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We study the ultralight axion dark matter with mass around 10−22 eV in fðRÞ gravity which might
resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field
oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the
gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the
oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear
resonance between the ultralight axion and the scalaron.
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I. INTRODUCTION

The cold dark matter (CDM) with a cosmological
constant (ΛCDM model) is known as the standard cosmo-
logical model. So far, supersymmetric particles, the
so-called neutralinos, have been regarded as the most
promising candidate for the CDM. While the CDM works
quite well on large scales, there exist problems on small
scales. In fact, the CDM model predicts an overabundance
of structure on galactic scales, which is not consistent with
observations. Some common problems with CDM are the
cusp-core problem [1–6], the missing satellites problem
[7–9], and the too-big-to-fail problem [10,11]. Moreover,
there was no signature of supersymmetry at the LHC. Thus,
it is worth investigating another possibility, namely the
axion dark matter.
Originally, the axion was invented to resolve the strong

CP problem in QCD [12–15]. Nowadays, however, it is
known that the string theory also predicts axions with a
wide range of mass scales [16,17]. Remarkably, the axion
interacting very weakly with standard model particles is
regarded as a candidate for the dark matter. In particular, the
ultralight axion with mass around 10−22 eV can naturally
resolve the problems on galactic scales because of its wave
nature [18].1 Indeed, according to numerical simulations of
dark matter halo density profiles with the ultralight scalar
field, the mass around 10−22 eV is favored by the data of
dwarf spheroidal galaxies [24–27]. For this reason, the
ultralight axion has recently attracted much attention. Here,
it would be fair to mention that the “small scale problems of
CDM” may be resolved even in the CDM framework by
taking into account astrophysical processes including
baryonic matter.

Remarkably, the pressure of the ultralight axion is
oscillating in timewith angular frequency at twice the axion
mass, ω ¼ 2m. Therefore, in order to find the axion dark
matter, we should detect the oscillation of gravitational
potential induced by this oscillating pressure. Since the
oscillation of the gravitational potential can be seen as a
fluctuation of spacetime like gravitational waves, we would
be able to detect the oscillation by means of gravitational-
wave detectors. Indeed, Khmelnitsky and Rubakov pointed
out that the effect of oscillating pressure might be detected
with pulsar timing array experiments [28]. We also pointed
out that laser interferometer detectors can be used for this
purpose [29]. One may think interferometers have no
sensitivity to the isotropic oscillation of the pressure since
its two arm lengths seem to change exactly the same amount.
However, the Solar System moves through the dark matter
halo at a velocity about v ∼ 300 km=s ¼ 10−3, and thus we
feel the wind of the axion. We see the axion wind as scalar
gravitational waves, and the gravitational-wave interferom-
eter detector does have sensitivity to the axion oscillation.
In addition to the dark matter, the dark energy is also a

big issue in current physics. In fact, the main energy
component of the Universe is the dark energy. Hence, it
would be necessary to consider the detectability of the dark
matter in the context of dark energy models. Often, the
cosmological constant is assumed when we discuss the
detectability of dark matter. However, the cosmological
constant has several problems, e.g., the fine-tuning problem
and coincidence problem. One possibility to resolve these
issues is to consider unknown matter such as the quintes-
sence. Unfortunately, there is no natural candidate for the
quintessence in particle physics. Therefore, it is worth
investigating the possibility that the theory of gravity is
different from Einstein gravity on cosmological scales.
Thus, we study the detectability of the ultralight axion dark
matter in the context of modified gravity.
In our previous paper [30], we have discussed the

detectability of the ultralight axion dark matter in the
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1Actually, there is a long history for the scalar dark matter.

