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It is generally believed that the concept of the spacetime continuum should be modified for distances as
small as the Planck length. This is a length scale at which the spacetime might have a discrete structure and
quantum gravity effects are dominant. Presumably, the microscopic fluctuations within the geometry of
spacetime should result in an enormous entropy production. In the present work, we look for the effects of
Lorentz invariance violation (LIV) in flat and curved backgrounds that can be measured by quantum
entanglement and quantum thermodynamic entropies for scalar modes. Our results show that the general
behavior of these entropies is the same. We also consider variations of the entropies with respect to LIVand
cosmological and field parameters. Using the properties of these entropies, along with detecting the most
entangled modes, we extract information about the past existence of LIV, which in turn might be useful
in recovering the quantum structure of gravity. Indeed, the occurrence of a peak in the behavior of these
entropies for a specific momentum could provide information about the expansion parameters. Moreover,
information about the LIV parameter is codified in this peak.
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I. INTRODUCTION

According to the Lorentz invariance condition, which
is the cornerstone of the theory of special relativity (SR),
the spacetime appears to be the same at all length scales.
However, classical general relativity (GR), which extends
SR to include gravity and accelerated motions, predicts the
formation of singularities (such as the big-bang singularity)
in the fabric of spacetime that must be eventually removed.
These are superdense regions of extreme gravity where the
classical GR breaks down and quantum gravity may take
over in such regimes to resolve the classical spacetime
singularity. Different approaches to quantum gravity have
been developed within various contexts such as string
theory [1,2] and loop quantum gravity [3,4]. However,
some approaches to quantum gravity propose that a micro-
scopic structure of spacetime may lead to Lorentz sym-
metry violation. The violation of such a condition has been
studied in noncommutative geometry [5,6] and theories
with extra dimensions [7], as well as in the context of the
discretization process. The effects of quantum gravity are
important near the Planck scale. Studies in the field of
trans-Planckian physics on the Hawking effect and infla-
tionary cosmology have employed scalar fields with high
frequency dispersion to investigate the role of short dis-
tance physics on the behavior of a quantum field. As we
know, the energy and momentum quantities for a particle,
as related to each other by a dispersion relation, would
change under Lorentz transformation, in such a way that the
standard dispersion relation remains invariant. However,
it is generally believed that within the regimes where the
structure of spacetime becomes dominated by quantum
effects, the smallest length scale can modify the standard
dispersion relation so that the discrete nature of space

at short distances can produce a modified dispersion
relation with an extra term that induces violation of
Lorentz invariance [8–16]. In this regard, there is evidence
showing that this symmetry becomes broken in some
phenomena [17–22]. The effects of LIV have been dis-
cussed in inflationary cosmology, the dark energy problem,
and baryogenesis [23–28].
In the model herein, we apply corrections (at the

quantum scale) to initial conditions of an early Universe
in order to explore the dynamics of spacetime and to
understand the physical properties of the Universe. We
would like to explain the mechanisms that govern the
transition from a highly quantum correlated field state to
the current classical background. This is the assumption of
the quantum-to-classical transition produced by a quantum
gravitational vacuum; in other words, particles are only
some excitations of the quantum gravity vacuum. Indeed,
particle-filled states are given by taking the semiclassical
limits of the quantum gravity vacuum. LIV in the vacuum
of the early Universe can lead to the creation of particles
which occurs in the absence of LIV. in the late Universe.
Accordingly, the quantum structure of geometry causes the
existence of particles. A field theory in flat spacetime will
naturally concentrate on perturbations around a natural
vacuum state. Therefore, a dynamic LIV model can explain
the mechanism of particle creation in flat spacetime.
However, in curved spacetime, the effects of spacetime
on the field are important. Particle creation is an interesting
prediction of quantum field theory in curved spacetime
[29]. Particles are produced by propagation of a quantum
field through an expanding Universe. However, if a
spacetime is conformally equivalent to Minkowski space-
time, then a conformally invariant field, propagating in
such spacetime, does not produce particles. Field equations
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in the quantum field theory in curved spacetime are locally
Lorentz invariant. By adding a term to the field equation,
the conformal invariance is broken and such particles are
generated. The effects of LIVon particle creation have been
studied in [30,31]. Particle generation, after conformal
symmetry breaking, produces entanglement in the final
states of the field.
According to the above, the structure of the present

Universe is classical and occurrence of this transition
needs to be understood [32]. All structures of the Universe
can be traced back to primordial quantum fluctuations
during an accelerated expansion phase of the early
Universe. It is understood that the quantum nature of
fluctuations is not lost as long as the system is an
entangled state. Therefore, it is appropriate to explain
the appearance of the classical nature in the state of
entanglement in order to understand the mechanism of the
quantum-to-classical transition in primordial fluctuations.
Zero entanglement was found in the Universe between
two spatially separated regions when their physical
separation was more than that of the Hubble horizon.
Therefore, long-wavelength quantum fluctuations can be
treated as classical fluctuations [33].
Entanglement is applied as an important tool in quan-

tum information theory. It plays a central role in black
hole thermodynamics [34–41], as well as in the informa-
tion loss problem [42–47]. Recently, entanglement and
quantum information techniques have been investigated
to learn about certain aspects of gravity and black hole
physics [48–53] in an expanding Universe [54–69].
Recent efforts have shown that the dynamics of spacetime
can generate entanglement. In fact, the energy content
of the early Universe was dominated by an entangled
quantum field background. If the effects of such an
entanglement do survive, through a weakly interacting
field, until our present Universe, they can provide precise
information about the nature of the early Universe and the
history of spacetime. The extraction of this entanglement
enables us to deduce cosmological parameters of the
underlying spacetime. However, it has been difficult to
observe practically the effects of entanglement in the
context of experimental cosmology. A method of deduc-
ing cosmological parameters of the spacetime through this
entanglement that emerge via gravitational interactions
could intuitively give new insights into the early Universe
[56–58]. This has benefited researchers concerned with
entanglement in the thermodynamic properties of space-
time [70] and spacetime fluctuations [71]. Theoretical
cosmology must cover entanglement as a purely quantum
effect with a fundamental role in the thermodynamic
properties of Friedmann-Robertson-Walker (FRW) space-
time [70]. Observational cosmology can search for wit-
nesses for purely quantum effects in the early Universe.
In addition, there are laboratory analogies that use the
quantum effect in analogue curved spacetimes to study

entanglement [56]. In these experimental setups of
analogue models using Bose-Einstein condensates or
ion traps and detectors, entanglement can be measured
directly.
Entanglement is an observer-dependent quantity and

decreases from the viewpoint of an accelerated observer
in flat spacetime [72]. Despite differences between entan-
glements generated by scalar and spinor fields, entangle-
ment in curved spacetime or by dynamics of the underlying
spacetime might not be invariant [54,55,68]. Usually, von
Neumann entropy is used to describe entanglement.
Thermodynamics is employed as a powerful tool in

cosmology. Recently, interesting results show that the inner
friction stemming from the quantum fluctuations of the
field plays a significant role in increasing entropy in the
Universe [73]. It has been established that the thermody-
namical properties of entanglement entropy, obtained from
quantum information theory, have similarities with the
results of the quantum thermodynamic entropy of space-
time. The difference between these two entropies shows
that particle creation entropy can be rescaled to entangle-
ment entropy [74].
We study the effects of LIVon entanglement generation

and particle creation entropy for both flat and curved
backgrounds. Our interest is to investigate properties of
a scalar field. For this goal, attention is given to a free
scalar field on a spatial lattice. The discreteness effect of
spacetime on dispersion relation is analyzed leading to LIV.
Therefore, we consider particle creation and generated
entanglement due to LIV during the evolution of spacetime.
In other words, we make use of a time-dependent parameter
to look for effects of dynamical LIV on the appearance of
entanglement and entropy production in flat spacetime.
Also, we consider the LIV process and its effects on
entanglement and entropy production of an expanding
Universe. Contrary to the flat case, we take advantage of
the LIV in the context of the evolution of spacetime itself in
curved spacetime. An approach has been presented in [73].
The aforementioned approach is applied to evaluate particle
creation entropy and von Neumann entropy in order to
determine entanglement.
This paper is organized as follows. In Sec. II we extract

