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General post-Minkowskian expansion and application of the phase function
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The phase function is a useful tool to study all observations of space missions, since it can give all the
information about light propagation in a gravitational field. For the extreme accuracy of the modern space
missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure
enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian
gravitational constant. Any nth-order perturbation of the phase function can be determined by the integral
along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the
phase function outside a static, spherically symmetric body up to the order of G>. Then, we develop a precise
relativistic model that is able to calculate the phase function and the derivatives of the phase function in the
gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler,
radio science, and astrometric observables of the space missions in the Solar System. With the development
of space technology, the relativistic corrections due to the motion of a planet’s spin must be considered in
the high-precision space missions in the near future. As an example, we give the estimates of the relativistic

corrections on the observables about the space missions TianQin and BEACON.
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I. INTRODUCTION

With the development of space technology over the past
decade, a series of space projects was proposed to test
general relativity with high precision. For example, the
Cassini spacecraft has reached an accuracy of 1 m on the
range and 3 x 107 m/s on the Doppler [1]. The JUNO
mission reaches an accuracy of the order of 10 cm for the
range and 10® m/s for the Doppler [2,3], whose primary
goals are the understanding of the composition of the
planet, the gravity, and the magnetic field of Jupiter [4-6].
Similar accuracies are expected for BepiColombo [7]. The
GRACE-Follow-On is expected to provide an accuracy of
1 nm for the range and corresponding estimates for the
range rate [8,9]. Also, ACES obtains an accuracy of the
order of 1071 in fractional frequency [10].

In order to obtain the observables of general relativity,
it is crucial to study light propagation in the gravitational
field. There is a standard method to get all information
about light propagation between two point events by
solving null geodesic equations [11-13] or the eikonal
equation [14]. Many solutions have been proposed in
the post-Newtonian and in the post-Minkowskian (PM)
approximations when dealing with the bending effects of
light influenced by the gravitational field [15-18]. Besides,
a different method is also available, initially based on the
Synge world function [19] and then on the time transfer
functions (TTFs) and frequency shift [20-24]. The TTFs
in the field of a static, spherically symmetric body up to
the second post-Minkowskian approximation have been
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determined by Ref. [19]. Then, the general post-
Minkowskian expansion of the time transfer function has
been given by Ref. [24].

The laser ranging interferometer (LRI) has an extreme
precision in measuring distances. It will be adopted by
future space missions to measure relativistic effects. The
observable of the LRI originally comes from the interfer-
ence of the Gaussian beams (GBs), which is the phase
difference essentially. The phase of the Gaussian beam can
give all information about light propagation in the gravi-
tational field, such as the time transfer function, the vector
of light, the frequency shift, and so on. It is well known
that the Gaussian beam is not a strict plane wave. So we
should consider the diffusion of a Gaussian beam in actual
experiments. The general signal of interference comes
from the phase of the GB, and the signal of the phase is
averaged over the finite detector surface, which demon-
strates pointing errors and the wave front distortion will
cause errors. The phase function is a very useful tool to
study the aforementioned noise, since it describes the
phase of a light. It has been determined at the first post-
Minkowskian (1PM) approximation in the field of the
extended body [8].

As we know, the gravitational field in the Solar System is
generated from rotating and moving planets (such as Jupiter
and Earth). So a more complete relativistic model describ-
ing the Solar System should contain some rotating and
moving bodies, which was neglected before. In modern
times, the accuracy of measuring a variation of the distance
has reached 1 pm on the ground, which demonstrates that
contributions due to the motion of a rotating and moving
body must be considered in the near future. In order to
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compute astrometric observables of space missions in the
Solar System, we have to develop a model that determines
the phase function in the gravitational field of a rotating
and uniformly moving body. This relativistic model is more
suitable for high-precision space missions in the future.
By solving the eikonal equation, we develop a relativistic
model to determine the general post-Minkowskian expan-
sion of the phase function. The general time transfer
function and its derivatives can easily be determined by
the phase function.

The present paper is organized as follows: In Sec. II,
we discuss the phase function; in Sec. III, we recall the
information about the eikonal equation and the expansion
of the space-time metric. In Sec. IV, we show how to
deduce the general post-Minkowskian expansion of the
phase function from the eikonal function. Using this result,
in Sec. V, we focus on the case of a static, spherically
symmetric body within the second post-Minkowskian
(2PM) approximation. We determine the explicit time
transfer function up to the order of G* and the frequency
shift up to the order of ¢™3. Then, we also determine
explicit expressions of the phase function and of its
derivatives in the gravitational field of a rotating and
uniformly moving body. Finally, in Sec. VI, we give our
conclusions and remarks.

In this paper, c is the speed of the light in vacuum, and G
is the Newtonian gravitational constant. The signature of the
Lorentzian metric g of space-time V is given as {+ — ——}.
We suppose that the space-time is covered by one global
coordinate system (x*) = (x°,x), where x° = ct, with ¢
being a time coordinate and x = (x?). Greek indices run
from O to 3, and Latin indices run from 1 to 3. We assume
that the curves of equations x' = const are timelike, which
means that gy > 0 anywhere. We employ the vector
notation a in order to denote (a',a’ a*) = (a'). The
Einstein convention on repeat indices is used here for the
expressions like a'b’ and A¥B,. The quantity |a| stands for
the ordinary Euclidean norm of a. For any quantity f(x*),
0,f denotes the partial derivative of f with respect to x”.

