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The phase function is a useful tool to study all observations of space missions, since it can give all the
information about light propagation in a gravitational field. For the extreme accuracy of the modern space
missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure
enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian
gravitational constant. Any nth-order perturbation of the phase function can be determined by the integral
along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the
phase function outside a static, spherically symmetric body up to the order ofG2. Then, we develop a precise
relativistic model that is able to calculate the phase function and the derivatives of the phase function in the
gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler,
radio science, and astrometric observables of the space missions in the Solar System. With the development
of space technology, the relativistic corrections due to the motion of a planet’s spin must be considered in
the high-precision space missions in the near future. As an example, we give the estimates of the relativistic
corrections on the observables about the space missions TianQin and BEACON.
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I. INTRODUCTION

With the development of space technology over the past
decade, a series of space projects was proposed to test
general relativity with high precision. For example, the
Cassini spacecraft has reached an accuracy of 1 m on the
range and 3 × 10−6 m=s on the Doppler [1]. The JUNO
mission reaches an accuracy of the order of 10 cm for the
range and 10−6 m=s for the Doppler [2,3], whose primary
goals are the understanding of the composition of the
planet, the gravity, and the magnetic field of Jupiter [4–6].
Similar accuracies are expected for BepiColombo [7]. The
GRACE-Follow-On is expected to provide an accuracy of
1 nm for the range and corresponding estimates for the
range rate [8,9]. Also, ACES obtains an accuracy of the
order of 10−16 in fractional frequency [10].
In order to obtain the observables of general relativity,

it is crucial to study light propagation in the gravitational
field. There is a standard method to get all information
about light propagation between two point events by
solving null geodesic equations [11–13] or the eikonal
equation [14]. Many solutions have been proposed in
the post-Newtonian and in the post-Minkowskian (PM)
approximations when dealing with the bending effects of
light influenced by the gravitational field [15–18]. Besides,
a different method is also available, initially based on the
Synge world function [19] and then on the time transfer
functions (TTFs) and frequency shift [20–24]. The TTFs
in the field of a static, spherically symmetric body up to
the second post-Minkowskian approximation have been

determined by Ref. [19]. Then, the general post-
Minkowskian expansion of the time transfer function has
been given by Ref. [24].
The laser ranging interferometer (LRI) has an extreme

precision in measuring distances. It will be adopted by
future space missions to measure relativistic effects. The
observable of the LRI originally comes from the interfer-
ence of the Gaussian beams (GBs), which is the phase
difference essentially. The phase of the Gaussian beam can
give all information about light propagation in the gravi-
tational field, such as the time transfer function, the vector
of light, the frequency shift, and so on. It is well known
that the Gaussian beam is not a strict plane wave. So we
should consider the diffusion of a Gaussian beam in actual
experiments. The general signal of interference comes
from the phase of the GB, and the signal of the phase is
averaged over the finite detector surface, which demon-
strates pointing errors and the wave front distortion will
cause errors. The phase function is a very useful tool to
study the aforementioned noise, since it describes the
phase of a light. It has been determined at the first post-
Minkowskian (1PM) approximation in the field of the
extended body [8].
As we know, the gravitational field in the Solar System is

generated from rotating and moving planets (such as Jupiter
and Earth). So a more complete relativistic model describ-
ing the Solar System should contain some rotating and
moving bodies, which was neglected before. In modern
times, the accuracy of measuring a variation of the distance
has reached 1 pm on the ground, which demonstrates that
contributions due to the motion of a rotating and moving
body must be considered in the near future. In order to*cgshao@mail.hust.edu.cn
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compute astrometric observables of space missions in the
Solar System, we have to develop a model that determines
the phase function in the gravitational field of a rotating
and uniformly moving body. This relativistic model is more
suitable for high-precision space missions in the future.
By solving the eikonal equation, we develop a relativistic
model to determine the general post-Minkowskian expan-
sion of the phase function. The general time transfer
function and its derivatives can easily be determined by
the phase function.
The present paper is organized as follows: In Sec. II,

we discuss the phase function; in Sec. III, we recall the
information about the eikonal equation and the expansion
of the space-time metric. In Sec. IV, we show how to
deduce the general post-Minkowskian expansion of the
phase function from the eikonal function. Using this result,
in Sec. V, we focus on the case of a static, spherically
symmetric body within the second post-Minkowskian
(2PM) approximation. We determine the explicit time
transfer function up to the order of G2 and the frequency
shift up to the order of c−3. Then, we also determine
explicit expressions of the phase function and of its
derivatives in the gravitational field of a rotating and
uniformly moving body. Finally, in Sec. VI, we give our
conclusions and remarks.
In this paper, c is the speed of the light in vacuum, and G

is the Newtonian gravitational constant. The signature of the
Lorentzian metric g of space-time V4 is given as fþ − −−g.
We suppose that the space-time is covered by one global
coordinate system ðxμÞ ¼ ðx0;xÞ, where x0 ¼ ct, with t
being a time coordinate and x ¼ ðxiÞ. Greek indices run
from 0 to 3, and Latin indices run from 1 to 3. We assume
that the curves of equations xi ¼ const are timelike, which
means that g00 > 0 anywhere. We employ the vector
notation a in order to denote ða1; a2; a3Þ ¼ ðaiÞ. The
Einstein convention on repeat indices is used here for the
expressions like aibi and AμBμ. The quantity jaj stands for
the ordinary Euclidean norm of a. For any quantity fðxμÞ,
∂νf denotes the partial derivative of f with respect to xν.

II. PHASE FUNCTION

The LRI is widely used in many fields because of
its extreme accuracy. The LRI observables—time series
data—ultimately come from the continuous changes in the
phase difference between the local laser beam and receiving
laser beam. Since the measured phase signal is averaged
over the detector surface, wave front distortion and dif-
fraction will influence the phase signal, leading to noises
[25]. The gravitational field is a source of wave front
distortion, which means that high-precision space missions
are necessary to consider this noise. The general TTF is not
convenient to study the wave front distortion, but the phase
function is possible to study that. So we introduce the phase
function of the Gaussian beam.