LIV in terms of the dispersion relation from a discrete
spacetime. In Sec. III we present scalar field quantization in
flat spacetime. In Sec. IV we introduce the LIV model in
flat spacetime and obtain a state of particle creation.
Section V deals with deriving entanglement and particle
creation entropies. In Sec. VI the behavior of entanglement
and thermodynamic entropies in flat spacetime is inves-
tigated in more detail. In Sec. VII, we define an expanding
spacetime and probe the effects of quantizing the LIV
model on this spacetime. We then proceed to investigate,
in detail, the behavior of entanglement and thermodynamic
entropies for this spacetime. Finally, a summary of the main
results of our work is presented in Sec. IX.
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II. SCALAR FIELD ON A DISCRETE SPACETIME

We consider a free scalar field evolving on a spatial
lattice with continuous time. The Klein-Gordon equation
then reads [75]

ϕ̈ ¼ ∇2ϕ −m2ϕ; ð1Þ

where m is mass of the particle. Equation (1) exhibits the
standard dispersion relation for energy-momentum of the
particle given by

ω2 ¼ k2 þm2: ð2Þ

We can rewrite the Laplacian term in Eq. (1) on a spatial
lattice as follows:

σ2∇2ϕ → ϕðnþ σÞ þ ϕðn − σÞ − 2ϕðnÞ
¼ ðdþ þ d− − 2ÞϕðnÞ; ð3Þ

where the three-dimensional vector n≡ σðn1; n2; n3Þ;
σ≡ σð1; 1; 1Þ; σ is the lattice spacing; and d�ϕðnÞ ¼
ϕðn� σÞ are the shift operators. Thus, the lattice Klein-
Gordon equation can be found as

ϕ̈ ¼ ðdþ þ d− − 2Þ
σ2

ϕ −m2ϕ: ð4Þ

The natural solution to Eq. (4) is

ϕ ¼ eiðk:nþωtÞ: ð5Þ

Substituting the above solution into Eq. (4), we get, within
the interval −π < k:σ < π,

−ω2ϕ ¼ eik:σ þ e−ik:σ − 2

σ2
ϕ −m2ϕ: ð6Þ

Therefore, the dispersion relation for the lattice model takes
the following form:

ω2 ¼ m2 −
2

σ2
ðcosk:σ − 1Þ: ð7Þ

We note that Eq. (7) is not invariant under Lorentz trans-
formation. For the low-energy particle ðk:σ ≪ 1Þ we have

ω2 ¼ m2 þ k2 −Oðk4σ2Þ; ð8Þ

where k ¼ jkj. Equation (8) implies that, in the continuous
limit where σ → 0 standard dispersion relation, Eq. (2) is
recovered.
Quantum gravity effects modify the standard dispersion

to include an extra term as a LIV term [76]. Thus, the
modified dispersion relation is found as

ω2 ¼ m2 þ k2 − σ2k4; ð9Þ

where the last term breaks the Lorentz symmetry. Here,
the parameter σ2 is called the LIV coefficient, which is
naturally expected to be proportional to the Planck length
lP. The above relation gives the semiclassical limit beyond
the standard model, such that if we adopt lP → 0, we arrive
at the standard form of the dispersion relation.

III. FIELD QUANTIZATION
IN A FLAT SPACETIME

Let us consider a Minkowskian spacetime. In this case
the spacetime admits a global timelike Killing vector field.
The existence of such a Killing vector is necessary, since
it allows for a meaningful definition of particle states.
Thus, we classify solutions according to the Klein-Gordon
equation into positive and negative frequency modes.
Modes of the plane wave are chosen using symmetries
of the Minkowskian spacetime, i.e., f ~uk; ~u�kg ∝ e�ik:xe�i ~ωt,
as a basis to expand the field in terms of these modes such
that ~ω2 ¼ k2 þm2. This basis allows us to distinguish
between positive and negative frequencies. Therefore, the
field quantization can be done in terms of these modes,

ϕðt; xÞ ¼
Z

dk½ ~ak ~ukðt; xÞ þ ~a†k ~u
�
kðt; xÞ�; ð10Þ

where coefficients of the expansion are interpreted as
creation and annihilation operators, ~a†k, ~ak, which satisfy
the commutation relations ½ ~a†k; ~ak� ¼ δk;k0 . We notice that
the basis modes are not unique. There are generally other
choices for such sets with the properties of the original
modes. The preference of one set of solutions is that it
depends on what is lost in the transition from the initial
situation to the final one. The vacuum state and number of
observed particles depend on the selected set. An alter-
native set of modes, fuk; u�kg, can be chosen to form a
complete basis in order to expand the field as

ϕðt; xÞ ¼
Z

dk½akukðt; xÞ þ a†ku
�
kðt; xÞ�; ð11Þ

where according to the previous set, a†k and ak are the
creation and annihilation operators in the new basis with
the commutation relations ½a†k; ak� ¼ δk;k0 . Using the inner
product, one obtains a transformation between the mode
solutions as

~ukðt; xÞ ¼ αkukðt; xÞ þ βku�−kðt; xÞ; ð12Þ

which accordingly implies a transformation between the
creation and annihilation operators as

~akðt; xÞ ¼ αkakðt; xÞ − βka
†
−kðt; xÞ; ð13Þ

ENTROPY PRODUCTION DUE TO LORENTZ INVARIANCE … PHYSICAL REVIEW D 96, 024001 (2017)

024001-3



where αk and βk represent the Bogoliubov coefficients.
It is worth mentioning that we refer to initial and final
operators as “in" and “out," respectively, and we denote all
quantities related to the in region using a tilde, and those
related to the out region without a tilde. The canonical
relations give rise to

jαkj2 − jβkj2 ¼ 1: ð14Þ

Now, consider the system being in the vacuum state in
“in-modes”; the expectation value of the out-number
operator is evaluated in the in-vacuum to determine how
many particles are detected by the “out-mode" as

hNki ¼ h~0kja†kakj~0ki ¼ jβkj2: ð15Þ

Therefore, the observed number of particles with respect
to the set of out-modes, which depend on Bogoliubov
coefficients, will disagree with the vacuum state of the in-
modes, as long as one of the Bogoliubov coefficients βk is
nonzero. This is consistent with the scenarios of quantum
field theory in curved spacetime [29].

