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We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small
five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic
method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the
“derivative expansion” method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001
(2012)] and analytically compute the holographic stress-energy tensor for our solution. We find that the
stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is
negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic
method to the question of quantum instability of the Cauchy horizon since, by construction, our black
droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of
the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a
singularity appears there, in favor of strong cosmic censorship.
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I. INTRODUCTION

One of the outstanding issues in gravity is understanding
quantum effects in regions of large spacetime curvature.
Although energy densities in typical classical fields such as
electromagnetic fields are always non-negative, there have
been a number of studies that show the appearance of
negative energy density when quantum field effects are
taken into account. For instance, it was shown (see, e.g.,
[1]) that the energy density for an observer falling into a
singularity negatively diverges for some physical vacuum
state. On the Cauchy horizon deep inside a charged black
hole, the stress-energy tensor was calculated for a two-
dimensional massless scalar field model, and the energy
density diverges at the horizon [2]. Calculations of a
conformal scalar field in Taub-NUT-type cosmologies
show that the stress-energy tensor negatively diverges on
the Cauchy horizon even though the curvature remains
small [3]. However, most studies have been made for free
massless scalar field models, and little attention has been
given to strongly interacting field models such as con-
formal field theories (CFTs) at strong coupling.
The AdS=CFT duality [4] provides a powerful tool to

investigate CFTs at strong coupling on a fixed curved
background spacetime. According to the dictionary of the
duality, a CFT at strong coupling on a fixed d-dimensional
spacetime is dual to a gravitational theory in (dþ 1)-
dimensional AdS spacetime with a timelike boundary

conformal to the d-dimensional spacetime. Motivated by
the investigation of Hawking radiation in a model of a
CFT at strong coupling, two types of black hole solutions
were constructed in asymptotically locally AdS spacetimes
[5–15]. One solution is called a “black funnel” in which
there is a single connected horizon extending from the
conformal boundary to an asymptotically planar horizon in
the bulk, and it is dual to the thermal equilibrium Hartle-
Hawking vacuum state of the boundary theory. The other
is called a “black droplet” solution in which the horizon is
disconnected from the planar horizon in the bulk, and it is
dual to the Unruh vacuum state. In these models, negative
energy density is observed outside the event horizon due to
the Hawking effect. However, these solutions are quite
complicated, and their construction has required numerical
methods; hence, it is difficult to analyze the general
properties of the stress-energy tensor inside the boundary
black hole. It is then desirable to have some analytically
constructed solutions for a black funnel/droplet. Recently,
some attempts along this direction have been made by
Haddad [16],1 who, using a derivative expansion method,
has constructed a five-dimensional static black droplet
solution and computed the holographic stress-energy tensor
for the corresponding dual quantum field in the background
of a four-dimensional static black hole background [12]
[see, also, for the lower-dimensional case (d ≤ 3) [5,7,10]].
It is clearly interesting to generalize the line of research
[12,16] performed for the static vacuum case to more
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1Note that this expansion method is essentially the same as the
one developed for the “blackfold approach” in [17]. See, also,
e.g., [18] for further applications of this method.
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general cases. In particular, including rotations would
drastically change the causal structure inside the resultant
black funnel/droplet motivating a study of the holographic
consequences of strong coupling in quantum fields near the
inner (Cauchy) horizon.
In this paper, we construct a rotating black droplet

solution by generalizing thework [12]. In general, including
rotation makes the relevant analysis significantly more
complicated compared to the static case. For example, if
one attempts to add a rotation to the model of [12] so that the
corresponding boundary field lives in a four-dimensional
Kerr black hole, which is already cohomogeneity-two, then
one would have to construct a five-dimensional bulk black
droplet by solving a cohomogeneity-three system. Inorder to
avoid this technical difficulty, instead of trying to add a
rotation to a five-dimensional black droplet, we attempt to
construct a six-dimensional rotating black droplet solution
dual to a five-dimensional field theory in the background
of the rotating Myers-Perry black hole [19] with equal
angular momenta, which is known to be cohomogeneity-
one. In this case, the derivative expansion method enables
us to reduce the bulk field equations to a set of ordinary
differential equations, thereby making it possible to
compute—analytically and explicitly within our expansion
framework—the holographic stress-energy tensor for a CFT
at strong coupling and large N inside the five-dimensional
rotating black hole. In addition, since quantum field theories
in odd dimensions are not well understood, it is of consid-
erable interest to study the behavior of quantum fields in a
five-dimensional spacetime. In fact, motivated from recent
interests in five-dimensional conformal field theory (see,
e.g., [14] for references), the six-dimensional rotating black
droplet solutions dual to the rotatingMyers-Perry black hole
spacetime with equal angular momenta on the boundary
were numerically constructed, and the holographic stress-
energy tensor was derived in the region outside the event
horizon [13,14].
Having two rotations, the rotating droplet solution

admits not only an outer event horizon but also an inner
(Cauchy) horizon. In this paper, we are primarily concerned
with the properties of the holographic stress-energy tensor

inside the outer horizon and, in particular, investigating the
quantum instability of the Cauchy horizon. We find that the
null-null component of the stress-energy tensor diverges
negatively near the Cauchy horizon, in agreement with
the study of free massless scalar fields [2,3]. Our results
suggest that the Cauchy horizon suffers from a quantum
instability in favor of the strong cosmic censorship. As far
as we know, this is the first example of applying the
holographic method to study the Cauchy horizon instability
due to quantum effects. We also find that negative energy
appears just outside the outer horizon, describing particle
creation by the Hawking effect. Nevertheless, there is no
flux at infinity. This suggests that the dual phase corre-
sponds to a transition from black funnels to black droplets
and that it is reminiscent of soft condensed matter systems
representing a transition from a fluidlike behavior to rigid
behavior, just like a “jammed” state [13] (see, also, [15]).
The paper is organized as follows. In the next section, we

describe our metric Ansatz, derive the equations of motion,
and construct a rotating black droplet solution in six
dimensions by using the derivative expansion method. In
Sec. III, we perform an analytic computation of the holo-
graphic stress-energy tensor for a CFT at strong coupling
and large N inside the five-dimensional rotating black hole
on the boundary. In Sec. IV, we numerically check our
results analytically obtained in the previous sections.
Section V is devoted to summary and discussion.