Some early works are Refs. [19–22]. For complete references, see
Ref. [23].
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framework of fðRÞ gravity, which is the simplest modified
gravity. We derived the gravitational potential sourced by
the axion oscillation in the fðRÞ ∝ R2 model. Remarkably,
we found the resonance between the axion field and the
scalaron field, which is the dynamical degree of freedom of
fðRÞ gravity, and the gravitational potential could be
amplified dramatically. However, it is not obvious if the
resonance behavior can be seen in more general models. In
the R2 model, the equation determining the gravitational
potential is a linear equation under appropriate assump-
tions, while it should be nonlinear in more realistic models.
Hence, it is interesting to investigate whether general
models can have resonance behavior. In this paper, we
will show that such a model does exist by constructing one
specific model.
The paper is organized as follows: In Sec. II, we

introduce a notion of axion dark matter and derive its
energy-momentum tensor, which is a source term of the
field equation for the metric. In Sec. III, we briefly
summarize our previous work [30]. Then, we move on
to the scalar-tensor formulation of fðRÞ gravity and derive
the formula (30) for calculating the oscillating part of the
gravitational potential. In Sec. IV, we discuss two specific
models. We show that the nonlinear resonance significantly
enhances the amplitude of oscillation of the gravitational
potential. The final section is devoted to our conclusion.

II. AXION OSCILLATION

In this section, we introduce the axion dark matter. In
particular, we derive the energy-momentum tensor of the
axion field, a source term of the metric field equation.
Let us assume the situation where the dark matter halo is

composed of the ultralight axion. Since the occupation
number of the axion in the halo is huge, we can treat it as a
classical scalar field. The axion field satisfies the Klein-
Gordon equation in the flat spacetime at the leading order,
and the solution is given by the superposition of plane
waves with different wave numbers and frequencies. The
wave number has a certain cutoff kmax ∼mv due to the
uncertainty principle, roughly set by the inverse of the de
Broglie wavelength of an axion particle. Since a typical
velocity in the galaxy is v ∼ 10−3, we can assume that the
axion field oscillates monochromatically with the angular
frequency corresponding to its mass. Under these assump-
tions, we can write the axion field as

ϕðt; x⃗Þ ¼ ϕ0ðx⃗Þ cos½mtþ αðx⃗Þ�; ð1Þ

where ϕ0ðx⃗Þ is the amplitude and αðx⃗Þ is the phase of the
oscillation. We can neglect the space dependence of ϕ0ðx⃗Þ
and αðx⃗Þ at the leading order, and hereafter we will omit the
phase αðx⃗Þ for simplicity.
The energy density ρ and the pressure p of the axion

field are given by

ρ ¼ 1

2
_ϕ2 þ 1

2
m2ϕ2 ¼ 1

2
m2ϕ2

0 ≡ ρ0; ð2Þ

p ¼ 1

2
_ϕ2 −

1

2
m2ϕ2 ¼ −ρ0 cosð2mtÞ: ð3Þ

The pressure oscillates in time with the angular frequency
ω ¼ 2m. Its amplitude is fixed by the local dark matter
density ρ0. The energy-momentum tensor of the axion field
is then given by

Tμν ¼
�
ρ0 0

0 −ρ0 cosð2mtÞδij

�
: ð4Þ

Finally, we obtain the trace of the energy-momentum tensor
of the axion field as

T ¼ −ρ0½1þ 3 cosð2mtÞ�: ð5Þ

This is the source term of the field equation. We can use
Eq. (5) as long as the axion field minimally couples to
gravity.
We use the value ρ0 ¼ 0.3 GeV=cm3 as a typical energy

density of the dark matter halo throughout the paper.2 The
period of the oscillation corresponds to about 1 year for
m ¼ 10−22 eV, and this time scale is much shorter than the
cosmological time scale, i.e., H−1

0 ∼ 1010 years. Hence,
after averaging the oscillating pressure over the cosmo-
logical time scale, the axion behaves as pressureless dust on
cosmological scales. Thus, the axion can be a candidate for
the dark matter.

III. FORMULA FOR GRAVITATIONAL
POTENTIAL OSCILLATION IN f ðRÞ GRAVITY

In this section, we will summarize our previous work
[30] and derive the formula (15). Then, we move on to the
scalar-tensor formulation of fðRÞ gravity and derive the
main formula (30) for calculating the time-dependent part
of the gravitational potential in fðRÞ gravity.