IV. LORENTZ VIOLATION
IN THE FLAT SPACETIME

Let us begin with the modified dispersion relation
Eq. (9). An appropriate Lagrangian to reach Eq. (9) for
a scalar field, ϕ, is given by

L ¼ 1

2
½∂μϕ∂μϕ −m2ϕ2 þ σ2ðD2ϕÞ2�; ð16Þ

where D2 is known as the spatial Laplacian defined as

D2ϕ ¼ −DμDμϕ ¼ −qμν∂νðqτμ∂τϕÞ: ð17Þ

Here qμν indicates the spatial metric orthogonal to the unit
timelike vector uμ as

qμν ¼ −ημν þ uμuν; ημνuμuν ¼ 1: ð18Þ

The aether is taken as a coordinate system which exhibits
constant uμ and uμ is denoted as the four-vector velocity of
an inertial observer, whose aether is his rest frame. We then
have uμ ¼ ð1; 0; 0; 0Þ in the rest frame. The equation of
motion for ϕ can be obtained by equating the variation
of the action, S ¼ R

Ld4x, to zero with respect to ϕ which
leads to

½∂2
t − ∂2

x þm2 − σ2∂4
x�ϕ ¼ 0: ð19Þ

Since there is a global timelike Killing vector field, we
are allowed to select solutions to Eq. (19) separated into
time-dependent and space-dependent parts as uðt; xÞ ¼
eik:xTkðtÞ. Therefore, Eq. (19) is reduced to

½∂2
t − k2 þm2 − σ2k4�TkðtÞ ¼ 0: ð20Þ

The LIV effects are expected to appear at early time and
then entirely subside at late time. Thus, we choose a time-
dependent LIV parameter such that its dynamical behavior
is in accordance with its behavior at early and late times.
In other words, the LIV parameter for the early time will
have a constant value and for the late time will vanish,

σ2ðtÞ ¼ σ20
1þ eδ0t

; ð21Þ

where σ0 denotes the initial value of the LIV parameter
stemming from the effects of the early quantum gravity
regime and δ0 is the rate of reduction of the effects of LIV.
This form of the time evolution is chosen such that the

resulting equations are exactly solvable, although other
functionalities for the LIV parameter can be found that
could possibly be consistent with the above situations. The
origin of the dynamical behavior of the LIV parameter and
the best proposition for the time dependence of it should
be searched for by studying quantum gravity in the early
Universe. However, such a study is beyond the scope of
the present work [3,4]. Substituting Eq. (21) into Eq. (9),
the dispersion relation will take different forms within the
two asymptotic regions in the early and late Universe. At
the beginning of the time interval, t → −∞, the dispersion
relation represents the form ω2 ¼ k2 þm2 − σ20k

4 and at
the late time, t → þ∞, it is converted to the standard form,
i.e., Eq. (2). Now, using Eq. (21), we can obtain the general
solution of Eq. (20) as follows:

TkðtÞ ¼ C1e−i ~ωktFða; b; c;−eδ0tÞ
þ C2eþi ~ωktFðb�a�; c�;−eδ0tÞ; ð22Þ

where F denotes the hypergeometric function, ~ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 − σ20k

4
p

, and

a ¼ −ið ~ωk þ ωkÞ=δ0;
b ¼ −ið ~ωk − ωkÞ=δ0;
c ¼ 1 − 2i ~ωk=δ0: ð23Þ

To investigate the asymptotic behavior of the solution
Eq. (22), we utilize Eq. (12), where ~ukðt; xÞ ¼ eik:x ~TkðtÞ
and ukðt; xÞ ¼ eik:xTkðtÞ. Thus, for the in region,
T → −∞, and for the out region, T → þ∞, the temporal
factors of the solutions are obtained as

~TkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4π ~ωk

p e−i ~ωktFða; b; c;−eδ0tÞ; ð24Þ

TkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πωk

p
4π ~ωk

�
e−i ~ωkt

Γðc�ÞΓða� − b�Þ
Γða�ÞΓðc� − b�ÞFða; b; c;−e

δ0tÞ

þ eþi ~ωkt
−ΓðcÞΓðb − cÞ
ΓðbÞΓðc − aÞ Fða; b; c;−eδ0tÞ

�
; ð25Þ
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where ΓðaÞ is the gamma function. The Bogoliubov
coefficient values are obtained using the hypergeometric
function properties as follows:

αk ¼
ffiffiffiffiffiffi
ωk

~ωk

r
Γðc�ÞΓða� − b�Þ
Γða�ÞΓðc� − b�Þ ; ð26Þ

βk ¼
ffiffiffiffiffiffi
ωk

~ωk

r
−ΓðcÞΓðb − cÞ
ΓðbÞΓðc − aÞ : ð27Þ

Using Eq. (15) together with Eq. (27), we can find the
number of particle creation. According to the properties of
the gamma function, the number of particle creation can be
obtained as

hNki ¼
sinh2 ½πðωk − ~ωkÞ=δ0�

sinhð2π ~ωk=δ0Þ sinhð2πω=δ0Þ
: ð28Þ

Therefore, the initial vacuum state is converted to an
excited state in which the number of the particle is given
by the above equation.
If the LIVoccurs in a quantum adiabatic limit (i.e., there

is no transition between different energy levels during the
LIV), the particle creation, Eq. (28), is zero. An adiabatic
scenario happens when either the coupling of the field and
spacetime disappears through vanishing of the constant
value of the LIV parameter, σ0, or the rate of the LIV
parameter evolution is quasistatic, δ0 → 0. There is no
difference between the initial and final vacuum in an
adiabatic evolution (so that these states cannot be distin-
guished from each other), which leads to ωk ¼ ~ωk.
Therefore, the numerator of the fraction vanishes and the
number of particle creation is zero, as expected.

V. ENTANGLEMENT AND THERMODYNAMIC
ENTROPY IN THE FLAT SPACETIME

In Sec. III, we saw that the creation and annihilation
operators of “in” and “out” modes that were defined with
respect to spatial mode decomposition are associated with
the Bogoliubov transformation. As shown in Eq. (13), there
is mixing only between the modes of frequency k and −k.
Thus, we concentrate on these modes and neglect the
effects of other modes on the field. As a consequence, the
vacuum state of the far past can be provided as a two-mode
squeezing state and can be represented as a Schmidt
decomposition as follows:

j~0k ~0−ki ¼
X
n

Anjnkijn−ki; ð29Þ

where fjnkig is the number of excitations in the mode of k.
By applying the definition of vacuum state akj0i ¼ 0 along

with Eq. (13) we deduce An ¼ ðβ�kα�kÞ
nA0. From the normali-

zation condition we find jA0j2 ¼ 1 − j βkαk j
2. Therefore, the

vacuum state for the in region is represented as

j~0ki ¼
1

jαkj
X∞
n¼0

�
β�k
α�k

�
n
jnkijn−ki: ð30Þ

To analyze the entanglement of the state given in the above
equation, we employ the density matrix describing exci-
tations in the modes of frequency k and −k as follows:

ρk;−k ¼ j0k0−kih0k0−kj: ð31Þ

The state in Eq. (30) is pure. Thus, the von Neumann
entropy of the reduced density matrix is a suitable measure
to identify entropy production between the modes k and
−k. We then get the von Neumann entropy as

SðρkÞ ¼ −Tr½ρk log ρk�; ð32Þ

where ρk ¼ Tr
−k
½ρk;−k� is the reduced density matrix which

can be obtained by tracing out the mode −k in the state
Eq. (30), as follows:

ρk ¼
1

jαkj2
X
n

�jβkj
jαkj

�
2n
jnkihnkj: ð33Þ

By defining γ ≡ j βkαk j2, it is clear that eigenvalues of the
diagonal density matrix, Eq. (33), are λn ¼ ð1 − γÞγn and
the von Neumann entropy is computed as

