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The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is
adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic
fields resulting from the “Ernst magnetization” permits a test particle to have strong enough energy to
destroy the black hole. However, the corresponding effective potentials show that such particles would
never reach the horizon.
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I. INTRODUCTION

According to general relativity, nothing can stop a
massive enough star to collapse into a singularity after
its nuclear fuel runs out. However, according to the cosmic
censorship conjecture introduced by Penrose, the singu-
larity resulting from a total gravitational collapse must be
hidden behind a surface known as the black hole horizon
[1]. Since the birth of this conjecture, a large number of
studies have been devoted to test its validity. For example
Wald proposed a gedanken experiment to overspin or
overcharge a Kerr-Newman black hole by throwing a test
particle with some specific physical properties from far
infinity into the black hole. By capturing the particle, it is
expected that the black hole would pass its extremal bound
and become a naked singularity.
An infalling test particle with mass m, charge q, and

angular momentum L into a black hole could transform
the black hole into a naked singularity in Kerr-Newman
spacetime, provided that the particle’s energy E satisfies

ðM þ EÞ2 < ðQþ qÞ2 þ
�jJj þ jLj

M þ E

�
2

: ð1:1Þ

The last expression is simply the violation of the extremal
bound for a Kerr-Newman black hole. In the inequality
above, M, Q, and J are the mass, charge, and angular
momentum of a Kerr-Newman black hole. In addition to
the maximum energy constraint (1.1), the test particle must
also experience an attractive effective potential all the way
down to the black hole horizon. This is guaranteed by the
condition Veff < 0 ∀ r > rþ, or equivalently reads _r2 > 0
∀ r > rþ, where rþ is the outer event horizon of the black
hole [1]. Nevertheless, there exists a minimum energy
required by the test particle to reach the horizon rþ [2],

Emin ¼
qðgtϕAϕ − gϕϕAtÞ − gtϕL

gϕϕ

����
r¼rþ

< E; ð1:2Þ

dictated by the corresponding geodesic equation for the
test particle. Note that, in an asymptotically flat solution in
Einstein-Maxwell theory, E and L above are the conserved
quantities associated with the Killing vectors ∂t and ∂ϕ.
Interestingly, the magnetized spacetime discussed in this
paper also possesses these Killing vectors; thus one would
expect to find the quantities similar to E and L above.
Several attempts to define these conserved quantities in
magnetized spacetimes have been reported in the literature
[3–6]. In particular, we employ the method presented in [3]
to define the mass, charge, and angular momentum of
magnetized black holes, as reviewed in Appendix B. A test
particle may have an energy which obeys both (1.1) and
(1.2), and such a particle may break the horizon of
black holes.
However, in the Wald thought experiment, the Kerr-

Newman family of black holes in extremal states cannot be
overspun or overcharged to pass their extremality. This is
due to the fact that the maximum and minimum energies
required by the test particle coincide with each other.
Interestingly, it was pointed out later on that if Wald’s
gendanken experiment is performed starting from the
near-extremal condition, then such black holes could be
destroyed by a test particle. In the case of a near-extremal
Reissner-Nordström black hole, it was Hubeny [7] who first
showed that the black hole could jump the extremality by
capturing a charged test particle thrown from far away.
Subsequently, a decade later Jacobson and Sotiriou reported
that a quite similar conclusion can be drawn in the case of a
near-extremal Kerr black hole [8], where the captured neutral
test particle brings angular momentum. Obviously, it is
straightforward to ask whether the near-extremal charged
and rotating black holes can be overspun and/or overcharged
to pass their extremality, adapting the scenario by Hubeny
[7] or Jacobson-Sotiriou [8]. This was addressed in several
works, for example Refs. [9,10], to the case of Kerr-Newman
and Kerr-Sen black holes, respectively.
Nonetheless, the studies mentioned above on the

possibility of turning the near-extremal black holes into
naked singularities neglect the self-force, self-energy, and*haryanto.siahaan@gmail.com; haryanto.siahaan@unpar.ac.id
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radiative effects. If one considers these aspects, for exam-
ple, as in the works [11–13], the Wald thought experiment
cannot be the mechanism to transform a black hole into a
naked singularity. Moreover, several studies even take into
account the quantum effects in discussing the cosmic
censorship. For example, quite recently the authors of
[14] reported that quantum effects support the cosmic
censorship conjecture, while in [15] the authors discussed
a quantum version of this conjecture. We mention this work
to show that the cosmic censorship conjecture is still
debatable and of great interest to researchers. In the case
that eventually nature allows the existence of a naked
singularity, even some physics related to that has been
explored [16].
In the last couple of years, there has been a growing

interest in the studies of black holes interacting with
external magnetic fields. One of the reasons is that the
astronomers found some evidence of strong magnetic fields
in the centers of galaxies, where normally supermassive
black holes sit. Considering that the external magnetic
fields are just some perturbations in the spacetime, Wald
introduced a gravitoelectromagnetic system where the
metric is still Kerr and the corresponding vector fields
are constructed using a definite linear combination of the
Killing vectors [17]. As the magnetic fields get stronger,
clearly the spacetime will be affected, and the solution by
Wald cannot be employed any further. In strong magnetic
fields, an exact solution by Ernst and Wild [18] can be used
to model the magnetized black hole. They employed a
Harrison-like transformation [19] to get a magnetized
solution from a known unmagnetized one, which is some-
times called the “seed solution,” in the Einstein-Maxwell
theory. Setting the mass, electric charge, and rotation of the
black holes in the Ernst-Wild solution [18] to vanish, one
gets the Melvin universe [20], which is a static nonsingular
cylindrically symmetric spacetime that contains an axial
homogeneous magnetic field aligned with the z-axis.
The solution by Ernst and Wild [18] that describes

magnetized black boles could be more popular if only it
was asymptotically flat. Moreover, if this was the case then
one could simply use the standard textbook prescriptions to
define the physical quantities in the magnetized spacetime,
for example, the ADM formulation of mass and energy [1].
Despite this lack of asymptotic flatness, people find that the
solution by Ernst and Wild [18] is adequate to model the
highly energetic supermassive black hole in the center of
each galaxy. This black hole is surrounded by some
external magnetic fields as a result of the rotating matter
around it [21]. Therefore, it is not surprising that research
reports on aspects of the magnetized black holes contin-
uously appear in the literature [3–5,22–34]. Particularly, the
mass, electric charge, angular momentum, and entropy of
this black hole were studied thoroughly in [3–5].
Assuming that the Enrst-Wild solution, or the properly

modified version, describing black holes immersed by

some magnetic fields is good enough to model the
astrophysical black holes influenced by strong external
magnetic fields, one may wonder how the presence of
external magnetic fields may contribute to the possibility
of destroying such a black hole by adapting the Wald
gedanken experiment [35]. This is the question that we
would like to answer in this paper. The method is
straightforward, by using the techniques in [10,36].
However, the mathematical works are quite involved due
to the complexity of the Ernst-Wild solution. Therefore, at
some points we will depend on the numerical results in
drawing the conclusions.
The organization of this paper is as follows. In Sec. II we

provide some reviews on magnetization transformation to
obtain a magnetized spacetime. Subsequently, in Sec. III
we provide some necessary details on the magnetized black
holes studied in this paper. Then in Sec. IV we study some
properties of a test particle moving in the equatorial plane
outside the magnetized black hole backgrounds. In this
section we obtain the maximum and minimum energies
needed by the test particle to break the black hole’s horizon,
and also the leading terms of the corresponding effective
potentials to tell whether the capturing process may take
place or not. In Sec. V we provide some numerical
examples to support the results presented in Sec. IV.
Finally, the discussions and conclusions are given in
Sec. VI. The unit system that we use in this paper
is c ¼ G ¼ ℏ ¼ 1.