A. Gravitational potential oscillation in f ðRÞ gravity
The action for fðRÞ gravity is given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð6Þ

where fðRÞ is a function of the Ricci scalar R and Sm is the
action for matter fields. We assume fðRÞ ≪ R and fR ≡
f0ðRÞ ≪ 1 so that the deviation from Einstein’s theory is
small. Taking the variation of the action with respect to the
metric, we obtain the metric field equation:

2While this value is traditionally used, slightly higher values
are reported in some papers, e.g., Refs. [31–35].
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Gμν −
1

2
gμνf þ ðRμν þ gμν□ −∇μ∇νÞfR ¼ Tμν; ð7Þ

where Gμν ≡ Rμν − ð1=2ÞgμνR is the Einstein tensor, Tμν is
the energy-momentum tensor for the matter field, and□≡
∇μ∇μ is the d’Alembert operator. The trace of the field
equation reads

3□fR − Rþ RfR − 2f ¼ T: ð8Þ

We assume that the spatial derivative of fR is much smaller
than the time derivative of it, i.e., □fR ≃ −f̈R. This is
because the length scale of the dark matter halo, about
10 kpc or larger, is much larger than the time scale of the
oscillation, m−1 ∼ 0.1 pc for m ¼ 10−22 eV. We use this
kind of approximation throughout the paper. Under the
assumption, the field equation becomes

3f̈R þ R ¼ −T; ð9Þ

where we used f ≪ R and fR ≪ 1. Although we assumed
fR ≪ 1, the contribution of fR to the equation of motion is
not so small. This is because the fR term appears as f̈R ∼
ð2mÞ2fR in Eq. (9). Thus, the fR term is enhanced by a
factor of m2=R0 ¼ m2=ρ0 ∼ 1017ðm=10−22 eVÞ2 and can
be comparable to the Ricci scalar R in Eq. (9). Hereafter, we
consider the axion as the matter field. Since the axion field
minimally couples to gravity in fðRÞ gravity, we can use
Eq. (5) for the energy-momentum tensor of the axion field.
Since the gravitational potentials are small even in the

dark matter halo, they can be treated as perturbations. Let
us use the Newtonian gauge for the metric:

gμν ¼
�−1 − 2Ψ 0

0 ð1 − 2ΦÞδij

�
: ð10Þ

Note that the expansion of the Universe is completely
negligible on the scale of the dark matter halo. At the first
order of the potentials, the Ricci scalar is calculated as

R ¼ −6Φ̈þ 2∇2ð2Φ −ΨÞ: ð11Þ

Let us write the Ricci scalar as the sum of the time-
independent part R0 and the time-dependent part δR:

R ¼ R0 þ δR; ð12Þ

where R0 is defined as the long-term average of R,
R0 ≡ hRi. We also separate the gravitational potential Φ
(Ψ) into the time-independent part Φ0 ≡ hΦi (Ψ0 ≡ hΨi)
and the time-dependent part δΦ (δΨ). We have the equation
Φ0 ¼ Ψ0 from the traceless part of the space-space com-
ponent of the Einstein equation. Hence, R0 can be written
as R0 ¼ 2∇2Φ0. The field equation (9) gives R0 ≡ hRi ¼
ρ0, and this is nothing but the Poisson equation

2∇2Φ0 ¼ ρ0: ð13Þ

Assuming jδΦ̈j ≫ j∇2δΦj and jδΦ̈j ≫ j∇2δΨj, δR is
approximately given by

δR ¼ −6δΦ̈: ð14Þ

Integrating this twice and using the field equation (9), we
obtain

δΦ ¼ ρ0
8m2

cosð2mtÞ þ 1

2
ðfR − hfRiÞ; ð15Þ

where hfRi is the average value of fR. This is the formula
for calculating the time-dependent part of the gravitational
potential. Therefore, in order to obtain the amplitude of the
gravitational potential, we first solve the field equation (9)
and then substitute the solution into Eq. (15).
For Einstein theory, we have fR ¼ 0. Thus, Eq. (15)

gives

δΦ ¼ δΦE cosð2mtÞ; ð16Þ

where

δΦE ≡ ρ0
8m2

¼ 5 × 10−18
�
10−22 eV

m

�
2

: ð17Þ

The frequency of the gravitational potential is

f ¼ 2m
2π

¼ 5 × 10−8 Hz

�
m

10−22 eV

�
: ð18Þ

This is consistent with the result derived by Khmelnitsky
and Rubakov [28].