Besides, the pointing error is also able to cause noise. For
example, the power spectral density of the measurement
noise 4.5 nm=Hz1=2 constrains the pointing error to a δθ in
our previous work about the Beyond Einstein Advanced
Coherent Optical Network (BEACON) mission [26]. On
the practical experiments, we must consider the diffusion
of a Gaussian beam. Many previous papers studying the
propagation of light in the gravitational field just consider
the case of the light propagation between two point events,
which neglects the diffusion of light. The phase function is
a useful tool, which is possible to study the diffusion of
light and pointing errors for some more precise space
missions. In this paper, we study the phase function about
light propagation between two point events for a brief
consideration. We will discuss the complicated cases in
the future.
We suppose that a Gaussian beam is propagating along

the z axis. The phase function φðx; y; zÞ is a function of
the quasi-Cartesian coordinate ðxiÞ, which describes the
distribution of the GB phase. The equiphase surface
equation satisfies [27]

φðx; y; zÞ ¼ φð0; 0; z0Þ; ð1Þ

where z0 is the intersection of the equiphase surface and z
axis. The unperturbed equiphase surface is a spherical
surface without considering general relativity.

III. EIKONAL EQUATION

We consider a phase function within the framework
of general relativity. In electromagnetism, the phase
function of an electromagnetic wave is a scalar function
which is invariant under a set of general coordinate
transformations. As a direct consequence of Maxwell’s
equations, the phase function φ satisfies the eikonal
equation [14]:

gμν∂μφ∂νφ ¼ 0: ð2Þ

This equation describes the wave front of an electro-
magnetic wave propagating in the curved space-time.
The gμν describes a gravitational field which is derived
as the solution of Einstein’s field equation. Generally,
the set of quantities gμν is represented at any point x by
a series in ascending powers of Newtonian gravitational
constant G:

gμνðx;GÞ ¼ gð0Þμν þ
X∞
n¼1

GngðnÞμν ðxÞ; ð3Þ

where gð0Þμν ¼ ημν, with ημν ¼ diagðþ1;−1;−1;−1Þ.
Then, the concomitant expansion of the contravariant
components gμν is given by
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gμνðx; GÞ ¼ gμνð0Þ þ
X∞
n¼1

GngμνðnÞðxÞ; ð4Þ

where gμνð0Þ ¼ ημν and the set of quantities gμνðnÞ can be

recursively determined by using the relations

gμνð1Þ ¼ −ημγηνδgð1Þγδ ; ð5Þ

gμνðnÞ ¼ −ημγηνδgðnÞγδ −
Xn−1
p¼1

ημγgðpÞγδ g
νδ
ðn−pÞ: ð6Þ

In order to solve the eikonal equation, we introduce the
covector Kμ ¼ ∂μφ which describes the covector of an
electromagnetic wave front in the curved space-time. In
the case of light, the vector Kμ ¼ gμν∂νφ is tangent to the
light ray. If we know the specific expression of the phase
function φðt;xÞ, it is obvious that we can get a lot of
information about the propagation of light from φ. To find a
solution of Eq. (2), we expand the phase function φ by a
series in ascending powers of the gravitational constant G.
Assuming that the unperturbed solution is a plane wave, the
expansion of the phase function may be given as

φðt;xÞ ¼ φ0 þ
Z

kμdxμ þ
X∞
n¼1

GnφðnÞðt;xÞ; ð7Þ

where φ0 is an integration constant. kμ [kμ ¼ k0ð1;kÞ] is a
constant null vector along the direction of propagation of
the unperturbed electromagnetic plane wave, which sat-
isfies the relation ημνkμkν ¼ 0. The vector k is the unit
vector along the propagation of the light (jkj ¼ 1), which
gives the wave direction. k0 ¼ ω=c, where ω is the constant
angular frequency of the unperturbed electromagnetic
wave. φðnÞ is the perturbation of the phase function of
the nth order in G. As the consequence of the definition
of Kμ and Eq. (7), it is easy to see that the wave vector
Kμðt;xÞ of the electromagnetic wave in the curved space-
time can be expanded as

Kμðt;xÞ ¼ gμν∂νφ ¼ kμ þ
X∞
n¼1

kμðnÞðt;xÞ; ð8Þ

where kμðnÞ is the nth perturbation of the wave vector with

respect to Newtonian constant G.

IV. GENERAL POST-MINKOWSKIAN
EXPANSION OF PHASE FUNCTION

Let us define xA ¼ ðctA;xAÞ as the event of emission A
and xB ¼ ðctB;xBÞ as the event of reception B of a light
signal. Let xA and xB be connected by a curve ΓAB, which
is the trajectory of a light signal. The curve ΓAB can be
defined by the parametric equation

xμðζÞ ¼ ζðxμB − xμAÞ þ xμA; ð9Þ

where 0 ≤ ζ ≤ 1, xð0Þ ¼ xA, and xð1Þ ¼ xB.
Here, we represent the light ray’s trajectory, correct to

Newtonian order, as

fxμg≡ fxμð0ÞðλÞg þ oðGÞ; ð10Þ

xμð0Þ ¼ λðxμB − xμAÞ þ xμA; ð11Þ

where xμð0Þ is the 0th-order geodesic path connecting xA

and xB, and we define curve Γð0Þ
AB by xð0Þ.

According to Eq. (2), this expression at any point x on
the curve ΓAB is given by

gμνðxÞ∂μφðxA; xÞ∂νφðxA; xÞ ¼ 0: ð12Þ

We set that φðxA; xÞ ¼ φðxÞ. Inserting the expansions of
Eqs. (4) and (7) into Eq. (12), it is easily seen that Eq. (12)
splits up into an infinite set of partial differential equations
as follows:

kμ∂μφ
ðnÞðxÞ ¼ ϕðnÞðxÞ; ð13Þ

where ημνkν∂μφ
nðxÞ ¼ kμ∂μφðxÞ, since it is safe to lower

or raise indices using ημν or ημν. ϕðnÞðxÞ is given by

ϕð1ÞðxÞ ¼ −
1

2
gμνð1ÞðxÞkμkν; ð14Þ

ϕðnÞðxÞ ¼ −
1

2
gμνðnÞðxÞkμkν

−
1

2

Xn−1
p¼1

�
ημν∂μφ

ðpÞðxÞ∂νφ
ðn−pÞðxÞ

þ 2gμνðpÞðxÞkμ∂νφ
ðn−pÞðxÞ þ gμνðpÞðxÞ

×
Xn−p−1
q¼1

∂μφ
ðqÞðxÞ∂νφ

ðn−p−qÞðxÞ
�
; ð15Þ

where n ≥ 2.

We assume now that x moves along the curve Γð0Þ
AB.