II. MAGNETIZATION OF BLACK HOLES

In 1976, Ernst and Wild [18] reported1 an exact solution
describing a Kerr-Newman black hole immersed in a
homogeneous magnetic field. They employed a Harrison-
like transformation [19] to the Kerr-Newman fields,

ds2 ¼ fðdϕ − ωdtÞ2 − f−1Δry2dt2 þ e2μ
�
dr2

Δr
þ dx2

y2

�
;

ð2:1Þ

and

A ¼ Atdtþ Aϕdϕ: ð2:2Þ

The resulting magnetized version reads2

d~s2 ¼ ~fðdϕ − ~ωdtÞ2 − ~f−1Δry2dt2 þ e2μ
�
dr2

Δr
þ dx2

y2

�
;

ð2:3Þ

1Following the method found by Ernst previously that
year [37]. Hence sometimes this will be referred to as the
“Ernst magnetization.”

2Note that the changes are only in f and ω, where grr and gxx
are left unchanged.
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and

~A ¼ ~Atdtþ ~Aϕdϕ: ð2:4Þ

In the equations above, the corresponding coordinate is
xμ ¼ ðt; r; x;ϕÞ and for the sake of simplicity we have used
y2 ¼ 1 − x2. The functions f, ω, Δr, Δx, μ, At, and Aϕ,
together with the corresponding “tilde” versions, depend
on the coordinates r and x only. Hence, it is obvious that the
line elements (2.1) and (2.3) are expressed in the Lewis-
Papapetrou form, which is appropriate to the spacetime with
∂t and ∂ϕ Killing vectors. The Kerr-Newman metric (2.1)
and the magnetized one (2.3) enjoy these symmetries, and
both can be studied using the Ernst formalism [38,39].
Explicitly, the functions appearing in the line element

(2.1) describing Kerr-Newman spacetime are

f ¼ ððr2 þ a2Þ2 − Δra2y2Þy2
r2 þ a2x2

; ð2:5Þ

e2μ ¼ r2 þ a2x2 ð2:6Þ

ω ¼ ðr2 þ a2 − ΔrÞa
ðr2 þ a2Þ2 − Δra2y2

; ð2:7Þ

Δr ¼ r2 þ a2 þQ2 − 2Mr; ð2:8Þ

where the corresponding vector field is

A ¼ Qrðdt − ay2dϕÞ
r2 þ a2x2

: ð2:9Þ

In general relativity, the Kerr-Newman solution describes
the spacetime outside an object with massM, chargeQ, and
angular momentum J ¼ Ma.
The Ernst magnetization relates the functions ~f and ~ω

contained in the metric (2.3) to f and ω in (2.1). In the
following, we will review the relations. In his seminal
papers, Ernst showed that the Einstein-Maxwell equations
for a stationary and axial symmetric spacetime can be
equivalently written as the Ernst equations3 [38,39],

f∇2E ¼ ð∇E − 2Φ�∇ΦÞ ·∇E; ð2:10Þ

f∇2Φ ¼ ð∇E − 2Φ�∇ΦÞ ·∇Φ: ð2:11Þ

Explicitly, the operator ∇ reads

∇ ¼
ffiffiffiffiffiffiffiffiffiffi
Δry2

p
fð2r −MÞ∂r − x∂xg þ ify2Δ0

r∂x þ 2xΔr∂rg
ðr −MÞy2Δ0

r þ 2x2Δr
;

ð2:12Þ

where Δ0
r is the derivative of Δr with respect to r.

In the equations above, E is the Ernst gravitational
potential defined with respect4 to the Killing vector ∂ϕ

[41], i.e.,

E ¼ f þ jΦj2 þ iφ; ð2:13Þ

where φ is the twist potential. The corresponding Ernst
electromagnetic potential reads

Φ ¼ Aϕ þ iBϕ; ð2:14Þ

and Bϕ is related to the Maxwell fields (2.2) as

∇At ¼ −ωAϕ − i
ffiffiffiffiffiffiffiffiffiffi
Δry2

q
f−1Bϕ: ð2:15Þ

The magnetized gravitational and electromagnetic
Ernst potentials associated with the metric (2.3) and the
vector (2.4) satisfy the same form of Ernst equations (2.10)
and (2.11),

~f∇2 ~E ¼ ð∇ ~E − 2 ~Φ�∇ ~ΦÞ ·∇ ~E; ð2:16Þ

~f∇2 ~Φ ¼ ð∇ ~E − 2 ~Φ�∇ ~ΦÞ ·∇ ~Φ: ð2:17Þ

The Harrison-like transformation to magnetize the “old”
Ernst potentials is given by

~E ¼ Λ−1E; ~Φ ¼
�
Φ −

BE
2

�
Λ−1; ð2:18Þ

where

Λ ¼ 1 − BΦþ B2E
4

: ð2:19Þ

The parameter B is a constant which represents the strength
of the external magnetic fields involved. Accordingly, the
functions in (2.3) are related to those in (2.1) through the
following,

~f ¼ fjΛj−2; ð2:20Þ

∇ ~ω ¼ jΛj2∇ω −
ffiffiffiffiffiffiffiffiffiffi
Δry2

p
f

ðΛ�∇Λ − Λ∇Λ�Þ; ð2:21Þ

and the other functions such as μ andΔr remain unchanged.
The fact that Δr does not change due to the transformation
(2.18) indicates that the horizons of black holes are similar,

3See [40] for a quite extensive review on the subject.

4Since the line element is shown in general as ds2 ¼
fðdϕ − ωdtÞ þ hdt2 þ gijdxidxj. It is understood that f, ω, h,
and gij are functions of x1 and x2, and the indices i, j ¼ 1, 2.
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at least in the equatorial plane,5 to that of the unmagnetized
case. Moreover, it also tells us that the bound of extremality
for black holes under discussion after the magnetization
procedure remains unaffected.
As a matter of fact, Wald [17] had performed some

analysis of Kerr black holes in the background of uniform
external magnetic field before the work of Ernst on
magnetized black holes [18,37]. In Wald’s work, the
corresponding vector potential Aμ is generated from a
superposition of the Killing vectors ξμðtÞ and ξμðϕÞ, from

which the external test magnetic field can be obtained.
However, the spacetime metric in Wald’s analysis is still the
ordinary Kerr, meaning the external test magnetic field has
no influence on the spacetime.6 Interestingly, in the work of
Ernst [37], which then was extended by Ernst and Wild
[18], the external magnetic field is not just a test field—it
deforms the spacetime. It is obvious from Eqs. (2.20) and
(2.21) that the external magnetic fields affect the spacetime
through Λ, which appears explicitly in the line element
(2.3). Taking the limit B → 0 in (2.3), i.e., Λ → 1, the
magnetized spacetime (2.3) reduces to the unmagnetized
one (2.1) as expected.
We note that, as it was also frequently mentioned in the

papers that discuss the magnetized black holes in the
framework of Ernst, working with magnetized spacetimes
in the Einstein-Maxwell family is quite a demanding task,
and in particular the magnetized Kerr-Newman. This is
because the analytic expressions for the corresponding
fields, which must satisfy the source-free Einstein-Maxwell
equations, are quite elaborate. Hence, it would be a tedious
work to perform the verification of some available solutions
in the literature without using any symbolic manipulation
programs, such as MAPLE or MATHEMATICA. From our
surveys in the literature, we find the exact solutions
reported by Aliev and Galtsov [43] to be reliable.7

Therefore, in the following two subsections we will make
use of their results to study some aspects of the magnetized
versions of the Reissner-Nordström and Kerr black holes.