B. Formula for gravitational potential oscillation

While we have discussed the axion oscillation in fðRÞ
gravity, it is convenient to move on to the equivalent scalar-
tensor theory for qualitative understanding of the physics
[36–38]. In this section, we will reformulate fðRÞ gravity in
terms of the scalar-tensor theory.
The action for fðRÞ gravity can be rewritten into that of

the scalar-tensor theory as

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð1þ φÞR − 2UðφÞ� þ Sm; ð19Þ

where UðφÞ is defined by

UðφÞ≡ 1

2
½φAðφÞ − fðAðφÞÞ�; ð20Þ

and AðφÞ is the solution of
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f0ðAÞ ¼ φ: ð21Þ

Taking the variation of the action (19) with respect to φ, we
obtain the constraint

R ¼ 2U;φ ¼ AðφÞ: ð22Þ

Substituting this into the action (19), we obtain the original
fðRÞ action (6). As long as f00ðAÞ ≠ 0, the solution of
Eq. (21) is uniquely determined and thus the two theories
are completely equivalent. The variation of the action (19)
with respect to the metric gives the field equation:

ð1þ φÞGμν þ gμνUðφÞ þ ðgμν□ −∇μ∇νÞφ ¼ Tμν: ð23Þ

The trace of this equation gives the equation of motion for
the scalar field φ:

3□φ − AðφÞ þ φAðφÞ − 2fðAðφÞÞ ¼ T; ð24Þ

where we used Eq. (20). Hence, we can interpret φ, which
is often called a scalaron, as an extra dynamical degree of
freedom in the theory. Let us define the potential of the
scalar field VðφÞ by

V;φ ≡ 1

3
½AðφÞ − φAðφÞ þ 2fðAðφÞÞ�: ð25Þ

Using the approximations fðAÞ ≪ A and φ ¼ f0ðAÞ ≪ 1,
the derivative of the potential V;φ is approximated by

V;φ ≃ AðφÞ
3

: ð26Þ

Hereafter we will use this approximate form for V;φ. Under
the assumption□φ≃ −φ̈, the equation of motion is written
as

φ̈þ V;φ ¼ ρ0
3
½1þ 3 cosð2mtÞ�; ð27Þ

where we substituted the energy-momentum tensor (5). Let
us introduce the effective potential VeffðφÞ by

Veff;φ ≡ V;φ −
ρ0
3
¼ 1

3
ðAðφÞ − ρ0Þ: ð28Þ

The effective potential has a minimum at R ¼ AðφÞ ¼ ρ0 as
desired. Using the effective potential, the equation of
motion is written in a simple form:

φ̈þ Veff;φ ¼ ρ0 cosð2mtÞ: ð29Þ

Since φ ¼ fR, Eq. (15) can be rewritten in terms of the
scalar field φ as

δΦ ¼ δΦE cosð2mtÞ þ 1

2
ðφ − hφiÞ; ð30Þ

where δΦE ≡ ρ0=8m2. Therefore, in order to obtain the
time-dependent part of the gravitational potential in the
scalar-tensor formulation, we first calculate the effective
potential from a function fðRÞ by using Eq. (28), solve the
equation of motion (29), and then substitute the solution
into the formula (30).

IV. NONLINEAR RESONANT OSCILLATION

In this section, we will study two specific models. First,
we illustrate the resonance of oscillation using the R2

model. Then, we show that the exponential model exhibits
nonlinear resonance.