I1. PHASE FUNCTION

The LRI is widely used in many fields because of
its extreme accuracy. The LRI observables—time series
data—ultimately come from the continuous changes in the
phase difference between the local laser beam and receiving
laser beam. Since the measured phase signal is averaged
over the detector surface, wave front distortion and dif-
fraction will influence the phase signal, leading to noises
[25]. The gravitational field is a source of wave front
distortion, which means that high-precision space missions
are necessary to consider this noise. The general TTF is not
convenient to study the wave front distortion, but the phase
function is possible to study that. So we introduce the phase
function of the Gaussian beam.
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Besides, the pointing error is also able to cause noise. For
example, the power spectral density of the measurement
noise 4.5 nm/Hz'/? constrains the pointing error to a 50 in
our previous work about the Beyond Einstein Advanced
Coherent Optical Network (BEACON) mission [26]. On
the practical experiments, we must consider the diffusion
of a Gaussian beam. Many previous papers studying the
propagation of light in the gravitational field just consider
the case of the light propagation between two point events,
which neglects the diffusion of light. The phase function is
a useful tool, which is possible to study the diffusion of
light and pointing errors for some more precise space
missions. In this paper, we study the phase function about
light propagation between two point events for a brief
consideration. We will discuss the complicated cases in
the future.

We suppose that a Gaussian beam is propagating along
the z axis. The phase function ¢(x,y,z) is a function of
the quasi-Cartesian coordinate (x'), which describes the
distribution of the GB phase. The equiphase surface
equation satisfies [27]

@(x,y,2) = (0,0, ), (1)

where z; is the intersection of the equiphase surface and z
axis. The unperturbed equiphase surface is a spherical
surface without considering general relativity.

ITI. EIKONAL EQUATION

We consider a phase function within the framework
of general relativity. In electromagnetism, the phase
function of an electromagnetic wave is a scalar function
which is invariant under a set of general coordinate
transformations. As a direct consequence of Maxwell’s
equations, the phase function ¢ satisfies the eikonal
equation [14]:

gﬂyay(paugo =0. (2)

This equation describes the wave front of an electro-
magnetic wave propagating in the curved space-time.
The ¢ describes a gravitational field which is derived
as the solution of Einstein’s field equation. Generally,
the set of quantities ¢"* is represented at any point x by
a series in ascending powers of Newtonian gravitational
constant G:

0 = n (n
9u(x.G) = g + 3 G"gi) (x), (3)

n=1
where gV = ith — diag(+1,-1,—1,-1
Gu =My, With 15, = diag(+1,-1,-1,-1).
Then, the concomitant expansion of the contravariant
components ¢ is given by
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9" (x,.G) = d(l(l)/) + z Gngl(lny) (x), (4)
n=1

where d(‘g) =" and the set of quantities g‘<‘”:> can be
recursively determined by using the relations

v vs (1
gty = =y (5)

n—1
ooy = =gs = D O
p=

In order to solve the eikonal equation, we introduce the
covector K, = d,¢ which describes the covector of an
electromagnetic wave front in the curved space-time. In
the case of light, the vector K* = ¢"“0,¢ is tangent to the
light ray. If we know the specific expression of the phase
function ¢(z,x), it is obvious that we can get a lot of
information about the propagation of light from ¢. To find a
solution of Eq. (2), we expand the phase function ¢ by a
series in ascending powers of the gravitational constant G.
Assuming that the unperturbed solution is a plane wave, the
expansion of the phase function may be given as

o) =+ [ Kde Y G x). (1)
n=1

where ¢ is an integration constant. k, [k* = ky(1,k)]is a
constant null vector along the direction of propagation of
the unperturbed electromagnetic plane wave, which sat-
isfies the relation 7,,k*k* = 0. The vector k is the unit
vector along the propagation of the light (|k| = 1), which
gives the wave direction. k, = w/c, where w is the constant
angular frequency of the unperturbed electromagnetic
wave. ¢\ is the perturbation of the phase function of
the nth order in G. As the consequence of the definition
of K* and Eq. (7), it is easy to see that the wave vector
K*(1,x) of the electromagnetic wave in the curved space-
time can be expanded as

= g0 =K+ K, (tx).  (8)

K*(t,x)

where k”
respect to Newtonian constant G.

is the nth perturbation of the wave vector with

IV. GENERAL POST-MINKOWSKIAN
EXPANSION OF PHASE FUNCTION

Let us define x, = (ct,,X,4) as the event of emission A
and xz = (ctg, Xpg) as the event of reception B of a light
signal. Let x4 and xg be connected by a curve I'45, which
is the trajectory of a light signal. The curve I'4p can be
defined by the parametric equation
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X(0) = L(x — xy) + X, )

where 0 < ¢ <1, x(0) = x,, and x(1) = xp.
Here, we represent the light ray’s trajectory, correct to
Newtonian order, as

{0} = () ()} + 0(G). (10)

o = 2y = x4) 4 (1)

where x’('()) is the Oth-order geodesic path connecting x4

and xp, and we define curve I 5‘0; by x(g).