Sen ¼ SðρkÞ ¼ log

�
γ

γ
γ−1

1 − γ

�
: ð34Þ

Recently, a quantum thermodynamic approach has been
developed to investigate the entropy production in terms of
the inner friction [73,77–79]. It has been established that
the quantum fluctuations due to the field lead to inner
friction, which can be considered as entropy interpretation.
Here, we review the approach presented in [73] quickly,
and then extend it to a LIV scenario. As a starting point, we
suppose that the vacuum state of the initial Universe in the
far past is unstable and can be viewed as a superposition of
jnkn−ki in the far future. In fact, the LIV term has the role of
fluctuations that changes the initial state to the final one.
Similar to dynamical spacetime, we can argue that the LIV
can do thermodynamical work. In a thermodynamical
framework, we consider mode pairs of the field as a system
and take the initial quantum gravity regime, emanating
from the dominant gravitational field in the in region, as a
work reservoir. From this viewpoint, the quantum gravity
effects can be understood as a source to do work onto the
quantum field and consequently move the quantum field
away from the equilibrium state. We use a two-mode
squeezing model to describe the thermodynamics of the
current system. Therefore, any pairs of modes interact with
each other and there is no interaction between the mode
pairs and other modes of the field.
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Based on the proposed discussion we can take advantage
of the two-mode squeezing model. This procedure is in
analogy with the quantum optical process [80–82]. We
adopt the initial and final Hamiltonian as follows:

~H ¼ ~ωkð ~ak† ~ak þ ~a†−k ~a−k þ 1Þ;
H ¼ ωkða†kak þ a†−ka−k þ 1Þ: ð35Þ

Since there is no interaction term in the Hamiltonian and
the relation between creation and annihilation operators is
given by Eq. (13), each pair of modes evolves unitarily,
which is consistent with the above considerations. The
average of works performed during the unitary evolution
due to the LIVof the Hamiltonian from ~H to H is given by

W ≡ Tr½Hρk� − Tr½ ~Hρk�; ð36Þ

which indeed shows the average energy variation involved
in the transfer process of ~H to H. For an initial state
defined in the vacuum state, Eq. (33), we have Tr½ ~Hρk� ¼
~ωk and Tr½Hρk� ¼ ðhNki þ 1Þωk. Thus, the average work is
obtained as

hWi ¼ ωkhNki þ ðωk − ~ωkÞ; ð37Þ

which implies energy changes in relation to particle
creation and energy changes in a ground state. In a quantum
adiabatic limit there are no transitions between energy
levels, and particle creation does not occur. Therefore, the
inner friction, defined as the difference between the total
average work and the average of adiabatic work, only
depends on the work related to particle creation,

hWifriction ¼ ωkhNki: ð38Þ

The entropy production fluctuation theorem [83–86] is
used to demonstrate that the inner friction can be deduced
as entropy production in the cosmological context [73],
as follows:

hsi ¼ hWifriction
T

¼ ωk

T
hNki: ð39Þ

To evaluate Eq. (39), we show that the reduced density
matrix Eq. (33) can be rewritten as a thermal state. Let zk be
the squeezing parameter; from Eq. (14) we can define the
Bogoliubov coefficients as jαkj≡ cosh zk and jβkj≡ sinh zk.
Substituting this into Eq. (33) yields

ρk ¼
1

cosh2 zk

X
n

tanh2n zkjnkihnkj: ð40Þ

The above quantity corresponds to a thermal state as
follows:

ρk ¼ ð1 − e−
ωk
T Þ
X
nk

e−
ωk
T nk jnkihnkj; ð41Þ

where tanh zk ≡ e−
ωk
~T , ωk

2
is associated with the ground state

energy of the positive frequency modes as given by Eq. (30).
Thus, the number of particle creation, hNki ¼ TrðρkNkÞ,
appears as the Bose-Einstein distribution,

hNki ¼ ð1 − e−
ωk
T Þ
X
nk

nke
−ωk
T nk ¼ 1

e
ωk
T −1

: ð42Þ

The result provided in Eq. (42) implies a Planck spacetime at
the temperature,

T ¼ ωk

2 log 1
tanh zk

¼ ωk

logð1γÞ
: ð43Þ

Consequently we have

T ¼ ωk

log ð1þ csch½ πδ0 ðωk − ~ωkÞ�2 sinh½ πδ0 2ωk� sinh½ πδ0 2 ~ω�Þ
:

ð44Þ
The behavior of temperature with respect to mass, m,
and momentum mode, k, is shown in Fig. 1. The larger
momentum modes correspond to higher temperatures. All
momentum modes are involved to reach an adequately high
temperature. Also, Fig. 2 implies that the temperature grows
as the absolute value of the LIV parameters (σ20 and δ0)
increases.
Using Eq. (43), particle creation entropy will be evalu-

ated as follows:

Scr ¼ hsi ¼ hNki log
�
1þ hNki
hNki

�
: ð45Þ

FIG. 1. Temperature as a function of momentum k and mass m
for fixed values σ20 ¼ −15; δ0 ¼ 1.
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Here hNki is given by Eq. (15). The particle creation
entropy can be rewritten as

Scr ¼ logðγ γ
γ−1Þ: ð46Þ

It seems that relation Eq. (46) shows a few similarities with
the relation given in Eq. (34). The difference between
both quantities is a factor 1 − γ in the denominator of the
logarithm function, which only appears in the entanglement
entropy.

VI. THE BEHAVIOR OF ENTANGLEMENT
AND THERMODYNAMIC ENTROPIES

IN FLAT SPACETIME

In this section we investigate the behavior of entangle-
ment entropy obtained from quantum information theory.
Moreover, we consider the thermodynamic entropy accord-
ing to the quantum thermodynamic approach. The former is
related to von Neumann entropy, while the latter comes
from employing the approach to entropy production that
stems from particle creation, as presented in Sec. VI.
To compare and recognize the similarities of these two
mentioned entropies, we have used the diagrammatic
representations of two entropies with respect to field
quantities, i.e., mass and the momentum of the modes,
in Figs. 3 and 4.
As it is observed in Figs. 3 and 4, two quantities behave

in the same way and the existence of the factor 1 − γ in Sen
only causes a slight increase in the value of entanglement
entropy with respect to particle creation entropy. Entropy is
known as a monotonic decreasing function of mass, and the

massless modes reveal the maximum value of entropy.
This can be interpreted intuitively by the fact that modes
with a smaller mass more easily emerge by evolution of the
spacetime since the use of energy to supply the rest mass
of modes with small mass is cheaper than high mass
particles. Spectral behavior of entropies shows how entan-
glement or particle creation entropy depends on momentum
of the field mode. Entropy with respect to momentum
modes has maxima. There is a specific momentum for each
mode, kmax, so that entropy is maximum at this momentum
mode. In fact, entropy peaks at a certain momentum, i.e.,

0.021

0.042

0.063

0.063

0.084

0.084

0.105

0.105

0.126

0.1260.147

0.147

0.168

0.168

0.189

0.189

0.21

0.21

30 25 20 15 10 5 0 5
0

5

10

15

20

25

30

0
2

0

T

FIG. 2. Contour plot of the temperature with respect to the LIV
parameters σ20 and δ0 for the fixed values m ¼ 0 and k ¼ 0.4.

FIG. 3. Entanglement entropy as a function of momentum k
and mass m for fixed values σ20 ¼ −15; δ0 ¼ 1.

