
B2σ2ðx2 − 1Þð1 − y2Þe−2ψ0 ;

ð32Þ
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according to (24) and (30), where the functions ψ0 and γ0
characterizing the seed solution are given by eqs. (1)–(2).
The electromagnetic field is given by

F ¼ dAϕ ∧ dϕ;

Aϕ ¼ B
2Λ

σ2ðx2 − 1Þð1 − y2Þe−2ψ0 ;

following the general relations (25).

A. Properties

The solution possesses a Killing horizon located at
x ¼ 1, and the symmetry axis corresponds to y ¼ �1. It
contains the magnetized Schwarzschild black hole [13] in
the limit an ¼ 0, n ∈ N , which acquires its conventional
form by means of the coordinate transformation (4). The
solution is free of conical singularities provided that the
norm K ¼ gðη; ηÞ of the spacelike Killing vector η ¼ ∂=∂ϕ
satisfies the condition

1

4K
gμν∂μK∂νK → 1; ð33Þ

in the vicinity of the rotational axis. Imposing this condition
we assume that the angular coordinate ϕ possesses the
standard periodicity Δϕ ¼ 2π. Explicit calculation shows
that it coincides with the regularity condition for the seed
solution

X∞
n¼0

a2nþ1 ¼ 0: ð34Þ

The surface gravity of the horizon is defined as

κ2H ¼ −
1

4λ
gμν∂μλ∂νλ; ð35Þ

where λ ¼ gðχ; χÞ is the norm of the Killing field χ ¼ ∂=∂t.
We obtain again the same expression as for the distorted
Schwarzschild black hole

κH ¼ 1

4σ
exp

�
2
X∞
n¼1

a2n

�
: ð36Þ

The black hole is further characterized by a local mass
MH defined by the Komar integral evaluated on the horizon

MH ¼ −
1

8π

Z
H
⋆dξ ¼ σ; ð37Þ

where ξ ¼ ∂=∂t. The Komar mass on the horizon proves to
be unaffected either by the external gravitational potential,
or by the external magnetic field retaining the same value as
for the isolated Schwarzschild black hole.

We examine the deformation in the horizon geometry
resulting from the influence of the external magnetic field.
The restriction of the metric on the horizon cross section is
given by

ds2H ¼ 4σ2e~γ0ðyÞ−2 ~ψ0ðyÞ
�
Λ−2e−~γ0ðyÞð1 − y2Þdϕ2

þ Λ2e~γ0ðyÞ
dy2

1 − y2

�

¼ 4σ2e~γ0ðθÞ−2 ~ψ0ðθÞ½Λ−2e−~γ0ðθÞsin2θdϕ2 þ Λ2e~γ0ðθÞdθ2�;
y ¼ cos θ ð38Þ

where the metric function Λ reduces to

Λ ¼ 1þ σ2ð1 − y2Þe−2 ~ψ0ðyÞ ¼ 1þ σ2sin2θe−2 ~ψ0ðθÞ: ð39Þ

The combination of metric functions ~ψ0 − 1
2
~γ0 is a constant

on the horizon

~ψ0 −
1

2
~γ0jH ¼

X∞
n¼0

a2n; ð40Þ

as discussed in Sec. II, and the scale factor in (38) is
interpreted as an effective horizon radius RH. We see that
the horizon radius is not influenced by the magnetic field,
and coincides with that of the vacuum seed solution (1)

RH ¼ 2σ exp

�
−
X∞
n¼0

a2n

�
: ð41Þ

As a result, the horizon area AH ¼ 4πR2
H is also preserved.