II. DERIVATIVE EXPANSION METHOD

In this section, we derive the field equations following
the derivative expansion method [16] and investigate
general properties of the solution. Our bulk field equations
are the six-dimensional vacuum Einstein equations with
negative cosmological constant,

Rμν ¼ −
5

L2
gμν; ð2:1Þ

where L is the AdS radius. We start with the following
metric Ansatz:

ds̄2 ¼
�

L2

z2FðzÞ −
z2

L2

�
rF0ðzÞ
2FðzÞ

�
2
�
dz2 þ z2rαðr; zÞF0ðzÞ

L2FðzÞ f
ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
dvdz − drdzg þ z2

L2

�
−FðzÞ fðr; zÞ

hðr; zÞ dv
2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðzÞ
hðr; zÞ

s
dvdrþ r2

4
ðdθ2 þ sin2θdϕ2Þ þ r2hðr; zÞ

�
dψ þ cos θ

2
dϕ −

ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
Ωðr; zÞdv

�
2
�
;

fðr; zÞ ¼
�
1 −

r2þðzÞ
r2

��
1 −

κ2r2þðzÞ
r2

�
; hðr; zÞ ¼ 1þ κ2r4þðzÞ

r4
;

Ωðr; zÞ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3þðzÞ

hðr; zÞr4 ; FðzÞ ¼ 1 −
μ5

z5
; ð2:2Þ
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where α is an unknown function of r and z determined later.
In the limit rþ → 0 and α → −1, this metric reduces to the
familiar planar Schwarzschild-AdS spacetime with horizon
radius μ after performing the coordinate transformation,
v ¼ tþ r=

ffiffiffiffiffiffiffiffiffiffi
FðzÞp

. Furthermore, the metric at each z ¼
const hypersurface represents the cohomogeneity-one
Myers-Perry black hole solution with equal angular mo-
menta [19], where the outer and inner (Cauchy) horizons
are located at r ¼ rþ and r ¼ κrþ (0 ≤ κ < 1), respec-
tively. So, the metric (2.2) represents a rotating black string
embedded in the background planar Schwarzschild-AdS
spacetime in which the horizon is extended along the z
direction. The metric (2.2) itself does not satisfy Eqs. (2.1)
and must be corrected order by order in derivatives. To this
end, we write the metric as

ds2 ¼ ds̄2 þ ds2ðϵÞ;

ds2ðϵÞ ¼
X∞
n¼1

ϵnhðnÞμν ðrÞdxμdxν; ð2:3Þ

where ϵ is the formal derivative expansion parameter

defined below, and hðnÞμν ðrÞ is the nth correction of the
metric determined by the Einstein equations (2.1). The
derivative expansions are valid only when the horizon
radius of the string is much smaller than the other scales,

rþ ≪ μ ∼ L: ð2:4Þ
This implies that the background metric (2.2) changes very
slowly along the z direction compared with the radial scale
rþ. Thus, the contributions of the first and second deriv-
atives with respect to the z direction to the Einstein

equations (2.1) are suppressed by a factor of rþ=L and
ðrþ=LÞ2 [or similarly, rþ=μ and ðrþ=μÞ2].
Following Ref. [16], we shall expand the metric func-

tions, F, rþ, and α in a series of z − zc around an arbitrary
value zc as

gðr; zÞ ¼ gc þ ϵg1ðz − zcÞ þ ϵ2g2ðz − zcÞ2 þ � � � ; ð2:5Þ

where gðr; zÞ collectively denotes the metric functions such
as F, rþ, and α, and the expansion coefficients are
gn ≔ ∂n

zgðzcÞ=n!. Note that the expansion coefficients are
functions of only r, but Fn and rn are independent of r.
So, the Einstein equations (2.1) are formally modified to

r2cRμν ¼ −5ϵ2
r2c
L2

gμν; ð2:6Þ

where rc ¼ rþðzcÞ. This implies that the effect of the
cosmological constant appears at second order in the
derivative expansion (2.5). Note that the derivative expan-
sion parameter ϵ will be set to unity at the end of our
calculations.

A. First order in derivatives

Substituting Eqs. (2.2) and (2.3) into Eqs. (2.6),
one finds that the field equations (2.6) are satisfied at first
order by

hð1Þμν ðrÞ ¼ 0; ð2:7Þ
provided that the following two equations with respect to
αðr; zcÞ are satisfied:

α0 þ α

r
þ ð6Fcr1 þ F1rcÞr8 þ 24κ2r1Fcr4cr4 þ κ4r8cð2Fcr1 − F1rcÞ

4F1rcr3ðr4 þ κ2r4cÞ3=2
¼ 0;

α00 þ
�
1

r
þ 4r3

r4 þ κ2r4c

�
α0 −

�
1

r2
−

4r2

r4 þ κ2r4c

�
αþ 3F1r8 þ 4κ2r3cðF1rc − r1FcÞr4 þ κ4r7cð4Fcr1 þ F1rcÞ

F1ðr4 þ κ2r4cÞ5=2
¼ 0: ð2:8Þ

When

r1 ¼
rcF1

2Fc
ð2:9Þ

is satisfied, the solution α satisfying both two equa-
tions (2.8) is given by

αðr; zcÞ ¼ −
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ κ2r4c
p þ C

r
; ð2:10Þ

where C is an integration constant. We discard the
integration constant C because it can be eliminated by
gauge transformation of v → vþ C=

ffiffiffiffi
F

p
. In this case, the

κ → 0 limit agrees with the nonrotating four-dimensional
black string case [16].

B. Second order in derivatives

At second order Oðϵ2Þ, we make an Ansatz for the

nonzero perturbed metric hð2Þμν as

hð2Þμν dxμdxν ¼ 2γðrÞ
�
dψ þ cos θ

2
dϕ

�
dvþ hvvðrÞdv2

þ 2hvrðrÞdvdrþ hzzðrÞdz2

þ βðrÞ
�
dψ þ cos θ

2
dϕ

�
2

: ð2:11Þ
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We derive equations of motion for the metric functions above by substituting Eqs. (2.2), (2.3), and (2.11) into (2.6) and
also using α given by (2.10) with rc replaced by rþ. The equation of motion for hzz is decoupled from the other variables as

−
L2F2

cðr2 − r2cÞðr2 − κ2r2cÞðr4 þ κ2r4cÞ3z10c
5r2

h00zz −
L2F2

cz10c f3r4 − r2cð1þ κ2Þr2 − κ2r4cgðr4 þ κ2r4cÞ3
5r3

h0zz þ PðrÞ ¼ 0;

ð2:12Þ

where the source term P is explicitly given by Eq. (A1). The general solution includes two integral constants, one of which
is determined by imposing the regularity on the horizon r ¼ rc. Then, we obtain the following analytic solution,

hzz ¼ −
5r2

4L2
þ 25μ10

4L2F2
cz10c

�
r2 þ κ2r4c − r4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ κ2r4c
p

�
þ 5

4L2Fcz5c
fðz5c þ 5μ5Þr2 − 6μ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
g

