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We construct an updated and extended compilation of growth-rate data based on recent redshift-space
distortion measurements. The data set consists of 34 data points and includes corrections for model
dependence. In order to minimize overlap and maximize the independence of the data points, we also
construct a subsample of this compilation (a “gold” growth data set) which consists of 18 data points.
We test the consistency of this data set with the best-fit Planck15=ΛCDM parameters in the context of
General Relativity using the evolution equation for the growth factor δðaÞ with a wCDM background.
We find tension at the ∼3σ level between the best-fit parameters w (the dark energy equation of state),
Ω0m (the matter density parameter), and σ8 (the matter power spectrum normalization on scales
8h−1 Mpc) and the corresponding Planck15=ΛCDM parameters (w ¼ −1, Ω0m ¼ 0.315, and
σ8 ¼ 0.831). We show that the tension disappears if we allow for evolution of the effective Newton
constant, parametrized as GeffðaÞ=GN ¼ 1þ gað1 − aÞn − gað1 − aÞ2n with n ≥ 2 where ga and n are
parameters of the model, a is the scale factor, and z ¼ 1=a − 1 is the redshift. This parametrization
satisfies three important criteria: a) positive energy of the graviton (Geff > 0), b) consistency with big
bang nucleosynthesis constraints (Geffða ≪ 1Þ=GN ¼ 1), and c) consistency with Solar System tests
(Geffða ¼ 1Þ=GN ¼ 1 and G0

effða ¼ 1Þ=GN ¼ 0). We show that the best-fit form of GeffðzÞ obtained from
the growth data corresponds to weakening gravity at recent redshifts (decreasing function of z), and we
demonstrate that this behavior is not consistent with any scalar-tensor Lagrangian with a real scalar
field. Finally, we use MGCAMB to find the best-fit GeffðzÞ obtained from the Planck cosmic microwave
background power spectrum on large angular scales and show that it is a mildly increasing function of z,
in 3σ tension with the corresponding decreasing best-fit GeffðzÞ obtained from the growth data.
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I. INTRODUCTION

Despite the vast improvement in quality and quantity of
the cosmological observations during the past 18 years, the
simplest cosmological model predicting an accelerating
expansion of the Universe, known as the ΛCDM [1], has
remained viable and consistent with observations [2–4].
Crucial assumptions of this model are the validity of
General Relativity (GR) on cosmological scales, flatness
homogeneity, isotropy, and the invariance of dark energy in
both space and time (cosmological constant). The param-
eters of this model have been pinned down to extraordinary
accuracy by the Planck [5] mission. These parameter
values define the concordance Planck15=ΛCDM model
and are shown in Table I. This model is consistent with a
wide range of independent cosmological observations

testing mainly the large scale cosmological background
HðzÞ. Such observations include earlier analyses of cosmic
microwave background (CMB) fluctuations [6], large scale
velocity flows [7], baryon acoustic oscillations [8,9], Type
Ia supernovae [10], early growth rate of perturbations
data [11–14], gamma ray burst data [15–17], strong and
weak lensing data [18],HðzÞ (Hubble parameter) data [19],
HII galaxy data [20], and cluster gas mass fraction
data [21,22].
Despite the consistency of Planck15=ΛCDM with large

cosmological scales background data, it has become
evident recently that a mild tension appears to exist
between Planck15=ΛCDM and some independent obser-
vations in intermediate cosmological scales (z ≤ 0.6), [23].
Such tensions include estimates of the Hubble parameter
[24–30] in the context of, estimates of the amplitude of
the power spectrum on the scale of 8h−1 Mpc (σ8) [1], and
estimates of the matter density parameter Ω0m [31].
In addition, there are theoretical arguments based on

naturalness that may hint toward physics beyond the
concordance ΛCDM model [2–4].
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The data that are in some tension with Planck15=ΛCDM
appear to indicate consistently that there is a lack of
gravitational power in structures on intermediate-small
cosmological scales. This lack of power may be expressed
through different cosmological parameters in a degenerate
manner. For example, it may be expressed as a lower value
of Ω0m at redshifts less than about 0.6 or as a smaller value
of σ8 or as a dark energy equation of state that becomes
smaller than −1 at low redshifts.
The situation is reminiscent of the corresponding situation

in the early 1990s before the confirmation of ΛCDM by
Supernovae type Ia (SnIa) data [32,33] when the Einstein-de
Sitter flat “standard CDM model” was seen to be in mild
tension with a range of cosmological data on large cosmo-
logical data including the COBE discovery of large scale
CMB fluctuations which were larger than expected in the
CDM model. It was first realized by Efstathiou in 1990 that
there is more power on large scales than predicted by CDM
[34] and that a flat universe with a cosmological constant
could ease the large scale tension. This analysis was con-
firmed by other subsequent studies [35–39]. Despite the
evidence that the CDM model lacked the required power on
large scales to match observations, it remained the “standard
model” until 1998 when the accelerating expansion was
confirmed at several σ using type Ia supernovae [32,33].
The parameter that is most commonly used to describe

the lack of power of Planck15=ΛCDM on small scales is the
variance of the linear matter perturbations on 8h−1 Mpc,
σ8. This parameter can be obtained from a weak lensing
correlation function obtained by the CFHTLenS
Collaboration [40], from the galaxy cluster count [41], and
from redshift-space distortion (RSD) data [42,43]. These data
sets indicate that there is lower growth power than the one
inferred in the context of Planck15=ΛCDM andGR, at about
2σ level [44–46]. This tension, if not due to systematics, could
be reconciled by a mechanism that reduces the rate of

clustering between recombination and today. Three such
possible mechanisms are as follows:

(i) A hot dark matter component induced, e.g., by a
sterile neutrino [47].

(ii) Dark matter clusters differently at small and large
scales, a possibility explored in Ref. [48].

(iii) Modifications of GR [49] which attenuate the growth
rate of perturbations.

In the present study, we focus on the third mechanism. If a
modification of GR is responsible for the observed cosmo-
logical accelerating expansion, it would also lead to a
modified growth rate of cosmological density perturbations
compared to the one predicted in GR. This growth rate has
been measured in several surveys in redshifts ranging from
z ¼ 0.02 up to z ¼ 1.4 and is defined as

fðaÞ ¼ dδðaÞ
d ln a

; ð1:1Þ

where δðaÞ≡ δρ
ρ denotes the cosmological overdensity and

aðtÞ is the scale factor.
Most growth-rate measurements are obtained using

peculiar velocities obtained from RSD measurements [50]
identified in galaxy redshift surveys. In general, such surveys
can provide measurements of the perturbations in terms
of the galaxy density δg, which are related to matter
perturbations through the bias parameter b as δg ¼ bδm.
Thus, early growth-rate measurements provided values of
the growth rate f divided by the bias factor b leading to the
parameter β f

b.
This measured parameter is sensitive to the value of

the bias b which can vary in the range b ∈ ½1; 3�. This
uncertainty factor makes it difficult to combine values of β
from different regions and different surveys leading to
unreliable data sets of βðziÞ.
A more reliable combination is the product fðzÞσ8ðzÞ≡

fσ8ðzÞ, as it is independent of the bias and may be obtained
using either weak lensing or RSD. Thus, in the present
study, we only consider surveys that have reported the
growth rate in the robust form fðzÞσ8ðzÞ. These surveys
along with the corresponding data points are shown in
Table II where the data are shown in chronological order,
along with the assumed fiducial cosmology and other notes,
e.g., their covariance matrix and so on.
Some of these points are in fact highly correlated with

other points since they were produced by analyses of the
same sample of galaxies. Also, it is clear from Table II that
there has been a dramatic increase and improvement of the
growth-rate data during the past five years. This is mainly
due to the SDSS, BOSS, WiggleZ, and Vipers surveys that
have dramatically increased the number of growth-rate data
and their constraining power. The quality and quantity of
the growth-rate data are expected to improve dramatically
in the coming years with the Euclid [51] and LSST [52]
surveys.

TABLE I. Planck15=ΛCDM parameters with 68% limits.
Based on TT, TE, EEþ lowP and a flat ΛCDM model (middle
column) or a wCDMmodel (right column); see Table 4 of Ref. [5]
and the Planck chains archive.a

Parameter Value (ΛCDM) Value (wCDM)

Ωbh2 0.02225� 0.00016 0.02229� 0.00016

Ωch2 0.1198� 0.0015 0.1196� 0.0015

ns 0.9645� 0.0049 0.9649� 0.0048
H0 67.27� 0.66 > 81.3
Ωm 0.3156� 0.0091 0.203þ0.022

−0.065
w −1 −1.55þ0.19

−0.38
σ8 0.831� 0.013 0.983þ0.100

−0.055

aA probability distribution function (pdf) describing the
data contained in the Planck archive can be found here:
https://wiki.cosmos.esa.int/planckpla2015/index.php/Cosmological
Parameters.
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Despite the dramatic improvement of the quality and
quantity of the growth-rate data, their combination into a
single uniform and self-consistent data set remains a
challenge. There are two basic reasons for this:

(i) Model dependence: Since surveys do not measure
distances to galaxies directly, they have to assume a
specific cosmological model in order to infer dis-
tances. All growth-rate data points shown in Table II
assume a flat ΛCDM cosmological background
albeit with different Ω0m and/or σ8. The actual
values of these parameters used for each data point
are shown in Table II. This model dependence
requires a correction before the data are included
in a single uniform data set.