FIG. 4. Particle creation entropy as a function of momentum k
and mass m for fixed values σ20 ¼ −15; δ0 ¼ 1.
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the optimal value of jkj. Therefore, a large amount of
entropy is generated for this privileged value of jkj. This
means that modes of this characteristic frequency are far
more prone to entanglement than any others. The optimal
value of jkj can be related to a characteristic wavelength
that is increasingly correlated with a characteristic length of
the Universe. There is no entropy for the zero momentum
mode. This means that entanglement is zero, if the
momentum mode of the field vanishes. This is the result
of equivalence between in and out regions remaining
invariant under time evolution, because the LIV term is
absent. Thus, when the Lorentz invariance is violated, the
field modes are in a state of entanglement. The other results
as will be shown in the following are similar, so we will
concentrate on the behavior of entanglement entropy
independently.
Figure 5 shows the entanglement entropy as a function of

σ20. There are two distinct ranges for σ
2
0. The negative values

are always valid to define ~ωk. However, for the positive
one, there is an upper bound for k. The quantity ~ωk will be
imaginary for the value of k greater than the upper bound.
For the case shown in Fig. 5, i.e., k ¼ 0.4, the region
σ20 > 6.25 is due to the forbidden region. As is seen, the
entanglement entropy increases with respect to the absolute
value of σ20.
The entanglement entropy in terms of momentum mode

k for constant parameters m ¼ 0 and δ0 ¼ 1 is plotted in
Fig. 6. Four different values of parameter σ20 have been
considered in this figure. The entropy decreases as the
parameter σ20 gets lesser values, regardless of a negative
sign. The spacetime structure selects one value of the
momentum mode for which the time evolution of LIV
produces a larger amount of entanglement. This selection is
sensitive to the LIV parameter jσ20j. As jσ20j is increased, the
plot is rescaled. Except for σ20 ¼ 1 that exhibits no value for

kmax, for other cases, kmax is shifted to more positive values
with decreasing parameter σ20. Therefore, for smaller LIVs,
a larger frequency mode is more entangled.
A synchronous analysis of the LIV parameter requires

representation of the entanglement entropy in terms of σ20
and δ0 as shown in Fig. 7. As can be seen, the entanglement
entropy increases by any increment in the absolute value of
σ20 and δ0. Also, for a large enough value of δ0, it is possible
to specify entanglement entropy as a constant function of
δ0. It is important to note that entanglement is very sensitive
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FIG. 5. Entanglement entropy, Sen, as a function of the
parameter σ20, for the fixed values m ¼ 0, k ¼ 0.4, and δ0 ¼ 1.
Note that for the case k ¼ 0.4, ~ωk becomes imaginary for
σ20 > 6.25; thus the plot is not shown for this forbidden region.
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FIG. 6. Entanglement entropy Sen, as a function of momentum
mode k for the fixed values m ¼ 0, δ0 ¼ 1, and four different
values of parameter σ20, i.e., σ

2
0 ¼ −15 (solid line), σ20 ¼ −10

(dotted-dashed line), σ20 ¼ −5 (dashed line), and σ20 ¼ 1 (dotted
line). Note that for the case σ20 ¼ 1, ~ωk becomes imaginary for
k > 1; thus the plot is not shown for this forbidden region.
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FIG. 7. Contour plot of the entanglement entropy with respect
to the LIV parameters σ20 and δ0 for the fixed values m ¼ 0 and
k ¼ 0.4.
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with respect to jσ20j but becomes insensitive to variations
within the parameter jδ0j, when jδ0j is increased. The level
curves of entanglement entropy show a rapid increase as
jδ0j grows and thus a larger entanglement is generated,
However, there is a saturation level, for large enough values
of jδ0j.

VII. ON THE CURVED SPACETIME

In this section we deal with studying the effects of LIV
on the behavior of particle creation and entanglement
entropies in a curved spacetime. To this aim let us begin
with a (1þ 1)-dimensional FRW background metric.
However, in such a spacetime, a global Killing vector field
could not be found and thus will not be able to find
separable solutions to the wave equation in order to classify
the modes. However, there may exist two asymptotically
flat regions in the past and future times. Therefore, we can
introduce a timelike Killing vector and find a complete
basis based on a set of positive and negative frequency
solutions to the Klein-Gordon equation. Then, the field is
expanded in terms of the modes by interpreting creation
and annihilation operators as coefficients of the extension.
Therefore, the particle number is well defined. The line
element of the FRW spacetime can be parametrized as

ds2 ¼ dt2 − a2ðtÞdx2; ð47Þ

where aðtÞ is the scale factor. By defining the conformal
time as dη ¼ a−1dt, the above metric will take the form

ds2 ¼ Ω2ðηÞðdη2 − dx2Þ; ð48Þ

where Ω2ðηÞ is the conformal scale factor. The generalized
Lagrangian for the spacetime described above is given by

L ¼ 1

2

ffiffiffiffiffiffi
−g

p ½gμν∇μϕ∇μϕ −m2ϕ2 þ σ2ðD2ϕÞ2

þ λð1 − uμuμÞ�; ð49Þ

where gμν corresponds to Eq. (47). The covariant form of
the spatial Laplacian, Eq. (17), is given by

D2ϕ ¼ −DμDμϕ ¼ −qμν∇νðqτμ∇τϕÞ;

where

qμν ¼ −ημν þ uμuν; ημνuμuν ¼ 1:

The λ coefficient in the last term of the Lagrangian,
Eq. (49), constrains uμ as

gμνuμuν ¼ 1:

Since the FRW metric describes a homogeneous and
isotropic spacetime, uμ should admit these properties.

The four-vector velocity can then be obtained as uμ ≡
ðΩðηÞ; 0Þ whence the equation governing the evolution of
the scalar field reads

�
□ − Ω2ðηÞm2 −

σ2

Ω2ðηÞ ∂
4
x

�
ϕ ¼ 0; ð50Þ

where the d’Alembertian operator is □ϕ ≔ gμν∇μ∇νϕ ¼
1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νϕÞ. Now, we pick out the conformal scale

factor as follows:

Ω2ðηÞ ¼ 1þ ϵð1þ tanhðρηÞÞ; ð51Þ

where ϵ is the expansion volume and ρ indicates the
expansion rate. We prefer Eq. (51) over other choices,
since for η → −∞, the metric takes the form

ds2 ¼ ðdη2 − dx2Þ;

and for η → þ∞ the metric reads

ds2 ¼ ð1þ 2ϵÞðdη2 − dx2Þ:

Consequently, the spacetime is asymptotically flat and
admits Killing symmetries in these regions. We can
use the method of separation of variables to select solutions
to Eq. (50) as ukðη; xÞ ¼ eikxχkðηÞ. Thus, Eq. (50) is
reduced to

�
∂2
η þ k2 þ Ω2ðηÞm2 −

σ2

Ω2ðηÞ k
4

�
χkðηÞ ¼ 0: ð52Þ

To find the exactly solvable solutions, we suppose the
massless case,m ¼ 0, without loss of generality. Therefore,
in the far past region, i.e., the in region where η → −∞, we
have

~χkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4π ~ωk

p
× exp

�
−iωþ

k η − i
ω−
k

ρ
ln ½ð1þ 2ϵÞeρη þ e−ρη�

�
× Fð1þ iω−

k =ρ; iω
−
k =ρ; 1 − i ~ωk=ρ; zÞ; ð53Þ

χkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4π ~ωk

p
× exp

�
−iωþ

k η − i
ω−
k

ρ
ln ½ð1þ 2ϵÞeρη þ e−ρη�

�
× Fð1þ iω−

k =ρ; iω
−
k =ρ; 1 − iωk=ρ; zÞ; ð54Þ

where Fða; b; c; zÞ denotes the hypergeometric function
and
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~ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − σ2k4

p

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

σ2

1þ 2ϵ
k4

s

ω�
k ¼ 1

2
ðωk � ~ωkÞ

z ¼ 1þ 2ϵ

2

1þ tanhðρηÞ
1þ ϵ tanhðρηÞ : ð55Þ

The performance of field quantization in curved spacetime
is similar to Minkowskian spacetime. According to Eq. (12)
together with the linear transformation properties of hyper-
geometric functions, the Bogoliubov coefficients are
evaluated as

αk ¼
ffiffiffiffiffiffi
ωk

~ωk

r
Γð1 − i ~ωk=ρÞΓð−iωk=ρÞ
Γð−iωþ

k =ρÞΓð1 − iωþ
k =ρÞ

; ð56Þ

βk ¼
ffiffiffiffiffiffi
ωk

~ωk

r
Γð1 − i ~ωk=ρÞΓðiωk=ρÞ
Γðiω−

k =ρÞΓð1þ iω−
k =ρÞ

: ð57Þ

Therefore, the number of particle creations per mode k is
given by

hNki ¼
sinh2ðπω−

k =ρÞ
sinhðπ ~ωk=ρÞ sinhðπωk=ρÞ

; ð58Þ

The above result is obtained by a simple calculation from
Equation (15) and (57). The properties of the gamma
function have been used to deduce Equation (58).
To evaluate particle creation entropy according to the

approach introduced in Sec. VI, we consider the thermo-
dynamics framework so that the mode pair of the field is
assumed as a system and the spacetime that acts on the
quantum field as a work reservoir. The spacetime, including
the effects of the initial quantum gravity regime (due to
the dominant gravitational field), along with the evolution
of spacetime owing to the expansion of the Universe
as a source, does work on the quantum field and takes it
away from equilibrium. Therefore, by following the proc-
ess presented in Sec. VI, the temperature of Planck
spacetime, Eq. (43), can be obtained as

T ¼ ωk

log ð1þ csch½πω−
k

ρ �2 sinh½π ~ωk
ρ � sinh½πωk

ρ �Þ : ð59Þ

The temperature of the created particle spectrum with
respect to momentum modes is illustrated in Fig. 8. The
larger momentum modes lead to an increase in temperature
and a high enough temperature produces all momentum
modes. By increasing the expansion rate, a higher bound for
the temperature is necessary for the production of modes.
Figure 9 shows an upper temperature for a high enough LIV
parameter, σ2, and when the expansion volume, ϵ, is close to
the maximum value.

The entanglement behavior is investigated by von
Neumann entropy, Eq. (34), where γ is obtained by using
Eqs. (56) and (57). Figure 10 shows the entanglement
entropy with respect to the momentum modes, k, and the
expansion rate, ρ. As the expansion rate grows, the
entanglement entropy increases accordingly. Therefore,
the entanglement entropy is an increasing function of the
expansion rate. In the curved spacetime in analogy with
flat spacetime (as we saw in Sec. VI) the entanglement
entropy represents a specific momentum mode, kmax, for
each mode. This specific momentum can maximize the
entanglement entropy. A similar pattern of behavior is
observed for thermodynamic entropy, Eq. (46), shown in
Fig. 11. The other results obtained from the entanglement
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FIG. 8. Temperature as a function of the momentum modes, k,
for fixed values ϵ ¼ 0.99 and σ2 ¼ −1, and for four different
values of ρ, i.e., ρ ¼ 1 (solid line), ρ ¼ 0.8 (dotted-dashed line),
ρ ¼ 0.5 (dashed line), and ρ ¼ 0.2 (dotted line).

FIG. 9. Temperature in terms of the LIV parameter, σ2, and the
expansion volume, ϵ, for the fixed values k ¼ 1 and ρ ¼ 1.
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and the particle creation entropies, as we illustrate in the
following, are also similar. This time wewill concentrate on
the behavior of particle creation entropy independently.
Figure 12 shows the entanglement entropy in terms of

the LIV parameter, σ2. The plot is only shown for regions of
σ2 where ~ωk is valid. For the valid positive values of σ2, the
particle creation entropy is an increasing function of σ2.
However, for negative values, which are always valid, the
particle creation entropy increases for a while for a specific
range of absolute values of σ2 and then starts to decrease.
In fact, particle creation entropy exhibits maxima which

occur at a certain value of the LIV parameter, σ2max. For each
special expansion volume, σ2max is shifted toward negative
values with decreasing expansion rate. As shown in Fig. 13.
A decreasing expansion rate also leads to a decline in the
value of particle creation entropy for σ2max. Figure 14 shows
the dependency of entropy on the volume expansion and
the variation of entropy with respect to variations of the
expansion rate. The particle creation entropy is an increas-
ing function of expansion volume and grows as the
expansion rate gets larger values. From this figure we
can deduce that the entropy for reliable positive values of σ2
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FIG. 12. Particle creation entropy, Scr, as a function of the LIV
parameter, σ2, for fixed value ϵ ¼ 0.99 and three different values
of k and ρ, i.e., kmax with ρ ¼ 0.5 (solid line), ρ ¼ 0.4 (dotted-
dashed line), and ρ ¼ 0.3 (dashed line). Note that the plot is not
shown for some regions where ~ωk becomes imaginary.FIG. 10. Entanglement entropy in terms of the momentum, k,

and the expansion rate, ρ, for the fixed values ϵ ¼ 0.99 and
σ2 ¼ −1.

FIG. 11. Particle creation entropy in terms of the momentum, k,
and the expansion rate, ρ, for the fixed values ϵ ¼ 0.99 and
σ2 ¼ −1.
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FIG. 13. Contour plot of the particle creation entropy with
respect to the LIV parameter σ2 and the expansion rate ρ for the
fixed values ϵ ¼ 0.99 and kmax ¼ 0.4.
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grows more than the entropy for the same negative values
of σ2. The contour plot of the particle creation entropy with
respect to the LIV parameter σ2 and the expansion volume ϵ
is shown in Fig. 15. It is obvious that the entropy increases
by increasing the value of ϵ. Also, for a fixed value of ϵ
we can fix a maximum entropy for a special value of σ2.