þ 15ð1þ κ2Þr2cμ5
2L2Fcz5c

lnðr2 − κ2r2cÞ þ C; ð2:13Þ

where C is the remaining integral constant. Hereafter, we discard this constant because it can be eliminated by making a
gauge transformation [16]. We find that we can solve for hvr in terms of the other variables, so we need only solve three
coupled second order differential equations for γðrÞ, βðrÞ, and hvv,

hvr ¼
ffiffiffiffiffiffi
Fc

p ð2r2 − r2cð1þ κ2ÞÞr3
4ð3r4 − κ2r4cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p β0 −
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cr3

ð6r4 − 2κ2r4cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p γ0 −
ð3r4 þ κ2r4cÞr3

4
ffiffiffiffiffiffi
Fc

p ð3r4 − κ2r4cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p h0vv

þ
ffiffiffiffiffiffi
Fc

p
r2fr6cκ2ð1þ κ2Þ þ 3r4cκ2r2 þ r2cð1þ κ2Þr4 − r6g

2ð3r4 − r4cκ2Þðr4 þ r4cκ2Þ3=2
β þ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cr2

ð3r4 − κ2r4cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p γ −
r2hvv

2
ffiffiffiffiffiffi
Fc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p

þ F3=2
c z4cfκ2r4c − 2r2cð1þ κ2Þr2 þ 3r4gr3

4L4ð3r4 − κ2r4cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

p h0zz þ
5r4

8
ffiffiffiffiffiffi
Fc

p
L6z6cð3r4 − κ2r4cÞðr4 þ κ2r4cÞ5=2

× ½8F2
cz10c ðr4 þ κ2r4cÞ2r4 þ 5f6r12 þ 2κ4r8cr4 − 2κ6r12c þ 3κ4ð1þ κ2Þr10c r2 þ 2κ2r4cðð1þ κ2Þr2c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr6

− ðð1þ κ2Þr2c þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr10 þ 2r2cð5κ2r2c þ 2ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr8gμ10 − 8F2

cz10c ðr4 þ κ2r4cÞ2r4�; ð2:14Þ

ffiffiffiffiffiffi
Fc

p
L6r2ðr2 − r2cÞðr2 − κ2r2cÞð3r4 − κ2r4cÞðr4 þ κ2r4cÞ2γ00 þ

ffiffiffiffiffiffi
Fc

p
L6rðr4 þ κ2r4cÞ2f3r8 − 3ð1þ κ2Þr2cr6

þ 2κ2r4cr4 − 7κ2ð1þ κ2Þr6cr2 − r8cκ4gγ0 − 4
ffiffiffiffiffiffi
Fc

p
L6ðr4 þ κ2r4cÞ3f3r4 − 3ð1þ κ2Þr2cr2 − κ2r4cgγ

þ 2FcL6κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3crðr4 þ κ2r4cÞ2fr4 − 2ð1þ κ2Þr2cr2 þ κ2r4cgβ0 − 8L6κ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r7cr3ðr4 þ κ2r4cÞ2h0vv

þ 4FcL6κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cðr4 þ κ2r4cÞ2fr4 þ 2ð1þ κ2Þr2cr2 þ κ2r4cgβ

þ 4F2
cL2z4cκ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cr3ðr4 þ κ2r4cÞ2f3r4 − 2ð1þ κ2Þr2cr2 þ κ2r4cgh0zz þ SðrÞ ¼ 0; ð2:15Þ

− FcL6rðr2 − r2cÞðr2 − κ2r2cÞð3r4 − κ2r4cÞðr4 þ κ2r4cÞ2β00 þ FcL6ðr4 þ κ2r4cÞ2f3r8 − 9ð1þ κ2Þr2cr6 þ 6κ2r4cr4

− 5κ2ð1þ κ2Þr6cr2 þ 3r8cκ4gβ0 þ 12FcL6rðr4 þ κ2r4cÞ3f2r2 þ ð1þ κ2Þr2cgβ
− 8

ffiffiffiffiffiffi
Fc

p
L6κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cr2ð3r4 þ κ2r4cÞðr4 þ κ2r4cÞ2γ0 − 8L6κ2r4cr2ð3r4 þ κ2r4cÞðr4 þ κ2r4cÞ2h0vv

þ 16
ffiffiffiffiffiffi
Fc

p
L6κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3crð3r4 þ κ2r4cÞðr4 þ κ2r4cÞ2γ

þ 8F2
cL2κ2z4cr4cr2ðr4 þ κ2r4cÞ2f3r4 − 2ð1þ κ2Þr2cr2 þ κ2r4cgh0zz þRðrÞ ¼ 0; ð2:16Þ
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− L6r2ðr2 − r2cÞðr2 − κ2r2cÞð3r4 − κ2r4cÞðr4 þ κ2r4cÞ2h00vv
− L6rðr4 þ κ2r4cÞ2f9r8 − 9ð1þ κ2Þr2cr6 − 6κ2r4cr4 þ 7κ2ð1þ κ2Þr6cr2 þ κ4r8cgh0vv
− 2FcL6ð1þ κ2Þr2cr3ðr4 þ κ2r4cÞ2fð1þ κ2Þr2c − 2r2gβ0

þ 4
ffiffiffiffiffiffi
Fc

p
L6κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3crðr4 þ κ2r4cÞ2f3r4 − ð1þ κ2Þr2cr2 − κ2r4cgðrγ0 − 2γÞ

− 4FcL6ð1þ κ2Þr2cðr4 þ κ2r4cÞ2f4r4 − ð1þ κ2Þr2cr2 − 2κ2r4cgβ
þ 2F2

cL2ð1þ κ2Þr2cz4cr3ðr4 þ κ2r4cÞ2f3r4 − 2ð1þ κ2Þr2cr2 þ κ2r4cgh0zz þQðrÞ ¼ 0; ð2:17Þ

where SðrÞ, RðrÞ, and QðrÞ are functions of r given by
Eqs. (A2)–(A4) in the Appendix. From the other constraint
equations, we obtain the coefficient r2 as

r2 ¼
rcð4F2Fc − F2

1Þ
8F2

c
: ð2:18Þ

Combining Eqs. (2.9) and (2.18), we obtain

rþðzÞ ¼ r0
ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
ð2:19Þ

up to second order in the derivative expansion, where r0 is
the radius of rþ at the AdS boundary, z → ∞. Just as in the
nonrotating five-dimensional black string case [16], the
droplet horizon shrinks to zero at the horizon of the planar
Schwarzschild-AdS spacetime, ending on the horizon.
Equations (2.15)–(2.17) have a singular source term

∼ðr − rcκÞ−1 arising from hzz in (2.13). This implies that
γ, β, and hvv can be expanded near the inner (Cauchy)
horizon as

γðrÞ≃ lnðr− κrcÞfa0þa1ðr− κrcÞþa2ðr− κrcÞ2þ �� �g
þd0þd1ðr− κrcÞþ � � � ;

βðrÞ≃ lnðr− κrcÞfb0þb1ðr− κrcÞþb2ðr− κrcÞ2þ �� �g
þ e0þ e1ðr− κrcÞþ � � � ;

hvvðrÞ≃ lnðr− κrcÞfc0þ c1ðr− κrcÞ
þ c2ðr− κrcÞ2þ �� �gþf0þf1ðr− κrcÞþ � � � :

ð2:20Þ

Note that we have assumed that the black droplet solution is
nonextremal, i.e., κ < 1, in the expansion. Substituting
these into Eqs. (2.15)–(2.17), we obtain all the coefficients
provided that the coefficients c0, d0, e0, f0, e1, and f1 are
given. This implies that six independent mode solutions
exist for the second order differential equations (2.15)–
(2.17). For the discussions in the next section, it suffices to
obtain the relation between the leading order coefficients
a0, b0, and c0. The remaining subleading coefficients are
determined by numerics in Sec. IV.