According to Eq. (2), this expression at any point x on
the curve I'p is given by

gﬂb(x)aﬂ§0(xA’x)av¢(xA’x) =0. (12)

We set that ¢(x,, x) = @(x). Inserting the expansions of
Egs. (4) and (7) into Eq. (12), it is easily seen that Eq. (12)
splits up into an infinite set of partial differential equations
as follows:

k9,0 (x) = ) (x). (13)

where k,0,¢" (x) = k"0,
or raise indices using 7, or y*. ¢ (x) is given by

(x), since it is safe to lower

() = 3 o (kb (14)
P (x) = —%g*;; (O)k,k

(x)0,90\"P) (x)

- Z {;1””8

+2g/;;)< Kk D07 (3) + o (5
xnilf)

g=1

D) (x)0,9" =9 (x) |, (15)

where n > 2.

We assume now that x moves along the curve Fgog.
That means that x varies as a function of 1 according to
Eq. (11). Combining Eq. (11) and the definition of k, the

total derivative of (") along F/SOI; is given by

de™ (x(0)())

_Rag )
7 = ="

x0)(4)), (16)

where R, = |xp — X4] is the Euclidean distance between

x4 and xp along the curve Fgol;.
It is easy to show that Eq. (16) has one and only one
solution satisfying boundary condition ¢(x,) = ¢y, that is,
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%/¢

where 0 <4’ < and R o) = [X(9)(4) —=X4|. And ¢ (x(0)(2))
is a continuous function of 4 in the range of [0, 1]. As a
|

@\ (x(0) (4 o@)di,  (17)

(P( >(XA,XB

RAB v
A) kk, dl——
2k0/ G X0 (@) 2k,

n—p—1

+g’w Zaﬂ(p
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consequence of Egs. (13)—(15) and (17), the solution of the
eikonal equation is given by

RAB / dll

0 (4)0,0" ) (x(0) (4))

W (x4, x) = )kk,di,  (18)

nl

Z [n"”a ¥

p=1

(1), (x(0)(4)) + 26 (x(0) (A)k, D"~ (x(0) (i))] di. (19)

where n > 2. All integrals are calculated along the straight line Fﬂ,. Using these expressions, we can calculate the phase

function up to any order.

Now, we briefly consider the phase function up to the order G2, that is, n = 2. The phase function is given by

2 1
@(x4.Xp) = 9o +/k dx* (A G;Z‘)B/ 97 (%0) (4) ) kk, d2 + GkROABA {—%'7””3,4(/)“)(Xm)(i))@y(p(”(X<o>(/1))
— 8 0 (kD0 (0 (1)) — 5 % (50 >>kﬂky}cu+o<03>. (20)

On the other hand, we also can define the curve I'yp by another parametric equation:

x(g) = ¢(xy —xp) + xp. (1)

Using a similar method, the phase function is given by

G’Rap [1f 1
Nk, k,de — ABA {——17””8”40(1)

L
(P(XB’XA):(PO+/k dx* (g AB/ g«

+ 901 (%)

From Egs. (20) and (22), it is convenient to obtain the
general post-Minkowskian expansion of emission time
transfer function 7', (4, X4, X) and reception time transfer
function T,(xy4, 75, Xp), respectively.

V. APPLICATION OF THE PHASE FUNCTION

The phase function is a convenient tool to compute the
radio science and astrometric observables, which contains
all the information about light propagation between two
point events. In this section, we will apply the phase
function to give some useful results. First, we determine
the TTF and frequency shift in the case of a static and
spherically symmetric body from the phase function and its
derivatives. Then we determine the phase function and the
derivatives of the phase function in the case of a rotating,
uniformly moving, and spherically symmetric body, which
is a more precise relativistic model of the space missions in
the Solar System. From our estimates, the contribution of

(x(0)(€)) 0,0V (x(0) ()

ko 2

(D00 (x10)(6)) — 5.5 (x )<g>>k,,ky}dg+o<63>. (22)

[

the motion of spin of the body will be measurable in future
space missions.

A. Time transfer function

In order to illustrate the previous results, let us
determine the phase function and time transfer function
in the case of the gravitational field outside a static
and spherically symmetric body of mass M. Choosing
spatial isotropic coordinates and putting |x(g)| = r, we
suppose that the space-time metric components may be
written as

(1 2M 2 ZMzﬁ
Yoo __z’ 9oo = C47'2 5
a5 =0, g0 =0,
(1) - ZM}/ (2) o 3M25
gij - _?@j? gij - _264’_2 ijo (23)
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where f and y are usual post-Newtonian parameters and &
is the post-post-Newtonian parameter (f =y =56 =1 in
general relativity). We suppose that the points x, and xp are
outside the body. Here, we have r, = |x,| and rz = |xp|.
Inserting Eqs. (5), (6), and (23) into Eq. (20), we obtain the
expressions of ¢(!)(x4,x5) and ¢ (x,,xg). By a simple
integral, (") (x4, xp) is given by

MR 1
'V (x4, x5) —_(1"‘7)—;8](0/ —dA
c 0 Xl

Mky ry+rg+R
:_(1+y) 20111 A B AB

C rA—i-rB—RAB

(24)

For the term of @) (x4, x5), we deduce from Eq. (24)
that

2y + )Mk 1

Gk () = TEE I (o)
Then,
_RAB 1 v a (1) 1 v
kO o ff(tl)('x(()))ky v (x(O))+§d(l2)(x(0))kyku di
3\ M2koRup [ 1
= —2=-2y—=-6|—— —dA, 26
(p-2-2-30) e [ (26)
where
/llzd/lz arccos(ny - ng) ’ 27)
0or rargy/1— (ny -mp)?
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with

nA:Z, nB:E. (28)