VIII. THE DEPENDENCE OF ENTROPY
ON COSMOLOGICAL PARAMETERS

In both flat and curved spacetimes, the amount of
entropy generated in the field due to LIV codifies infor-
mation about the underlying spacetime, although, as the

momentum of the field varies, the behavior of entropy
seems similar as is shown in Figs. 3, 4, 10, and 11.
However, there are differences between flat and curved
models, in the amount of information that the two states of
entropy could provide with respect to the LIV parameter.
Having this in mind, we can control the expansion volume
of the Universe in a curved model and investigate the
behavior of entropy with respect to the LIV parameter for
different values of this parameter. Figure 5 shows how the
entropy depends on the LIV parameter in the flat model
when the Universe evolves from early time to late time,
where the LIV term in Eq. (20) entirely vanishes. The
curved model represents similar behavior when the total
volume of the Universe is close to a very large value. But
in the case in which we deal with curved spacetimes where
the total volume of the Universe is still small, Fig. 12,
the entropy reaches a maximum value at a certain LIV
parameter, while for a very large volume value, entropy
increases monotonically with jσ2j. In contrast to the flat
case and also the curved case where the volume value is
very large, in the curved case where the volume value is
small, there is a privileged value of jσ2j for which the
expansion of spacetime generates a large amount of
entropy. This natural emergence of a privileged LIV
parameter in curved spacetime is very sensitive to expan-
sion parameters and is thus more efficient (in comparison to
the flat case) for encoding information about the underlying
spacetime. We benefit from this special behavior for curved
spacetime and also from the characteristic peak that the
entropy presents at a certain momentum to design a method
to extract information on cosmological parameters.
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FIG. 14. Particle creation entropy Scr, as a function of ex-
pansion volume ϵ, for fixed value σ2 ¼ −1 and three different
values of k and ρ, i.e., kmax with ρ ¼ 0.5 (solid line), ρ ¼ 0.4
(dotted-dashed line), and ρ ¼ 0.3 (dashed line), and also for the
fixed values σ2 ¼ 1, kmax, and ρ ¼ 0.5 (dotted line).
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FIG. 15. Contour plot of the particle creation entropy with
respect to the LIV parameter σ2 and the expansion volume ϵ for
the fixed values p ¼ 0.5 and kmax ¼ 0.4.
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FIG. 16. Optimal jkj (mode with maximum entropy) as a
function of the LIV parameter σ2 for different values of
ϵ ¼ 0.2, 0.5, 0.99 (solid, dashed, dotted) and ρ ¼ 10, 100, 1000.
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In Fig. 16, we present the frequency at which the
maximum value for the entropy occurs, i.e., the optimal
value of jkj. This value is extremely sensitive to the
rapidity of the expansion of the Universe, while at the
same time it has low sensitivity to variations with respect
to the total volume of the Universe at the interval in which
0.99 of the total expansion occurs [30]. Therefore, without
any need to assume a fixed ϵ, we can take advantage of
the optimal jkj curve to estimate rapidity, independently of
the volume.
Figure 17 shows that for different values of ρ and ϵ the

maximum value of the entropy at the optimal point of jσ2j
is almost sensitive to only ϵ and insensitive to rapidity
variations. Hence, information about ϵ as the geometric
factor of the metric, which plays a geometric role, is
encoded within the maximum achievable entropy at the
optimal value of jσ2j. Also, the amount of entropy at the
optimal mode jkj of the field depends only on the total
volume of expansion and there is no need to account for
the rapidity variations as is represented in Fig. 17. Thus,
information about volume is encoded in this peak. For a
fixed value of ϵ and for different values of ρ, there is a
maximum value of entropy at the optimal point such that
the measured entropy is never larger than it. Figure 17
demonstrates how the maximum entropy achievable for
the optimal frequency LIV parameter varies with the
volume parameter ϵ. Indeed, it does not depend almost
on ρ. As a result, the information about ϵ is codified in
maximum entropy. This presents a method to obtain a
lower bound for the total volume regardless of the rapidity
of the expansion.
We therefore conclude that the peak behavior of the

entropy presents information about all the expansion
parameters. Also, the optimal mode and LIV parameters
can be related to each other via this peak. If we were able to
search the field and detect the most entangled mode, this
would provide us with a great deal of information about
the characteristics of the spacetime background for a fixed
expansion model.

IX. DISCUSSION AND CONCLUSION

In the model herein, we considered a free scalar field
on a spatial lattice. The effects of quantum gravity modify
the standard dispersion relation to include an extra term
and enforce the violation of Lorentz symmetry. Adding
such a term is equivalent to including a vector field,
coupled with a matter field, within the Lagrangian. Hence,
the conformal invariance is broken and the particles are
created such that the particle creation can be related to
the current entropy content of the Universe. We followed
two approaches in both flat and curved spacetimes, which
render a connection between measures of entropy and
amounts of particle creation in cosmological scenarios,
i.e., von Neumann entropy and particle creation entropy.
The von Neumann entropy characterizes the mixedness of
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FIG. 17. (a) Scr in the line of optimal jσ2j as a function of ρ
for different values of ϵ ¼ 0.2, 0.5, 0.99 and the LIV parameter
σ2 ¼ −5;−15;−30 (solid, dashed, dotted). (b) Scr in the line of
optimal jkj as a function of ρ for different values of ϵ ¼ 0.2, 0.5,
0.99 and mode k ¼ 0.2, 0.5, 1 (solid, dashed, dotted).
(c) Maximum entropy achievable (optimal jkj and jσ2j) as a
function of ϵ. It does not depend on ρ.
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a state, or in other words, if the state is observed as part of
a pure entangled state, then it is the amount of entangle-
ment in the total state. The particle creation entropy relates
the phenomenon of particle creation to a thermodynamic
quantity called inner friction, due to the quantum fluctua-
tions of the fields. From this viewpoint, the quantum
gravitational regime leads to enormous entropy produc-
tion within the content of the Universe. This perhaps is
due to the fact that the current entropy source of the
Universe can be generated by the quantum structure of the
geometry.
In the beginning, we focused our attention on flat

spacetime and used past and future procedures to obtain
two sets of exact solutions, which are connected via
Bogoliubov transformation coefficients. The definition of
the basis for early and late time is different since the
dispersion relations for these two regions are not equal. By
choosing a time-dependent LIV parameter, a geometric
effect takes a separable pure state in early time to an
entangled state at late time. We employed von Neumann
entropy to analyze entropy increasing due to entanglement.
Also, we evaluated the thermodynamic entropy, given by
the fluctuation theorem. In this sense, the quantum structure
of the geometry takes the field away from equilibrium and
the inner friction work increases the entropy. Likewise, we
explored the variation of two entropies with respect to the
LIV and field parameters.
In curved spacetime, we followed the same steps as in

our analysis in flat spacetime and studied von Neumann
entropy and particle creation entropy in asymptotically flat
Friedmann-Robertson-Walker spacetime. The dependence
of these entropies on the LIV parameter, field parameters,
and cosmic parameters can present information about the
underlying structure of the spacetime. It is important to note
that our results are general and can be applied to any
scenario where Bogoliubov transformations are present in
the dynamics of quantum fields.
What do we learn from these results? While previous

works in scenarios without LIV have shown that the
Dirac fields codify more information about the underlying
expansion than the scalar fields [55], by relying on the
scalar fields we can take advantage of expansion-generated
entropy due to LIV. This helps us to obtain information
about the underlying spacetime.
The expansion of the Universe generates entanglement

for both scalar and Dirac field modes when the conformal
symmetry is broken [55]. For the scalar case, a monoton-
ically decreasing entanglement is observed as momentum
increases and its maximum occurs at jkj ¼ 0, while for
the Dirac case, entanglement is maximized at a certain
momentum, associated with a characteristic wavelength
proportional to jkj−1. The exclusion principle impedes the
excitation of the fermionic modes whose jkj → 0 (very
long-wavelength modes) from being entangled by the
underlying structure of the spacetime. However, this

constraint does not exist for bosons. Thus, the entangle-
ment is higher when jkj → 0. What about large jkj modes?
Modes with large values for the jkj parameter are more
difficultly excited as the spacetime expands because these
modes require much energy to be excited. Let us concen-
trate on a conformally invariant setting, for which expan-
sion produces no entanglement between the field modes
and thus no particle creation occurs.
For the massless case which we argued in Sec. VII, the