The influence of the magnetic field is encoded in the shape
function, controlling the deformation of the horizon from
the geometrical sphere, which is modified by the factor Λ2.
The constructed solution does not possess an electric or

magnetic charge, as can be proven by direct calculation. Its
electromagnetic properties are characterized by the mag-
netic flux through the horizon upper/lower hemisphere

FB ¼ 1

4π

Z
Hþ

F ¼ Δϕ
4π

½Aϕðx ¼ 1; y ¼ 0Þ

− Aϕðx ¼ 1; y ¼ 1Þ�: ð42Þ

As a result of the calculation we obtain the same
expression as for the magnetized Schwarzschild black
hole [29]

FB ¼ σ2B
1þ B2σ2

; ð43Þ

showing that the external gravitational field has no influ-
ence on the electromagnetic properties of the solution.
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In summary we can conclude that the influence of the
external gravitational field and that of the external magnetic
field are factorized in a sense. Some properties are modified
by the former, but not by the latter, and the opposite situation
is also observed. Certain characteristic like the local mass
of the black hole are not influenced by either of the
external potentials. We overview the examined properties
in Table I, where we compare their values for the isolated
Schwarzschild black hole (Isol. Schw.), its generalizations in
an external gravitational filed [1] (Dist. Schw.), and in an
external magnetic field [13] (Magn. Schw.), and for the
constructed solution in this section (Magn. Dist. Schw.),
which reflects the influence of both external potentials.

V. MAGNETIZED REISSNER-NORDSTRÖM
BLACK HOLE IN AN EXTERNAL

GRAVITATIONAL FIELD

In this section we construct a magnetized Reissner-
Nordström black hole in an external gravitational field. It is
obtained by performing a Harrison transformation on the
distorted Reissner-Nordström solution, which we described
in Sec. II B, as a seed. For the purpose we develop a
construction scheme, which is valid for any seed solution
belonging to the electrovacuum Weyl class, and apply it in
our particular case. We represent the seed metric by means
of the potential with respect to the spacelike Killing field

ds2 ¼ e2u0dϕ2 þ σ2e−2u0
�
ðx2 − y2Þe2γ00

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
; ð44Þ

where the potential u0 and the metric function γ00 are related
to the original quantities ψ and γ as

e2u0 ¼ σ2ðx2 − 1Þð1 − y2Þe−2ψ ;
e2γ

0
0 ¼ σ2ðx2 − 1Þð1 − y2Þe2γ−4ψ : ð45Þ

To be consistent with the notations introduced in the
description of the Harrison transformation, we rename
the electromagnetic potential of the electrovacuum Weyl
solution (10) as χ ¼ A0

t . Then, the Ernst potential and the
complex electromagnetic potential for the seed solution
have the form

E0 ¼ −σ2ðx2 − 1Þð1 − y2Þe−2ψ − ðB0
ϕÞ2;

Φ0 ¼ iB0
ϕ; ð46Þ

where the dual electromagnetic potential B0
ϕ is determined

by the equations

∂B0
ϕ

∂x ¼ σðy2 − 1Þ
e2ψ

∂A0
t

∂y ;

∂B0
ϕ

∂y ¼ σðx2 − 1Þ
e2ψ

∂A0
t

∂x : ð47Þ

For the electrovacuum Weyl solutions the gravitational
potential ψ and the electromagnetic potential A0

t are func-
tionally dependent, as shown by the relation (10). It further
leads to the differential relation

dA0
t ¼ −

e2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − 1

p dψ0; ð48Þ

where ψ0 is the gravitational potential for the vacuumWeyl
solution, which corresponds to the electrovacuum one by
the map (11). Then, the equations for dual potential can be
easily integrated. For the distorted Reissner-Nordström
solution the vacuum potential ψ0 is the potential of the
distorted Schwarzschild solution given by (1), and the
parameter C is traditionally expressed by the mass and
charge parameters of the Reissner-Nordström solution as
C ¼ M=Q, while σ2 ¼ M2 −Q2. Thus, we obtain for the
dual potential

B0
ϕ ¼ −Qy −Q

X∞
n¼1

annRnþ1

2nþ 1

�
Pnþ1

�
xy
R

�
− Pn−1

�
xy
R

��
;

ð49Þ

where we use the notations introduced in Sec. II. Hence, we
can construct the complex function Λ in the form

Λ ¼ 1 −
1

4
B2E0 þ iBB0

ϕ: ð50Þ

In the case of a static electrovacuum seed, the Eqs. (23),
which determine the metric function ω of the magnetized
solution, reduce to the system

TABLE I. Overview of the properties of the isolated Schwarzs-
child black hole versus its generalizations in an external gravi-
tational field and/or an external magnetic field (see main text).
The notation δ ¼ 2

P∞
n¼1 a2n is used.