Another term of the second-order phase function can be
calculated by this relation:

1
5 W”yay(/’(l) (x(O) )au(/)(l) (x(O) )

2
(14+y)°M?k3 r5(1 +ny-n)
= 4 22 2 (29)
c riry(1 +mny, -n)
It is easy to prove that
ra(14+mny -n) d e
2.2 2= - (30)
rri(1+mny-n)*>  d¥ [rar(1+ny-n)
Combining Egs. (29) and (30), we obtain
R LS|
kioB | —577"”3,460(1)()C(O))auw(l)()C(O))d/1
M?k R
= (1+7)?—~ - (31)

¢t rarg(l+my-mp)’

Inserting Eqs. (24), (26), and (31) into the phase
function ¢(x4,xp), the final expression of the phase
function is

GMk() rA+rB+RAB
>—In

@(xa,xp) = @o + ko(cTap — Rap) — (1 +7)

C rA+rB—RAB
G2M?kyR 3 arccos(n, - n 1+7)?
+—— 4 AB{(ﬂ—2—2y——5> (4 -np) (1+7) }+0(G3). (32)
¢ 47 ) rarg /1=, -mg)2  (rarp + X4 Xp)

This expression allows us to calculate effects of the
second order in G, which must be taken into account in the
near future. For example, for the Juno solar conjunction—
at which the spacecraft, the Sun, and Earth are almost
aligned—the contribution of the mass of the Sun on the
range between Juno and Earth is ~10* m for the first-order
effect. And the second contribution of that may reach
~10~!" m, which must be taken into account in the Juno
mission.

Next, we show that the time transfer function is deduced
from the phase function by a simple procedure. Supposing
that a light connects the point x4 and point xz along the
curve [ p, this coherent process of the light signal implies

that the phase satisfies the relation ¢(x,) = @(xp). With
the original condition ¢(x,) = ¢, the phase function at
point xp satisfies

@(xp) = @o. (33)

It is clear that the two time transfer functions are
equivalent, so we have the relation

T,(Xp.t5.Xp) = To(ta, Xa, Xp) = T (X4, Xp). (34)

According to Egs. (32) and (33), the expression of the time
transfer function is easily given as follows:

024003-5



CHENG-GANG QIN and CHENG-GANG SHAO
Rz GM

PHYSICAL REVIEW D 96, 024003 (2017)

arccos(ny - ng)

Tap =—— 1 ——1In
AB c 1+ > ra+rp—Rup

(147y)?

(rarp +X4 - Xp)

}+0(G3),

which is equivalent to the expression of TTF about the
second-order post-Minkowskian approximation obtained
by Refs. [19,24]. The second term of the 7,z is the well-
known Shapiro time delay [28].

B. Frequency shift

In the case of a static and spherically symmetric body,
we consider that a spacecraft S, and a spacecraft Sp are
moving on their orbit with the coordinate velocities v, and
v, respectively. First, we use the most primitive method
to determine the frequency, which is shown in Fig. 1. We
suppose that S, emits the Nth crest of a light at the
coordinate time ¢4, while 7, connects with the proper time
74 of §4. Then, spacecraft S, emits (N + 1)th crest of the
same light at coordinate time 7;, while 7, connects with
proper time 7/, of S,. The Nth and (N + 1)th crests are
received by Sp at the coordinate times 7z and fj, which
connects the proper time 7z and 7% of spacecraft Sg,
respectively. We further suppose that v, is the proper
frequency of light as measured by S, at the instant of
emission and vp is the proper frequency of the same light
as measured by Sp at the instant of receipt. The light
frequency transfer from Sz to S, is characterized by the
ratio vg/v,, which may be rewritten as (A@g/Atp)/
(Ap,/Azy), and there has the relation Ap, = Agp for
the Nth and (N + 1)th crests of light. Az, and Azp are the
intervals of proper time with respect to Ag, and Agp,
respectively.

ct
Sa

worldline

X

FIG. 1. Schematic for the frequency shift. S, and Sy are
worldlines of spacecraft S, and spacecraft Sp, respectively. At
time 74, S, emits the Nth crest of light to Sg, which is received by
Sp at time 7. At time 7/;, S, emits the (N + 1)th crest of light to
Sp, which is received by Sy at time 7.

rA+rB+RAB G2M2RAB{< 3 )

—2-2y-15§
p Y2

5

rargy/1—(ny ‘nB)z

(35)

First, the relation between proper time and coordinate
time is deduced from (cdr)* = g,,dx"dx". The expansion
of Eq. (23) demonstrates that this relation can be written as

dr

— = , 36
di X goo(x) ( )
where
i.vivj 1/2
s [1+g’ 2] . (37)
Joo€

It is obvious that the Lorentz contraction factor in special
relativity is a part of y. When we neglect the gravitational

field, y = /1 — v?/c.

Finally, vg/v, is rewritten as follows:

1/2
U _ Aty _)(Agoé (x4)Aty

_ AT _ Zado0 (Xa)Als 38
vy Az )(Bg(l)(/)z(XB)AtB G8)

where +/goo(X4)/\/goo(Xp) is the gravitational redshift
effect, which comes from the difference of gravitational
potentials [29]. Az, and Aty are intervals of coordinate
time.