III. MAGNETIZED BLACK HOLES

In the previous section, we have reviewed briefly the
magnetization prescription according to Ernst [37] in
Einstein-Maxwell theory. This section is devoted to present
some aspects of magnetized Reissner-Nordström and Kerr
solutions. Several improvements of the corresponding

metric and vector fields are considered, such as scaling
the ϕ coordinate to avoid a conical singularity [43] and
introducing a constant part in the ϕ component of the vector
field to yield Aϕðx ¼ �1Þ ¼ 0 as in [6]. In this section, and
also for the rest of this paper, we make distinctions among
the mass, angular momentum, and electric charge of the
magnetized black holes as reviewed in Appendix B to the
mass, angular momentum, and electric charge parameters
brought from the “seed” solutions. Mass, angular momen-
tum, and electric charge of a magnetized black hole are
denoted by a tilde, i.e., ~M, ~J, and ~Q, respectively, while the
parameters are without a tilde.

A. Magnetized Reissner-Nordström black holes

The ordinary Reissner-Nordström spacetime reduces to
the famous Schwarzschild solution if the electric charge
is turned off. This black hole has two horizons, which
coincide in the extremality. Due to the black hole electric
charge, the interaction between a test particle and black
hole is not gravitational only, but also electromagnetic if the
particle is electrically charged. Now, one can imagine that
the spacetime is also filled by some external magnetic
fields; thus the interaction between a charged test particle
with the external magnetic fields will add to the total
interactions. Some new features should come up, and the
discussions are worth having since the astrophysical black
holes observed in the sky might be surrounded by some
external magnetic fields produced by moving charges
around the black holes. Some aspects of the magnetized
Reissner-Nordström black hole will be reviewed in the
following.
We start by writing the generic Reissner-Nordström

metric, obtained by setting a ¼ 0 in (2.1), i.e.,

ds2 ¼ −r−2ΔRNdt2 þ r2ðΔ−1
RNdr

2 þ y−2dx2 þ y2dϕ2Þ;
ð3:1Þ

where ΔRN ¼ r2 þQ2 − 2Mr, and the corresponding vec-
tor field is

A ¼ r−1Qdt: ð3:2Þ

Since later we will have the notions of mass, electric
charge, and angular momentum for a magnetized Reissner-
Nordström black hole, which are distinguishable from the
mass, electric charge, and angular momentum of Kerr-
Newman black holes, then M and Q that appear in (3.1)
would be called the mass and charge parameters, respec-
tively. The mass, angular momentum, and charge of a
magnetized Reissner-Nordström black hole will depend on
these parameters.
The Ernst potentials associated with the Reissner-

Nordström solution (3.1) and (3.2), dictated by Eqs. (2.13)
and (2.14), can be read as

5It is shown that the presence of external magnetic fields in
Ernst-Wild spacetime deforms the horizon to have an egg-shaped
appearance [4].

6We notice that the work of Shaymatov et al. [42], where the
authors addressed an issue closely related to the one presented
in our paper, uses the vector potential given in [17] and the
spacetime under consideration is unmagnetized Kerr.

7In particular, this work is part of the series of works by the
authors in magnetized black holes [21,43–48].
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E ¼ r2y2 þQ2x2; Φ ¼ −iQx: ð3:3Þ

The magnetization transformation (2.18) yields a pair of
Ernst potentials which correspond to the magnetized
Reissner-Nordström spacetime, which can be written as

~E ¼ ðr2y2 þQ2x2ÞΛ−1
RN; ð3:4Þ

and

~Φ ¼ −
�
iQxþ B

2
ðr2y2 þQ2x2Þ

�
Λ−1
RN: ð3:5Þ

In the two potentials above,

ΛRN ¼ 1þ B2

4
ðr2y2 þQ2x2Þ þ iBQx: ð3:6Þ

Accordingly, the corresponding line element (2.3) that
corresponds to the Ernst potential (3.4) contains

~ω ¼ ~ωRN ¼ 2BQ
r

− B3Qr −
B3Q3

2r

þ B3Qðr2 − 2MrþQ2Þy2
2r

; ð3:7Þ

~f ¼ ~fRN ¼ r2y2jΛRN j2; Δr ¼ ΔRN; e2μ ¼ r2:

ð3:8Þ

Note that ~ωRN vanishes in the absence of external magnetic
field; i.e., the metric becomes Reissner-Nordström, as one
would expect. Moreover, it is interesting to point out that
there appears a new feature when one discusses the
magnetized Reissner-Nordström spacetime, which does
not exist in the ordinary Reissner-Nordström case, namely,
the dragging effect denoted by ~ωRN. Accordingly, one can
interpret that an infalling test particle would experience a
dragging effect as it gets closer to the black hole due to the
presence of external magnetic fields.
Nevertheless, Hiscock8 [49] reported that the original

magnetized solution by Ernst andWild [18,37] suffers from
a conical singularity problem. Oneway to cure this problem
is by performing the “scaling” [21] ϕ → ϕ0 ¼ jΛRN;0j2ϕ,
where

jΛRN;0j2 ¼ jΛRNðx ¼ 1Þj2 ¼ 1þ 3B2Q2

2
þ
�
BQ
2

�
4

:

ð3:9Þ

As a result of this scaling, the modified magnetized
Reissner-Nordström metric now reads

d~s2 ¼ ~fRNðjΛRN;0j2dϕ − ~ωRNdtÞ2 − ΔRN
~f−1RNy2dt2

þ e2μ
�
dr2

ΔRN
þ dx2

y2

�
: ð3:10Þ

Obviously, the vector field solution in the magnetized
Reissner-Nordström system is not the same as that in the
case of a generic Reissner-Nordström solution anymore.
The associated vector field in the magnetized case contains
not only the timelike component, but also a spacelike one,
which reads

Aϕ ¼ jΛRN;0j2ðRe ~Φþ Aϕ0Þ; ð3:11Þ

where ~Φ is given in (3.5). It resembles the vector fields
in Kerr-Newman or Kerr-Sen solutions [10], where
A ¼ Atdtþ Aϕdϕ. This resemblance can be understood
from the fact that both Kerr-Newman and Kerr-Sen are
electrically charged and rotating; thus the metric contains a
nonvanishing gtϕ, which happens also to be the case of a
magnetized Reissner-Nordström solution. Particularly, the
constant

Aϕ0 ¼
2BQ2ð12þ B2Q2Þ

B4Q4 þ 24B2Q2 þ 16
ð3:12Þ

has been added in (3.11) to guarantee that Aϕðx ¼ �1Þ
vanishes [32]. Furthermore, explicitly the timelike compo-
nent of A reads

At ¼ −
Q
r
þ 3

2
B2Qrþ 3

4

B2Q3

r
þ 3y2ΔRN

4r
B2Q − ~ωRNRe ~Φ:

ð3:13Þ

Now we have already established the metric and vector
field solutions describing the magnetized Reissner-
Nordström spacetime. For the future practical purpose,
the components of the metric tensor describing the mag-
netized Reissner-Nordström spacetime d~s2 ¼ ~gμνdxμdxν

can be expressed explicitly as

~gtt ¼ −
ΔRN jΛRN j2 − r4 ~ω2

RNy
2

r2jΛRN j2
; ð3:14Þ

~gtϕ ¼ −
r2 ~ωRNy2jΛRN;0j2

jΛRN j2
; ð3:15Þ

~grr ¼
r2jΛRN j2
ΔRN

; ð3:16Þ

~gxx ¼
r2jΛRN j2

y2
; ð3:17Þ

~gϕϕ ¼ r2ΔxjΛRN;0j4
jΛRN j2

: ð3:18Þ8He showed that the periodicity of the angular coordinate ϕ is
no longer 2π.
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The metric above together with the vector components
(3.13) and (3.11) will be employed to calculate the geodesic
of a charged test particle moving towards a magnetized
Reissner-Nordström black hole in Sec. IV and the corre-
sponding effective action.
Black holes can exist in this magnetized Reissner-

Nordström spacetime, whose horizons take the same radii
as that of the unmagnetized case, i.e., r�¼M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
.