The leading coefficients a0 and b0 are determined by
c0 as

a0 ¼ −
rcκ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
f2L6zcc0 þ 15r2cð1þ κ2Þμ5Fcg
2L6zcð1 − κ2Þ ffiffiffiffiffiffi

Fc
p ;

b0 ¼
r2cκ2f2L6zcð1þ 3κ2Þc0 þ 15r2cð3þ 4κ2 þ κ4Þμ5Fcg

2L6ð1 − κ2ÞzcFc
:

ð2:21Þ

By Eq. (2.14), we also find the asymptotic behavior of
hvr near the Cauchy horizon:

hvr ≃ rcκ2f2L6zcκ2c0 þ 15ð1þ κ2Þr2cμ5Fcg
4L6zcð1 − κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p ffiffiffiffiffiffi
Fc

p ðr − κrcÞ
: ð2:22Þ

C. The nonrotating case

In the nonrotating case (κ ¼ 0), Eqs. (2.15) and (2.16),
respectively, for γ and β are decoupled from the other
variables, and we can set γ ¼ β ¼ 0. Furthermore, we
obtain analytic expressions for hvv and hvr from
Eqs. (2.13), (2.17), and (2.14):

hzz ¼
15r2cμ5 ln r
L2Fcz5c

;

hvv ¼ C2 −
C1

2r2
−
5μ5Fcr2c
L6zcr2

fr2c − ðr2 − 2r2cÞ ln rg;

hvr ¼
−4C2L6z6c þ 5r2cμ5ð4z5c þ μ5Þ − 20r2cμ5z5cFc ln r

8L6z6c
ffiffiffiffiffiffi
Fc

p ;

ð2:23Þ
where C1 and C2 are constants that correspond to a global
shift in the temperature as explained in [16], so we must set
it to zero.

III. THE HOLOGRAPHIC STRESS-ENERGY
TENSOR

In this section, we calculate the holographic stress-
energy tensor using the prescription of [20], up to the
second order in ϵ. In the six-dimensional bulk theory, the
regularized action becomes
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S¼ 1

16πG6

Z
M
dx6

ffiffiffiffiffiffi
−g

p �
Rþ30

L2

�
þ 1

8πG6

Z
∂M

dx5
ffiffiffiffiffiffi
−q

p
K

þ 1

8πG6

Z
∂M

dx5
ffiffiffiffiffiffi
−q

p �
4

L
þL
6
RþL3

18

×

�
RabRab−

5

16
R2

�
þ���

�
; ð3:1Þ

where R is the Ricci scalar of the induced metric
qab ¼ gab − nanb at z ¼ zc associated with the unit
normal outward pointing vector na, and K is the trace of
the extrinsic curvature defined below. Note that the first
three terms in the second line are sufficient to cancel
the divergences. Furthermore, the last two terms are at
Oðϵ4Þ, since the induced metric is the vacuum Myers-Perry
black hole [19] at zeroth order, i.e., Rab ¼ R ¼ Oðϵ2Þ.
Thus, the holographic stress-energy tensor Tab given by
Tab ¼ ð2= ffiffiffiffiffiffi−qp ÞδS=δqab becomes

Tab ¼
L

8πG6

�
1

3
Eab −

ϵ

L
ðKab −qabKÞ−

4ϵ2

L2
qab

�
þOðϵ4Þ;

ð3:2Þ

where Eab is the Einstein tensor of the induced metric qab,
and Kab is the extrinsic curvature defined by

Kab ¼ qac∇cnb: ð3:3Þ

If the metric (2.3) is decomposed into

ds2 ¼ ðN2þNaNaÞdz2þ 2Nadxadzþqabdxadxb: ð3:4Þ

Kab is rewritten by

Kab ¼
1

2N
ð∂zqab −DaNb −DbNaÞ; ð3:5Þ

where Da is the covariant derivative with respect to the
induced metric qab, and the lapse function N and the shift
vector Na are given by

Nv ¼
5αrμ5

2L2z4c
þOðz−9c Þ; Nr ¼ −

5αrμ5

2L2z4c
þOðz−9c Þ;

the other components ¼ 0;

N ¼ L
zc

ffiffiffiffiffiffi
Fc

p þOðϵ2Þ: ð3:6Þ

Note that Na ¼ OðϵÞ, as it includes the derivative with
respect to z from Eq. (2.2). Thus, if we expand qab, Kab,
and Eab as

qab ¼ qð0Þab þ ϵ2qð2Þab þ � � � ;
Kab ¼ ϵKð1Þ

ab þ ϵ3Kð3Þ
ab þ � � � ;

Eab ¼ ϵ2Eð2Þ
ab þ � � � ; ð3:7Þ

Kð1Þ
ab is determined by qð0Þab as

Kð1Þ
ab ¼ zc

ffiffiffiffiffiffi
Fc

p
2L

ð∂zqð0Þab − D̄aNb − D̄bNaÞ; ð3:8Þ

where D̄a denotes the covariant derivative with respect to
qð0Þab. Then, Eq. (3.2) reduces to

Tab ¼
ϵ2L
8πG6

�
1

3
Eð2Þ
ab −

1

L
ðKð1Þ

ab − qð0Þab K
ð1ÞÞ − 4

L2
qð0Þab

�

þOðϵ4Þ: ð3:9Þ

This implies that the second order perturbation hð2Þμν

contributes to the stress-energy tensor only through the
Einstein tensor, up to Oðϵ2Þ.
First, we investigate the stress-energy tensor in the static

case (κ ¼ 0). Substitution of Eqs. (2.23) into Eq. (3.9)
yields

Tvv ¼ ϵ2 · C ·
4r6 − 9r2cr4 þ 5r6c

r6
;

Tvr ¼ ϵ2 · C ·
−4r4 þ 5r2cr2 þ 5r4c

r4
;