A. R2 model

We first consider the fðRÞ ∝ R2 model, which can be
solved analytically. We have already studied this model in
the previous paper in the framework of fðRÞ gravity [30].
However, since the model is useful for qualitative under-
standing of general fðRÞ models, here we again discuss the
same model in the scalar-tensor theory.
The model is defined by

fðRÞ ¼ R2

6M2
; ð31Þ

where M is the mass scale of the model, which is
independent of the Ricci scalar in this model. The effective
potential is calculated as

VeffðφÞ ¼
1

2
M2ðφ − φ0Þ2; ð32Þ

where φ0 ≡ f0ðρ0Þ ¼ ρ0=3M2. Hence, the mass scale M is
nothing but the mass of the scalaron field φ. We expect this
model to capture some features of general models since any
analytic function can be approximated by a quadratic
function near its minimum. The equation of motion for
φ now is a linear equation:

φ̈þM2ðφ − φ0Þ ¼ ρ0 cosð2mtÞ: ð33Þ

The solution is given by

φ ¼ φ0 þ
ρ0

M2 − ð2mÞ2 cosð2mtÞ: ð34Þ

Here we focus on the induced solution by the axion
oscillation and omitted the homogeneous solutions. This
is in part because the homogeneous solutions decay in the
expanding Universe by the Hubble friction, and we expect
that only the induced solution remains in the present
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Universe [39]. Since the long-time average of φ is
hφi ¼ φ0, Eq. (30) gives

δΦ ¼ δΦE

1 − ð2m=MÞ2 cosð2mtÞ: ð35Þ

Let us introduce a parameter μ as

μ≡ 2m
M

: ð36Þ

When μ ≪ 1, the amplitude of δΦ becomes δΦamp ≃ δΦE,
and the result (16) is recovered. In the opposite case μ ≫ 1,
the amplitude is suppressed as δΦamp ≃ ð1=μ2ÞδΦE.
Remarkably, when μ≃ 1, the resonance occurs and the
gravitational potential is amplified. The behavior near the
resonance point should be strongly dependent on the details
of models. To see this, we study another model in the next
subsection.

B. Exponential model

In the R2 model, the equation of motion for φ is linear.
In general fðRÞ models, however, the equation of motion
for φ should be nonlinear. In the nonlinear cases, it is not
obvious whether the resonance occurs. Indeed, in the
previous paper [30], we saw that there are no stable
resonance solutions near μ ¼ 1 in the Hu-Sawicki model
[40] and the Starobinsky model [39]. In this subsection, we
will show that there exist nonlinear models with resonance
behavior by constructing one specific model. We will also
see that the resonance phenomena acquires new interesting
properties when nonlinearity is taken into account.
Let us consider the following model:

fðRÞ ¼ R2
0

3λ2M2
exp

�
−λ

�
R
R0

− 1

��
; ð37Þ

where M is the mass scale of the model at R ¼ R0,
i.e., M2 ¼ 1=3f00ðR0Þ, and λ is a positive parameter. The
exponential-type model was first introduced by Ref. [41].
The effective potential is calculated as

VeffðφÞ ¼
R0

3λ
φ

�
1 − ln

�
φ

φ0

��
; ð38Þ

where φ0 is the field value at the minimum of the effective
potential:

φ0 ≡ f0ðR0Þ ¼ −
R0

3λM2
: ð39Þ

The model satisfies the Solar System constraint if the
following condition is held [37]:

jφ0j ¼
3 × 10−18

λ

�
2 × 10−22 eV

M

�
2

< 3 × 10−15: ð40Þ

Hence, the model can pass the Solar System test even when
M ¼ 2 × 10−22 eV if λ > 10−3. Of course, the larger the
mass scale M is, the easier the model passes the Solar
System test.
We plot the functional form of the effective potential in