Isol.
Schw.

Dist.
Schw.

Magn.
Schw.

Magn. Dist.
Schw.

Surface gravity
(κH)

1
4σ

1
4σ e

δ 1
4σ

1
4σ e

δ

Horizon area
(AH)

16πσ2 16πσ2e−δ 16πσ2 16πσ2e−δ

Komar mass
(MH)

σ σ σ σ

Magnetic flux
(FB)

- - 4πσ2B
1þB2σ2

4πσ2B
1þB2σ2
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∂ω
∂x ¼ 2σð1 − y2Þ

e2u0

�
−B∂yB0

ϕ þ
B3

4
ðB0

ϕ∂yðe2u0Þ

− ½e2u0 − ðB0
ϕÞ2�∂yB0

ϕÞ
�
;

∂ω
∂y ¼ −

2σðx2 − 1Þ
e2u0

�
−B∂xB0

ϕ þ
B3

4
ðB0

ϕ∂xðe2u0Þ

− ½e2u0 − ðB0
ϕÞ2�∂xB0

ϕÞ
�
:

For the electrovacuum Weyl class of solutions, they can
be simplified considerably if we take into account the
relations between the electromagnetic and gravitational
potentials A0

t , B0
ϕ and u0 of the seed solution, and the

vacuum Weyl potential ψ0 corresponding to it, determined
by Eqs. (47)–(48), and (10)–(11). Thus, we obtain the
following differential relation

dω ¼ −d
�
2BA0

t þ
1

2
B3ðB0

ϕÞ2ðC − A0
t Þ −

1

2
B3 ~ω

�
; ð51Þ

where C is the parameter characterizing the map between
the vacuum and electrovacuum Weyl solutions. In the case
of the distorted Reissner-Nordström solution it is expressed
by means of its mass and charge parameters as C ¼ M=Q.
The function ~ω is a solution to the equations

∂ ~ω
∂x ¼ −σðy2 − 1Þ2 ∂

∂y
�

B0
ϕ

1 − y2

�
;

∂ ~ω
∂y ¼ σðx2 − 1Þ2 ∂

∂x
�

B0
ϕ

x2 − 1

�
: ð52Þ

Using the explicit form of the dual electromagnetic
potential B0

ϕ (49) for the distorted Reissner-Nordström
solution we obtain

~ω ¼ σQxð1þ y2Þ þ σQðx2 − 1Þð1 − y2Þ

×
X∞
n¼1

annðn − 1Þ
ðnþ 1Þðnþ 2ÞR

nPn

�
xy
R

�

þ 2σQ
X∞
n¼1

anðn − 1Þ
ðnþ 1Þðnþ 2ÞR

nþ2

×

�
xy
R
Pn−1

�
xy
R

�
− Pn−2

�
xy
R

��
:

Hence, the metric function ω is given by the expression

ω ¼ −2BA0
t −

1

2
B3ðB0

ϕÞ2
�
M
Q

− A0
t

�
þ 1

2
B3 ~ωþ const:

ð53Þ

We have obtained all the quantities necessary to con-
struct the magnetized Reissner-Nordström black hole in an

external gravitational field by means of the Harrison
transformation. The solution possesses the form

ds2 ¼ jΛj−2e2u0ðdϕþ ωdtÞ2

þ jΛj2σ2e−2u0
�
ðx2 − y2Þe2γ00

�
dx2

x2 − 1
þ dy2

1 − y2

�

− ðx2 − 1Þð1 − y2Þdt2
�
;

jΛj2 ¼
�
1 −

1

4
B2E0

�
2

þ B2ðB0
ϕÞ2; ð54Þ

where

E0 ¼ −e2u0 − ðB0
ϕÞ2;

e2u0 ¼ σ2ðx2 − 1Þð1 − y2Þe−2ψ ;

eψ ¼ 2σeψ0

σ þM þ ðσ −MÞe2ψ0
;

e2γ
0
0 ¼ σ2ðx2 − 1Þð1 − y2Þe2γ−4ψ ;