Accordingly, the extremal condition is also the same,
namely, when Q ¼ M. However, since the magnetized
Reissner-Nordström spacetime is not asymptotically flat,
defining the conserved quantities such as the mass, electric
charge, and angular momentum in this spacetime cannot be
done by using the ADM formalism. In Appendix B, we
highlight the results presented in [3], which we use to
define the conserved quantities in magnetized spacetime
discussed in this paper. By setting the angular momentum
parameter to vanish in (B1), (B3), and (B4), one gets

~MRN ¼
�
M2þ

�
3

2
M2−Q2

�
Q2B2þM2Q4B4

16

�1
2

; ð3:19Þ

~JRN ¼ −
�
1þQ2B2

4

�
BQ3; ð3:20Þ

and

~QRN ¼
�
1 −

Q2B2

4

�
Q; ð3:21Þ

as the mass, angular momentum, and charge of a magnet-
ized Reissner-Nordström black hole. Note that the presence
of external magnetic fields gives rise to a rotation in the
magnetized Reissner-Nordström spacetime, denoted by
the angular momentum (B3), and this effect vanishes when
the external magnetic field is turned off.

B. Magnetized Kerr

Now let us briefly review some aspects of magnetized
Kerr spacetime. We start from the unmagnetized Kerr
whose line element can be written as

ds2 ¼ ððr2 þ a2Þ2 − ΔKa2y2Þy2
r2 þ a2x2

×

�
dϕ −

2Mradt
ððr2 þ a2Þ2 − ΔKa2y2Þ

�
2

−
ðr2 þ a2x2ÞΔKy2dt2

ððr2 þ a2Þ2 − ΔKa2y2Þy2
þ ðr2 þ a2x2Þdr2

ΔK

þ ðr2 þ a2x2Þdx2
y2

; ð3:22Þ

where ΔK ¼ r2 þ 2Mr − a2. Accordingly, the correspond-
ing Ernst gravitational potential related to the Kerr metric
above is

EK ¼ ðr2 þ a2Þy2 − 2iaMð3 − x2Þxþ 2a2y4M
rþ iax

; ð3:23Þ

while the associated Ernst electromagnetic potential Φ
is zero.
Following the prescription (2.18) by Ernst, the function

ΛK ¼ 1þ B2EK

4
; ð3:24Þ

will be used to transform (3.23) to a magnetized version
of Kerr spacetime. The Ernst potentials as a result of this
magnetization process take the form

~EK ¼ Λ−1
K EK

¼ 4ðr2 þ a2Þ2y2 − 8iaMð3 − x2Þxþ 8a2y4M
rþiax

4þ B2ððr2 þ a2Þ2y2 − 2iaMð3 − x2Þxþ 2a2y4M
rþiax Þ

;

ð3:25Þ

and

~ΦK ¼ −
BEK

2ΛK

¼ −
Bðððr2 þ a2Þ2y2 − 2iaMð3 − x2Þxþ 2a2y4M

rþiax ÞÞ
2þ 1

2
ðððr2 þ a2Þ2y2 − 2iaMð3 − x2Þxþ 2a2y4M

rþiax ÞÞ
:

ð3:26Þ

Explicitly, the metric tensor components that belong
to the magnetized Kerr spacetime d~s2 ¼ ~gμνdxμdxν can
be expressed as

~gtt ¼ −
ðr2 þ a2x2ÞjΛKj2ΔK

ðr2 þ a2Þ2 − a2y2ΔK

þ ððr2 þ a2Þ2 − ΔKa2y2Þy2 ~ω2
K

ðr2 þ a2x2ÞjΛKj2
ð3:27Þ

~grr ¼
ðr2 þ a2x2ÞjΛKj2

ΔK
ð3:28Þ

~gxx ¼
ðr2 þ a2x2ÞjΛKj2

y2
ð3:29Þ

~gtϕ ¼ −
ððr2 þ a2Þ2 − ΔKa2y2Þy2jΛK;0j2 ~ωK

ðr2 þ a2x2ÞjΛKj2
ð3:30Þ

and

~gϕϕ ¼ ððr2 þ a2Þ2 − ΔKa2y2Þy2jΛK;0j4
ðr2 þ a2x2ÞjΛKj2

; ð3:31Þ

where
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jΛK;0j2 ¼ jΛKðx ¼ 1Þj2 ¼ 1þ B4M2a2: ð3:32Þ

This factor jΛK;0j2, which appears in the magnetized Kerr spacetime,

d~s2 ¼ ~fðjΛK;0j2dϕ − ~ωKdtÞ2 − ΔK
~f−1y2dt2 þ e2μ

�
dr2

ΔK
þ dx2

y2

�
; ð3:33Þ

removes the conical singularity problem in the original magnetized Kerr metric by Ernst [37]. The vector field components
which accompany the magnetized Kerr metric above can be written as9

Aϕ ¼ jΛK;0j2ðAϕ0 þ Ref ~ΦKgÞ

¼ jΛK;0j2
�
Aϕ0 −

BðRef ~EKgRefΛKg þ Imf ~EKgImfΛKgÞ
2jΛKj2

�
; ð3:34Þ

and

At ¼
�
ΔKy4ðr3 − 3a2rþ 2Ma2Þ − 8r

4
−
ΔKy2ð4a2M2r − rðr2 þ a2ÞÞ

ðr2 þ a2Þ2 − ΔKa2y2

�
aMB3

− ~ωKRef ~ΦKg: ð3:35Þ

Likewise, the constant

Aϕ0 ¼
2B3a2M2

1þ B4M2a2
ð3:36Þ

in (3.34) guarantees that Aϕðx ¼ �1Þ vanishes [6]. The
associated ~ωK to get the explicit expression for the function
At above is given by [18]

~ωK ¼ ðα − βΔKÞ
r2 þ a2

; ð3:37Þ

where

α ¼ að1 − B4a2M2Þ; ð3:38Þ

and

β ¼ aðr2 þ a2x2Þ
ðr2 þ a2Þ2 − ΔKa2y2

þ
�
B
2

�
4
�
4M2a3x2fðr2 þ a2Þð3 − x2Þ2 − 4a2y2g

ðr2 þ a2Þ2 − ΔKa2y2

þ 2Ma
�
a2y6fðr2 þ a2Þrþ 2Ma2g

ðr2 þ a2Þ2 − ΔKa2y2
− 3ry4 − 4rx2ð3 − x2Þ

��
: ð3:39Þ

Another metric function ~fK can be obtained using the
relation Ref ~EKg ¼ ~fK þ j ~ΦKj.
Obviously, the mathematical expression for the full

magnetized Kerr spacetime is significantly more involved
compared to the unmagnetized version, or even to the
familiar Kerr-Newman solution. Moreover, this magnetized
Kerr spacetime can also contain black holes, where the
black hole horizons’ radii take the same value as that in the
unmagnetized one, i.e., r�¼M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p
. Consequently,

the extremal condition will be also the same as that in a
generic Kerr solution, namely, a ¼ M. Related to the mass,
angular momentum, and charge of a massive body in this

magnetized Kerr spacetime, again one can obtain these
quantities by setting the charge parameter Q to vanish in
(B1), (B3), and (B4), i.e.,

~MK ¼ ½M2 þ 2J2B2 þ J2M2B4�12; ð3:40Þ

~JK ¼ ð1 − J2B4ÞJ; ð3:41Þ

and

~QK ¼ 2JB: ð3:42Þ

Note that the presence of external magnetic fields yields a
massive body in this magnetized Kerr spacetime to have
charge given by Eq. (3.42), which vanishes at B ¼ 0.