That means that x varies as a function of λ according to
Eq. (11). Combining Eq. (11) and the definition of k, the

total derivative of φðnÞ along Γð0Þ
AB is given by

dφðnÞðxð0ÞðλÞÞ
dλ

¼ RAB

k0
ϕðnÞðxð0ÞðλÞÞ; ð16Þ

where RAB ¼ jxB − xAj is the Euclidean distance between

xA and xB along the curve Γð0Þ
AB.

It is easy to show that Eq. (16) has one and only one
solution satisfying boundary condition φðxAÞ ¼ φ0, that is,
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φðnÞðxð0ÞðλÞÞ ¼
Rð0Þ
k0

Z
λ

0

ϕðnÞðxð0Þðλ0ÞÞdλ0; ð17Þ

where 0≤ λ0≤λ and Rð0Þ ¼ jxð0ÞðλÞ−xAj. And ϕðnÞðxð0ÞðλÞÞ
is a continuous function of λ in the range of [0, 1]. As a

consequence of Eqs. (13)–(15) and (17), the solution of the
eikonal equation is given by

φð1ÞðxA; xBÞ ¼ −
RAB

2k0

Z
1

0

gμνð1Þðxð0ÞðλÞÞkμkνdλ; ð18Þ

φðnÞðxA; xBÞ ¼ −
RAB

2k0

Z
1

0

gμνðnÞðxð0ÞðλÞÞkμkνdλ −
RAB

2k0

Z
1

0

Xn−1
p¼1

�
ημν∂μφ

ðpÞðxð0ÞðλÞÞ∂νφ
ðn−pÞðxð0ÞðλÞÞ

þ gμνðpÞðxð0ÞðλÞÞ
Xn−p−1
q¼1

∂μφ
ðqÞðxð0ÞðλÞÞ∂νφ

n−p−qðxð0ÞðλÞÞ þ 2gμνðpÞðxð0ÞðλÞÞkμ∂νφ
ðn−pÞðxð0ÞðλÞÞ

�
dλ; ð19Þ

where n ≥ 2. All integrals are calculated along the straight line Γð0Þ
AB. Using these expressions, we can calculate the phase

function up to any order.
Now, we briefly consider the phase function up to the order G2, that is, n ¼ 2. The phase function is given by

φðxA; xBÞ ¼ φ0 þ
Z

kμdxμðλÞ −
GRAB

2k0

Z
1

0

gμνð1Þðxð0ÞðλÞÞkμkνdλþ
G2RAB

k0

Z
1

0

�
−
1

2
ημν∂μφ

ð1Þðxð0ÞðλÞÞ∂νφ
ð1Þðxð0ÞðλÞÞ

− gμνð1Þðxð0ÞðλÞÞkμ∂νφ
ð1Þðxð0ÞðλÞÞ −

1

2
gμνð2Þðxð0ÞðλÞÞkμkν

�
dλþ oðG3Þ: ð20Þ

On the other hand, we also can define the curve ΓAB by another parametric equation:

xμðςÞ ¼ ςðxμA − xμBÞ þ xμB: ð21Þ

Using a similar method, the phase function is given by

φðxB; xAÞ ¼ φ0 þ
Z

kμdxμðςÞ þ
GRAB

2k0

Z
1

0

gμνð1Þðxð0ÞðςÞÞkμkνdς −
G2RAB

k0

Z
1

0

�
−
1

2
ημν∂μφ

ð1Þðxð0ÞðςÞÞ∂νφ
ð1Þðxð0ÞðςÞÞ

þ gμνð1Þðxð0ÞðςÞÞkμ∂νφ
ð1Þðxð0ÞðςÞÞ −

1

2
gμνð2Þðxð0ÞðςÞÞkμkν

�
dςþ oðG3Þ: ð22Þ

From Eqs. (20) and (22), it is convenient to obtain the
general post-Minkowskian expansion of emission time
transfer function TeðtA;xA;xBÞ and reception time transfer
function TrðxA; tB;xBÞ, respectively.

V. APPLICATION OF THE PHASE FUNCTION

The phase function is a convenient tool to compute the
radio science and astrometric observables, which contains
all the information about light propagation between two
point events. In this section, we will apply the phase
function to give some useful results. First, we determine
the TTF and frequency shift in the case of a static and
spherically symmetric body from the phase function and its
derivatives. Then we determine the phase function and the
derivatives of the phase function in the case of a rotating,
uniformly moving, and spherically symmetric body, which
is a more precise relativistic model of the space missions in
the Solar System. From our estimates, the contribution of

the motion of spin of the body will be measurable in future
space missions.

A. Time transfer function

In order to illustrate the previous results, let us
determine the phase function and time transfer function
in the case of the gravitational field outside a static
and spherically symmetric body of mass M. Choosing
spatial isotropic coordinates and putting jxð0Þj ¼ r, we
suppose that the space-time metric components may be
written as

gð1Þ00 ¼ −
2M
c2r

; gð2Þ00 ¼ 2M2β

c4r2
;

gð1Þ0i ¼ 0; gð2Þ00 ¼ 0;

gð1Þij ¼ −
2Mγ

c2r
δij; gð2Þij ¼ −

3M2δ

2c4r2
δij; ð23Þ
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where β and γ are usual post-Newtonian parameters and δ
is the post-post-Newtonian parameter (β ¼ γ ¼ δ ¼ 1 in
general relativity). We suppose that the points xA and xB are
outside the body. Here, we have rA ¼ jxAj and rB ¼ jxBj.
Inserting Eqs. (5), (6), and (23) into Eq. (20), we obtain the
expressions of φð1ÞðxA; xBÞ and φð2ÞðxA; xBÞ. By a simple
integral, φð1ÞðxA; xBÞ is given by

φð1ÞðxA; xBÞ ¼ −ð1þ γÞMRAB

c2
k0

Z
1

0

1

jxð0Þj
dλ

¼ −ð1þ γÞMk0
c2

ln
rA þ rB þ RAB

rA þ rB − RAB
: ð24Þ

For the term of φð2ÞðxA; xBÞ, we deduce from Eq. (24)
that

gμνð1Þkμ∂νφ
ð1Þðxð0ÞÞ ¼

2γðγ þ 1ÞM2k20
c4

1

r2
: ð25Þ

Then,

−RAB

k0

Z
1

0

�
gμνð1Þðxð0ÞÞkμ∂νφ

ð1Þðxð0ÞÞ þ
1

2
gμνð2Þðxð0ÞÞkμkν

�
dλ

¼
�
β − 2 − 2γ −

3

4
δ

�
M2k0RAB

c4

Z
1

0

1

r2
dλ; ð26Þ

where

Z
1

0

1

r2
dλ ¼ arccosðnA · nBÞ

rArB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðnA · nBÞ2

p ; ð27Þ

with

nA ¼ xA

rA
; nB ¼ xB

rB
: ð28Þ

Another term of the second-order phase function can be
calculated by this relation:

−
1

2
ημν∂μφ

ð1Þðxð0ÞÞ∂νφ
ð1Þðxð0ÞÞ

¼ ð1þ γÞ2M2k20
c4

r2Að1þ nA · nÞ
r2r2Að1þ nA · nÞ2 : ð29Þ

It is easy to prove that

r2Að1þ nA · nÞ
r2r2Að1þ nA · nÞ2 ¼

d
dλ0

�
λ0

rArð1þ nA · nÞ
�
: ð30Þ

Combining Eqs. (29) and (30), we obtain

RAB

k0

Z
1

0

−
1

2
ημν∂μφ

ð1Þðxð0ÞÞ∂νφ
ð1Þðxð0ÞÞdλ

¼ ð1þ γÞ2M
2k0
c4

RAB

rArBð1þ nA · nBÞ
: ð31Þ

Inserting Eqs. (24), (26), and (31) into the phase
function φðxA; xBÞ, the final expression of the phase
function is

φðxA; xBÞ ¼ φ0 þ k0ðcTAB − RABÞ − ð1þ γÞGMk0
c2

ln
rA þ rB þ RAB

rA þ rB − RAB

þ G2M2k0RAB

c4

��
β − 2 − 2γ −

3

4
δ

�
arccosðnA · nBÞ

rArB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðnA · nBÞ2

p þ ð1þ γÞ2
ðrArB þ xA · xBÞ

�
þ oðG3Þ: ð32Þ

This expression allows us to calculate effects of the
second order in G, which must be taken into account in the
near future. For example, for the Juno solar conjunction—
at which the spacecraft, the Sun, and Earth are almost
aligned—the contribution of the mass of the Sun on the
range between Juno and Earth is ∼104 m for the first-order
effect. And the second contribution of that may reach
∼10−1 m, which must be taken into account in the Juno
mission.
Next, we show that the time transfer function is deduced

from the phase function by a simple procedure. Supposing
that a light connects the point xA and point xB along the
curve ΓAB, this coherent process of the light signal implies

that the phase satisfies the relation φðxAÞ ¼ φðxBÞ. With
the original condition φðxAÞ ¼ φ0, the phase function at
point xB satisfies

φðxBÞ ¼ φ0: ð33Þ

It is clear that the two time transfer functions are
equivalent, so we have the relation

TrðxA; tB;xBÞ ¼ TeðtA;xA;xBÞ ¼ TðxA;xBÞ: ð34Þ

According to Eqs. (32) and (33), the expression of the time
transfer function is easily given as follows:
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TAB ¼ RAB

c
þ ð1þ γÞGM

c3
ln
rA þ rB þ RAB

rA þ rB − RAB
−
G2M2RAB

c5

��
β − 2 − 2γ −

3

4
δ

�
arccosðnA · nBÞ

rArB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðnA · nBÞ2

p

þ ð1þ γÞ2
ðrArB þ xA · xBÞ

�
þ oðG3Þ; ð35Þ

which is equivalent to the expression of TTF about the
second-order post-Minkowskian approximation obtained
by Refs. [19,24]. The second term of the TAB is the well-
known Shapiro time delay [28].

B. Frequency shift

In the case of a static and spherically symmetric body,
we consider that a spacecraft SA and a spacecraft SB are
moving on their orbit with the coordinate velocities vA and
vB, respectively. First, we use the most primitive method
to determine the frequency, which is shown in Fig. 1. We
suppose that SA emits the Nth crest of a light at the
coordinate time tA, while tA connects with the proper time
τA of SA. Then, spacecraft SA emits (N þ 1)th crest of the
same light at coordinate time t0A, while t0A connects with
proper time τ0A of SA. The Nth and (N þ 1)th crests are
received by SB at the coordinate times tB and t0B, which
connects the proper time τB and τ0B of spacecraft SB,
respectively. We further suppose that vA is the proper
frequency of light as measured by SA at the instant of
emission and vB is the proper frequency of the same light
as measured by SB at the instant of receipt. The light
frequency transfer from SB to SA is characterized by the
ratio vB=vA, which may be rewritten as ðΔφB=ΔτBÞ=
ðΔφA=ΔτAÞ, and there has the relation ΔφA ¼ ΔφB for
the Nth and (N þ 1)th crests of light. ΔτA and ΔτB are the
intervals of proper time with respect to ΔφA and ΔφB,
respectively.

First, the relation between proper time and coordinate
time is deduced from ðcdτÞ2 ¼ gμνdxμdxν. The expansion
of Eq. (23) demonstrates that this relation can be written as

dτ
dt

¼ χ
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
; ð36Þ

where

χ ¼
�
1þ gijvivj

g00c2

�
1=2

: ð37Þ

It is obvious that the Lorentz contraction factor in special
relativity is a part of χ. When we neglect the gravitational
field, χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
.

Finally, vB=vA is rewritten as follows:

vB
vA

¼ ΔτA
ΔτB

¼ χAg
1=2
00 ðxAÞΔtA

χBg
1=2
00 ðxBÞΔtB

; ð38Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxAÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxBÞ

p
is the gravitational redshift

effect, which comes from the difference of gravitational
potentials [29]. ΔtA and ΔtB are intervals of coordinate
time.
From Fig. 1, the time intervals are defined by

ΔtB ¼ t0B − tB; ð39Þ

ΔtA ¼ t0A − tA; ð40Þ

and more,

tB ¼ tA þ TAB; ð41Þ

t0B ¼ t0A þ TAB
0; ð42Þ

where the time TAB and TAB
0 is the time transfer function

of the Nth and (N þ 1)th crest of light, respectively.
Inserting Eqs. (40)–(42) into Eq. (39), the time interval
ΔtB is rewritten as a function of ΔtA:

ΔtB ¼ ΔtA þ T 0
AB − TAB: ð43Þ

In the limit of small velocities, we can expand the
following equations with respect to vA and vB:

ct

x

t'A

t'B

tA

tB

SA

worldline

SB

worldline

FIG. 1. Schematic for the frequency shift. SA and SB are
worldlines of spacecraft SA and spacecraft SB, respectively. At
time tA, SA emits the Nth crest of light to SB, which is received by
SB at time tB. At time t0A, SA emits the (N þ 1)th crest of light to
SB, which is received by SB at time t0B.
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ln
rA þ rB þ RAB

rA þ rB − RAB
− ln

r0A þ r0B þ RAB
0

r0A þ r0B − RAB
0 ¼ −

�ðrA þ rBÞk · ðvB − vAÞ
rArBð1þ nA · nBÞ

−
RABðnB · vB þ nA · vAÞ
rArBð1þ nA · nBÞ

þ oðc−1Þ
�
ΔtB ð44Þ

and

RAB

c
−
R0
AB

c
¼ −

�
k · ðvB − vAÞ

c
þ k · ðvB − vAÞ

c
k · vA
c

þ k · ðvB − vAÞ
c

�
k · vA
c

�
2

þ oðc−4Þ
�
ΔtB; ð45Þ

where RAB
0 ≡ jx0

B − x0
Aj ¼ RAB in the case of ΔtB ¼ 0.