Fig. 1. The effective potential has a singularity at φ ¼ 0,
where R ¼ AðφÞ ¼ 3V;φ diverges. This kind of singularity
is known as a curvature singularity [42–45], which often
appears in fðRÞ models. We can always remove the
singularity without affecting the dynamics on the halo
scale by adding a regularization term, e.g., R2=6M2 with a
large M [43,46–48]. However, we have no need of such a
modification for our purpose to construct a concrete model
with the resonance behavior. Therefore, we will not discuss
the regularization and focus on what the model (37)
predicts. In this model the scalar field can practically move
only within the range

0 < φ=φ0 ≲ e: ð41Þ
This is because if we start with VeffðφÞ > 0, i.e., φ=φ0 > e,
the scalar field easily hits the curvature singularity. Hence
possible amplitudes of the scalar field are roughly limited to
ðe=2Þjφ0j ∼ jφ0j, and the maximum amplitude of the
gravitational potential is approximated as

δΦmax ∼
1

2
jφ0j ¼

R0

6λM2
∼
1

λ
× 10−17

�
10−22 eV

M

�
2

; ð42Þ

where we assumed the second term in Eq. (30) is dominant.
The amplitude could become large for sufficiently small λ
even when we fix μ ∼ 1, i.e., M ∼ 2m.
Now, we will show that the solutions with the maximum

amplitude (42) do exist. All we have to do is to solve the
nonlinear equation of motion

φ̄00 þ ln φ̄ ¼ −3λ cosðμτÞ; ð43Þ
where we used the dimensionless quantities τ ¼ Mt,
μ ¼ 2m=M, φ̄ ¼ φ=φ0, and the prime denotes a derivative

FIG. 1. The functional form of the effective potential VeffðφÞ in
the exponential model (37). VeffðφÞ has a minimum at φ ¼ φ0.
The point φ ¼ 0 is a singularity, at which the gradient of the
potential diverges. Since φ ¼ 0 corresponds to R → þ∞, this is
called the curvature singularity.
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with respect to τ. In the case of a linear forced oscillator,
the general solution is given by the superposition of an
induced solution and homogeneous solutions. However, in
nonlinear cases, the superposition of two solutions no
longer gives a solution. Therefore, it is hard to solve
nonlinear systems analytically. Indeed, we have to rely
on a perturbative method or numerical calculations.
First, in order to get an intuition, we use the following

perturbative method. The deviation from the minimum χ is
defined by φ̄ ¼ 1þ χ. When χ ≪ 1, we can approximate
the equation by

χ00 þ χ −
1

2
χ2 þ 1

3
χ3 ¼ −3λ cosðμτÞ: ð44Þ

This can be analyzed perturbatively. First, we seek a
resonant solution around μ ∼ 1. To this aim, we rewrite
Eq. (44) as

χ00 þ μ2χ ¼ ðμ2 − 1Þχ þ 1

2
χ2 −

1

3
χ3 − 3λ cosðμτÞ: ð45Þ

We regard the terms in the right-hand side as small
perturbations. Then, we can solve Eq. (45) with the
expansion

χ ¼ χ0 þ χ1 þ � � � : ð46Þ
Substituting the series into Eq. (45), we obtain the lowest
order solution

χ0 ¼ A cosðμτÞ: ð47Þ
At the next order, we have secular sources

χ001 þ μ2χ1 ¼ ðμ2 − 1Þχ0 þ
1

2
χ20 −

1

3
χ30 − 3λ cosðμτÞ

¼
�
ðμ2 − 1ÞA − 3λ −

1

4
A3

�
cosðμτÞ þ � � � :

ð48Þ

If this secular term remains, we will have a secular solution
with the growing amplitude. In other words, we have to
renormalize this secular evolution into the frequency. This
can be achieved by imposing the condition

ðA2 − 4μ2 þ 4ÞA ¼ −12λ: ð49Þ

Apparently, this allows the order one solution A≃
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 1

p
for μ ≥ 1. Thus, we have shown that there exists

the resonant oscillation with the amplitude close to the
maximum one. In principle, we can repeat the same
analysis to find other resonant solutions. We will soon
show explicit examples with the numerical method.
Next, we investigate the same system numerically.