Trr ¼ ϵ2 · C ·
5ðr2 − r2cÞ

r2
;

Tψψ ¼ 2

cos θ
Tψϕ ¼ ϵ2 · C ·

r4 − 5r4c
r2

;

Tθθ ¼ Tϕϕ ¼ ϵ2 · C ·
r4 − 5r4c
4r2

; ð3:10Þ

where C ¼ μ5=16πG6L3z3c. It is easily checked that the
conservation law D̄aTab ¼ 0 is satisfied. Near the outer
horizon r ¼ rc, negative energy density appears, i.e.,
Tvv < 0ðr > rcÞ. This implies that due to the Hawking
effect, pair creation of particles occurs near the horizon, and
the negative energy particles are absorbed into the horizon.
Nevertheless, there is no flux at null infinity. This is verified
by checking that the ðt; rÞ component of the stress-energy
tensor in the original coordinate system ðt; rÞ becomes zero
at null infinity. This is due to strong coupling effects of the
dual CFT in the boundary theory, just as in the five-
dimensional case [12]. It is also immediately checked that
the trace of our stress-energy tensor vanishes, in agreement
with the general argument that odd-dimensional CFTs have
a vanishing trace anomaly.
Next, we investigate the stress-energy tensor near the

inner (Cauchy) horizon in the rotating case. Note thatKab is
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regular near the Cauchy horizon r ¼ κrc at OðϵÞ because
qð0Þab and the shift vector Na are regular there. Thus, the
dominant term of Tab in Eq. (3.2) near the Cauchy horizon
comes from the Einstein tensor Eab. As shown in
Eqs. (2.20)–(2.22), the second order metric hab diverges
near the Cauchy horizon. So, the relevant [i.e., ðr; rÞ]
component of the Einstein tensor Eab can be expanded as

Err ¼
ϵ2

z3c

�
−
15r2cð1þ κ2Þμ5
4L4ðr − rcκÞ2

þ C0

r − κrc
þ � � �

�
þOðϵ4Þ;

ð3:11Þ

where C0 is a constant. As for the other components, the
leading terms in order Oðϵ2Þ behave as 1=ðr − κrcÞ and,
therefore, are irrelevant to the rest of our arguments.
The most striking feature is that Err in Eq. (3.11)

negatively diverges at the Cauchy horizon. This implies
that the null energy condition is strongly violated along the
null direction ∂r near the Cauchy horizon:

Trr ≃ −
5ϵ2r2cð1þ κ2Þμ5

32πG6L3z3cðr − rcκÞ2
→ −∞: ð3:12Þ

Interestingly, this behavior is very similar to the case of the
massless scalar field in two dimensions [2,3]; in both cases,
the stress-energy tensor negatively diverges as ðr − κrcÞ−2.

IV. NUMERICAL RESULTS

When we add rotation to our droplets, we must solve the
second order equations numerically. To account for the
logarithmic divergences in β, γ, and hvv, as well as the pole
in hvr, we make the following Ansätze,

βðrÞ ¼ βLðrÞ lnðr − κrcÞ þ β1ðrÞ;
γðrÞ ¼ γLðrÞ lnðr − κrcÞ þ γ1ðrÞ;

hvvðrÞ ¼ hvvLðrÞ lnðr − κrcÞ þ hvv1ðrÞ;
hvrðrÞ ¼ hvrLðrÞ lnðr − κrcÞ þ

r
r − κrc

hvr1ðrÞ: ð4:1Þ

In the last equation, the coefficient of hvr1ðrÞ is required
to have hvv1ðrÞ vanish as r goes to infinity, matching the
nonrotating case.
We insert these Ansätze into (2.14) and find eight

equations to solve numerically—four from the coefficients
of lnðr − κrcÞ involving only βL, γL, hvvL, and hvrL and
four remaining equations involving these variables as well
as β1, γ1, hvv1, hvr1. It is numerically convenient to also set
L ¼ 1 and work in terms of a variable R≡ 1=r in order to
impose boundary conditions at spatial infinity.
As we did in the analytic case, we can perform a series

expansion in powers of R − ðκrcÞ−1 near the Cauchy
horizon to find appropriate boundary conditions on our
new metric functions,

XðRÞ ¼
X∞
i¼0

xi

�
R −

1

κrc

�
i
; ð4:2Þ

where X refers collectively to fβL; γL; hvvL; hvrL; β1;
γ1; hvv1; hvr1g. This expansion reflects the fact that the
divergences in β, γ, hvv come only from a log term sourced
by hzz, and there is an extra divergence of ðr − κrcÞ−1 in
hvr. Inserting this expansion into our eight differential
equations and solving order by order in ðR − 1

κrc
Þ leads to

the following boundary conditions,

hvrL

�
R ¼ 1

κrc

�
¼ −

κð15ðκ2 þ 1Þð2κ6 þ 7κ4 þ 12κ2 þ 3Þμ5Fcr2c þ 2κ2ð5κ4 þ 14κ2 þ 5ÞzchvvLð 1
κrc
ÞÞ

4ðκ2 − 1Þ2ðκ2 þ 1Þ3=2 ffiffiffiffiffiffi
Fc

p
zc

;

h0vvL

�
1

κrc

�
¼ −

κðκ2 þ 1Þrcð15ðκ2 þ 1Þμ5Fcr2c þ 2zchvvLð 1
κrc
ÞÞ

ðκ2 − 1Þzc
; ð4:3Þ

as well as the previously derived conditions, Eq. (2.21). Furthermore, the expansion leads to the following constraint at the
horizon,

0 ¼ 16κðκ2 − 1Þr2czc
�
2ðκ2 þ 1Þ

ffiffiffiffiffiffi
Fc

p
γ1

�
1

κrc

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
h0vv1

�
1

κrc

��
þ 5κ2μ5r5cð3ð4κ5 − 8κ3 þ 93

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
κ2

þ 33
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
þ 19

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
κ6 þ 63

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
κ4 þ 4κÞFc − 20κðκ2 − 1Þðκ2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
κ − 1ÞÞ

− 4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

κ2
þ 1

r
− κ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p �
− 8

ffiffiffiffiffiffi
Fc

p
rczc

�
3κ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

κ2
þ 1

r
− κ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p � ffiffiffiffiffiffi
Fc

p
β1

�
1

κrc

�
− 2ðκ4 − 1Þγ01

�
1

κrc

��

× Fczcβ01

�
1

κrc

�
þ 2κ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
ð57κ4 þ 48κ2 − 1Þr3czchvvL

�
1

κrc

�
: ð4:4Þ
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We can likewise perform a series expansion at spatial
infinity in powers of R (recall that R ¼ 0 corresponds to
spatial infinity) to find appropriate boundary conditions.
This leads to