Combining Eqs. (43)–(45) and (35), the relation is easily given:

ΔtA
ΔtB

¼ 1 − k ·
�
vB − vA

c

�
− k ·

�
vB − vA

c

�
k ·

�
vA
c

�
−
k · ðvB − vAÞ

c

�
k · vA
c

�
2

−
ð1þ γÞGM

c3

�ðrA þ rBÞk · ðvB − vAÞ
rArBð1þ nA · nBÞ

−
RABðnB · vB þ nA · vAÞ
rArBð1þ nA · nBÞ

�
þ oðc−4Þ: ð46Þ

Considering the approximation of the weak field and the limit of small velocities, those approximations are reasonable:

χA
χB

¼ 1þ v2B
2c2

−
v2A
2c2

þ oðc−4Þ; ð47Þ

�
g00ðxAÞ
g00ðxBÞ

�1
2 ¼ 1 −

GM
c2rA

þ GM
c2rB

þOðc−4Þ: ð48Þ

It follows from Eqs. (46)–(48) that the expression of the frequency shift of the order of c−3 is given by

Δv
v

¼ vB
vA

− 1 ¼
�
Δv
v

�
s
þ
�
Δv
v

�
g
; ð49Þ

where

�
Δv
v

�
s
¼ −

1

c
k · ðvB − vAÞ −

1

c2

�
k · ðvB − vAÞðk · vAÞ −

v2B − v2A
2

�

−
1

c3
k · ðvB − vAÞ

��
v2B − v2A

2

�
þ ðk · vAÞ2

�
þ oðc−4Þ; ð50Þ

�
Δv
v

�
g
¼ 1

c2

�
GM
rB

−
GM
rA

�
−

1

c3

�
GM
rB

−
GM
rA

�
ðk · ðvB − vAÞÞ

−
ð1þ γÞGM

c3

�ðrA þ rBÞk · ðvB − vAÞ
rArBð1þ nA · nBÞ

−
RABðnB · vB þ nA · vAÞ
rArBð1þ nA · nBÞ

�
þ oðc−4Þ: ð51Þ

ðΔv=vÞs is the special relativity effect, and ðΔv=vÞg is the general relativity effect.
On the other hand, there is a straightforward method to give the frequency shift from the result of the phase function,

Eq. (32). Section III demonstrates that the frequency can be represented as

v ¼ c
2π

∂0φ: ð52Þ

So the frequency shift is rewritten as follows:

vB
vA

¼
�
dφB

dcτB

�	�
dφA

dcτA

�
; ð53Þ
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where dτA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxAÞ

p
χAdtA and dτB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g00ðxBÞ
p

χBdtB.
From Eqs. (22) and (32), the derivative of phase function
φA is given by

dφA

dctA
¼ k0

�
1 − k ·

vA
c
þ ð1þ γÞGM

c3

×

�
−

ðrA þ rBÞk · vA
rArBð1þ nA · nBÞ

−
RABnA · vA

rArBð1þ nA · nBÞ
��

þ oðc−5Þ: ð54Þ

From Eqs. (20) and (32), the derivative of phase function
φB is given by

dφB

dctB
¼ k0

�
1 − k ·

vB
c
−
ð1þ γÞGM

c3

×

� ðrA þ rBÞk · vB
rArBð1þ nA · nBÞ

−
RABnB · vB

rArBð1þ nA · nBÞ
��

þ oðc−5Þ: ð55Þ

Inserting Eqs. (54) and (55) into Eq. (53), we can obtain
the frequency shift up to the order of c−3, which is identical
to Eq. (49). In this way, the physical meaning of it is clear
and definite. It is easy to determine the frequency shift up to
the order of c−5 in this method.
We perform numerical estimates of the frequency shifts

for our previous work of BEACON [26]; we suppose
now that SA is spacecraft 4 with rA ¼ ð8� 0.016Þ × 107 m
and SB is spacecraft 1 with rB ¼ 8 × 107 m. We use the
difference of distances rA − rB ¼ 0.002rB. We take the
velocities of spacecrafts jvAj ¼ jvBj ¼ 2.2 × 103 m=s.
Then, the other useful parameters concerning Earth are
as follows: GM ¼ 3.987 × 1014 m3=s2, and the effective
Earth radius is 6.5 × 106 m. From these data, it is easy to
give the following upper bounds: jk · ðvA=cÞj ≤ 7.3 × 10−6

for spacecraft 1 and spacecraft 4. The first-order Doppler
effect is jk · ðvB − vAÞ=cj ≤ 1.46 × 10−5. The contri-
bution of the first-term general relativity effect is
GMð1=rBc2 − 1=rAc2Þ ≤ 1.11 × 10−13. And the contribu-
tion of the third-term general relativity effect is bounded
by 4 × 10−14 for γ ¼ 1.