9We have considered the factor jΛK;0j2 in Aϕ following the
scaling ϕ → ϕ0 ¼ jΛK;0j2ϕ in the metric.
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IV. TEST PARTICLES AND THE NAKED
SINGULARITY

A. Energy and angular momentum

The motion of a classical test particle in a general curved
background follows the geodesic equation [35]

duμ

ds
þ Γμ

αβu
αuβ ¼ q

m
Fμνuν; ð4:1Þ

where m and q are the mass and electric charge parameters
of the particle, respectively. It is well known that the
geodesic equation (4.1) can be obtained alternatively from
the Lagrangian [2,35]

L ¼ 1

2
mgαβ _xα _xβ þ qAμ _xμ: ð4:2Þ

Accordingly, since the spacetime is stationary and axisym-
metric, there are two constants of motion related to the
Lagrangian (4.2), namely, the energy E and angular
momentum L. These quantities are given by

E ¼ −
∂L
∂_t ¼ −mðgtt_tþ gtϕ _ϕÞ − qAt ð4:3Þ

and

L ¼ ∂L
∂ _ϕ ¼ mðgtϕ_tþ gϕϕ _ϕÞ þ qAϕ; ð4:4Þ

respectively. Note that the quantities m, q, E, and L above
are the conserved ones that belong to the test particle,
which is a probe in the magnetized spacetime under
consideration. Therefore, it is not necessary to assign some
conserved charges ~m, ~q, and ~L, associated with the test
particle following the formulas in Appendix B since the
correction terms due to the presence of the B parameter
would be negligibly small. In other words, ~m≃m, ~q≃ q,
and ~L≃ L, wherem, q, and L are those that appear in (4.3)
and (4.4).
In general, a magnetized spacetime metric takes the form

ds2 ¼ gttðr; θÞdt2 þ grrðr; θÞdr2 þ gθθðr; θÞdθ2
þ gϕϕðr; θÞdϕ2 þ 2gtϕðr; θÞdtdϕ; ð4:5Þ

which is similar to the general form of a Kerr-Newman line
element. Thus one can obtain the relation between E and L
from (4.3) and (4.4) as

E ¼ gtϕ
gϕϕ

ðqAϕ − LÞ − qAt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g2tϕ − gϕϕgtt

g2ϕϕ

�
ððL − qAϕÞ2 þm2gϕϕð1þ grr _r2 þ gθθ _θ

2ÞÞ
s

: ð4:6Þ

In obtaining the last equation we have imposed the timelike
condition _xμ _xμ ¼ −1. Moreover, in getting Eq. (4.6) we
consider the solution that implies _t > 0 only. In the next
two subsections, we will make use of the general expres-
sion of energy above in exploring the possibility of turning
an extremal magnetized black hole into a naked singularity,
by letting the black hole capture a test particle equipped
with some specific initial physical conditions.
In the following, we will discuss the maximum and

minimum bounds of energy for the test particle to break an
extremal magnetized black hole. It is already known that an
extremal Kerr-Newman, or the static and neutral limits of it,
cannot be broken in Wald’s gedanken experiment, where
the test particle is moving in the equatorial plane. This is
because a nonzero positive ΔE≡ Emax − Emin, so a test
particle that could break the black hole does not exist if the
initial condition of the black hole is extremal. The story is
different if the initial state of black holes is near extremal

rather than extremal [7,8], where an infalling test particle
may push the black hole to pass its extremality.
Interestingly, we will find out that a test particle under
the influence of some external magnetic fields resulting
from the Ernst magnetization can have a positive ΔE, even
though the black hole is extremal.

B. Test particles in the magnetized
Reissner-Nordström spacetime

We start by evaluating Eq. (4.6) in the extremal condition
Q ¼ M for magnetized Reissner-Nordström black holes
evaluated at r ¼ rþ. The energy E obtained is then
interpreted as the minimum one required by a test particle
to reach the horizon of an extremal magnetized Reissner-
Nordström black hole. Interestingly, in such a setup the
square-root term in (4.6) vanishes and the final expression
is considerably simplified,

Emin ¼
qf64þ 3B2M2ðB4M4 − 28B2M2 − 80Þg − 32BLð3B2M2 − 4Þ

64þ 4B2M2ð24þ B2M2Þ : ð4:7Þ
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Now let us obtain the maximum energy of the test particle
which leads to the destruction of a black hole’s horizon. As
it was shown in [3], the conserved quantities in magnetized
Kerr-Newman spacetime are ~M, ~J, and ~Q, which stand for
the mass, angular momentum, and charge of an object in
magnetized spacetime, respectively. Furthermore, these
quantities are functions of the B parameter, and the
parameters of black holes in the corresponding seed
solution, namely, M, Q, and J. Moreover, a magnetized
Reissner-Nordström black hole achieves an extremal state
when10 ~M4 ¼ ~Q2 ~M2 þ ~J2, or equivalently M ¼ Q as in-
dicated in (B5) by setting J ¼ 0. Accordingly, the maxi-
mum energy of the test particle that falls into the back hole
to allow the production of a naked singularity in magnet-
ized Reissner-Nordström spacetime can be read from (B6),
namely,

Emax ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~QRN þ qÞ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~QRN þ qÞ4 þ 4ð~JRN þLÞ2

qr

− ~MRN: ð4:8Þ

Employing Eqs. (3.19), (3.21), and (3.20) together with
extremal condition Q ¼ M in the equation (4.8) yields

Emax

¼
ffiffiffi
2

p

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M þ q −

M3B2

4

�
4

þ 4

�
BM3 þM5B3

4
þ L

�
2

s

þ
�
M þ q −

M3B2

4

�
2
�1

2

−M −
M3B2

4
: ð4:9Þ

If there exists a gap between Emin in (4.7) and Emax in
(4.8), then one may interpret that the captured test particle
can lead to the production of a naked singularity from a
Magnetized Reissner-Nordstrom (MRN) black hole.
Evaluating ΔE≡ Emax − Emin analytically to show that it
can be nonzero positive is quite a complicated task to do.
Nonetheless, we can Taylor expand ΔE in the B parameter
and consider up to the second order only. This is possible
due to the small numerical value of B if it is compared toM.
Furthermore, for the sake of simplicity, let us consider the
energy

Emax ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~QRNÞ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~QRNÞ4 þ 4ð ~JRNÞ2

qr

− ~MRN < Emax; ð4:10Þ

instead of Emax in (4.8), and Taylor expand ΔE ≡ Emax −
Emin in B up to the second order,

ΔE ≈ −q − 2LBþ 21

4
qM2B2: ð4:11Þ

This ΔE above can be positive for a range of B, which will
be verified in the numerical plot below. From this result,
one can say that there is a chance for the test particle under
some circumstances to break the horizon of an extremal
magnetized Reissner-Nordström black hole.
To support the claim above, we provide numerical plots

in Figs. 1 and 2 where the exact energy gap ΔE in (4.7) is
evaluated for some particular numerical values. In Fig. 1,
we vary the numerical values of test particle angular
momentum L, while the variation of numerical values

FIG. 1. Plots ofΔE ¼ Emax − Emin forM ¼ 100, q ¼ 0.05, and
several numerical values of charge parameter L.