βLð0Þ ¼ γLð0Þ ¼ 0;

hvr1ð0Þ ¼
−5ðκ2 þ 1Þμ5ðFc − 5Þr2c − 4zchvv1ð0Þ

8
ffiffiffiffiffiffi
Fc

p
zc

;

hvvLð0Þ ¼
5ðκ2 þ 1Þμ5Fcr2c

zc
;

hvrLð0Þ ¼ −
5ðκ2 þ 1Þμ5 ffiffiffiffiffiffi

Fc
p

r2c
2zc

;

β1ð0Þ ¼
25κ2μ10r4c
2Fcz6c

; γ1ð0Þ ¼ −
25κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
μ10r3c

2
ffiffiffiffiffiffi
Fc

p
z6c

:

ð4:5Þ
Note that these boundary conditions correspond to impos-
ing a single constraint on the free parameters c0, d0, f0, e1,

and f1 in Eq. (2.20). Finally, there are a few boundary
conditions which me must impose by hand. These are
analogous to the constants C1 and C2 in Eq. (2.23). To
smoothly match onto the nonrotating case, we choose
β1ð 1

κrc
Þ ¼ γ1ð 1

κrc
Þ ¼ 0 and hvv1ð0Þ ¼ 0. This choice is

equivalent to imposing d0 ¼ e0 ¼ f0 ¼ 0.
These boundary conditions are not sufficient to ensure

smooth solutions because the point R ¼ 31=4=ðrc
ffiffiffi
κ

p Þ is a
(regular) singular point of our differential equations. To
accommodate this singularity, we used two numerical
regions, 0 ≤ R ≤ 31=4

rc
ffiffi
κ

p and 31=4

rc
ffiffi
κ

p < R < 1
κrc

(this is only

necessary for κ <
ffiffiffi
3

p
). We impose continuity of our

functions and match the first derivatives of our functions
at this point. Regularity of the differential equation, or
similar smoothness of hvrL and hvr1 at our singular point,
amounts to two constraints. In total, we start with four free
constants, β1ð 1

κrc
Þ, γ1ð 1

κrc
Þ, hvvLð 1

κrc
Þ, and hvv1ð0Þ and fix

three by hand to smoothly match onto the nonrotating
solution. The final constant is fixed by consistency of the
two constraints coming from the smoothness of hvr1, hvrL.
To find these numerical solutions, we use the Newton-

Raphson method with pseudospectral collocation over a
Chebyshev grid in the two numerical domains. In Fig. 1, we
have plotted our solutions for rc ¼ 0.1, μ ¼ 1, κ ¼ 0.2,
zc ¼ ð4μÞ1=5 (reexpressed in terms of the original radial
coordinate r). Importantly, we have included only the finite
pieces of the solutions, subtracting off the divergent pieces.
For example, using the notation of (2.20),

β−ðrÞ≡ βðrÞ − b0 lnðr − κrcÞ;
γ− ≡ γ−ðrÞ − a0 lnðr − κrcÞ;

h−vvðrÞ ¼ hvvðrÞ − c0 lnðr − κrcÞ ð4:6Þ

and similarly for h−vrðrÞ.
We have also plotted the nonvanishing components of

the stress-energy tensor for this solution in Fig. 2. We have

FIG. 2. Here we plot the components of the holographic stress-energy tensor for the same parameters as Fig. 1 with θ ¼ π=2 and
zc ¼ ð108μÞ1=5. In the left plot, we show Tvr (dashed), Trr (dot dashed), and Tvv (thick). On the right, we show Tψr (dotted), Tψv

(dashed), Tψψ (dot dashed), and Tθθ (thick). For each of these, we have scaled our solution by C−1 defined below Eq. (3.10). Notably,
each of these components is regular at the outer horizon (labeled by the vertical line at r=rc ¼ 1).

FIG. 1. Here we plot the finite pieces of hμνðrÞ at Oðϵ2Þ. The
curves correspond to β−ðrÞ (dotted), γ−ðrÞ (dashed, black), h−vvðrÞ
(dot dashed), and h−vrðrÞ (thick) for rc ¼ 0.1, μ ¼ 1, κ ¼ 0.2,
zc ¼ ð4μÞ1=5. Note that γ− and h−vr nearly overlap, and β− is much
smaller than the other functions.
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only included the part of the stress-energy tensor near
r ¼ rc because the behavior of the stress-energy tensor near
the Cauchy horizon can be derived from (2.21) as was done
for Trr in (3.12). To verify that we obtained the correct
holographic stress-energy tensor, we varied zc between
ð104μÞ1=5 and ð108μÞ1=5 and checked that C−1ðTabÞ did not
change.
As pointed out for the nonrotating case, an interesting

quantity is the energy density near the outer horizon. The
local energy density may be found by diagonalizing the
stress-energy tensor ðTa

bÞ, as done in [14]. The stress-
energy tensor in our spacetime is diagonalizable near the
horizon and far from the horizon, but there is an inter-
mediate region

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ þ κ2 þ ð1 − κÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

pq
< r

< rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ þ κ2 þ ð1þ κÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

pq
ð4:7Þ

where the stress-energy tensor diagonalization breaks
down. This is likely a result of our expansion, as in a
fully nonperturbative solution like [14], no such region was
seen, though it is notable that our solution contains a finite
temperature, rather than extremal, bulk horizon. Following
[14], in the region where this decomposition is well
defined, we may write

Ta
btb ¼ −EðrÞta; ð4:8Þ

where ta is the (unique) normalized timelike eigenvector,
and EðrÞ can be interpreted as the energy density observed
by the timelike observer with velocity ta. At leading order
in r and zc,

t ¼ 1

zc

��
1 − 2

ð1þ κ2Þr2c
r2

� κ2r4c
r4

� ∂
∂v −

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3c

r4
∂
∂ψ

�

þO
�
1

r5
;
μ5

z5c

�
: ð4:9Þ

The plus sign in this equation corresponds to the near
horizon region, while the minus sign corresponds to the
region far from the horizon.
The energy density obtained from the decomposition is

plotted in Fig. 3 for different values of κ. Just as in the
nonrotating case, the region of negative energy density
extends all the way from the horizon to spatial infinity.
Interestingly, at spatial infinity, the energy density
approaches a constant,