(ii) Double-counting: Some of the data points shown in
Table II correspond to the same sample of galaxies

analyzed by different groups/methods, and the in-
clusion of all these points without proper corrections
would lead to double-counting and artificial de-
crease of the error regions.

In the present analysis, we address the above issues and
construct a new large, uniform, and reliable growth-rate
data set which consists of independent data points that are
corrected for model dependence by rescaling growth-rate
measurements by proper ratios of HðzÞDAðzÞ where DAðzÞ
is the angular diameter distance. We use this data set
to investigate the tension level with a Planck15=ΛCDM
background model under the assumption of validity of GR.
The tension we find can be eliminated by either changing

the background Hubble parameter HðzÞ or by allowing
modifications of GR through a scale independent effective
Newton constant GeffðzÞ. We follow that latter route, and

TABLE II. A collection of recent fσ8ðzÞ measurements from different surveys, ordered chronologically. In the columns, we show the
name and year of the survey that made the measurement, the redshift and value of fσ8ðzÞ, and the corresponding reference and fiducial
cosmology. These data points are not independent and should not be used altogether at the same time. For a robust compilation, see
Table III.

Index Data set z fσ8ðzÞ Refs. Year Notes

1 SDSS-LRG 0.35 0.440� 0.050 [58] 2006 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
2 VVDS 0.77 0.490� 0.18 [58] 2008 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
3 2dFGRS 0.17 0.510� 0.060 [58] 2009 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
4 2MASS 0.02 0.314� 0.048 [59,60] 2010 ðΩm;ΩKÞ ¼ ð0.266; 0Þ
5 SnIaþ IRAS 0.02 0.398� 0.065 [61,60] 2011 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
6 SDSS-LRG-200 0.25 0.3512� 0.0583 [62] 2011 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
7 SDSS-LRG-200 0.37 0.4602� 0.0378 [62] 2011
8 SDSS-LRG-60 0.25 0.3665� 0.0601 [62] 2011 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
9 SDSS-LRG-60 0.37 0.4031� 0.0586 [62] 2011
10 WiggleZ 0.44 0.413� 0.080 [63] 2012 ðΩm; hÞ ¼ ð0.27; 0.71Þ
11 WiggleZ 0.60 0.390� 0.063 [63] 2012 Cij → Eq. (2.8).
12 WiggleZ 0.73 0.437� 0.072 [63] 2012
13 SDSS-BOSS 0.30 0.407� 0.055 [64] 2012 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
14 SDSS-BOSS 0.40 0.419� 0.041 [64] 2012
15 SDSS-BOSS 0.50 0.427� 0.043 [64] 2012
16 SDSS-BOSS 0.60 0.433� 0.067 [64] 2012
17 SDSS-DR7-LRG 0.35 0.429� 0.089 [65] 2012 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
18 6dFGRS 0.067 0.423� 0.055 [66] 2012 ðΩm;ΩKÞ ¼ ð0.27; 0Þ
19 GAMA 0.18 0.360� 0.090 [67] 2013 ðΩm;ΩKÞ ¼ ð0.27; 0Þ
20 GAMA 0.38 0.440� 0.060 [67] 2013
21 BOSS-LOWZ 0.32 0.384� 0.095 [68] 2013 ðΩm;ΩKÞ ¼ ð0.274; 0Þ
22 SDSS-CMASS 0.59 0.488� 0.060 [69] 2013 ðΩm; h; σ8Þ ¼ ð0.307115; 0.6777; 0.8288Þ
23 Vipers 0.80 0.470� 0.080 [70] 2013 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
24 SDSS-MGS 0.15 0.490� 0.145 [71] 2014 ðΩm; h; σ8Þ ¼ ð0.31; 0.67; 0.83Þ
25 SDSS-veloc 0.10 0.370� 0.130 [72] 2015 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
26 FastSound 1.40 0.482� 0.116 [73] 2015 ðΩm;ΩKÞ ¼ ð0.270; 0Þ
27 6dFGSþ SnIa 0.02 0.428� 0.0465 [74] 2016 ðΩm; h; σ8Þ ¼ ð0.3; 0.683; 0.8Þ
28 Vipers PDR-2 0.60 0.550� 0.120 [75] 2016 ðΩm;ΩbÞ ¼ ð0.3; 0.045Þ
29 Vipers PDR-2 0.86 0.400� 0.110 [75] 2016
30 BOSS DR12 0.38 0.497� 0.045 [76] 2016 ðΩm;ΩKÞ ¼ ð0.31; 0Þ
31 BOSS DR12 0.51 0.458� 0.038 [76] 2016
32 BOSS DR12 0.61 0.436� 0.034 [76] 2016
33 Vipers v7 0.76 0.440� 0.040 [77] 2016 ðΩm; σ8Þ ¼ ð0.308; 0.8149Þ
34 Vipers v7 1.05 0.280� 0.080 [77] 2016
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assuming that the Planck15=ΛCDM background is
correct, we find the best-fit form of GeffðzÞ using the
Planck15=ΛCDM HðzÞ and our growth-rate data set. The
derivation of the best-fit effective Newton’s constant along
with the Planck15=ΛCDM HðzÞ allows the reconstruction
of the underlying fundamental model Lagrangian density in
the context of specific classes of models.
A general and generic such class of models is scalar-

tensor theories where the action in the Jordan frame is
determined by the scalar field potential UðϕÞ and the
nonminimal coupling FðϕÞ in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðϕÞR −

1

2
ZðϕÞgμν∂μϕ∂νϕ −UðϕÞ

�

þ Sm; ð1:2Þ

where R is the Ricci scalar. We have set 8πGN ≡ 1 for
simplicity (and therefore F0 ¼ 1 at the present time), and
Sm is the matter action of some arbitrary matter fields, i.e.,
does not involve the scalar field ϕ. Even though the scalar
field is fully described by the set of FðϕÞ; ZðϕÞ, and UðϕÞ,
a convenient reduction to two parameters can be applied
(e.g., Refs. [53–55]) by a rescaling of the scalar field.
For example, we may have the Brans-Dicke reduction
where FðϕÞ ¼ ϕ; ZðϕÞ ¼ ωðϕÞ=ϕ, or alternatively we can
obtain ZðϕÞ ¼ 1 with arbitrary FðϕÞ as done in the present
analysis. We note that all of the above are applied in the
Jordan frame where the model is studied. In addition,
FðϕÞ > 0 is required so that gravitons have positive energy
and dF=dϕ < 4 × 10−4 according to Solar System tests
(see Refs. [54,56]). As discussed in Sec. IV, the effective

Newton constantGeffðzÞ is approximately inversely propor-
tional to the nonminimal coupling FðϕðzÞÞ and is observ-
able through the growth of cosmological perturbations.
It is thus possible to use the best-fit form ofGeffðzÞ along

with the Planck15=ΛCDM HðzÞ to reconstruct the under-
lying scalar-tensor theory potential UðϕÞ that would
produce the observed functional forms of GeffðzÞ and
HðzÞ. This scalar-tensor theory is defined by the functional
forms of the scalar field potential UðϕÞ and nonminimal
coupling FðϕÞ that are reconstructed uniquely using the
method of Refs [53,54,57]. However, as also noted in
Ref. [54], this task is not always possible as the recon-
structed kinetic term of the scalar field in many cases
becomes negative at some redshift range z, i.e., ϕ0ðzÞ2 < 0,
and as a result, the field itself becomes imaginary. In what
follows, we derive the properties of functions FðzÞ that
lead to positive kinetic terms for a real scalar field when
used in a reconstruction. These properties come from the
fact that FðzÞ satisfies a differential inequality, and we
can deduce them by using the Chaplygin theorem on
differential inequalities.
The structure of this paper is the following. In the next

section, we introduce the new robust and extended growth
data set (Table III) and use it to investigate the tension level
between growth data and Planck15=ΛCDM in the context
of GR. In Sec. III, we allow for extensions of GR and
introduce GeffðzÞ parametrizations consistent with Solar
System tests and nucleosynthesis. We then find the best-fit
form of GeffðzÞ for each parametrization and investigate the
effect of the evolving Newton’s constant on the tension
between growth data and Planck15=ΛCDM. In Sec. IV,
we use the best-fit forms of GeffðzÞ to implement the

TABLE III. A compilation of robust and independent fσ8ðzÞmeasurements from different surveys, based on Table II. In the columns,
we show in ascending order with respect to redshift the name and year of the survey that made the measurement, the redshift and value of
fσ8ðzÞ, and the corresponding reference and fiducial cosmology. These data points are used in our analysis in the next sections.