FIG. 2. Plots of ΔE ¼ Emax − Emin for M ¼ 100, L ¼ 5, and
several numerical values of charge parameter q.

10See Appendix B for a discussion on how this relation can be
obtained.
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for q is done in Fig. 2. Both plots agree with the claim
that a test particle may destroy an extremal magnetized
Reissner-Nordström black hole, in a range of external
magnetic field strength, depending on the physical
properties of black holes and test particles. It is also
important to make sure that the particle has non-negative
minimum energy Emin, which also can be done numeri-
cally as in Figs. 3 and 4. Note that the range of B where
Emin remains positive is considerably smaller compared
to the range of B for a positive ΔE. This fact should be
one of the considerations in determining the values of test
particle parameters in the next section where some
numerical examples are presented.
Now let us turn our discussion to ask whether the

test particle that has a chance to destroy the black hole
can really reach the horizon, if the particle is released
far away from the black hole. This question can be
answered by observing the effective potential Veff
describing the test particle in the background of
magnetized Reissner-Nordström black holes. If
Veff < 0 everywhere outside the horizon, then one
can conclude that the particle described by this Veff
can arrive at the horizon from its initial far position. In
order to keep the generalities, quantities under dis-
cussion except for black hole mass can be expressed in

terms of black hole mass M. Following [1], this
effective potential is given by

Veff ¼ −
_r2

2
; ð4:12Þ

where _r2 is obtained from (4.6), i.e., by solving

m2gϕϕð1þ grr _r2Þ

¼
�

g2ϕϕ
g2tϕ − gϕϕgtt

��
E −

gtϕ
gϕϕ

ðqAϕ − LÞ þ qAt

�
2

− ðL − qAϕÞ2: ð4:13Þ

If we can show that

Veff < 0 ∀ r > rþ; ð4:14Þ

then we can conclude that the test particle can really
reach the horizon from far away. We restrict our
discussion to the geodesic in the equatorial plane only,
where in Appendix A we show that such a geodesic
can occur outside a general magnetized black hole.
Accordingly, one can show

Veff ¼
~gttðm2 ~gϕϕ þ ðq ~Aϕ − LÞ2Þ − 2ðEþ q ~AtÞðq ~Aϕ − LÞ~gtϕ þ ~gϕϕðm2 ~gtt þ ðEþ q ~AtÞ2Þ

2m2 ~grrð~gϕϕ ~gtt − ~g2tϕÞ
ð4:15Þ

where ~gμν and ~Aμ are the metric tensor and vector fields of the magnetized Reissner-Nordström solution with the conditions
Q ¼ M and θ ¼ π

2
. The exact expression of this Veff is considerably more complicated; hence for simplicity we prefer not to

show it explicitly. Nonetheless, one can verify this effective potential asymptotically,

FIG. 3. Plots of Emin for M ¼ 100, q ¼ 0.05, and several
numerical values of charge parameter L.

FIG. 4. Plots of Emin for M ¼ 100, L ¼ 5, and several numeri-
cal values of charge parameter q.

HARYANTO M. SIAHAAN PHYSICAL REVIEW D 96, 024016 (2017)

024016-10



lim
r→∞

Veff ¼ 0; ð4:16Þ

and

lim
r→0

Veff ¼ ∞: ð4:17Þ

Furthermore, this complexity of Veff (4.15) hinders us
to perform further analytical investigation to verify the fate
of a test particle that is approaching a black hole from
somewhere far away. To guarantee that the black hole can
really be reached by the test particle, we need to check
whether the effective potential (4.15) satisfies the condition
(4.14). Nonetheless, some reasonable approximations on
the magnetic field strength and the test particle properties
such as m, q, and E can be performed, which finally yield
the effective potential to depend on M and r only. Thence,
without loss of generality, we may judge the behavior of the
effective potential from the leading terms in Veff after
approximations. We understand that the test particle proper-
ties, in the units being used, are very small compared to the
black hole’s mass M, i.e., E ≪ M, m ≪ M, and q ≪ M.
Hence we can have E ∼ λM, m ∼ λM, q ∼ λM, and L ∼
λM2 for λ ≪ 1. Here the notation “∼” stands for “of the
order of.” For the magnetic fields, even though Figs. 1 and 2
tell us that ΔE > 0 for a range of weak B only, here we will
consider both the strong and weak magnetic field cases
represented by BM ∼ 1 and BM ∼ λ, respectively.
Now let us see the behavior of Veff in both of these cases.

In the case of weak external magnetic fields, denoted by
B ∼ λM−1, one can show

Veff;weak ¼
ðr −MÞ2M2

2r4
ð4:18Þ

after the limit λ → 0 is taken. In this weak field case, it is
easy to see that the particle cannot reach the horizon
released at some points far away from the black hole since
Veff;weak > 0 outside the horizon. In the case of strong
external magnetic field, the effective potential takes the
form

Veff;strong ¼
8

1681r4F ðrÞ f1600M
10 − 3200M9r

þ 16480r2M8 þ 18288M7r3 − 81808M6r4

− 107924r5M5 þ 9156r6M4 − 7826r7M3

þ 4237r8M2 − 648r9M þ 324r10g; ð4:19Þ

where F ðrÞ¼256M8þ256M6r2þ96M4r4þ16M2r6þr8.
Obviously, it is not easy to tell whether the test particle
can reach the horizon in the strong external magnetic
case based on the approximate effective potential above.
Alternatively, the numerical plot in Fig. 5 illustrating the
effective potential (4.19) helps us to conclude that, even in a
strong magnetic field background, the test particle can
never reach the horizon.

C. Test particles in the magnetized Kerr spacetime

Studying the behavior of a test particle in the background
of extremal magnetized Kerr black holes can be done by
using the similar method performed previously. From (4.6),
the corresponding minimum energy required by a test
particle in reaching the extremal magnetized Kerr black
hole’s horizon is given by

Emin ¼
Lð1 − B4M4Þ þ 4qM4B3ð1þ 2B4M4Þ

2Mð1þ B4M4Þ ; ð4:20Þ

where we have imposed r ¼ rþ. This minimum energy
requires B ≤ M−1 to be non-negative.11 Similar to the
prescription employed in the previous subsection, the upper
bound for the test particle’s energy can be obtained from
(B6), where the charge parameter of black hole Q is set to
be zero. The resulting equation is

Emax ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~QK þ qÞ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~QK þ qÞ4 þ 4ð~JK þ LÞ2

qr

− ~MK: ð4:21Þ

where ~MK , ~QK , and ~JK are given in (3.40), (3.42), and
(3.41), respectively. In terms of the physical parameters in
the seed solution, Eq. (4.21) can be read as

FIG. 5. Veff for a test particle outside a magnetized Reissner-
Nordström black hole immersed in strong magnetic fields. The
plot is taken for r ≥ 2.8M.