E∞ ≡ lim
r→∞

EðrÞ ¼ ϵ2 ·
4C
z2c

þOðr−2Þ: ð4:10Þ

This should not be surprising because far from the
boundary black hole, the CFT should be in a thermal
state, with an energy density corresponding to the temper-
ature of the bulk black hole. In fact, this value matches the
energy density for a CFT dual to a six-dimensional planar-
AdS–Schwarzschild black brane. Furthermore, this value
is independent of κ as it should be, since our boundary
black holes are asymptotically flat, and a similar result
was seen for κ ¼ 0 in [12]. In Fig. 3, we have subtracted
this asymptotic value from the energy density to empha-
size that a local observer near the black hole measures an
energy density less than the thermal energy density
because of quantum effects in the curved background
spacetime.
Interestingly, our energy density approaches E∞ as r−2,

rather than the r−7 decay observed in [14]. This less steep

FIG. 3. (Left) Here we plot EðrÞ near the outer horizon for κ ¼ 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 with rc ¼ 0.1, μ ¼ 1,
zc ¼ ð108μÞ1=5. The color of the curves gets lighter as κ increases. As before, we have scaled the energy density by C−1 and set θ ¼ π=2.
The upper left of the figure corresponds to the near horizon region. The curves are discontinuous because there is a region set by κ

outside the event horizon [Eq. (4.7)], where the stress-energy tensor is not diagonalizable. (Right) Here we plot the rotation ~ΩðrÞ for the
same values of κ. At the outer horizon, the rotation matches the value Ωðrc; zcÞ showing that t is the generator for the outer horizon. As
before, discontinuities arise because the stress-energy tensor is not diagonalizable.
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falloff could be a consequence of our derivative expansion
method. However, it is also notable that our droplet solution
ends on a finite temperature black brane horizon, whereas
in [14], the bulk horizon was extremal (the Poincaré
horizon), and the black droplet was disconnected.
Similar falloff discrepancies were seen in numerical con-
structions of five-dimensional static droplets, where the
energy density decayed as r−5 with an extremal bulk
horizon [21] but as r−1 for a finite temperature bulk horizon
[22]. Importantly, as in the analytic case, for an observer
with tangent vector ta, for all choices of κ, the energy
density diverges negatively as ðr − κrcÞ−2 near the Cauchy
horizon.
We also can use the stress-energy tensor eigenvalue

decomposition to define rotation of the dual plasma. Again,
following [14], we write the timelike eigenvector of the
stress-energy tensor as

T ¼ ∂
∂vþ ~Ωðr; zÞ ∂

∂ψ ð4:11Þ

and define ~Ω to be the rotation. At the outer horizon, this
becomes (at zeroth order in ϵ)

Tþ ¼ ∂
∂vþ

ffiffiffiffiffiffiffiffiffiffiffi
FðzcÞ

p
Ωðrc; zcÞ

∂
∂ψ ; ð4:12Þ

which, on the conformal boundary, matches the future
generator of the horizon at r ¼ rc. Note that the rotation
decays as r−4 rather than the r−2 falloff seen in [14]. The
faster falloff could again be a consequence of our pertur-
bative expansion, though more likely a result of the droplet
ending on a finite temperature bulk horizon.
To better understand the energy density in regions of the

spacetime where Ta
b is not diagonalizable, we instead

define a new vector, timelike everywhere outside the outer
horizon,

K ¼ ∂
∂vþ

ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
Ωðr; zÞ ∂

∂ψ ; ð4:13Þ

which also approaches Tþ at the outer horizon and goes to
ð∂=∂vÞ near spatial infinity. An observer with this tangent
vector would see the energy density plotted in Fig. 4, which
is regular everywhere and still has the important feature
of being negative near the event horizon. Furthermore,
the localization of negative energy density near the event
horizon is reminiscent of [15] and illuminates the
“jammed” nature of the dual CFT. Here too, because K →
∂=∂v near spatial infinity, the energy density also
approaches E∞, indicative of the CFT in a thermal phase.
This tangent vector, however, becomes spacelike inside the
outer event horizon, and so is not useful to illustrate strong
cosmic censorship. In this region, ta is well defined and
diverges on the Cauchy horizon.

FIG. 4. The energy density seen by an observer with the
tangent vector in Eq. (4.13). Here, we choose κ ¼ 0.02; 0.05;
0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4; 0.45; 0.5; 0.55 and rc ¼ 0.1,
μ ¼ 1, zc ¼ 10μ1=5. The color of the curves gets lighter as κ
increases. For all κ, the energy density is negative near the outer
horizon.

FIG. 5. The left plot displays the diagonal components of the holographic stress-energy tensor Ta
a for rc ¼ 0.1, k ¼ 0.2, μ ¼ 1,

zc ¼ ð108μÞ1=5. The curves correspond to Tθ
θ ¼ Tϕ

ϕ (dotted), Tv
v (dashed), Tr

r (dot dashed), Tψ
ψ (thick). Again, the vertical grey line

indicates the outer event horizon. The right plot displays the sum of these components. Notably, the trace of the stress-energy tensor
vanishes as Oððμ=zcÞ10Þ.
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We emphasize that while the stress-energy tensor
diverges on the Cauchy horizon, it is finite at r ¼ rc so
that it is regular on the past and future event horizons
(shown in Fig. 2). Finally, one can check that the trace of
the stress-energy tensor vanishes at leading order, as
expected for a CFT in odd spacetime dimensions, just as
in the nonrotating case. In Fig. 5, we have plotted the
diagonal components of the holographic stress-energy
tensor C−1ðTa

aÞ (no sum) as well as the trace. From this
figure, it is clear that the sum vanishes as we approach the
conformal boundary (i.e., zc → ∞). One can also check
explicitly from the definition of the stress-energy tensor
(3.9) and the equations of motion for hμν [(2.14)–(2.17)]
that the trace vanishes asOððμ=zcÞ10Þ exactly following the
nonrotating case.
To summarize our numerical results, for generic rotation

parameter κ of our boundary black hole, the CFT plasma
exhibits the following features. The stress-energy tensor is
traceless to leading order in μ=zc and regular on the outer
event horizon. For a timelike observer, there is a region near
the event horizon which has negative energy density. As a
timelike observer approaches spatial infinity, the energy
density seen by such an observer approaches that of the
thermal CFT dual to a six-dimensional planar-AdS–
Schwarzschild black brane. Depending on the observer’s
velocity, the energy density may remain less than this
asymptotic value for all of space, as for the observer with
tangent vector ta, or there may be a region with positive
energy density, as in the observer with tangent vector K. In
all cases, this negative energy density diverges on the
Cauchy horizon, as shown in Eq. (3.12), in favor of strong
cosmic censorship.