A0
t ¼

Qð1 − e2ψ0Þ
σ þM þ ðσ −MÞe2ψ0

;

and the functions ψ0 and γ0 are given by Eqs. (1)–(2). The
potentials B0

ϕ and ω are determined by (49) and (53), and B
is the parameter characterizing the external magnetic field.
The electromagnetic field possesses the form

F ¼ dAt ∧ dtþ dAϕ ∧ dϕ;

Aϕ ¼ B
2jΛj2

�
−E0 þ

1

4
B2E2

0 þ 2ðB0
ϕÞ2

�
;

At ¼ 2A0
t − ωAϕ þ

3

2B
ω; ð55Þ

in the same notations as in the expression for the metric,
leading to the corotating potential Σ ¼ At þ ωAϕ

Σ ¼ 3

2B
ωþ 2A0

t þ const; ð56Þ

according to the general expression (27).

A. Properties

The physical properties of the constructed solution
depend on the behavior of the potentials E0, ~ω, A0

t and
B0
ϕ, which are included in the metric functions, on the

horizon x ¼ 1 and on the symmetry axis y ¼ �1. They
reduce to the following expressions
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B0
ϕðx ¼ 1Þ ¼ −Qy; A0

t ðx ¼ 1Þ ¼ Q
σ þM

;

~ωðx ¼ 1Þ ¼ σQð1þ y2Þ;

E0ðx ¼ 1Þ ¼ ð1 − y2Þðσ þMÞ2 exp
�X∞

n¼1

anyn
�

−Q2y2;

B0
ϕðy ¼ �1Þ ¼ ∓Q; E0ðy ¼ �1Þ ¼ −Q2: ð57Þ

We see that most of the quantities are not influenced by
the external gravitational field, and coincide with those for
the magnetized Reissner-Nordström black hole. This will
result in similarities in the physical behavior of the
solutions.
The constructed magnetized solution is stationary

rather than static. The Harrison transformation introduces
rotation, which is interpreted as caused by the interaction
of the intrinsic electromagnetic potential of the seed
solution with the external magnetic field. The horizon
rotates with angular velocity ΩH ¼ −ωðx ¼ 1Þ with
respect to the symmetry axis given by

ΩH ¼ 2BQ
σ þM

−
1

2
B3Qσ þ Cω: ð58Þ

The angular velocity is determined up to an arbitrary
constant Cω. For asymptotically flat solutions this freedom
is fixed by the requirement to avoid global rotation of the
spacetime. However, since we consider a local solution,
there is no natural constraint to be imposed without
considering an extension to an asymptotically flat solution.
For some asymptotically nonflat solutions the constant can
be fixed by the requirement that the metric function ω
vanishes on the rotational axis, as for example for rotating
black holes in an external gravitational field [4,11].
However, such normalization cannot be applied for mag-
netized solutions, since the metric function ω does not
reduce to a constant on the axis.
The horizon angular velocity (58) is not influenced by

the external gravitational field. It coincides with the angular
velocity of the magnetized Reissner-Nordström black hole,
and the expression given in [19] is recovered by setting the
constant Cω ¼ − 1

2
B3QM.1

ΩH ¼ 2BQ
σ þM

�
1 −

1

4
B2ðσ þMÞ2

�
: ð59Þ

In order to obtain a solution, which is free of conical
singularities, we should examine its behavior near the
rotational axis. We can require that the standard periodicity

of the angular coordinate Δϕ ¼ 2π is preserved. Then,
conical singularities are avoided provided that the norm
K ¼ gðη; ηÞ of the spacelike Killing vector η ¼ ∂=∂ϕ
satisfies the condition