11For the numerical valueM ¼ 100which is used in this paper,
it means B ≤ 0.01.
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Emax ¼
ffiffiffi
2

p

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M2Bþ qÞ4 þ 4ðM2 þ L −M6B4Þ2

q
þ ð2M2Bþ qÞ2

	1
2 −M −M3B2; ð4:22Þ

where the extremal condition J ¼ M2 has been
considered.
As in the previous subsection, if ΔE≡ Emax − Emin > 0,

then the particle has a possibility to break the horizon.
However, evaluating ΔE exactly would be tedious. Thus
we could Taylor expand ΔE ≡ Emax − Emin for small B,
where

Emax ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~QKÞ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~QKÞ4 þ 4ð~JKÞ2

qr
− ~MK < Emax:

ð4:23Þ

The Taylor expansion for ΔE can be found to be

ΔE ≈ −
L
2M

þ 2M3qB3: ð4:24Þ

This result hints at the possibility of a positive energy gap
for the test particle, which then signs the potential of the
black hole horizon to be broken if such a test particle is
captured. To support this conclusion, which should be valid
in the weak B regime only, we provide the numerical plots
given in Figs. 6 and 7 where several different possible
values for test particle properties are considered. We can
see from these plots, for each variation of L and q
considered, that the energy gap ΔE grows nonlinearly as
B increases. This nonlinearity might be the one that is
predicted by ΔE ∼ B3 in (4.24).
However, there is a constraint for the magnetic field

strength B, that the minimum energy required by the test
particle must be non-negative. Thence, we cannot consider
the entire range of B in our thought experiment. Figures 9
and 8 provide the corresponding information of the
“allowed” B for each case considered in Figs. 6 and 7.
From these plots, one can learn that considering B ¼ 0.01
as the upper bound of the magnetic field suits the constraint
for positive Emin. Note that for the rest of this paper, we use

FIG. 8. Plots of Emin for M ¼ 100, L ¼ 1, and several numeri-
cal values of charge parameter q.

FIG. 7. Plots of ΔE ¼ Emax − Emin for M ¼ 100, L ¼ 1, and
several numerical values of charge parameter q.

FIG. 6. Plots ofΔE ¼ Emax − Emin forM ¼ 100, q ¼ 0.05, and
several numerical values of charge parameter L.
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L ¼ 5 and q ¼ 0.1 as the maximum values of the test
particle’s angular momentum and charge.
Having observed the possibility of a test particle to

destroy an extremal magnetized Kerr black hole from the
energy gap point of view, now let us check whether such a
particle released from far away can really arrive at the
horizon. The prescription in doing this is exactly the same
as that in the previous subsection, i.e., by looking at the
corresponding effective potential Veff . The expression of
Veff can be obtained from Eq. (4.15) after substituting ~gμν
and ~Aμ that belong to the extremal magnetized Kerr
solutions. Again, the full expression of the Veff in this
case is quite complicated; therefore it would be difficult to

draw any conclusion directly. Nevertheless, the same
approximation method as we performed in discussing
magnetized Reissner-Nordström can also be employed
in this case. We can set m ∼ λM, q ∼ λM, and L ∼ λM2.
We also consider the cases of weak and strong magnetic
fields, even though Figs. 9 and 8 suggest that Emin may be
negative if B is too strong. As in the previous case, B ∼
λM−1 and B ∼M−1 represent the weak and strong magnetic
field cases, respectively.
After taking the limit λ → 0, we obtain

Veff;weak ¼
1

2

MðM − 2rÞ
r2

; ð4:25Þ

and

Veff;strong ¼
M2

8F 2ðrÞ2
f1432M10 − 2298M9r − 7223M8r2 − 3024M7r3

− 2612M6r4 − 3012M5r5 þ 438M4r6 − 224r7M3 þ 148M2r8 − 18Mr9 þ 9r10g ð4:26Þ

where F 2ðrÞ ¼ 2M3 þ 5M2rþ r3. Nevertheless, telling
whether the test particle can reach the black hole by
reading Veff;strong in (4.26) is not so easy. However, Fig. 10
can help us to do the job, where we learn that in a strong
magnetic field the test particle cannot arrive at the horizon
from far away.
Interestingly, Eq. (4.25) hints at the possibility of a test

particle to destroy a weakly magnetized black hole. This
could be a fascinating result, since the black hole immersed
in weak magnetic fields may have some relevance with the
astrophysical black holes in the sky. However, one can
perform a further check on this result by employing a
Taylor expansion for small B. This is definitely allowed

since the case we are considering here is the weak field
condition. By setting m ∼ E ∼ q ∼ λM and L ∼ λM2, but
letting the B parameter remain unchanged in the full
expression of Veff , and after taking the limit λ → 0, one
can get an effective potential ~Veffðr;M; BÞ. Taylor expand-
ing this ~Veffðr;M; BÞ up to the second order in B yields

~Veffðr;M; BÞ ≈ −
ð2r −MÞM

2r2
þ 1

2

�
r −M

r

�
2

B

þ
�
3

4
þ 3r2

8M2
þ r
4M

þ 7M2

8r2
−
M3

4r3

�
B2;

ð4:27Þ

FIG. 9. Plots of Emin for M ¼ 100, q ¼ 0.05, and several
numerical values of charge parameter L.

FIG. 10. Veff;strong for r ≥ 2.5M.
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which can be positive as r increases.12 Accordingly, we can
claim that the test particle still cannot reach the horizon in
the case of weak magnetic fields.

V. NUMERICAL EXAMPLES

We have seen in the previous section, after employing
some approximations, that the test particle that may break
the horizon of magnetized black holes cannot really arrive
at that surface. This is because, even though the energies of
test particles are in between Emax and Emin, the correspond-
ing effective potentials signal the impossibility of this
particle arriving at the horizon. In this section we provide

some numerical examples of the possible effective poten-
tials that are related to the test particle in the background of
magnetized Reissner-Nordström and Kerr black holes.
The maximum and minimum energies given q ¼ 0.002,

m ¼ 0.004, L ¼ 1, and M ¼ 100 are shown in Fig. 11. By
increasing the magnitudes of q and M, the maximum
energy can be less than the particle mass, which is
irrelevant to consider. Moreover, from Fig. 11, the mini-
mum energy is positive for B≲ 0.0075, which is close to
the regime of strong magnetic fields. Therefore, in Fig. 12,
we consider the cases of B ¼ 5 × 10−3, B ¼ 5 × 10−4, and
B ¼ 5 × 10−5, for the test particle considered in Fig. 11. If
one considers the smaller B, since it looks like Fig. 12
indicates the possibility of Veff < 0 ∀ r > M in such a
consideration, eventually the curve Veff will have a positive
value in the large radii. Definitely, we have to make sure
that ΔE > 0 and Emin > 0 in changing the parameters we
are using. These examples are in agreement with the
conclusions drawn in the previous section, where even
though the test particle may fulfill the gap energy condition,
it can never reach the horizon.
Now, let us turn to the discussion of magnetized

Reissner-Nordström. Compared to the magnetized Kerr
case, there is a narrow range of variations that can be made
to provide the numerical examples, i.e., test particles with
particular properties in the magnetized Reissner-Nordström
spacetime with a specific magnetic field strength B, which
obey the energy gap condition ΔE > 0. One should also
keep in mind that q < m < E. However, some examples
that fulfill these required conditions are given in Table I,
and the corresponding Veff plots are given in Fig. 13. The
numerical results presented in Fig. 13 support the claim
given in the previous section, where destroying an

TABLE I. Data for curves in Fig. 13.

Curve 1 q ¼ 0.05 m ¼ 0.052 E ¼ 0.054 L ¼ 5
Curve 2 q ¼ 0.02 m ¼ 0.03 E ¼ 0.0325 L ¼ 5
Curve 3 q ¼ 0.01 m ¼ 0.0105 E ¼ 0.0108 L ¼ 1

FIG. 12. Examples of Veff for several cases of test particles in
the magnetized Kerr background with distinguished physical
properties.

FIG. 11. Example of Emax and Emin for a test particle in the
background of magnetized Kerr spacetime as functions of B.

FIG. 13. Examples of Veff for several cases of test particles in
the magnetized Reissner-Nordström background with distin-
guished physical properties given in Table I.

12This will be verified in the next section where some
numerical evaluations of the exact Veff are given for some
particular numerical values of L, q, m, E, and B.
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extremal magnetized Reissner-Nordström black hole is
impossible. A test particle may have an energy that leads
to violation of the extremal bound, but it can never fall into
the black hole.