From Fig. 1, the time intervals are defined by

Atg =ty — 13, (39)

Aty =t — 1y, (40)
and more,

tg =1ty + Typ, (41)

tg =1y +Tag', (42)

where the time T, and T4z’ is the time transfer function
of the Nth and (N + I)th crest of light, respectively.
Inserting Egs. (40)—(42) into Eq. (39), the time interval
Atg is rewritten as a function of At,:
AtB = AtA + TAB - TAB' (43)
In the limit of small velocities, we can expand the
following equations with respect to v, and vp:
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lnrA+rB+RAB_ 'ﬁ/;‘i"’%;‘f‘RAB::_ (rA+rB)k'(VB_VA)_RAB(nB'VB+nA'VA)+0(C—l):|AtB (44)
rA—I—rB—RAB rA—I—rB—RAB rArB(l—I—nA-nB) VAFB(1+HA'HB)
and
R R, k- - k- -y k- k- - k- 2
ﬁ_ﬁ:_[ (Vs VA>+ (Vg = Va) VA+ (Vs VA)( VA) +0(c‘4)]AtB, (45)
c c c c c c c

where R, 3" = X} — X/,| = Ryp in the case of A7z = 0.
Combining Egs. (43)—(45) and (35), the relation is easily given:

ﬂ:uk. <VB‘VA> k. (VB—VA>k_ (v_A) k- (vp—va) (k-vA>2
- {(FA o)k (Vo =Va) _ Rap(s Vg + s ~VA>] +o(c™). (46)
rarg(14+ny, -ng) rarg(1+mny,-np)

C

Considering the approximation of the weak field and the limit of small velocities, those approximations are reasonable:

2 2
XA VB Vi —4
L=14+ = -—5 47
1B + 2¢% 22 +o(c™), (47)
goo(xA))% GM GM )
— ) =1-—+ + O(c™). 48
(900("3) CZFA Cer (™) (48)

It follows from Egs. (46)—(48) that the expression of the frequency shift of the order of ¢ is given by
A A A
_”_”_3_1—<_”> +<_”> (49)
v vy v/ v/,

2

(Ml _ —lk (Vg —Vs) _lz <k (v = vu)(k - vy) _ Vg ;Vi)

where

— K (v =) [( ;sz*) + (k- >] +o(e™), (50)
(), (-2 - (- v

+o(c™). (51)

(I +yGM |:(rA +rg)k - (Vg —Va) Ryp(p-vp+my-vy)
C

3 rarg(l +mny-ng) rarg(14+mny -ng)

(Av/v); is the special relativity effect, and (Av/v), is the general relativity effect.
On the other hand, there is a straightforward method to give the frequency shift from the result of the phase function,
Eq. (32). Section III demonstrates that the frequency can be represented as

v =—0hp. (52)
n

vg _ (dos dga (53)
Uy dCTB dCTA ’
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where dry = \/goo(Xs)xadts and drg = /goo(Xp)xpdtp.

From Egs. (22) and (32), the derivative of phase function
@4 is given by

d 1+7)GM
ﬂ:ko{l_k.m%
dcty c c

% {_ (ratrp)k-vy  Rypny-vy ]}
rarp(l+my -mg)  ryrg(l+mn,-ng)

+o(c™). (54)

From Egs. (20) and (32), the derivative of phase function
@p 1s given by

=B _ g
dcty 0 c?

« [ (ra+rg)k-vg  Rypng-vp }}
rarg(1+my-ng)  rarg(l +ny-ng)

+o(c™). (55)

dog {1_k‘v_3_(1+y)GM
C

Inserting Eqgs. (54) and (55) into Eq. (53), we can obtain
the frequency shift up to the order of ¢ =3, which is identical
to Eq. (49). In this way, the physical meaning of it is clear
and definite. It is easy to determine the frequency shift up to
the order of ¢ in this method.

We perform numerical estimates of the frequency shifts
for our previous work of BEACON [26]; we suppose
now that S, is spacecraft 4 with r, = (8 +0.016) x 10’ m
and Sg is spacecraft 1 with rz = 8 x 107 m. We use the
difference of distances r4, — rz = 0.002rgz. We take the
velocities of spacecrafts |v,4| = [vz] = 2.2 x 10° m/s.
Then, the other useful parameters concerning Earth are
as follows: GM = 3.987 x 10'* m?/s?, and the effective
Earth radius is 6.5 x 10° m. From these data, it is easy to
give the following upper bounds: |k - (v4/c)| < 7.3 x 107°
for spacecraft 1 and spacecraft 4. The first-order Doppler
effect is |k-(vg—v4)/c| <1.46x107. The contri-
bution of the first-term general relativity effect is
GM(1/rgc® —1/ryc?) < 1.11 x 10713, And the contribu-
tion of the third-term general relativity effect is bounded
by 4 x 107! for y = 1.

C. The case of a rotating, uniformly moving,
and spherically symmetric body

Let us suppose that the gravitational field is generated by
a spherically symmetric body. We are interested in calcu-
lating the contributions of the mass, spin, and the motion of
the body on light propagation. First, we consider the metric
describing such a space-time. The metric for this body at
1PM order in its own local reference system is given by

H, =n,+ GH.')) + 0(G?), where H'}) is given by
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(1) 2w(y)
H, =-— ,
00 )
1 4Wk(Y)
H(()i) = 5ik C3 s
1 2w(y)
Hfj) _ - c2 5,’], (56)

where w is the scalar potential, which depends on the local
coordinate y. w' is the vector potential, which also depends
on the local coordinate y. The local coordinate reference
system is denoted by y* = (cT,y).