1

4K
gμν∂μK∂νK → 1; ð60Þ

in the vicinity of the rotational axis. Explicit calculation
shows that it reduces to the requirement

e~γ0 jΛj2jy¼�1 ¼ exp
�X∞

n¼0

a2nþ1

�

×

��
1þ 1

4
B2Q2

�
2

þ B2Q2

�
¼ 1: ð61Þ

This relation introduces a dependence between the param-
eters an characterizing the external gravitational field, and
the external magnetic field parameter B, and it can be
satisfied only if some of the parameters an for odd n
possess negative values. Still, regular solutions with stan-
dard periodicity Δϕ ¼ 2π can be achieved for special cases
of the external gravitational potential. Another possibility
to obtain solutions which are free of conical singularities is
to assign to the angular coordinate the periodicity

Δϕ ¼ 2π exp

�X∞
n¼0

a2nþ1

���
1þ 1

4
B2Q2

�
2

þ B2Q2

�
:

ð62Þ
In this case the parameters characterizing the external
gravitational and magnetic fields remain independent.
For the magnetized Reissner-Nordström black hole conical
singularities can be avoided only by choosing an appro-
priate periodicity of the angular coordinate, which we
denote by ΔϕM

ΔϕM ¼ 2π

��
1þ 1

4
B2Q2

�
2

þ B2Q2

�
: ð63Þ

We calculate further the surface gravity of the horizon
defined as

κ2H ¼ −
1

4λ
gμν∂μλ∂νλ; ð64Þ

where λ ¼ gðV; VÞ is the norm of the Killing field
V ¼ ∂=∂tþ ΩH∂=∂ψ , which becomes null on the horizon.
We obtain the expression

κH ¼ σ

ðσ þMÞ2 exp
�
2
X∞
n¼1

a2n

�
; ð65Þ

which coincides with that of the distorted Reissner-
Nordström solution (9). The restriction of the metric on
the horizon cross section is given by

1In the case of the magnetized Reissner-Nordström black hole
the global rotation of the spacetime cannot be avoided, and the
value of the angular velocity of the horizon is determined up to a
constant.
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ds2H ¼ ðσ þMÞ2e~γ0ðyÞ−2 ~ψ0ðyÞ
�
jΛj−2e−~γ0ðyÞð1 − y2Þdϕ2

þ jΛj2e~γ0ðyÞ dy2

1 − y2

�

¼ ðσ þMÞ2e~γ0ðθÞ−2 ~ψ0ðθÞ½jΛj−2e−~γ0ðθÞsin2θdϕ2

þ jΛj2e~γ0ðθÞdθ2�;
y ¼ cos θ: ð66Þ

The horizon radius is not influenced by the magnetic field,
and coincides with that of the vacuum seed solution (9)

RH ¼ ðσ þMÞ exp
�
−
X∞
n¼0

a2n

�
: ð67Þ

The deformation of the horizon due to the magnetic field is
reflected in the appearance of the factor jΛj2 in the shape
function. The horizon area given by AH ¼ 2ΔϕR2

H coin-
cides with the distorted Reissner-Nordström solution pro-
vided the regularity condition (61) is satisfied, and deviates
by the factor (62) otherwise.
The constructed magnetized black hole possesses the

electric charge

QH ¼ 1

4π

Z
H

⋆F ¼ Δϕ
ΔϕM

Q

�
1 −

1

4
B2Q2

�
; ð68Þ

while the restriction of the co-rotating potential Σ on the
horizon is given by

ΣH ¼ −
Q

σ þM
þ 3

4
B3Qσ þ CΣ: ð69Þ

The corotating potential ΣH suffers from the same ambi-
guity as the angular velocity, which is connected with the
choice of the arbitrary constant CΣ. The expression
coincides with the corresponding quantity for the magnet-
ized Reissner-Nordström solution, reflecting no influence
of the external gravitational field. Setting CΣ ¼ − 3

4
B3QM

leads to the value proposed in [20]

ΣH ¼ −
Q

σ þM

�
1 −

3

4
B2ðσ þMÞ2

�
: ð70Þ

The solution is further characterized by the magnetic flux
through the horizon upper/lower hemisphere