VI. DISCUSSION AND CONCLUSIONS

Now let us conclude the works presented in this
paper. We have shown that, even though the presence of
a magnetic field yields a test particle that has energies
allowing the destruction of magnetized Kerr and Reissner-
Nordström black holes, the corresponding effective poten-
tials indicate that this particle can never reach the horizon.
This conclusion is drawn using two approaches. Firstly, we
employ the semianalytic study on the associated effective
potentials for each case presented in Sec. IV, and secondly
by providing some numerical plots in Sec. V. Results
obtained in both methods are in agreement, and tell us that
the extremal magnetized Reissner-Nordström and Kerr
black holes cannot be destroyed by throwing a test particle
in the equatorial plane according to Wald’s gedanken
experiment [35]. Our analysis is in the same fashion as
the studies presented in [10,36], where the self-force, self-
energy, and radiative effects are neglected. Nevertheless,
we are sure that taking these effects into account would not
change the present conclusion on the possibility of destroy-
ing the magnetized black holes. This is because, on the
contrary, these effects are normally used to restore the
cosmic censorship rather than to show the fragility of a
black hole against a test particle.
As it is pointed out in Wald’s book [1] that studying

the solutions in Einstein-Maxwell theory can be of great
importance, pursuing further the works presented in this
paper might be interesting. For example, the discussions
performed in this paper are confined to the case of extremal
black holes only. Nonetheless, Hubeny [7], Sotiriou and
Jacobson [8], and many others [9,10,36] have shown that
the extremality can be jumped if the initial condition of the
black holes is near extremal. Then it is a straightforward
question to ask what happens to a near-extremal magnet-
ized black hole perturbed by a test particle. Can this test
particle haveΔE > 0 and experience Veff < 0 ∀ r > rþ? It
might sound trivial, but considering that the mathematical
expressions of fields in the magnetized black holes are
quite involved, pursuing this work could be appealing. In
addition to that, extending this work to the case of extremal
magnetized Kerr-Newman could also be interesting.
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APPENDIX A: EQUATORIAL PLANE IN THE
MAGNETIZED SPACETIMES

The test particle’s dynamics in the magnetized space-
times discussed above obeys the Euler-Lagrange equation
with the Lagrangian

L ¼ m
2
gαβ _xα _xβ þ qAα _xα: ðA1Þ

To show that the case where our test particle moves only in
the equatorial plane, namely, at x ¼ 0, we have to show that
the Euler-Lagrange that corresponds to this case is satisfied.
One can show that for the magnetized Kerr and Reissner-
Nordström backgrounds,

∂L
∂x

����
x¼0

¼ m
2
_xα _xβ

�∂gαβ
∂x

����
x¼0

�
þ q_xα

�∂Aα

∂x
����
x¼0

�
¼ 0;

ðA2Þ

since

∂gαβ
∂x

����
x¼0

¼ 0 ðA3Þ

and

∂Aα

∂x
����
x¼0

¼ 0 ðA4Þ

for these two cases. Furthermore, it is easy to see that

∂L
∂ _x ¼ mgxx _x ðA5Þ

which vanishes for a fixed x. Based on these facts, now we
see that the case of a test particle moving only in the
equatorial plane satisfies the Euler-Lagrange equation for
that particle.

APPENDIX B: MASS AND ENERGY IN
MAGNETIZED SPACETIME

The fact that magnetized spacetime by Ernst and Wild
are not asymptotically flat nor (A)dS requires a special
treatment to define mass and energy in this background.
Several attempts have been reported in the literature, for
example, [3–5], where the authors managed to get the mass
definition of an object immersed in external magnetic
fields. In particular, the magnetized black hole mass
reported in [3] was obtained by employing the Barnich-
Brandt method [50–52] and integrability condition. The
result for black hole mass in [3] agrees with that in [4],
where the authors used the isolated horizon technique. This
appendix is devoted to highlighting the results reported in
[3], which are used in this paper to define some physical
quantities of a magnetized black hole.
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Using the Barnich-Brandt method and integrability, the
mass of magnetized Kerr-Newman black holes can be
shown as [3]

~M ¼
�
M2 þ 2JQBþ

�
2J2 þ 3

2
M2Q2 −Q4

�
B2

þ JQ
�
2M2 −

3

2
Q2

�
B3

þ
�
J2M2 −

1

2
J2Q2 þ 1

16
M2Q4

�
B4

�1
2

: ðB1Þ

In the expression above, M, J, and Q are the mass, angular
momentum, and charge parameters of black holes, respec-
tively, i.e., the parameters that are brought from the seed
Kerr-Newman solution. Moreover, it is shown that the law
of black hole mechanics for a magnetized Kerr-Newman
black hole is the same as that of the Kerr-Newman one in
standard form, i.e.,

δ ~M ¼ THδSþ Ωδ ~J þΦδ ~Q; ðB2Þ

where ~J and ~Q are the angular momentum and charge of a
magnetized Kerr-Newman black hole,13 namely [3],

~J ¼ J −Q3B −
3

2
JQ2B2 −

Q
4
ð8J2 þQ4ÞB3

−
J
16

ð16J2 þ 3Q4ÞB4; ðB3Þ

and

~Q ¼ Qþ 2JB −
Q3B2

4
; ðB4Þ

respectively. In particular, the corresponding conserved
quantities in a magnetized Reissner-Nordström spacetime
can be obtained from (B1), (B3), and (B4) by setting J ¼ 0
in each of these expressions. Similarly, conserved quan-
tities in a magnetized Kerr spacetime are achieved by
settingQ ¼ 0 in the three ~M, ~J, and ~Q for magnetized Kerr-
Newman above.

Dealing with the concept of energy in magnetized
spacetime, whose asymptotics are not flat nor (A)dS, is
more delicate. In an asymptotically flat spacetime, the
standard textbook method14 in defining energy can be done
by using the timelike Killing vector which is normalized at
infinity. However, in the case of magnetized spacetime, this
method cannot be employed. Nevertheless, since we are
interested in the study of the change of black hole mass
after capturing a test particle, we can relate the energy of a
test particle with δ ~M, which follows (B2). So, the particle’s
energy E discussed in Sec. IV can be identified as δ ~M,
which yields the post-infalling mass of the magnetized
black holes as ~M þ δ ~M.
Furthermore, to guarantee the entropy for magnetized

Kerr-Newman black holes to be real, the following relation
must be fulfilled [3],

0 ≤ ~M4 − ~Q2 ~M2 − ~J2 ¼ M2

�
M2 −

J2

M2
−Q2

�
× ðjΛRN;0j2 þ jΛK;0j2 þ 2JQB3Þ;

ðB5Þ

where ΛRN;0 and ΛK;0 are given in (3.9) and (3.32),
respectively. Eventually, Eq. (B5) is just the nonexistence
of a naked singularity in Kerr-Newman spacetime.
Therefore, since the conserved quantities in the magnetized
spacetime under consideration in this paper are ~M, ~Q, and
~J, an inequality which represents the violation of Eq. (B5)
after capturing the test particle reads

ð ~M þ EÞ2 <
ð ~Qþ qÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~Qþ qÞ2 þ 4ð~J þ LÞ2

q
2

; ðB6Þ

where q, L, and E are the test particle’s electric charge,
angular momentum, and energy, respectively. In writing
(B6), we have identified the change of black hole mass δ ~M,
which obeys (B2), to be the test particle’s energy. By using
the appropriate inequalities coming from (B6), one can
obtain the maximum energy of the test particle, which leads
to the black hole’s destruction in Secs. IV B and IV C.
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