Index Data set z fσ8ðzÞ Refs. Year Notes

1 6dFGSþ SnIa 0.02 0.428� 0.0465 [74] 2016 ðΩm; h; σ8Þ ¼ ð0.3; 0.683; 0.8Þ
2 SnIaþ IRAS 0.02 0.398� 0.065 [61,60] 2011 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
3 2MASS 0.02 0.314� 0.048 [59,60] 2010 ðΩm;ΩKÞ ¼ ð0.266; 0Þ
4 SDSS-veloc 0.10 0.370� 0.130 [72] 2015 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
5 SDSS-MGS 0.15 0.490� 0.145 [71] 2014 ðΩm; h; σ8Þ ¼ ð0.31; 0.67; 0.83Þ
6 2dFGRS 0.17 0.510� 0.060 [58] 2009 ðΩm;ΩKÞ ¼ ð0.3; 0Þ
7 GAMA 0.18 0.360� 0.090 [67] 2013 ðΩm;ΩKÞ ¼ ð0.27; 0Þ
8 GAMA 0.38 0.440� 0.060 [67] 2013
9 SDSS-LRG-200 0.25 0.3512� 0.0583 [62] 2011 ðΩm;ΩKÞ ¼ ð0.25; 0Þ
10 SDSS-LRG-200 0.37 0.4602� 0.0378 [62] 2011
11 BOSS-LOWZ 0.32 0.384� 0.095 [68] 2013 ðΩm;ΩKÞ ¼ ð0.274; 0Þ
12 SDSS-CMASS 0.59 0.488� 0.060 [69] 2013 ðΩm; h; σ8Þ ¼ ð0.307115; 0.6777; 0.8288Þ
13 WiggleZ 0.44 0.413� 0.080 [63] 2012 ðΩm; hÞ ¼ ð0.27; 0.71Þ
14 WiggleZ 0.60 0.390� 0.063 [63] 2012 Cij → Eq. (2.8).
15 WiggleZ 0.73 0.437� 0.072 [63] 2012
16 Vipers PDR-2 0.60 0.550� 0.120 [75] 2016 ðΩm;ΩbÞ ¼ ð0.3; 0.045Þ
17 Vipers PDR-2 0.86 0.400� 0.110 [75] 2016
18 FastSound 1.40 0.482� 0.116 [73] 2015 ðΩm;ΩKÞ ¼ ð0.270; 0Þ
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reconstruction method for the derivation of the underlying
scalar-tensor potential. We find that for the particular form of
the best-fit GeffðzÞ no consistent reconstruction of a realistic
scalar-tensor model can be implemented due to the fact that
the kinetic term of the scalar field becomes negative, i.e.,
ϕ0ðzÞ2 < 0. Then, by using the Chaplygin theorem on
differential inequalities, we derive the required properties
of the observed GeffðzÞ in the context of a ΛCDM back-
ground so that a well-defined scalar-tensor theory can be
reconstructed. In Sec. V, we determine the effects of the
GeffðzÞ parametrization on the low-l multipoles of the
CMB, while in Sec. VI, we conclude, summarize, and
discuss future extensions of the present work.

II. EXTENDED CALIBRATED GROWTH RSD
DATA SET: TENSION WITH Planck15=ΛCDM

A. Theoretical background

In order to discriminate between GR and modified
gravity theories, we need an extra observational probe
which can track the dynamical properties of gravity. One
such probe is the growth function of the linear matter
density contrast δ≡ δρm

ρm
, where ρm represents the back-

ground matter density and δρm represents its first-order
perturbation.
It can be shown that in many classes of modified gravity

theories the growth factor δðaÞ satisfies the following
equation [78–81],

δ00ðaÞ þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0ðaÞ− 3

2

ΩmGeffða; kÞ=GN

a5HðaÞ2=H2
0

δðaÞ ¼ 0;

ð2:1Þ

where primes denote differentiation with respect to the
scale factor, HðaÞ≡ _a

a is the Hubble parameter, and
Geffða; kÞ is the effective Newton constant which is con-
stant and equal to GN in GR. In modified gravity theories,
Geff depends on both the scale factor a (or equivalently the
redshift z) and the scale k. However, Geff is independent of
the scale k for scales smaller than the horizon (k ≫ aH)
[82]. Thus, on subhorizon scales, we may ignore the
dependence on the scale k for both δ and Geff .
For the growing mode, we assume the initial conditions

δða ≪ 1Þ ¼ a and δ0ða ≪ 1Þ ¼ 1, where in practice we
will choose a small enough value of the scale factor so
that we are well within the matter domination era, e.g.,
aini ∼ 10−3. Note that this equation is only valid on
subhorizon scales, i.e., k2 ≫ a2H2, where k is the wave
number of the modes of the perturbations in Fourier space.
The effects of modified gravity theories enter Eq. (2.1) via
both HðaÞ and Geffða; kÞ. This is due to the fact that the
growth of the large scale structure is a result of the motion
of matter and therefore is sensitive to both the expansion of
the Universe and the evolution of Newton’s “constant”.

In the case of GR, the exact solution of Eq. (2.1) for a flat
model with a constant dark energy equation of state w is
given for the growing mode by [83,84]

δðaÞ ¼ a · 2F1

�
−

1

3w
;
1

2
−

1

2w
; 1 −

5

6w
; a−3wð1 −Ω−1

m Þ
�
;

ð2:2Þ

where 2F1ða; b; c; zÞ is a hypergeometric function defined
by the series

2F1ða; b; c; zÞ≡ ΓðcÞ
ΓðaÞΓðbÞ

X∞
n¼0

Γðaþ nÞΓðbþ nÞ
Γðcþ nÞn! zn

ð2:3Þ

on the disk jzj < 1 and by analytic continuation elsewhere
(see Ref. [85] for more details). In general, it is impossible
to find analytical solutions to Eq. (2.1) for a generic
modified gravity model, so numerical methods for solving
it have to be used.
As discussed in the Introduction, a robust measurable

quantity in redshift surveys is not the growth factor δðaÞ.
Instead, it is the combination

fσ8ðaÞ≡ fðaÞ · σðaÞ
¼ σ8

δð1Þ aδ
0ðaÞ; ð2:4Þ

where fðaÞ ¼ dlnδ
dlna is the growth rate and σðaÞ ¼ σ8

δðaÞ
δð1Þ is

the redshift-dependent rms fluctuations of the linear density
field within spheres of radius R ¼ 8h−1 Mpc, while the
parameter σ8 is its value today. This combination is used in
what follows to derive constraints for theoretical model
parameters.

B. RSD measurements

Redshift-space distortions are very important probes of
large scale structure providing measurements of fσ8ðaÞ.
This can be achieved by measuring the ratio of the
monopole and the quadrupole multipoles of the redshift-
space power spectrum which depends on β ¼ f=b, where f
is the growth rate and b is the bias, in a specific way defined
by linear theory [58,86,87]. The combination of fσ8ðaÞ is
independent of bias as all bias dependence in this combi-
nation cancels out thus, it has been shown that this
combination is be a good discriminator of DE (Dark
energy) models [58].
In Table II, we present a collection of recent fσ8ðzÞ

measurements from different surveys, ordered chronologi-
cally. In the columns, we show the name and year of the
survey that made the measurement, the redshift, the value
of fσ8ðzÞ, and the corresponding reference and fiducial
cosmology. The information in some of these data points
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overlaps significantly with other data points in the same
table. Some of them are updates on previous measurements
either with enhancements in the volume of the survey,
during its scheduled run, or with different methodologies
by various groups. Therefore, the collection of these data
points should not be used in its entirety.
We thus construct the “Gold-2017” compilation of

robust and independent fσ8ðzÞ measurements from differ-
ent surveys, shown in Table III. In the columns of Table III,
we show the name and year of the survey that made the
measurement, the redshift, and value of fσ8ðzÞ, and the
corresponding reference and fiducial cosmology. These
data points are used in our analysis in the next sections.
These points are a subset of those from Table II and were
chosen so that only the latest version or more robust version
of a measurement is included from every corresponding
survey.
In both Tables II and III, the data have a dependence on

the fiducial model used by the collaborations to convert
redshifts to distances, an important step in the derivations of
the data. This can be corrected by either taking into account
how the correlation function ξðrÞ transforms by changing
the cosmology, an approach followed by Ref. [88], or by
simply rescaling the growth-rate measurements by the
ratios of HðzÞDAðzÞ of the cosmology used to that of
the fiducial one as in Ref. [89]. As noted in Ref. [89], the
correction itself is quite small, so we follow the latter
method for simplicity.
Specifically, we implement the correction as follows.