FB ¼ 1

4π

Z
Hþ

F ¼ Δϕ
4π

½Aϕðx ¼ 1; y ¼ 0Þ

− Aϕðx ¼ 1; y ¼ 1Þ�

¼ Δϕ
ΔϕM

Bðσ þMÞ
2jΛj2y¼�1

½ð2σ −MÞ þ 1
4
B2q2ð2σ þMÞ�

1þ 1
4
B2ðσ þMÞ2 ;

jΛj2y¼�1 ¼
�
1þ 1

4
B2Q2

�
2

þ B2Q2: ð71Þ

The expressions for the charge and the magnetic flux
deviate from the corresponding quantities for the magnet-
ized Reissner-Nordström black hole (see e.g. [17]) only by
the modification of the angular coordinate periodicity Δϕ
with respect to that of the magnetized solution ΔϕM given
by (63). Similar to the magnetized Reissner-Nordström
black hole the solution does not exhibit the Meissner effect
in the extremal horizon limit for general values of the
parameter B. Besides the component sourced by the
external magnetic field, the magnetic flux through
the horizon contains an intrinsic part generated by the
rotation of the charged black hole. The second contribution
does not vanish in the extremal limit, and therefore flux
expulsion is not observed for general extremal horizons.
The only possibility to obtain vanishing magnetic flux is to
tune the external field parameter B in such a way that the
physical charge of the black hole (68) is set to zero, i.e.
B ¼ �2=Q [19]. This condition does not prevent extremal
solutions, which are obtained in the limit σ ¼ M. Inserting
the zero-charge condition in Eq. (71), as well as the
extremality condition, we see that the magnetic flux
threading the horizon vanishes.
We summarize the examined properties in Table II, where

we compare their behavior for the isolated Reissner-
Nordström black hole (Isol. R.N.), its generalizations in

TABLE II. Overview of the properties of the isolated Reissner-Nordström black hole versus its generalizations in
an external gravitational field and/or an external magnetic field. The notations δ ¼ 2

P∞
n¼1 a2n and rþ ¼ σ þM are

used. In the normalization of the angular velocity and the electrostatic potential we adopt the same convention as in
[19,20] (see main text). The magnetic flux FB refers to the quantity obtained in Eq. (71).

Isol. R.N. Dist. R.N. Magn. R.N. Magn. Dist. R.N.

Surface gravity (κH)
σ
r2þ

σ
r2þ
eδ σ

r2þ
σ
r2þ
eδ

Horizon area (AH) 4πr2þ 4πr2þe−δ 2ΔϕMr2þ 2Δϕr2þe−δ
Angular velocity (ΩH) - - 2BQ

rþ
½1 − 1

4
B2r2þ� 2BQ

rþ
½1 − 1

4
B2r2þ�

EM potential (ΣH) − Q
rþ

− Q
rþ

− Q
rþ
½1 − 3

4
B2r2þ� − Q

rþ
½1 − 3

4
B2r2þ�

Electric charge (QH) Q Q Q½1 − 1
4
B2Q2� Δϕ

ΔϕM
Q½1 − 1

4
B2Q2�

Magnetic flux (FB) - - ΔϕM
Δϕ FB FB
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an external gravitational field [6] (Dist. R.N.), and in an
external magnetic field [13] (Magn. R.N.), and for the
constructed solution in this section (Magn. Dist. R.N.),
which reflects the influence of both external potentials.

1. Local mass and angular momentum

We can calculate the local mass and angular momentum
of the black hole by using Wald’s procedure for calculating
conserved charges. In Einstein-Maxwell gravity every
Killing field k generates a Noether current J given by
[35,36].