V. CONCLUSION AND DISCUSSION

In this paper, we have analytically constructed a
rotating black droplet solution embedded in the planar
Schwarzschild-AdS black brane spacetime by applying
the generalized derivative expansion method, which was
originally developed for the static case [16]. Our method
is valid when the horizon size of the black droplet is much
smaller than the horizon size of the planar Schwarzschild-
AdS black brane (and the curvature radius of the back-
ground AdS space). In this case, the derivative of the
metric along the bulk radial direction z is much smaller
than the one along the droplet radial direction r (parallel to
the planar horizon). Then, order by order in the derivative
expansion, we have been able to solve the Einstein
equations. The horizon radius of the thin black droplet
solution gradually shrinks toward the planar horizon and
caps off smoothly just at the horizon. Since the temper-
ature of the black droplet solution is much higher than the
temperature of the background planar horizon, the dual

boundary state can be interpreted as the Unruh state [12].
For our black droplet solution, we have—analytically and
holographically—computed the null-null components of
the stress-energy tensor for a strongly coupled CFT in the
boundary five-dimensional rotating Myers-Perry black
hole spacetime. First, we have found that the negative
energy appears just outside the event horizon, which
can be interpreted as a consequence of the particle
production by the Hawking effect. We have shown,
however, there is no energy flux at infinity, as in the
static case studied in [12], and, therefore, our boundary
CFT can be viewed as a jammed state. We have also
studied the behavior of the holographic stress-energy
tensor near the inner Cauchy horizon. The null-null
component of the stress-energy tensor corresponds to
the energy density seen by an observer whose world line
is transverse to the Cauchy horizon. We have found that
the null-null component negatively diverges at the Cauchy
horizon, suggesting that due to quantum effects, the
Cauchy horizon would become singular, in favor of strong
cosmic censorship.
Although we have not analyzed the classical instability

of our droplet solution in the present paper, we expect our
solution to show a classical instability or divergence of
curvature scalars inside the event horizon. In fact, it was
shown in [23] that, in general, adding stationary but
spatially inhomogeneous linear perturbations makes inho-
mogeneous black branes unstable, rendering the
Kretschmann scalar with respect to the perturbed geometry
divergent on the Cauchy horizon. Viewing our black
droplet solution as a type of inhomogeneous black string
in the bulk and applying the general argument of [23], our
droplet solution should also exhibit the divergence of
curvature scalars at the Cauchy horizon even inside the
bulk z < zc. In the spirit of the bulk-boundary duality, our
result of the quantum divergence of the stress-energy tensor
at the Cauchy horizon in the boundary geometry may be
viewed as a holographic realization of the classical diver-
gence of curvatures at the Cauchy horizon in the bulk
geometry.
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APPENDIX: EXPRESSIONS
FOR PðrÞ, SðrÞ, RðrÞ, AND QðrÞ

We provide the explicit expressions for PðrÞ, SðrÞ,
RðrÞ, and QðrÞ appearing in (2.14)–(2.17),
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PðrÞ ¼ −2F2
cz10c ðr4 þ κ2r4cÞ3r2 − 5½−2r14 þ r12ðr2cð1þ κ2Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ

þ 3κ4r8cr4ðr2cð1þ κ2Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ þ κ6r12c ðr2cð1þ κ2Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ

þ κ2r4cr8ð3r2cð1þ κ2Þ þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ − r2cr10ð6r2cκ2 þ ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ

− r6cr6κ2ð6r2cκ2 þ ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ − 2r10c κ4r2ðr2cκ2 þ 3ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þ�μ10

þ 2Fcz5cðr4 þ κ2r4cÞ½−6r8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 − 9r4κ2r4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 − 3r8cκ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5

þ r10ðz5c þ 5μ5Þ þ r2r6cκ2f6ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ r2cκ2ðz5c þ 5μ5Þg

þ r6r2cf3ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ 2r2cκ2ðz5c þ 5μ5Þg�; ðA1Þ

SðrÞ ¼ 10κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
r3cr2

z6c
½2F2

cz10c r2ðr4 þ κ2r4cÞ3 þ 5f−3r14 þ 2ð1þ κ2Þr2cr12 þ 2κ4ð1þ κ2Þr10c r4

− κ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
r12c þ κ2r4cð4ð1þ κ2Þr2c þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr8 þ r2cð−5r2cκ2 þ ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr10

þ r10c κ4ðr2cκ2 þ 2ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr2 − r6cκ2ðr2cκ2 þ 5ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr6gμ10

þ 2Fcz5cf6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5r12 þ 7r4cκ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5r8 − r12c κ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 − ðz5c þ 5μ5Þr14

þ r10c κ4ð2ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 − r2cκ2ðz5c − 3μ5ÞÞr2

þ r6cκ2ð−5ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 − r2cκ2ð3z5c − μ5ÞÞr6

− r2cð3ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ r2cκ2ð3z5c þ 7μ5ÞÞr10g�; ðA2Þ

RðrÞ ¼ 10κ2r4cr
z6c

½2F2
cz10c r2ðr4 þ κ2r4cÞ2ð5r4 þ κ2r4cÞ þ 5f4r10c κ4ð1þ κ2Þr4 − κ6r12c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q

þ 5r2cð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
r10 − 5r6cκ2ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
r6 þ 2r10c κ4ð1þ κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
r2

þ ð4r2cð1þ κ2Þ − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr12 þ κ2r4cð8r2cð1þ κ2Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
Þr8gμ10

− 2Fcz5cf−6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5r12 − 7r4cκ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5r8 þ r12c κ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ ð5z5c þ μ5Þr14

þ κ2r6cf5ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ r2cκ2ð7z5c − 5μ5Þgr6

þ κ4r10c f−2ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ r2cκ2ðz5c − 3μ5Þgr2

þ r2cf3ð1þ κ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
μ5 þ r2cκ2ð11z5c − μ5Þgr10g�; ðA3Þ
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QðrÞ ¼ 5μ5r2

z6c
½6ð2z5c þ 3μ5Þr16 − 2κ6ð1þ κ2Þr14c ð2z5c þ 3μ5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q

− r8cκ2ð1þ κ2Þf10ð1þ κ2Þð2z5c þ 3μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ r2cκ2ð8z5c þ 7μ5Þgr6

− 3f2ð2z5c þ 3μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ r2cð1þ κ2Þð8z5c þ 7μ5Þgr14

þ κ4r12c fð4þ 9κ2 þ 4κ4Þð2z5c þ 3μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ r2cκ2ð1þ κ2Þð8z5c þ 7μ5Þgr2

− r4cf5r2cκ2ð1þ κ2Þð8z5c þ 7μ5Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
f2z5cð6þ 19κ2 þ 6κ4Þ þ ð−2þ 17κ2 − 2κ4Þμ5ggr10

þ 5r2cf3ð1þ κ2Þð2z5c þ μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ 2r2cð2z5cκ2 þ ð1þ 5κ2 þ κ4Þμ5Þgr12

− 2r10c κ4fð1þ κ2Þð2z5c þ 3μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ r2cð2z5cκ2 − ð5þ 7κ2 þ 5κ4Þμ5Þgr4

þ r6cκ2fð1þ κ2Þð38z5c þ 47μ5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κ2r4c

q
þ 2r2cð2z5cκ2 þ ð10þ 23κ2 þ 10κ4Þμ5Þgr8�: ðA4Þ
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