First, we define the ratio of the product of the Hubble
parameterHðzÞ and the angular diameter distance dAðzÞ for
the model at hand to that of the fiducial cosmology, i.e.,

ratioðzÞ ¼ HðzÞdAðzÞ
HfidðzÞdfidA ðzÞ ; ð2:5Þ

where the values of the fiducial cosmology, namely Ω0m,
are given in Table III. Note that the combinationHðzÞdAðzÞ
does not depend on H0, so it could be equivalently written
in terms of the dimensionless Hubble parameter EðzÞ ¼
HðzÞ=H0 and angular diameter distance DAðzÞ ¼ H0

c dAðzÞ.
Having done this, we can now define the χ2 as usual for

correlated data. We can define a vector Viðzi; pjÞ, where zi
is the redshift of the ith point and pj is the jth component
of a vector containing the cosmological parameters
ðΩ0m; w; σ8…Þ that we want to determine from the data.
This vector contains the differences of the data and the
theoretical model, after we implement our correction.
Specifically, it is given by

Viðzi; pjÞ ¼ fσ8;i − ratioðziÞfσ8ðzi; pjÞ; ð2:6Þ

where fσ8;i is the value of the ith data point, with
i ¼ 1;…; N, where N is the total number of points, while
fσ8ðzi; pjÞ is the theoretical prediction, both at redshift zi.

Then, the χ2 can be written as

χ2growth ¼ ViC−1
ij V

j; ð2:7Þ

where C−1
ij is the inverse covariance matrix of the data and

for compactness we only used the superscripts i and j for
the data vectors. For an approximation, we will assume that
most of the data are not correlated, with the exception of the
ones from Wigglez, where the covariance matrix is given
by [63]

CWiggleZ
ij ¼ 10−3

0
B@

6.400 2.570 0.000

2.570 3.969 2.540

0.000 2.540 5.184

1
CA: ð2:8Þ

Therefore, the total covariance matrix will be the identity
N × N matrix, but with the addition of a 3 × 3matrix at the
position of the WiggleZ data; i.e., schematically, we could
write it as

Cgrowth;total
ij ¼

0
B@

σ21 0 0 � � �
0 CWiggleZ

ij 0 � � �
0 0 � � � σ2N

1
CA: ð2:9Þ

An alternative approach would be that of Ref. [88] where
the authors approximated the total covariance matrix of
all the measurements as the fraction of overlap volume
between the surveys to the total volume of the two surveys
combined. However, this approach obviously cannot take
into account any possible negative correlations between the
data as the effect of the correlations can be due to more than
the overlapping survey volumes. Thus, this approach can
lead to a potentially biased covariance matrix. This issue
will be resolved in the near future when upcoming surveys
like Euclid and LSST will provide consistent growth-rate
measurements in both the low and high redshift regimes.
Using the corrected χ2 and our Gold-2017 compilation

given by Table III, we now proceed to extract the best-fit
cosmological parameters and discuss the results. First, we
assume GR with a constant w model and a flat Universe.
Then, the Hubble parameter is given by

EðaÞ2 ≡HðaÞ2=H2
0

¼ Ω0ma−3 þ ð1 −Ω0mÞa−3ð1þwÞ; ð2:10Þ

where we have ignored the radiation as at late times it has a
negligible impact. This case is rather simple, so in order to
speed up the code, it is convenient to use the analytical
expression for the growing mode of the growth factor given
by Eq. (2.2) and the analytical expression for the luminosity
distance, which follows after a quick calculation using the
definition, given by
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H0

c
dLðaÞ¼

2

a
ffiffiffiffiffiffiffiffiffi
Ω0m

p 2F1

�
1

2
;−

1

6w
;1−

1

6w
;1−

1

Ωmð1Þ
�

−
2ffiffiffi

a
p ffiffiffiffiffiffiffiffiffi

Ω0m
p 2F1

�
1

2
;−

1

6w
;1−

1

6w
;1−

1

ΩmðaÞ
�
;

ð2:11Þ

where ΩmðaÞ ¼ Ω0ma−3

EðaÞ2 , and then the angular diameter

distance is given by dAðzÞ ¼ dLðzÞ
ð1þzÞ2 as usual. In the more

complicated cases discussed in the next sections, e.g.,
modified gravity models, we will perform the correspond-
ing calculations numerically.
After fitting the data, we obtain the 68.3%, 95.4%, and

99.7% confidence contours in the ðw; σ8;Ω0mÞ parameter
space, shown in Fig. 1. As it can be seen, the current
growth-rate data are at a ∼3σ tension with the Planck15=
ΛCDM best-fit cosmology, indicated with the red dot.
For completeness, we also overlap the corresponding
Planck15=wCDM contours even though our goal here is
to identify the tension level with Planck15=ΛCDM. We
will attempt to alleviate this tension in the next section, by
considering modified gravity models, as the extra degrees
of freedom provided by the theories may allow a Newton
constant of the form Geffða; kÞ to account for the tension.
Remarkably, we find that, compared to previous studies,

e.g., Ref. [90] or even the Planck 2015 data release [5],
all of which use outdated growth data, with our new Gold-
2017 compilation, we identify a 3σ tension. Given the
Planck15=ΛCDM background and the fact that we have
corrected for the diverse fiducial cosmologies used, this
tension could potentially be explained either by assuming
that the growth rates fσ8 suffer from a yet unaccounted for
systematic or by new physics perhaps affecting either the
background HðzÞ or inducing an evolution of Newton’s
constant due to modifications of GR.

In this paper, we will focus on the latter possibility
and explore the various possibilities afforded by the rich
phenomenology of modified gravity. As mentioned above,
in these theories, Newton’s constant can be time and scale
dependent, i.e., Geffða; kÞ, thus affecting the evolution of
the growth factor via the last term in Eq. (2.1). We discuss
these models in the what follows.

III. RELEASING THE TENSION USING
MODIFIED GRAVITY

In this section, we discuss physically motivated para-
metrizations of Newton’s constant Geffða; kÞ, paying special
attention to scale-independent parametrizations motivated
by modified gravity theories on subhorizon scales. We first
consider one of the minimal extensions of GR, the well-
known fðRÞ theories, where it maybe shown that under the
subhorizon/quasistatic approximation [79]

Geff=GN ¼ 1

F

1þ 4 k2

a2 m

1þ 3 k2

a2 m
ð3:1Þ

m≡ F;R

F
ð3:2Þ

F≡ f;R ¼ ∂f
∂R ; ð3:3Þ

which reduces to GR only when fðRÞ ¼ R − 2Λ, i.e., the
ΛCDM model, while a more accurate approximation was
found in Ref. [91].
One of the simplest extensions of GR and the ΛCDM

model with this formalism is the popular fðRÞmodel of Hu
and Sawicki [92]. However, the original form of this model
is unnecessarily complicated and has several degenerate
parameters, so here we prefer the implementation of the

FIG. 1. The 68.3%, 95.4%, and 99.7% confidence contours in the ðw; σ8;Ω0mÞ parameter space. The red point corresponds to the
Planck15=ΛCDM best-fit cosmology, the blue contour corresponds to the best-fit of our data to the ΛCDM model (left) and wCDM
model (middle and right panel), while the light blue and light green contours correspond to the Planck15 wCDM and ΛCDM contours,
respectively. As we can see, there is a 3σ tension between the Planck15=ΛCDM values and the growth-rate data best fit.
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b parameter as in Ref. [93]. This has several useful
advantages: first, the deviation of this model from
ΛCDM is more transparent, and, second, by performing
a Taylor expansion around b ¼ 0, we can obtain analytical
approximations for HðzÞ which are accurate to better than
0.1% for b≲ 1 and better than 10−5% for b≲ 0.1. The
Lagrangian for the Hu and Sawicki model, as written
equivalently in Ref. [93], is

fðRÞ ¼ R −
2Λ

1þ ðbΛR Þn
; ð3:4Þ

where n is a constant of the model, usually chosen as n ¼ 1
without loss of generality as it only adjusts the steepness of
the deviation from the ΛCDM model.
As mentioned, we can also obtain a very accurate Taylor

expansion of the solution to the equations of motion around
b ¼ 0, i.e., the ΛCDM model, as