C. The case of a rotating, uniformly moving,
and spherically symmetric body

Let us suppose that the gravitational field is generated by
a spherically symmetric body. We are interested in calcu-
lating the contributions of the mass, spin, and the motion of
the body on light propagation. First, we consider the metric
describing such a space-time. The metric for this body at
1PM order in its own local reference system is given by

Hμν ¼ ημν þGHð1Þ
μν þ oðG2Þ, where Hð1Þ

μν is given by

Hð1Þ
00 ¼ −

2wðyÞ
c2

;

Hð1Þ
0i ¼ δik

4wkðyÞ
c3

;

Hð1Þ
ij ¼ −

2wðyÞ
c2

δij; ð56Þ

where w is the scalar potential, which depends on the local
coordinate y. wi is the vector potential, which also depends
on the local coordinate y. The local coordinate reference
system is denoted by yμ ¼ ðcT; yÞ.
As shown in Fig. 2, body b is moving with coordinate

velocity vb, whose spin is denoted by Ks. The global
coordinate is denoted by xμ ¼ ðct;xÞ, whose origin is point
GC. A light connects points A and B. By performing a
Poincaré transformation, we can obtain the metric in the
case of a uniformly moving and spherically symmetric
body. The coordinate transformation is given as follows:

xμ ¼ aμ þ Λμ
νyν; ð57Þ

where aμ ¼ ðct0; aðt0ÞÞ is a constant four vector which
specifies the origin of the coordinate system: It points from
the origin of the global reference system to the origin of the
comoving frame at T ¼ 0. And the trajectory of the moving
body in the global reference system is given by

xb ¼ aþ cpðt − t0Þ: ð58Þ

Λμ
ν is given by

yA

yB

A

B

GC

LC

Xb

RAB

vb

Ks

FIG. 2. Representative geometry of the case of a rotating and
uniformly moving body. GC is the origin of the global coordinate,
and LC is the center of the body b, whose coordinate velocity is
vb. Ks is the unit vector of the body’s spin. The local coordinate
of points A and B is given by yA and yB, respectively. RAB is the
vector connecting A and B.
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Λ0
0 ¼ γ;

Λ0
i ¼ Λi

0 ¼ γpi;

Λi
j ¼ δij þ

γ2

1þ γ
pipj; ð59Þ

where p ¼ vb=c and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
(in this subsection, γ

is not the post-Newtonian parameter). The metric trans-
formation is given by

gμν ¼ ημν þ Ggμνð1Þ þ oðG2Þ ¼ Λμ
αΛν

βH
αβ; ð60Þ

where the spin transformation in the metric is neglected,
since it is too small. It is easy to obtain that

gμνð1Þ ¼ Λμ
αΛν

βH
αβ
ð1Þ: ð61Þ

The set of expressions of gμνð1Þ is given by inserting Eq. (59)

into Eq. (61), which leads to

g00ð1Þ ¼
2w
c2

γ2ð1þ p2Þ þ 8w · p
c3

γ2;

g0ið1Þ ¼
4wiγ

c3
þ 4wγ2pi

c2
þ 4w · p

c3
2γ3 þ γ2

1þ γ
pi;

gijð1Þ ¼
2w
c2

ðδij þ 2γ2pipjÞ þ 4γ

c3
ðwipj þ wjpiÞ

þ 4w · p
c3

2γ3

1þ γ
pipj; ð62Þ

where w ¼ wðyμÞ, wi ¼ wiðyμÞ, and w · p ¼ P
i¼1;2;3wipi.

This metric can describe such a gravitational field which is
generated by a rotating, uniformly moving, and spherically
symmetric body. If the metric describes the geometry due to
N uniformly moving and spherically symmetric bodies at
1PM, we can express the metric with a linear summation
for every body.
In this case, the one-order phase function is given by

φð1ÞðxA; xBÞ ¼ −
RAB

2k0

Z
1

0

gμνð1Þkμkνdλ: ð63Þ

Replacing the expression of the metric (62) in (63) gives

φð1ÞðxA; xBÞ ¼ −
RABk0
2

Z
1

0

�
4w
c2

γ2ð1 − k · pÞ2

−
8k · w
c3

γð1 − k · pÞ þ 8p · w
c3

γ

ð1þ γÞ

× ½γ2ð1 − k · pÞ2 þ γð1 − k · pÞ�
�
dλ:

ð64Þ

It is useful to rewrite the expressions of the scalar potential
and vector potential, respectively, as

wðyiÞ ¼ wðΛ0i
μðxμ − aμÞÞ; ð65Þ

wðyiÞ ¼ wðΛ0i
μðxμ − aμÞÞ; ð66Þ

where Λ0i
μ is the inverse of Λμ

i . It is convenient to set
aμ ¼ xμb0. We express Λ0i

μðxμ − aμÞ in the form as

Λ0i
μðxμ − aμÞ ¼ Xi

bB − λGi
AB; ð67Þ

where

XbA=B ¼ xA=B þ γ2

1þ γ
p½p · ðxA=B − xb0Þ�

− xb0 − γvbðtB − t0Þ; ð68Þ

GAB ¼ RABgAB; ð69Þ

and

gAB ¼
�
k − γpþ γ2

1þ γ
pðp · kÞ

�
; ð70Þ

gAB ¼ jgABj ¼ γð1 − k · pÞ: ð71Þ

Let us denote by I and S the integrals appearing in the
phase function expression (64) in the case where the body is
static. They are given, respectively, by

IðxbA;xbBÞ ¼ I0ðRAB;xbBÞ

¼
Z

1

0

wðxbB − λRABÞdλ; ð72Þ

SiðxbA;xbBÞ ¼ S0iðRAB;xbBÞ

¼
Z

1

0

wiðxbB − λRABÞdλ; ð73Þ

where xbA=B ¼ xA=B − xb. The solutions of integrals
depend on (xbA,xbB) or (xbB, RAB) because xbA ¼
xbB −RAB. In order to apply in the moving case, the
integrals have to be replaced by

I0ðGAB;XbBÞ ¼
Z

1

0

wðXbB − λGABÞdλ; ð74Þ

S0ðGAB;XbBÞ ¼
Z

1

0

wðXbB − λGABÞdλ; ð75Þ

where the two variables are defined by Eqs. (68)–(71). This
method is similar to what was proposed in Refs. [2,30].
Then, all the results in the uniformly moving case can be

derived from that in the static case by replacing xbB byXbB
and RAB by GAB. We can use those conversions in our
phase function, where for each “static case” quantity on the
left we give the “moving case” equivalent on the right:
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xbB → XbB;

rbB ¼ jxbBj → XbB ¼ jXbBj;

nbB → NbB ¼ XbB

XbB
;

xbA ¼ xbB −RAB → XbB −GAB ¼ XbA þ γpRAB;

rbA ¼ jxbAj → XbA ¼ jXbAj;

nbA → NbA−G ¼ XbA þ γpRAB

jXbA þ γpRABj
;

RAB → GAB ¼ gABRAB;

RAB → RABjgABj;

k ¼ RAB

RAB
→

gAB

jgABj
: ð76Þ

With Eqs. (72)–(75) and the conversions (76), we can
rewrite the one-order phase function in the field of a
rotating and moving body as