As shown in Fig. 2, body b is moving with coordinate
velocity v,, whose spin is denoted by K;. The global
coordinate is denoted by x* = (ct, x), whose origin is point
GC. A light connects points A and B. By performing a
Poincaré transformation, we can obtain the metric in the
case of a uniformly moving and spherically symmetric
body. The coordinate transformation is given as follows:

Xt =at 4+ ADyY, (57)
where a* = (cty,a(ty)) is a constant four vector which
specifies the origin of the coordinate system: It points from
the origin of the global reference system to the origin of the

comoving frame at 7 = 0. And the trajectory of the moving
body in the global reference system is given by

X, =a+cp(t—1y). (58)

A} is given by

FIG. 2. Representative geometry of the case of a rotating and
uniformly moving body. GC is the origin of the global coordinate,
and LC is the center of the body b, whose coordinate velocity is
v,,. K is the unit vector of the body’s spin. The local coordinate
of points A and B is given by y, and yp, respectively. R, is the
vector connecting A and B.
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A0 =7,
AO Ao = 7P )
A= b+ PP, (59)

where p = v,/c and y = 1/+/1 — p? (in this subsection, y
is not the post-Newtonian parameter). The metric trans-
formation is given by

g =n" + Gg(}, +0(G*) = NaAzH?,  (60)

where the spin transformation in the metric is neglected,
since it is too small. It is easy to obtain that

oy = Mg o)

The set of expressions of gz‘f) is given by inserting Eq. (59)
into Eq. (61), which leads to

2w 8w-p
oy =P+ )+ =57,

o Awly Awylpl Aw-p2yi 47
Iy =73 c? A 1+y 77
ij 2w 0 i 4]/ P i
9 :?(5ij+27/ PPJ)+§(WP]+W]P)
4w-p 2y (62)
I

where w = w(y*), w' = wi(y*), and w- p = > =123wipl,
This metric can describe such a gravitational field which is
generated by a rotating, uniformly moving, and spherically
symmetric body. If the metric describes the geometry due to
N uniformly moving and spherically symmetric bodies at
1PM, we can express the metric with a linear summation
for every body.
In this case, the one-order phase function is given by

_Rus

(1)
@ (anxB 2k,

/ o't e, d2. (63)

Replacing the expression of the metric (62) in (63) gives

RABkO/ 4W 2
— 1-k-
> /) r( p)’

8k - w p-w vy
1-k-

<[P =k pP 4 (1 - k- p)]

(64)

§0(1)(XA’XB) =

It is useful to rewrite the expressions of the scalar potential
and vector potential, respectively, as

PHYSICAL REVIEW D 96, 024003 (2017)

w(y') = w(AG (" = a")), (65)
w(y') = w(A; (¥ — a)), (66)

where A} is the inverse of Af. It is convenient to set
a* = x4,. We express A (x* — a*) in the form as

(" — a) = Xy — 1Gyp, (67)
where
2
X = . —
bA/B = Xa/B T I yP[p (Xa/8 Xp0)]
— Xp0 = ¥V (15 — 1o). (68)
Gap = Rap8as. (69)
and
2
= |k—yp+ -k) |, 70
4B P 1T 7/P(P ) (70)
gap = |8agl =7(1 =Kk -p). (71)

Let us denote by / and S the integrals appearing in the
phase function expression (64) in the case where the body is
static. They are given, respectively, by

I(Xpa,Xpg) = I'(Rpp, Xpp)

1
:/ w(Xpp — AR yp)dA, (72)
0

Si(XbAv Xpp) = S/i(RAB’ XpB)

.
— / Wiy — ARug)dds  (73)
0

where X4/ = X4/p —X;,. The solutions of integrals
depend on (Xp4,Xpp) or (Xpz, R,p) because x,, =
X5 — Ryp. In order to apply in the moving case, the
integrals have to be replaced by

1
I/(GAB’ XbB) = /0 W(XbB - ﬂGAB)d/L (74)

1
S'(Gup, Xpp) = /0 W(Xpp — 4G 4p)dA, (75)

where the two variables are defined by Eqgs. (68)—(71). This
method is similar to what was proposed in Refs. [2,30].
Then, all the results in the uniformly moving case can be
derived from that in the static case by replacing X,z by X,
and R,z by G, We can use those conversions in our
phase function, where for each “static case” quantity on the
left we give the “moving case” equivalent on the right:
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Xpp = Xpps

bp = |Xpp| = Xpp =
n,g > Nyp = ——,

Xpa = Xpg — Rap = Xpp — Gap = Xpa + yPRys.

Tpa = [Xpal = Xpa =
XbA + YPR4p
| Xpa + ¥PRAB|
Ryg = Gup = gapRas.
Rup = Rap|8asl:
~ Ryp 4B
= — .
Rup |g45]

N,y = Nyyg =

(76)

With Egs. (72)-(75) and the conversions (76), we can
rewrite the one-order phase function in the field of a
rotating and moving body as

(p(l)(XAvtBﬂxB)
RABkO {47 (1 _k p)’

I(Xpp + yPRAg. Xpp)

8y p

_c—)k S(Xpa + 7PRap. Xpp)
8 v 2

+ I-k-p)
A (1+y) I P)

+y7(1 =k -p)p-S(Xps + yPRAg, XhB)}- (77)

Finally, this expression can be rewritten as

2

PHYSICAL REVIEW D 96, 024003 (2017)