H2ðaÞ ¼ H2
ΛðaÞ þ

XM
i¼1

biδH2
i ðaÞ; ð3:5Þ

where

H2
ΛðaÞ
H2

0

¼ Ω0ma−3 þ Ωr0a−4 þ ð1 − Ω0m −Ωr0Þ ð3:6Þ

and M is the number of terms we keep before truncating
the series. However, we have found that keeping only the
two first nonzero terms is more than enough to have
better than 0.1% accuracy with the numerical solution.
The functions δH2

i ðaÞ are just algebraic expressions and
can be easily determined from the equations of motion
(see Ref. [93]). Finally, we also follow Ref. [93] and set
k ¼ 0.1h Mpc−1 ≃ 300H0, which is necessary as now the
Newton constant depends on the scale k as well.
One can generalize the above model to an action that

includes a scalar field with arbitrary kinetic term non-
minimally coupled to gravity.1 Such a model has the
following action [79],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
fðR;ϕ; XÞ þ Lm

�
; ð3:7Þ

where X ¼ −gμν∂μϕ∂νϕ is the kinetic term of the scalar
field. In this case, Newton’s constant is given by [79]

Geffða; kÞ=GN ¼ 1

F

f;X þ 4
�
f;X

k2

a2
F;R

F þ F2
;ϕ

F

�

f;X þ 3
�
f;X k2

a2
F;R

F þ F2
;ϕ

F

� ; ð3:8Þ

where F ¼ FðR;ϕ; XÞ ¼ ∂RfðR;ϕ; XÞ and F;ϕ ¼ ∂ϕFðR;
ϕ; XÞ. This class of theories encompasses both the fðRÞ
models and the so called scalar-tensor (ScT) ones, given by
the Lagrangian,

LScT ¼ FðϕÞ
2

Rþ X −UðϕÞ; ð3:9Þ

and in this case, Newton’s constant reduces to

Geffða; kÞ=GN ¼ 1

FðϕÞ
FðϕÞ þ 2F2

;ϕ

FðϕÞ þ 3
2
F2
;ϕ

: ð3:10Þ

It may be shown that on subhorizon scales both (3.8)
and (3.10) are well approximated by scale-independent
functions. Thus, in what follows, we ignore the scale
dependence of Geff .
The effective Newton constant Geff can be related to

the Friedmann-Robertson-Walker (FRW) metric perturba-
tions and in particular to the Newtonian potentials Φ and Ψ
as in Ref. [94], i.e.,

ds2¼a2½−ð1þ2ΨÞdτ2þð1−2ΦÞdx⃗2�; ð3:11Þ

∇2Ψ ¼ 4πGNρδ ×GM; ð3:12Þ

∇2ðΦþΨÞ ¼ 8πGNρδ ×GL; ð3:13Þ

where δ is the growth factor and GL and GM are
dimensionless parameters, which are equal to 1 in GR,
but otherwise can be parametrized as functions of the scale
factor in a variety of ways [94]. In this case,GM ¼ Geff=GN
alters the growth of matter, while GL alters the lensing of
light via the lensing potential Φþ Ψ. Deviations from GR
are also described through the gravitational slip defined as

γslip ¼
Φ
Ψ

ð3:14Þ

and through the anisotropic stress, that is inherent to most
modified gravity theories and is defined as

η ¼ Ψ −Φ
Φ

: ð3:15Þ

Clearly, the gravitational slip and the anisotropic stress are
related via η ¼ 1

γslip
− 1, and in GR, we have that γslip ¼ 1

and η ¼ 0. In Ref. [79], it was shown that in scalar-tensor
theories the anisotropic stress is given by

1Of course, one can also consider other types of theories like
models with Galileons or with torsion of the type fðTÞ, non-
minimal couplings, and so on that have a similar effect. For this
paper, we limit ourselves to fðRÞ and scalar-tensor theories in
order to keep the problem tractable.
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η ¼ F2
;ϕ

FðϕÞ þ F2
;ϕ

; ð3:16Þ

and Eq. (3.15) implies that the quantities GL and GM are
related via

GL ¼ 1

2

ηþ 2

ηþ 1
GM: ð3:17Þ

In order to have agreement with the Solar System tests,
viable models must satisfy F;ϕ ≃ 0 at z≃ 0, which from
Eqs. (3.15) and (3.16) implies that η≃ 0. Similarly, from
(3.17), we infer that at z≃ 0, GL ≃GM ≃ 1 and γslip ≃ 1.
Any of the above quantities GM, GL, γslip, or η can be

used to construct a null test for GR. Alternative approaches
like the growth index [95–102] can also be used for
parametrizing deviations from GR. However, they are
not as efficient in distinguishing the effects of the back-
groundHðzÞ from the effects of modified gravity since they
do not enter explicitly in the dynamical growth equations.
In the present analysis, we focus on GM ¼ Geff=GN to

parametrize deviations from GR since this is the only
quantity that enters directly in the dynamical equation that
determines the growth of density perturbations [Eq. (2.1)].
We thus use the parametrization

Geffða; nÞ
GN

¼ 1þ gað1 − aÞn − gað1 − aÞ2n

¼ 1þ ga

�
z

1þ z

�
n
− ga

�
z

1þ z

�
2n
: ð3:18Þ

Clearly, this parametrization mimics the large k limit of the
above models, i.e., scales small compared to the horizon,
which is a reasonable approximation even for large surveys.
In addition, the parametrization (3.18) may be viewed as
an extended Taylor expansion around a ¼ 1 for a fixed
number of two parameters. The second term describes Geff
for low and intermediate values of z, while the third term
describes Geff for larger values of z. A similar parametri-
zation concerning the dark energy equation of state was
introduced in Ref. [103]. The parametrization (3.18) is only
viable for n ≥ 2 due to the Solar System tests that demand
that the first time derivative of Geff should be zero.
However, at this point, it is important to mention that in

the context of our analysis, we have assumed that the value
of the effective Newton constant Geff is independent of
the presence of matter density. Thus, the value of Geff on
subhorizon scales is assumed to be scale and environment
independent. We anticipate this assumption to be a good
approximation in modified gravity models where in the
physical frame there is no direct coupling of the scalar
degree of freedom to matter density. In chameleon scalar-
tensor field models, this assumption is not applicable, and
therefore in such models, Solar System constraints are

much less stringent, and our parametrization with n ¼ 1
could be physically relevant. Therefore, in what follows,
we will consider all values of n with n ≥ 0.
Furthermore, this parametrization is motivated by con-

sidering that any viable modified gravity model must
satisfy the following conditions:

(i) Geff > 0 in order for the gravitons to carry positive
energy.

(ii) Geff=GN ¼ 1.09� 0.2 to be in agreement with the
big bang nucleosynthesis (BBN).

(iii) Today, we should have Geffða ¼ 1Þ=GN ¼ 1 due to
our choice for the normalization of F.

As can be seen then, for ga > −4, our parametrization
of Eq. (3.18) satisfies all of the aforementioned require-
ments.2 One could also demand that at early times we
have G0

effða ¼ 0Þ=GN ¼ 1, i.e., we have GR, but that
would require yet another term in Eq. (3.18), so that the
coefficient can adjust the first derivative, but since the BBN
constraint is not so stringent, we prefer to allow for some
extra freedom in our model.
Another criterion we should take into account is the

self-consistency of the modified gravity model, as not all
parametrizations can be reproduced by a given model. For
example, in Ref. [53], it was found that a scalar-tensor
model cannot reproduce a given combination of GeffðzÞ
with HðzÞ. This was manifested by a negative kinetic term
for the scalar field Φ; see Fig. 5 in Ref. [53].3 Thus, we
are lead to the following question: what are the allowed
HðzÞ − GðzÞ regions for a given modified gravity model?
For scalar-tensor theories and HðzÞ corresponding to
ΛCDM, this question is addressed in the next section.
In the rest of this section, we fit the parametrization

(3.18) to our Gold-2017, assuming a Planck15=ΛCDM
background. The fσ8 data points of the Gold-2017 data
set along with some model fits are shown in Fig. 2. The
green dashed line corresponds to the best fit of the ΛCDM
model (χ2 ¼ 11.8, Ω0m ¼ 0.21; σ8 ¼ 0.88), the red dashed
one corresponds to the Planck15=ΛCDM model parameter
values (χ2 ¼ 22.8), and the blue dot-dashed one corre-
sponds to the best fit of Geff parametrization for ðga ¼
−1.16; n ¼ 2Þ with the Planck15 background (χ2 ¼ 13.5).
In particular, in Fig. 3, we show the 68.3%, 95.4%, and
99.7% confidence contours in the ga-n plane for n ¼ 0
and n ¼ 2, while in Fig. 4, we show GeffðaÞ for various
values of n (n ∈ ½2; 6� from the upper to the lower curve,
respectively) and for ga corresponding to the best-fit value.
We note that for a ≪ 1 the constraint from BBN is satisfied
since Geffða ≪ 1Þ=GN ¼ 1.