φð1ÞðxA; tB;xBÞ

¼ −
RABk0
2

�
4γ2ð1 − k · pÞ2

c2
IðXbA þ γpRAB;XbBÞ

−
8γð1 − k · pÞ

c3
k · SðXbA þ γpRAB;XbBÞ

þ 8

c3
γ

ð1þ γÞ ½γ
2ð1 − k · pÞ2

þ γð1 − k · pÞ�p · SðXbA þ γpRAB;XbBÞ
�
: ð77Þ

Finally, this expression can be rewritten as

φð1ÞðxA; tB;xBÞ ¼ γð1 − k · pÞφ0ð1Þ
I þ k · φ0ð1Þ

S

−
γ

1þ γ
½γð1 − k · pÞ þ 1�p · φ0ð1Þ

S ;

ð78Þ

where φ0ð1Þ
I=SðxbA;xbBÞ denotes the expression in the static

case and φ0ð1Þ
I=S ¼ φ0ð1Þ

I=SðXbA þ γpRAB;XbBÞ is given by

φ0ð1Þ
I ¼ −

2GABk0
c2

I0ðGAB;XbBÞ

¼ −
2GABk0

c2

Z
1

0

wðXbB − λGABÞdλ; ð79Þ

φ0ð1Þ
S ¼ 4GABk0

c3
S0ðGAB;XbBÞ

¼ 4GABk0
c3

Z
1

0

wðXbB − λGABÞdλ; ð80Þ

respectively. The expression (78) is very useful, since it
allows us to determine the phase function or time transfer
function in the case of a rotating and uniformly moving
body from the corresponding static phase function or time
transfer function. It will recover the expression of the static
phase function when the coordinate velocity of the body is
zero, p ¼ 0. If the phase function describes the case of N
rotating, uniformly moving, and spherically symmetric
bodies at 1PM, we can express it with a linear summation
for every body.
The derivatives of the phase function can be computed

from (78), which can be used to compute the frequency
shift and direction. In the case of a rotating and uniformly
moving body, their expressions are given by

∂xiA
φð1ÞðxA; tB;xBÞ ¼ γð1 − k · pÞ∂Ajφ

0ð1Þ
I

�
δij þ

γ2

1þ γ
pipj − γkipj

�
þ γðpi − kik · pÞ

RAB
φ0ð1Þ
I

þ k · ∂Ajφ
0ð1Þ
S

�
δij þ

γ2

1þ γ
pipj − γkipj

�

−
γ

1þ γ
½γð1 − k · pÞ þ 1�p · ∂Ajφ

0ð1Þ
S

�
δij þ

γ2

1þ γ
pipj − γkipj

�
−

γ2

1þ γ
p · φ0ð1Þ

S
pi − kik · p

RAB
;

ð81Þ

∂xiB
φð1ÞðxA; tB;xBÞ ¼ γð1−k ·pÞ∂Bjφ

0ð1Þ
I

�
δijþ

γ2

1þ γ
pipj

�
þ γð1−k ·pÞ∂Ajφ

0ð1Þ
I γkipj

−
γðpi −kik ·pÞ

RAB
φ0ð1Þ
I þk · ∂Bjφ

0ð1Þ
S

�
δijþ

γ2

1þ γ
pipj

�
þk · ∂Ajφ

0ð1Þ
S γkipjþ γ2

1þ γ
p ·φ0ð1Þ

S
pi−kik ·p

RAB

−
γ

1þ γ
½γð1−k ·pÞþ 1�p · ∂Bjφ

0ð1Þ
S

�
δijþ

γ2

1þ γ
pipj

�
−

γ

1þ γ
½γð1−k ·pÞþ 1�p · ∂Ajφ

0ð1Þ
S γkipj;

ð82Þ
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∂tBφ
ð1ÞðxA; tB;xBÞ ¼ −cγpj

�
γð1 − k · pÞ∂Bjφ

0ð1Þ
I þ k · ∂Bjφ

0ð1Þ
S −

γ

1þ γ
½γð1 − k · pÞ þ 1�p · ∂Bjφ

0ð1Þ
S

þ γð1 − k · pÞ∂Ajφ
0ð1Þ
I þ k · ∂Ajφ

0ð1Þ
S −

γ

1þ γ
½γð1 − k · pÞ þ 1�p · ∂Ajφ

0ð1Þ
S

�
; ð83Þ

where ∂A=Bjφ
0ð1Þ
I=SðxbA;xbBÞ is the expression of the deriva-

tive of the static phase function,

∂Ajφ
0ð1Þ
I=SðxbA;xbBÞ ¼

∂φ0ð1Þ
I=SðxbA;xbBÞ

∂xjbA
; ð84Þ

∂Bjφ
0ð1Þ
I=SðxbA;xbBÞ ¼

∂φ0ð1Þ
I=SððxbA;xbBÞ

∂xjbB
: ð85Þ

The expressions of the derivatives of the phase function
in the moving case are also obtained by inserting into
Eqs. (81)–(83) the static phase function and its derivatives,
keeping in mind the conversions (76).
In the case of a spherically symmetric body, the scalar

potential and the vector potential can be expressed,
respectively, as

wðyÞ ¼ M
jyj ; ð86Þ

wðyÞ ¼ −
M

2jyj3 ðy × SÞ; ð87Þ

where M is the mass of the body and S is the body’s spin
moment (angular momentum per unit of mass). Therefore,

the φ0ð1Þ
I and φ0ð1Þ

S are given, respectively, by

φ0ð1Þ
I ðxbA;xbBÞ ¼ −

2Mk0
c2

ln
rbA þ rbB þ RAB

rbA þ rbB − RAB
ð88Þ

and

φ0ð1Þ
S ðxbA;xbBÞ ¼

4Mk0
c3

S ×
ðnbB þ nbAÞRAB

ðrbA þ rbBÞ2 − R2
AB

: ð89Þ

By inserting Eqs. (88) and (89) into Eq. (78) and using
the conversions (76), we can obtain the one-order phase
function in the case of a rotating, uniformly moving, and
spherically symmetric body as

φð1ÞðxA; tB;xBÞ ¼ −
2Mk0γð1 − k · pÞ

c2
ln
jXbA þ γpRABj þ jXbBj þ RABγð1 − k · pÞ
jXbA þ γpRABj þ jXbBj − RABγð1 − k · pÞ