theory is conformally invariant without the LIV term;
thus, there is no more generated entanglement only due
to expansion. By adding the LIV term to the field
equation, the conformal invariance is broken and entropy
is generated.
To interpret the observed results in this work we explain

the entropy behavior in terms of the discreteness of the
spacetime. For the sake of simplicity we have considered
only the discretized one-dimensional space whose lattice
parameter is the LIV length. The generalization to higher
spatial dimensions and inclusion of the time discreteness
is straightforward. In one dimension there is a single
lattice parameter, i.e., the LIV parameter and one-
dimensional reciprocal lattice. At the large spatial scales
(large wavelengths), i.e., jkj → 0, the dispersion of par-
ticles is close to the center of the Brillouin zone [87].
These solutions are just like the free particles with
renormalized mass. It is understandable that for such very
large wavelengths, the quantum length scale is less
important. These wavelengths are close to the classical
length scale and do not observe the effects of the LIV on
the classical length scales. As is evident in our analysis,
the calculated entropy for the scales larger than the
quantum LIV length is meaningless and should tend to
zero for the corresponding (small) momentum modes. It is
interestingly fitted to the fermionic behavior which is
known to vanish in this limit. Nevertheless, it is worth
mentioning that the nature of the behavior is not the
same for an expansion-generated fermionic field, as this
behavior may be a consequence of the Pauli exclusion
principle; but for our case, it is due to the fact that there is
no entropy contribution for the scales larger than the
quantum LIV length.
On the other hand, at small spatial scales (small wave-

lengths), i.e., jkj → ∞, the system approaches to its
continuous limit where the effects of discreteness are not
felt by the particles (bosons in our case). Noting that the
entropy considered in this paper is purely due to the effects
of discreteness of the spacetime, then we expect that in the
continuous limit (jkj → ∞) the entropy tends to zero as is
seen in our analysis. This behavior is common between
Lorentz-invariant entanglement of fermions and bosons and
the Lorentz-violated bosons considered in this paper. But
again, we emphasize that the nature of this behavior is not
the same; i.e., in the Lorentz-invariant models the entropy
tends to zero for jkj → ∞, since the excitation of the
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particles for the large momentummodes and therefore large
energies can rarely occur. However, for our case (Lorentz-
violated bosons) such behavior is due to the fact that the
properties of the system are like the continuous model and
the effects of the lattice parameter are not seen.
Therefore, we expect two asymptotic behaviors as the

particle creation entropy tends to zero. These two asymp-
totic behaviors for entropy are related to modes whose jkj is
close to zero and infinity. This generally introduces a
characteristic length scale in the problem under which the
entropy should fall off rapidly. In other words, there should
be a characteristic value for the wave number, namely,
kchar ∼ σ−1, at which a change in the behavior of entropy
(increasing behavior to a decreasing behavior) can be
observed. This behavior is seen in Fig. 12. The character-
istic length is exactly fitted to the inverse of the edge
vectors (boundaries) of the Brillouin zone, i.e., kchar ∼ σ−1.
Sets of the location ðk; σÞ of maximal entropy fulfill the
condition kmax ∼ σ−1max.
Today, the researchers vastly try to make a connection

between the phenomenon of entanglement and cosmology.
Previous studies have analyzed the possibility of swapping
this entanglement to local detectors [33,88–92]. Through
the extraction of cosmological parameters from entangle-
ment in field modes, we can compare our theoretical model
with observational data. We analyzed the properties of
produced entanglement (and generated entropy) of a
quantum scalar field (minimally coupled to gravity), due
to LIV directly, via the field itself. Using both a minimally
and conformally coupled field, our model can also be
considered in order to investigate the effects of LIV on the
response of local detectors, hence providing a stronger
grounding in operationalism [90]. It is worth emphasizing
that although we rely on the scalar field, generated entropy
due to LIV for the Dirac field would also be interesting.
The results of this paper can be generalized to conceive a

better understanding of the process by which early
Universe fluctuations in a scalar field are frozen into
eventual classical density fluctuations within the matter
distribution of the late Universe (and finally are led to
temperature variations in cosmic microwave background
(CMB)). The recent results about the effects of expansion
on local detectors indicate that the entanglement vanishes at
the Hubble horizon distance [91]. Moreover, Bose-Einstein
condensates can give an experimental study of the freezing
of quantum fluctuations into a classical density distribution
beyond the sonic horizon [93].
One of the best candidates which provide information

about our cosmology is CMB, based on the temperature
maps produced by WMAP [94]. In the work herein, we
showed that LIV in an expanding spacetime generates
entanglement between certain modes of a gravitationally
interacting scalar field. We will show elsewhere in detail
how our model can be applied to other spacetimes that are
more realistic. It is not, however, far-fetched to imagine that

the entanglement within the scalar field modes which is
responsible for the density fluctuations in the early
Universe has been somehow transferred to other fields to
which we have access today. In this sense, we might
observe entanglement within the individual particles of
CMB in the form of measurable temperature fluctuations
such as the parametric down-conversion experiments
[95,96] that have been carried out in order to verify the
phenomenon of entanglement.
It is worth emphasizing individually that field modes

entangled due to the gravitational interactions only when can
be remained coherence that the fields are rarely interacting.
The cosmic neutrino background may be a natural candidate
for residual quantum correlations, since they are approx-
imately only gravitationally interacting particles [97–100].
It is possible that entanglement of the cosmic neutrino
background which weakly interacts with anything at all
survives all the way to the present time and hence is
detectable today. Therefore, the idea of searching for the
neutrino background in order to use its degree of entangle-
ment can involve information concerning our cosmic history
and LIV in the early Universe. Despite the electromagnetic
field, the neutrino background is not directly observable
since these low energy particles rarely interact with the rest
of the quantum fields. However, if we consider the improve-
ment of the CMB spectrum as our sole criteria to analyze
primordial cosmic entanglement, we should not dismiss the
possibility of taking advantage of it as a reasonable candi-
date. On the other hand, due to the fact that the effects
discussed above are difficult to test directly, there exist
several simulations that provide the laboratory accessible
testable data for cosmological models [93,101–109]. In such
laboratory setups, the parameters of the experiment may
be adjustable to provide much stronger and more easily
observed effects, which are conceptually the same as the
predictions of quantum fields on a curved spacetime.
Finally, as we approach the end of this paper, a few

points beg further elucidation. The possibility of exploring
the physics of quantum gravity with astrophysical obser-
vations and putting bounds on the generic quantum gravity
effects and the parameters involved within the theory has
been a great and challenging task during recent years [110].
New bounds [111] on isotropic LIV have been estimated
in the pure photonic and gluonic sector of the standard
model extension [113]. Therefore, to consider experimental
bounds on the LIV parameters and the corresponding
entropies, we need to take into account the dependence
of these terms on polarization. The effective field theory
can be adopted as a useful tool. A complete investigation of
these issues would be interesting but lies beyond the scope
of the present work. It is necessary to assess anisotropic
models because of the anisotropy observed in the spectrum
of the CMB [114,115]. The experimental bounds can
become weaker if the assumption of isotropy is removed
in the CMB frame [116]. In this paper, attention was given
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to isotropic FRW spacetime. Recently, the influence of
anisotropy on entanglement produced by dynamical space-
time was studied using a Bianchi type I model [117]. In an
upcoming work we plan to return to the issue raised by this
paper with a detailed discussion of such a situation and to
address the extent to which the generated entropy can be
affected by an anisotropic model when the LIV is taken into
account.
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