2Note that for ga < 0 the parametrization of Eq. (3.18) has a
minimum at aGeff;min

¼1−2−1=n with a value of Geff=GN ¼ 1þ ga
4
;

hence, in order to haveGeff > 0, we need ga > −4, and as we will
see later on, the best fit for various n satisfies that.

3For a similar reason, GR quintessence does not allow crossing
of the phantom divide line w ¼ −1, as this crossing would require
a change of sign of the scalar field kinetic term.
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Specifically, we explore systematically the parametric
space for n ¼ 1; 2;…; 6, while the best-fit values of ga with
error bars are shown explicitly in Table IV. It is important to
mention at this point that these best-fit values refer to the
first minimum of each χ2, which is not always the global
one. We discuss the issue of the multiple minima in some
detail in Appendix B. As can be seen from Fig. 3, this
parametrization is capable of alleviating the tension found
between the growth-rate data and the Planck15=ΛCDM
best fit, reducing it from ∼3σ to less than 1σ, thus offering
potential hints for new physics.
As mentioned above, the consistency of any modified

gravity model with the Solar System tests is paramount as
they place stringent constraints on the evolution of Geff .
Hence, viable models like the Hu and Sawicki model [92]
that evade them are effectively small perturbations around
the ΛCDM [see, e.g., Eq. (3.4)]. From a phenomenological
point of view, it is also interesting to consider direct
parametrizations of Geff like the one of Eq. (3.18). Such

a consideration leads to the following question: are the
best forms of Geff able to lead to a reconstruction of self-
consistent scalar-tensor quintessence with the Planck15=
ΛCDM background? We will address this question in the
next section.

IV. RECONSTRUCTION OF SCALAR-TENSOR
QUINTESSENCE

The line element for the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric corresponding to a flat
universe is given by

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�: ð4:1Þ

Using this metric in the action (1.2) and assuming a
homogeneous scalar field and a perfect fluid background,
we find the dynamical equations of the system as

3FH2 ¼ ρþ 1

2
_ϕ2 − 3H _F þU ð4:2Þ

−2F _H ¼ ðρþ pÞ þ _ϕ2 þ F̈ −H _F: ð4:3Þ

FIG. 2. Plot of fσ8ðzÞ for the Gold-2017 growth-rate data set.
The green dashed line and the red dashed one correspond to the
best fits of ΛCDM and Planck15=ΛCDM models, respectively,
while the blue dot-dashed one corresponds to the best fit of
Geff parametrization for ga ¼ −1.16; n ¼ 2 with the Planck15
background.

TABLE IV. The best-fit values of ga with errors bars for
n ¼ 1; 2;…; 6. As we describe in Appendix B, this parametriza-
tion has several distinct minima, but here we show only the global
one when both ga and n are free (first row) and then for integer
values of n ¼ 1; 2;…; 6, the minima corresponding to the lowest
ga which are also the global ones for low values of n.

n ga

0.343 −1.200� 1.025
1 −0.944� 0.253
2 −1.156� 0.341
3 −1.534� 0.453
4 −2.006� 0.538
5 −2.542� 0.689
6 −3.110� 0.771

FIG. 3. The 68.3%, 95.4%, and 99.7% confidence contours in
the ga-n plane for n ¼ 0 (left) and n ¼ 2 (right). In both cases, the
point at the intersection of the dashed lines corresponds to the
best-fit Planck15=ΛCDM model.

FIG. 4. GeffðaÞ=GN in the range n ∈ ½1; 6� from the upper
to lower curve, respectively, and for ga corresponding to the
best-fit value.
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We eliminate the kinetic term _ϕ2 in Eq. (4.3), and we set
the squared rescaled Hubble parameter as

qðzÞ≡ E2ðzÞ ¼ H2ðzÞ
H2

0

; ð4:4Þ

while a new rescaling to potential is applied, i.e.,
U → U ·H2

0. We thus obtain the dynamical equations in
terms of the redshift z as

F00ðzÞ þ
�
q0ðzÞ
2qðzÞ −

4

1þ z

�
F0ðzÞ

þ
�

6

ð1þ zÞ2 −
2

ð1þ zÞ
q0ðzÞ
2qðzÞ

�
F

¼ 2UðzÞ
ð1þ zÞ2qðzÞ þ 3

1þ z
qðzÞ Ω0m ð4:5Þ

ϕ0ðzÞ2¼−
6F0ðzÞ
1þz

þ 6FðzÞ
ð1þzÞ2−

2UðzÞ
ð1þzÞ2qðzÞ−6

1þz
qðzÞΩ0m;

ð4:6Þ
where the differentiation with respect to the redshift z is
denoted by the prime and we have assumed a matter perfect
fluid with p ¼ 0;Ω0m ¼ 3ρ0m=H2

0. In addition, Eqs. (4.5)
and (4.6) satisfy the initial conditions ϕð0Þ ¼ 0; Fð0Þ ¼ 1,
and F0ð0Þ ¼ 0 for consistency with Solar System tests
ðdF=dϕ ∼ dF=dz≃ 0 [56,104,105]).
In scalar-tensor theories, the effective Newton constant

with respect to z is of the form (see Ref. [53])

GeffðzÞ ¼
1

F

2F þ 4ðdFdΦÞ2
2F þ 3ðdFdΦÞ2

GN ≃GN

F
; ð4:7Þ

where GN is the well-known Newton constant in GR.
Equations (4.5) and (4.6) form the system of equations

for fUðzÞ;ϕ0ðzÞg that can be used for the reconstruction of
the theory [derivation of functions UðϕÞ, FðϕÞ], assuming
that the functions FðzÞ [or GeffðzÞ] and HðzÞ are observa-
tionally obtained [87,106,107]. The function HðzÞ is well
approximated by the Planck15=ΛCDM fit with parameters
shown in Table I. The function GeffðzÞ may be obtained
using the growth data of Table III in the context of the
parametrization (3.18) that satisfies the three basic con-
ditions discussed in the previous section (Solar System
tests, nucleosynthesis constraints, and proper normalization
at the present time).
Even after the observational determination of GeffðzÞ

and HðzÞ, the self-consistent reconstruction of a modified
theory is not always possible. For example, in the case
of a scalar-tensor theory, the sign of ϕ0ðzÞ2 obtained from
Eqs. (4.5) and (4.6) may turn out to be negative, leading to a
complex predicted value of the scalar field. This violates
that assumption of a real scalar field on which the theory is

based and leads to inconsistencies that may be difficult
to overcome.
As shown in Fig. 4 and in Table IV, it is clear that the

growth data indicate that the gravitational strength may be a
decreasing function of the redshift in the redshift range
[0, 0.4] compared to its present value. The question that we
want to address is the following: can this weakening effect
of gravity be due to an underlying scalar-tensor theory? If
the answer is positive, then the sign of the reconstructed
ϕ0ðzÞ2 should be positive so that the scalar field of the
theory is real. We will show that a Geff that is decreasing
with redshift at low z is not consistent with positive ϕ0ðzÞ2,
and therefore this behavior cannot be due to an underlying
scalar-tensor theory. This is shown numerically in Fig. 5
where we show the reconstructed form of ϕ0ðzÞ2 under the
assumption of the best-fit forms ofGeff (n ¼ 1, 2, 3, 4, 5, 6)
shown in Fig. 4 and the Planck15=ΛCDM background
HðzÞ obtained with the parameters of Table I. Clearly,
for all values of n considered, ϕ0ðzÞ2 is negative for low z,
leading to an unacceptable scalar-tensor theory.
This result may be generalized analytically as follows:

using Eqs. (4.5) and (4.6) and demanding that ϕ02ðzÞ ≥ 0,
we obtain

F00ðzÞ þ F0ðzÞ
�
q0ðzÞ
2qðzÞ þ

2

zþ 1

�
− FðzÞ q0ðzÞ

ðzþ 1ÞqðzÞ

þ 3Ωmðzþ 1Þ
qðzÞ ≤ 0; ð4:8Þ

which is a second-order differential inequality for FðzÞ.
A useful theorem for dealing with such inequalities is

the Chaplygin theorem (see Ref. [108] and Appendix A for
details). In order to bring the inequality (4.8) to the form
required by the theorem, we first set FðzÞ ¼ 1 − δfðzÞ

FIG. 5. The evolution with redshift of the kinetic term ϕ0ðzÞ2
for various values of n in the range z ∈ ½0; 2�. Each case gives an
imaginary scalar field which is not acceptable, leading to scalar-
tensor theory inconsistencies. The line corresponding to n ¼ 1 is
only applicable in a chameleon mechanism and thus is ruled out
due to Solar System tests in the present analysis.
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and deduce the corresponding inequality for δfðzÞ. We
then find