J ¼ −d⋆dk − 4⋆F ∧ dðkμAμÞ; ð72Þ
where F is the Maxwell 2-form, and Aμ is the electromag-
netic potential. It satisfies dJ ¼ 0 for solutions of the field
equations, and therefore we can express it as J ¼ −dP by
means of a Noether 2-form P. Integrating the 2-form P
over a closed surface Σ we define the Noether charge of Σ
relative to the Killing filed k

Q½k� ¼
Z
Σ
P: ð73Þ

For stationary and axisymmetric solutions of the
Einstein-Maxwell equations we can construct the
Noether charges associated with the Killing fields generat-
ing the azimuthal symmetry and the time translations, or in
our notations η ¼ ∂=∂ϕ and χ ¼ ∂=∂t. Integrating the
corresponding Noether 2-forms Pη and Pχ over the horizon
of our solution (54), we obtain the local angular momentum
J H and the local mass MH of the black hole

J H ¼ −
1

16π

Z
H
Pη ¼

1

16π

Z
H
⋆dηþ 4Aϕ⋆F;

MH ¼ 1

8π

Z
H
Pχ ¼ −

1

8π

Z
H
⋆dχ þ 4At⋆F: ð74Þ

By construction, the two quantities are connected by the
Smarr relation

MH ¼ 1

4π
κHAH þ 2ΩHJ H þ ΣHQH; ð75Þ

where all the thermodynamic quantities were previously
defined. Hence, obtaining the angular momentum deter-
mines also the horizon mass through (75).
The calculation of the angular momentum can be

accomplished by performing a dimensional reduction on
the ϕ coordinate as proposed in [20]. Then, the integral
reduces to

J H ¼−
1

16π

Z
H
Pη ¼

ðΔϕÞ2
16π2

Z
H
dλ¼ ðΔϕÞ2

16π2
λjy¼1

y¼−1; ð76Þ

where λ is a potential defined in the factor space. The
explicit form of the potential λ for solutions generated by

means of the Harrison transformation is given in [19].2 In
the case when the transformation is applied to a static seed
with Ernst potential E0 and electromagnetic potential
Φ0 ¼ iB0

ϕ, it reduces to the expression

λ¼−
BB0

ϕ

jΛj4
�
ðE0− ðB0

ϕÞ2Þ
�
1−

1

4
B2E2

0

��
þ 2AϕBϕ; ð77Þ

in the notations we previously introduced. The potential λ is
not invariant with respect to gauge transformations of the
electromagnetic potential. Therefore, it was suggested in [20]
to define the angular momentum by means of a related
potential ~λ ¼ λ − 2AϕBϕ. Still, both definitions lead to
equivalent results if the electromagnetic potential Aϕ is
normalized so that it vanishes on the symmetry axis. In this
normalization we obtain for the horizon angular momentum

J H ¼ −
ðΔϕÞ2
ðΔϕMÞ2

Q3B
�
1þ 1

4
B2Q2

�
; ð78Þ

where ΔϕM is the periodicity of the angular coordinate for
the magnetized Reissner-Nordström solution. The horizon
angular momentum deviates from the corresponding quan-
tity for the magnetized Reissner-Nordström solution cal-
culated by the same procedure, only by the difference in the
periodicities Δϕ and ΔϕM. The local mass MH is not
determined uniquely. Since the horizon angular velocity
ΩH and the corotating potential ΣH are determined up to an
arbitrary additive constant, the same ambiguity is inherited
in the value of the horizon mass.

VI. CONCLUSION

Black holes in astrophysical environments are involved in
gravitational and electromagnetic interaction with surround-
ing matter fields. Usually they are considered negligible
compared to the central potential, and the spacetime is
described by an isolated black hole solution. Yet, certain
gravitational phenomena are sensible to even small perturba-
tions, and lead to qualitatively different observable features.
Valuable intuition in this respect can be provided by exact
solutions which include the backreaction of the black hole
geometry to an external gravi-magnetic potential.
In this paper we constructed a family of stationary black

hole solutions reflecting the interaction with an external
matter distribution, which produces a strong magnetic field.
The solutions are obtained by a Harrison transformation,
and could model to some extent the conditions in the
vicinity of a black hole surrounded by an accretion disk. We
investigated their thermodynamical properties making
comparison with the corresponding isolated black holes,
as well as with the cases when only the gravitational or

2In [19] the potential is denoted by σ.
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electromagnetic interaction is taken into account. We also
studied the influence of the external gravitational potential

on the Meissner effect, and demonstrated that the same

qualitative behavior is observed as for purely magnetized
solutions.
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