! 1
oW (x4, 15, x5) = y(1 -k - P)(P/I( 'k f/)ic,( )
14 /(1)

- (1l -k- 1lp -
1+7/[7( p)+1lp o5,

(78)

where (p;</15) (Xp4, Xpp) denotes the expression in the static

case and qoll(/ls) = qo;%)(X,,A + yPR4g, Xp5) is given by

| 2GABko
o =

I'(Gap. Xpp)

2G ky [1
== AQB OA w(Xpp — AGap)dA, (79)

c

4G 45k
fﬂl(sl) = %S/(GAB» Xy5)

4G ko [1
= %‘) A w(Xyp —AGag)dd,  (80)
respectively. The expression (78) is very useful, since it
allows us to determine the phase function or time transfer
function in the case of a rotating and uniformly moving
body from the corresponding static phase function or time
transfer function. It will recover the expression of the static
phase function when the coordinate velocity of the body is
zero, p = 0. If the phase function describes the case of N
rotating, uniformly moving, and spherically symmetric
bodies at 1PM, we can express it with a linear summation
for every body.

The derivatives of the phase function can be computed
from (78), which can be used to compute the frequency
shift and direction. In the case of a rotating and uniformly
moving body, their expressions are given by

o o i _KiK -
Dy oW (x4, 15,x5) = y(1 =k - p)aAj(P,](l) 0ij + ’ p'p/ —yk'p’ +u(ﬂ/]ﬂ)
4 T l+y Rap
72
+k- 8A,¢S |:511+1+ plp]_yklp]:|
L _y(1-k-p)+1]p-0 [5 + Yk ’} - mp —kk-p
1+},]/ 1Y A/(pS ij 1+},pp YK p 1+]/p Ps RAB s
(81)
/(1) o (1) yii
00" (x4, 15.%p) =7(1 =K -P)3p;0; [&ﬁlﬂp’p’}+r(1—k~p)8Ajfﬂ1 ykip/
r(p'—k'k-p) o [ o ] W) i 1 P —kK'k-p
A +k-0 O;; + 'nJ| +Kk-0y; kip/ +—np- -
RAB B](os j pp A./(/)S YK p 1+},p (pS RAB
v
4 14 ) yi j
—m[Y(l—k'P)Jrl] aBJCDS {5 +]+]/PP] m[Y(l—k‘P)+1]P'3Aij;( Iykip,
(82)
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; 1
8t3(/’(1)(XA, tg.Xp) = _CVPJ{}’(l -k- P)aBﬂ”/[( ) +k- aBj(l’/s(1>

+y(1-k 'p)aAj(p/I(l) +k- aAjf/’,s(1>

where 0, Bj(p;(/lg(x,,A, X,p) is the expression of the deriva-
tive of the static phase function,

1
6(/7/1(/3 (Xpa: Xpp)

A X0B) gy
ox, 4

1
aAjQDII(/s) (XparXpp) =

5fﬂll(/]52 ((XpaXpp)

J
Oxyp

33;40/1(/13 (XbA7 Xpp) = (85)

The expressions of the derivatives of the phase function
in the moving case are also obtained by inserting into
Egs. (81)—(83) the static phase function and its derivatives,
keeping in mind the conversions (76).

In the case of a spherically symmetric body, the scalar
potential and the vector potential can be expressed,
respectively, as

PHYSICAL REVIEW D 96, 024003 (2017)

Y /(1)
14, _H/[}’(l -k-p)+ I]P'aijﬂs(
L (1 -k-p)+1]p- Dujel” (83)
1 _'_y JrS ’
M
w(y) = ——(y x S). 87
) = ~5p v %) (87)

where M is the mass of the body and S is the body’s spin
moment (angular momentum per unit of mass). Therefore,
/(1) /(1)

the @, ’ and ¢g ' are given, respectively, by
2Mk R
(pll(l)(XhA’ Xpg) = ——> 01 224 + Ton ¥ (88)
c "pa + Tpp — Ryp
and
4Mk N,z +n,4)R
(0;(1)(XhA’XhB) == 0g % (5 ba)Rap (89)

(rpa +rog)* — Rip’

By inserting Eqgs. (88) and (89) into Eq. (78) and using
the conversions (76), we can obtain the one-order phase
function in the case of a rotating, uniformly moving, and
spherically symmetric body as

|Xpa 4+ yPRAg| + |Xpp| + Rapy(1 — Kk - p)

M
w(y) = —, 86
(¥) v (36)
|
2Mkyy(1 =k -
oW (x4, 15.Xp) = — o ( . 1)) In

¢ |Xpa + vPRag| + |Xpp| — Ragy(1 =k - p)

4M
M (Sx
¢ (

Y
1+y

(Npg + Npa_g)Ragy(1 =k - p) )
1Xpa + 7PRag| + [Xp5])* = (Rapr(1 —k - p))?