δf00ðzÞ þ δf0ðzÞ
�

2

1þ z
þ q0ðzÞ
2qðzÞ

�
− δfðzÞ q0ðzÞ

ð1þ zÞqðzÞ

−
3Ωmð1þ zÞ

qðzÞ þ q0ðzÞ
ð1þ zÞqðzÞ ≥ 0: ð4:9Þ

By applying the theorem, as described in Appendix A,
we find that the inequality (4.8) is satisfied for an
ΛCDM background only when δfðzÞ ≥ 0 or FðzÞ ≤ 1
ðGeffðzÞ=GN ≥ 1Þ for a range that includes all z ≥ 0, as
we found by a numerical analysis.
To summarize, in order to satisfy the inequality (4.8)

along with the viability constraints (positive energy for the
graviton, etc.) and to be able to reconstruct the scalar-tensor
Lagrangian in a ΛCDM background, we need to have
0 < FðzÞ ≤ 1 ½GeffðzÞ=GN ≥ 1�. This result explains why
the reconstruction as seen in Fig. 5 does not work. Every
one of these cases has a negative value for ϕ0ðzÞ2 at some z,
and as seen in Fig. 4, it also has FðzÞ > 1 ½GeffðzÞ=GN < 1�
in some region. Several numerical tests we performed with
several models seem to corroborate the result of this
theorem. This issue has also been discussed in Ref. [54]
even though no general rule was derived for the viability
of the reconstruction. Therefore, we conclude that the
only viable models of scalar-tensor theories that can be
reconstructed in the context of a ΛCDM background HðzÞ
are the ones where the nonminimal coupling function
satisfies 0 < FðzÞ ≤ 1 for all z ≥ 0. In the context of the
reconstruction analysis, we have used the approximation
that Geff ≃ 1

F, which we find is valid everywhere except
when ϕ0ðzÞ2 changes sign.

V. EFFECTS OF GeffðzÞ ON THE CMB

In this section, we investigate the effects of a redshift-
dependent GeffðzÞ on the CMB spectrum. We anticipate
(and verify with MGCAMB below) that GeffðzÞ affects
only the large angular CMB spectrum scales (low l)
through the integrated Sachs-Wolfe (ISW) effect while
smaller scales (the acoustic peaks) depend only on the

background HðzÞ through the angular diameter distance
dA ¼ c

H0

1
1þz

R
z
0

1
Hðz0Þ dz

0. The ISW effect is significantly

affected by the redshift dependence of Geff because it
depends on the time evolution of the potential ΦðzÞ which
in turn depends on Geff due to the Poisson equation
k2

a2 Φðk; zÞ ∝ δðzÞ ·Geffðk; zÞ, where δ ¼ δρ
ρ is the growth

factor.
In Fig. 6, we show a comparison of the theoretically

predicted low-l multipoles of the Temperature-
Temperature (TT) part of the CMB spectrum including
the ISW effect for the best-fit Geff models (Table IV)
(continuous lines, left panel). The Planck15 low-l binned
CTT
l data are also shown. The theoretically predicted

spectra were obtained with a modified version of
MGCAMB [109] with GeffðzÞ=GN given by (3.18), aniso-
tropic stress ηðzÞ ¼ 0, and with the parameter values shown
in Table IV for n ¼ 2, 3, 4 and for Geff=GN ¼ 1 for GR.
The right panel of Fig. 6 shows the theoretically predicted
CMB spectra for n ¼ 2 and various values of ga.
Clearly, the higher the exponent n of our parametrization

for Geff, the stronger the ISW effect and its deviation from
the ΛCDM model. Thus, the cases for n ¼ 5, 6 are not
included in Fig. 6 as they are not consistent with the
observed CMB power spectrum. As shown in Fig. 4, a
higher n means that gravitational strength varies more
rapidly at low z, leading to the stronger ISW effect shown
in Fig. 6.
Also, we performed a simple χ2 analysis with the low-l

data, where we defined

χ2low−l ¼
XN
i¼1

�
DPl

l −Dth
l

σDPl
l

�
2

ð5:1Þ

and Dl ¼ lðlþ1Þ
2π CTT

l . In this case, we kept all other
parameters except ga and n fixed to their Planck15=
ΛCDM values. We found that the ΛCDM model (n ¼ 0

or ga ¼ 0) has χ2GR ¼ 22.394 and the rest of the models
have χ2n¼2¼255.683, χ2n¼3¼723.922, and χ2n¼4¼2086.69.
Thus, these models are strongly disfavored with respect to
ΛCDM due to their rapid variation of Geff leading to strong
effects on the ISWeffect. In the case of fixed n, we find that

FIG. 6. The ISWeffect for the Geff model used in our analysis for various values of n evaluated at the minima for ga given in Table IV
(left) and for n ¼ 2 but for various values of ga as indicated by the label. We also show the Planck15 low-l binned CTT

l data.
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χ2ga¼0.5 ¼ 66.346, χ2ga¼0 ¼ 22.394, χ2ga¼−0.5 ¼ 42.755, and

χ2ga¼−1 ¼ 186.969, or in the case of ga ¼ −0.5, δχ2 ¼
20.361, corresponding to a 4.1σ deviation. Thus, the
ISW effect provides significantly stronger constraints on
GeffðzÞ than the growth data.
Our assumption that the probability distribution of the

low-lTT CMB spectrum likelihood can be modeled as a
Gaussian may not be accurate (see Ref. [110]) and can
introduce additional uncertainties which may reduce the

tension level found in our analysis. Therefore, our χ2

analysis with the low-lTT CMB data should be interpreted
with extreme caution as it neglects the covariances of the
data but also possible effects from the foregrounds which
are clearly non-Gaussian. The effect of the non-Gaussianity
will manifest itself as higher-order terms related to the
skewness and the kurtosis, which has been shown to be
relevant for the CMB (see, e.g., Ref. [111]).
In Fig. 7, we also show the contours for theGeff model in

the ðga; nÞ parameter space based on the low-lTT CMB
data (red lines) and the growth-rate data (blue lines). The
black dashed line at ga ¼ 0 and the axis at n ¼ 0 corre-
spond to GR and the ΛCDM model since the last two
terms in (3.18) in both cases cancel out. The green, blue,
and red dots correspond to the best fit for n ¼ 2, i.e.,
ðga; nÞ ¼ ð−1.156; 2Þ; the global minimum for ðga; nÞ ¼
ð−1.200; 0.343Þ; and the minimum for the low-l data,
i.e., ðga; nÞ ¼ ð1.227; 0.091Þ, respectively. Clearly, there is
strong tension between the best-fit growth data and the
Planck low-l power spectrum (ISW effect).
Another interesting probe to consider is the CMB lensing

[112] which is sensitive to the impact of a modified growth
rate. Clearly, modifications introduced by a time-dependent
gravitational constant translate to significant changes in the
CMB lensing. In this regard, in Fig. 8, we show the lensing
potential for Planck15-ΛCDM (black solid line) along
with the Geff model for ga ¼ �0.1 (black dashed line)
and ga ¼ �0.2 (blue dot-dashed line). The data points are
from Planck 2015 and were derived from the observed
trispectrum [112].
By fitting the modified lensing potentials for ΛCDM

to the data, we have also obtained new stronger constraints
on the parameters of our parametrization. In Fig. 9, we
show the 1σ, 2σ, and 3σ contours for the Geff model in the
ðga; nÞ parameter space based on the CMB lensing (tris-
pectrum [112]) data (red contours) and the growth-rate data
(blue lines). The black dashed line at ga ¼ 0 and also the
axis at n ¼ 0 correspond to GR and the ΛCDM model,
while the green and blue points correspond to the best fit for
n ¼ 2, i.e., ðga; nÞ ¼ ð−1.156; 2.000Þ and the global mini-
mum for ðga; nÞ ¼ ð−1.200; 0.343Þ with the growth-rate
data, while the black point to the CMB lensing best fit for

FIG. 7. The 1σ, 2σ, and 3σ contours for the Geff model in the
ðga; nÞ parameter space based on the low-lTT CMB data (red
lines) and the growth-rate data (blue lines). The black dashed line
at ga ¼ 0 and also the axis at n ¼ 0 correspond to GR and the
ΛCDM model, while the green, blue, and red dots correspond to
the best fit for n ¼ 2, i.e., ðga; nÞ ¼ ð−1.156; 2Þ; the global
minimum for ðga; nÞ ¼ ð−1.200; 0.343Þ; and the minimum for
the low-l data, i.e., ðga; nÞ ¼ ð1.227; 0.091Þ, respectively. The
blue and red contour regions are centered around the blue and red
points, respectively. As can be seen, there is a strong tension
between the two data sets.