þ 4Mk0
c3

k ·

�
S ×

ðNbB þ NbA−GÞRABγð1 − k · pÞ
ðjXbA þ γpRABj þ jXbBjÞ2 − ðRABγð1 − k · pÞÞ2

�

−
γ

1þ γ
½γð1 − k · pÞ þ 1�p ·

�
S ×

ðNbB þ NbA−GÞRABγð1 − k · pÞ
ðjXbA þ γpRABj þ jXbBjÞ2 − ðRABγð1 − k · pÞÞ2

�
: ð90Þ

In order to compute the derivatives of the phase function in the case of a rotating and uniformly moving body, we need

to give the derivatives of the phase function in the static case. From the expressions (88) and (89), the derivatives of φ0ð1Þ
I

and φ0ð1Þ
S are given by

∂xibA
φ0ð1Þ
I ðxbA;xbBÞ ¼

4Mk0
c2

kiðrbA þ rbBÞ þ nibARAB

ðrbA þ rbBÞ2 − R2
AB

; ð91Þ

∂xibB
φ0ð1Þ
I ðxbA;xbBÞ ¼ −

4Mk0
c2

kiðrbA þ rbBÞ − nibBRAB

ðrbA þ rbBÞ2 − R2
AB

; ð92Þ

and

∂xibA
φ0ð1Þ
S ðxbA;xbBÞ ¼

4Mk0
c3

S ×

�
−ðnbB þ nbAÞki

ðrbA þ rbBÞ2 − R2
AB

−
ðnbB þ nbAÞRAB

ððrbA þ rbBÞ2 − R2
ABÞ2

ð2ðrbA þ rbBÞnibA þ 2RABkiÞ
�
; ð93Þ

∂xibB
φ0ð1Þ
S ðxbA;xbBÞ ¼

4Mk0
c3

S ×

� ðnbB þ nbAÞki

ðrbA þ rbBÞ2 − R2
AB

−
ðnbB þ nbAÞRAB

ððrbA þ rbBÞ2 − R2
ABÞ2

ð2ðrbA þ rbBÞnibB − 2RABkiÞ
�
: ð94Þ
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The derivatives (81)–(83) of the phase function in the
case of a rotating, uniformly moving, and spherically
symmetric body are given by combining Eqs. (88), (89),
and (91)–(94) with the conversions (76). We can easily
obtain the TTF and derivatives of the TTF from the phase
function and the derivatives of the phase function.
As an example, we use the results presented in the

previous section to give estimates of the relativistic cor-
rections on the observables for the TianQin mission [25]
and BEACON mission [26,31]. TianQin is a space-borne
gravitational wave detector, which relies on a constellation
of three identical spacecraft, placed on nearly identical
geocentric orbits with a semimajor axis of ∼108 m, and
forming a nearly equilateral triangle. Using the parameters
of TianQin, we can estimate the contributions of the mass
monopole of Earth on the range. The contributions can be
split into two parts: (1) a part related to the case where Earth
is static; (2) a part proportional to Earth’s velocity. The
magnitude of part (1) is 10−2 m. The magnitude of part
(2) is 10−8 m, which is not neglected for the accuracy of
TianQin. These estimates suggest that the contributions of
the motion of Earth need to be considered carefully. Then,
the contributions of the spin of Earth on the range also can
be split into two parts: (3) a part related to the case where
Earth is static; (4) a part proportional to Earth’s velocity.
The magnitude of part (3) is 10−10–10−9 m, which is a
measurable part for measurement. The magnitude of part
(4) is 10−14–10−13 m. This part is related to the motion of
Earth respect to the Sun, which has a period of one year. It
is an important part for the space-borne gravitational wave
detection missions in the future.
The BEACON concept is a space-borne experiment

designed to test the metric nature of gravitation—a
fundamental postulate of Einstein’s general relativity.
Its architecture is based on a constellation of four small
spacecraft placed on the circular Earth orbit at a radius
of ∼8 × 107 m. Using the parameters of the preliminary
BEACON mission concept, we can estimate the contri-
butions of the mass monopole of Earth on the range. The
contributions can be split into two parts: (1) a part related
to the case where Earth is static; (2) a part proportional
to Earth’s velocity. The contribution of part (1) is a few
centimeters. The magnitude of part (2) is 10−8 m, which
is not neglected for the accuracy of 0.1 nm on the range.
These estimates suggest that the contributions of the
motion of Earth need to be considered carefully. Then, the
contributions of the spin of Earth on the range also can be
split into two parts: (3) a part related to the case where
Earth is static; (4) a part proportional to Earth’s velocity.
The magnitude of part (3) is 10−8 m, which is measurable
for the accuracy of 0.1 nm on the range. The variation of
this part is ∼10−11 m under the spacecraft’s modulation,
which is close to the accuracy of BEACON. This
contribution needs to be considered carefully in the

future. The magnitude of part (4) is less than 1 pm,
which can be omitted for BEACON. This part is related to
the motion of spacecraft respect to Earth, which has a
period of a few days. It is clear that our results can be
applied to high-precision space missions.

VI. CONCLUSION

In this paper, we study the propagation of light
traveling through the gravitational field by the phase
function method in the post-Minkowskian approximation
of general relativity. By solving the eikonal equation,
we give the general post-Minkowskian expansion of the
phase function. Any nth-order perturbation φðnÞðxA; xBÞ is
an integral taken along the zeroth-order curve joining xA
and xB.
The phase function contains all the information about

light propagation in the gravitational field, such as the time
transfer function, frequency shift, astrometric observables,
and so on. As the applications of the phase function, we
have determined the specific phase function φðxA; xBÞ
and time transfer function TðxA; xBÞ in the field of a
static, spherically symmetric body at the second post-
Minkowskian approximation. We also determine the fre-
quency shift up to the order of c−3 in this gravitational field.
A rough estimate demonstrates that the effects of the
second order in G must be taken into account for some
space missions, such as Global Astrometric Interferometer
for Astrophysics (GAIA) [32] and Space Interferometric
Mission (SIM) [33]. As another application, we develop a
highly accurate relativistic model that describes observa-
tions of the modern space missions. This model is more
suitable for high-precision space missions in the Solar
System, since it contains the effects due to the motion of
rotating bodies. The phase function in the gravitational field
of rotating and uniformly moving bodies can be derived
from its expression in a stationary gravitational field. We
use our model to give some estimates of the relativistic
corrections on the observables for the TianQin mission and
BEACON. The contribution of Earth’s spin on the range
reaches 10−8 for the BEACON, which need to be consid-
ered for high-precision space missions testing general
relativity. The contribution of the motion of Earth’s spin
on the range reaches 10−13 m for TianQin, and this
contribution must be considered for future space-borne
gravitational wave missions.
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