(Npg + Npa_g)Ragy(1 =k - p)

—[y(l—k-p>+1]p-<S><

(X + 7PRag] + [Xos])? — (Ragr(1 — K -p>>2>' 0

In order to compute the derivatives of the phase function in the case of a rotating and uniformly moving body, we need

to give the derivatives of the phase function in the static case. From the expressions (88) and (89), the derivatives of q)}“

/(1)

)

and @g ° are given by
1 AMky K (rps + rpp) + 0l R
axﬁmfp/l( >(XbAvaB) = 0 ( 24 bB)z bé AB» (91)
¢ (rpa +1p8)" — Rip
AMky k! —n.R
Oyi (p/l(l)(xb/hbe) = oK' (ron + rbB)g nb’i AB, (92)
vB (roa + rog)” — Ryp
and
4Mk —(npp 4+ npy K (mpg +mps)Rpp ; ;
01, 4" (o) = 505 ¢ | - (2 + o)ty + 2Rask)|, (93)
ot ? e (rpa +1u8)* = Rap  ((rpa +1p5)* — Rip)? B g
4Mk (nyg +my, k' (g +M0pa)Ryp : :
Oy (p/(l)(xb/hbe) = ’S x [ - (2(rpa +rop)nyg —2RagK") . (94)
oS c (roa+1ro5)* = Rag  ((rpa + rp5)* — Rip)* b
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The derivatives (81)—(83) of the phase function in the
case of a rotating, uniformly moving, and spherically
symmetric body are given by combining Egs. (88), (89),
and (91)-(94) with the conversions (76). We can easily
obtain the TTF and derivatives of the TTF from the phase
function and the derivatives of the phase function.

As an example, we use the results presented in the
previous section to give estimates of the relativistic cor-
rections on the observables for the TianQin mission [25]
and BEACON mission [26,31]. TianQin is a space-borne
gravitational wave detector, which relies on a constellation
of three identical spacecraft, placed on nearly identical
geocentric orbits with a semimajor axis of ~10% m, and
forming a nearly equilateral triangle. Using the parameters
of TianQin, we can estimate the contributions of the mass
monopole of Earth on the range. The contributions can be
split into two parts: (1) a part related to the case where Earth
is static; (2) a part proportional to Earth’s velocity. The
magnitude of part (1) is 107> m. The magnitude of part
(2) is 107 m, which is not neglected for the accuracy of
TianQin. These estimates suggest that the contributions of
the motion of Earth need to be considered carefully. Then,
the contributions of the spin of Earth on the range also can
be split into two parts: (3) a part related to the case where
Earth is static; (4) a part proportional to Earth’s velocity.
The magnitude of part (3) is 107'°-107° m, which is a
measurable part for measurement. The magnitude of part
(4) is 1071%=10~13 m. This part is related to the motion of
Earth respect to the Sun, which has a period of one year. It
is an important part for the space-borne gravitational wave
detection missions in the future.

The BEACON concept is a space-borne experiment
designed to test the metric nature of gravitation—a
fundamental postulate of Einstein’s general relativity.
Its architecture is based on a constellation of four small
spacecraft placed on the circular Earth orbit at a radius
of ~8 x 107 m. Using the parameters of the preliminary
BEACON mission concept, we can estimate the contri-
butions of the mass monopole of Earth on the range. The
contributions can be split into two parts: (1) a part related
to the case where Earth is static; (2) a part proportional
to Earth’s velocity. The contribution of part (1) is a few
centimeters. The magnitude of part (2) is 10~ m, which
is not neglected for the accuracy of 0.1 nm on the range.
These estimates suggest that the contributions of the
motion of Earth need to be considered carefully. Then, the
contributions of the spin of Earth on the range also can be
split into two parts: (3) a part related to the case where
Earth is static; (4) a part proportional to Earth’s velocity.
The magnitude of part (3) is 107® m, which is measurable
for the accuracy of 0.1 nm on the range. The variation of
this part is ~10~'! m under the spacecraft’s modulation,
which is close to the accuracy of BEACON. This
contribution needs to be considered carefully in the
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future. The magnitude of part (4) is less than 1 pm,
which can be omitted for BEACON. This part is related to
the motion of spacecraft respect to Earth, which has a
period of a few days. It is clear that our results can be
applied to high-precision space missions.

VI. CONCLUSION

In this paper, we study the propagation of light
traveling through the gravitational field by the phase
function method in the post-Minkowskian approximation
of general relativity. By solving the eikonal equation,
we give the general post-Minkowskian expansion of the
phase function. Any nth-order perturbation ¢ (x,, x) is
an integral taken along the zeroth-order curve joining x,
and xp.

The phase function contains all the information about
light propagation in the gravitational field, such as the time
transfer function, frequency shift, astrometric observables,
and so on. As the applications of the phase function, we
have determined the specific phase function ¢(x,4,xp)
and time transfer function 7'(x,,xp) in the field of a
static, spherically symmetric body at the second post-
Minkowskian approximation. We also determine the fre-
quency shift up to the order of ¢~ in this gravitational field.
A rough estimate demonstrates that the effects of the
second order in G must be taken into account for some
space missions, such as Global Astrometric Interferometer
for Astrophysics (GAIA) [32] and Space Interferometric
Mission (SIM) [33]. As another application, we develop a
highly accurate relativistic model that describes observa-
tions of the modern space missions. This model is more
suitable for high-precision space missions in the Solar
System, since it contains the effects due to the motion of
rotating bodies. The phase function in the gravitational field
of rotating and uniformly moving bodies can be derived
from its expression in a stationary gravitational field. We
use our model to give some estimates of the relativistic
corrections on the observables for the TianQin mission and
BEACON. The contribution of Earth’s spin on the range
reaches 1078 for the BEACON, which need to be consid-
ered for high-precision space missions testing general
relativity. The contribution of the motion of Earth’s spin
on the range reaches 107" m for TianQin, and this
contribution must be considered for future space-borne
gravitational wave missions.
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