FIG. 8. The lensing potential for ΛCDM (black solid line) or the Geff model for ga ¼ �0.1 (black dashed line) and ga ¼ �0.2 (blue
dot-dashed line). The data points are from Planck 2015 and were derived from the observed trispectrum [112].
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ðga; nÞ ¼ ð−0.200; 0.700Þ. As can be seen, there is a mild
2σ tension, and the allowed parameter space from the
lensing potential data is significantly reduced and much
more constraining than the ISW.
Finally, as mentioned above, the χ2 analysis with the

low-lTT CMB data should be interpreted with extreme
caution as it neglects the covariances and the non-
Gaussianity of the data [110]. In addition all other
parameters, such as Ωm;H0, etc., are fixed to their
Planck15=ΛCDM values, so it would be worthwhile to
do a full Markov Chain Monte Carlo (MCMC) and explore
the whole parameter space, which is left for future work.
Thus, our analysis indicates that, even though the tension
between the growth data and the Planck15=ΛCDM back-
ground in the context of GR is removed by allowing a
redshift evolution of GeffðzÞ, the required GeffðzÞ is not
consistent with either scalar-tensor theories nor the low-l
CMB spectrum as determined by the ISW effect.

VI. CONCLUSIONS AND DISCUSSION

We presented a collection of 34 growth-rate data based
on recent RSD measurements obtained from several

surveys and studies over the last ten years. In an effort
to maximize robustness and independence of the data, we
selected 18 of the 34 growth-rate data to construct a Gold-
2017 growth-rate data set. Using this data set, we fit a
wCDM cosmology and find that the best-fit parameters
ðw; σ8;Ω0mÞ are in 3σ tension with the corresponding
parameters obtained with the Planck15 CMB data in the
context of GR and ΛCDM. In order to resolve this tension,
we consider a simple parametrization for Geff given by
Eq. (3.18). We show that the tension in the parameters of
the data gets now reduced to the 1σ level.
Despite this reduction of the tension between the growth

data and the Planck indicated background, this best-fit
parametrization of GeffðzÞ was shown to have two impor-
tant problems:
(1) It is a decreasing function of the redshift, and

therefore according to a general rule, the validity
of which we demonstrated, it cannot be supported by
a self-consistent scalar-tensor theory because it leads
to a negative scalar field kinetic term.

(2) It predicts a large ISW effect that is not consistent
with the observed large scale (low-l) CMB
spectrum.

These problems could potentially be resolved by con-
sidering more general modified gravity models which can
potentially support the derived best-fit GeffðzÞ such as
Horndeski models [113–115] or bimetric gravity [116].
The tension of the best-fit GeffðzÞ with the low-l CMB
spectrum induced by the ISW effect is more difficult to
resolve and may indicate either required modifications on
the background Planck15=ΛCDM HðzÞ or systematics in
the growth data.
The strategy of our analysis has been the identification

of the consistency (or tension) of the Planck15=ΛCDM
model with the growth data. In the context of this goal, we
have chosen to fix the ΛCDM parameters to the Planck15
values. Clearly, the level of the tension can be reduced
significantly if we vary the ΛCDM parameters, and in fact,
it may completely disappear if we consider background
HðzÞ parametrizations beyond ΛCDM. However, such an
approach would not be consistent with the above-described
strategy.
We have pointed out the need for the construction of

optimized, large, self-consistent compilations of the
emerging growth data and have made a first attempt in
that direction. Our updated Gold-2017 data set compilation
comes from reliable sources, i.e., major surveys and
international collaborations. However, the fact that it
consists of only a small amount of points indicates that
there is significant potential for improvement. This sit-
uation will definitely improve in the coming decade as the
Euclid [51] and LSST [52] surveys will release a significant
amount of new high quality data points, and as a result,
very soon we will be able to detect any possible deviations
from GR with a high level of confidence.

FIG. 9. The 1σ, 2σ, and 3σ contours for the Geff model in the
ðga; nÞ parameter space based on the CMB lensing (trispectrum
[112]) data (red contours) and the growth-rate data (blue lines).
The black dashed line at ga ¼ 0 and also the axis at n ¼ 0
correspond to GR and the ΛCDM model, while the green and
blue points correspond to the best fit for n ¼ 2, i.e., ðga; nÞ ¼
ð−1.156; 2.000Þ and the global minimum for ðga; nÞ ¼
ð−1.200; 0.343Þ with the growth-rate data, while the black point
to the CMB lensing best fit for ðga; nÞ ¼ ð−0.200; 0.700Þ. As can
be seen, there is a mild 2σ tension between the growth data
contours (blue lines) and the CMB lensing contours (red lines).
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APPENDIX A: CHAPLYGIN THEOREM

The Chaplygin theorem [108] states that if yðxÞ satisfies
the nth-order differential inequality

L½y�≡ ynðxÞ þ a1ðxÞyn−1ðxÞ þ � � � þ anðxÞ > bðxÞ; ðA1Þ

where the anðxÞ can be integrated and the function fðxÞ
satisfies the differential equation

LðfÞ ¼ bðxÞ ðA2Þ

with the same initial conditions as Eq. (A1), i.e., fðx0Þ ¼
yðx0Þ;…; fn−1ðx0Þ ¼ yn−1ðx0Þ, then there is a region x ∈
ðx0; x�� such that yðxÞ > fðxÞ and x� is specified by the
region for which for every ξ ∈ ½x0; x� we have Gðs; ξÞ ≥ 0,
where G satisfies the Green equation with initial conditions

L½G� ¼ 0

Gðx ¼ ξÞ ¼ � � � ¼ Gn−2ðx ¼ ξÞ ¼ 0; Gn−1ðx ¼ ξÞ ¼ 1:

By specifying the region where G ≥ 0, we can thus
determine where yðxÞ > fðxÞ.

APPENDIX B: MULTIPLE MINIMA

A rather interesting feature that arises by minimizing the
χ2 of the Gold-2017 data set using the Geff parametrization
(3.18) is the one of the multiple minima (see Ref. [117]).
Specifically, as the number of n increases the more minima
we observe. This effect is due to the fact that the solution
of the growth-rate ordinary differential equation (ODE) of
Eq. (2.1) contains Bessel functions which have degener-
acies in their arguments. In order to keep things simple,
we will now consider a toy model with Ωm ¼ 1 and

Geff=GN ¼ 1þ gnð1 − aÞn, even though this model does
not satisfy the viability criteria described in the text. Then,
for n ¼ 1 and Ωm ¼ 1, the solution to the differential
equation (2.1) is

δn¼1ðaÞ ¼ c1a−1=4Jmð
ffiffiffiffiffiffiffiffiffiffi
6agn

p
Þ þ c2a−1=4J−mð

ffiffiffiffiffiffiffiffiffiffi
6agn

p
Þ;
ðB1Þ

while for n ¼ 2, we have

δn¼2ðaÞ ¼ e−
1
2
βaa

m
2
−1
4

�
c1U

�
1

2
ðm − β þ 1Þ; mþ 1; aβ

�

þ c2Lm
1
2
ðβ−m−1ÞðaβÞ

�
; ðB2Þ

where c1;2 are constants to be determined for the growing
and decaying mode andm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24gn þ 25

p
, β ¼ ffiffiffiffiffiffiffi

6gn
p

and
J�mðzÞ, Uðκ1; κ2; zÞ and Lκ

n are the BesselJ, the confluent
hypergeometric U, and the Laguerre-L functions, respec-
tively. As can be seen in this case, the presence of these
functions in the solution of the growth rate is the root cause
of the multiple minima since the variable gn of the model
appears both in the order and the argument of the functions.
As a result, the growth will be degenerate with respect to gn,
i.e., for many different values of gn, we will have the same
growth factor. Similar arguments can be made for any value
ofΩm, since the case studied here (Ωm ¼ 1) is just a limit of
the ΛCDM model. The same also applies to other similar
Geff models, besides the one used in the main analysis.
Note that the first minimum is not always the global

one, i.e., the minimum with the smallest value of χ2. In
Fig. 10, we show the χ2ðgnÞ plot corresponding to our
parametrization (3.18) for n ¼ 2, 3, 4, where for n ¼ 2, 3
the first minimum is the global one; e.g., for n ¼ 3, the first
minimum corresponds to ðχ2 ¼ 14.3; gn ¼ −1.534Þ, while
the second one corresponds to ðχ2 ¼ 14.6; gn ¼ −11.14Þ).
On the other hand, for n ¼ 4, the first three minima from
right to left correspond to ðχ2 ¼ 14.9; gn ¼ −2.006Þ;
ðχ2 ¼ 12.6; gn ¼ −10.56Þ, and ðχ2 ¼ 14.8; gn ¼ −21.87Þ,
respectively, and therefore the global minimum is the
second one (albeit with a small difference). However, since
gn must be small, we consider only the first minimum,
which for small values of n is the global one as well.

FIG. 10. Plots of the χ2ðgaÞ for n ¼ 2, 3, 4 that clearly show the degeneracy of the model and the many minima of the χ2 in terms of ga.
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