We seek periodic solutions satisfying ðφ̄ðTÞ; φ̄0ðTÞÞ ¼
ðφ̄ð0Þ; φ̄0ð0ÞÞ, where T ≡ 2π=μ is the period of the oscil-
lation. In other words, we look for the solutions with closed
orbit in the phase space ðφ̄; φ̄0Þ. Note that in the R2 model,
this condition removes homogeneous solutions. In order to
find such solutions, in general, we should study the map
ðφ̄ð0Þ; φ̄0ð0ÞÞ ↦ ðφ̄ðTÞ; φ̄0ðTÞÞ and find its fixed points.
However, since the equation of motion (27) now has the
time reflection symmetry t → −t thanks to the absence of a
friction term in addition to the time translation symmetry
t → tþ T, the orbit is closed if φ̄0ðT=2Þ ¼ 0 when starting
with the initial condition ðφ̄ð0Þ; φ̄0ð0ÞÞ ¼ ðφ̄i; 0Þ. Note that
the reverse statement is not always true; there exist periodic
solutions that do not satisfy φ̄0ðT=2Þ ¼ 0 aswill be seen later.
In Fig. 2, we plot the value φ̄0ðT=2Þ as a function of ðμ; φ̄iÞ

with different values of λ. The red (blue) regions correspond
to positive (negative) values of φ̄0ðT=2Þ. Since φ̄0ðT=2Þ is a
smooth function of ðμ; φ̄iÞ, there are boundaries with
φ̄0ðT=2Þ ¼ 0 between two regions, which correspond to
closed-orbit solutions. Hence, Fig. 2 shows that solutions
exist with amplitude jφ̄j ¼ jφ=φ0j ∼Oð1Þ. The figure also
shows that there are three solutions around μ ≳ 1. This is a
general feature of nonlinear forced oscillators [49]. Which
solution is selected should be determined by initial con-
ditions.We also show the corresponding resonance curves in
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FIG. 2. Plot of φ̄0ðT=2Þ in the ðμ; φ̄iÞ plane for λ ¼ 10−2, 10−3, 10−4 from left to right. The red (blue) regions correspond to positive
(negative) value of φ̄0ðT=2Þ. Since φ̄0ðT=2Þ is a smooth function of ðμ; φ̄iÞ, there exist the boundaries with φ̄0ðT=2Þ ¼ 0, which
correspond to closed-orbit solutions.
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Fig. 3. The resonance curves are bent by nonlinearity
compared to the R2 case. This plot shows that the resonance
curves in the exponential model cannot be distinguished
from those in the R2 model except for μ ∼ 1. Namely, while
the behavior near the resonance point is strongly dependent
on models, the R2 model extracts some features of general
models as desired.
Remarkably, in the nonlinear case, there appear new

resonances at μ ¼ q=p for positive integersp and q [49]. As
an example, we show the same plot as Fig. 2 for the series
withp ¼ 5 in Fig. 4,wherewe chose λ ¼ 10−3. Note that the
plotted function φ̄0ðT=2Þ is replaced by φ̄0ð5T=2Þ in Fig. 4.
In these cases, the resonance of scalaron field oscillation
occurs when the relation M ∼ 2mðp=qÞ holds. Hence, the
observed frequency becomes higher or lower than 2m. In the
former cases, the frequencies could be accessible by ground-
based gravitational-wave detectors such as LIGO.

V. CONCLUSION

In this paper, we have studied the axion oscillation in
fðRÞ gravity. The point was that the pressure of the axion
field oscillating in time produces the oscillation of the
gravitational potential. We have derived the formula (30)
for calculating the time-dependent part of the gravitational
potential. It turns out that the amplitude of the oscillation of
the gravitational potential is determined by the amplitude of
the scalar field (scalaron) in the scalar-tensor formulation.
Remarkably, the amplitude could be amplified dramatically
by the resonance when the mass of the scalaron is
sufficiently close to twice the axion mass. We have also
shown that there appear subharmonics resonances at

μ ¼ q=p in the case of nonlinear models by studying
one specific model (37) as an example.
In this paper, we have studied two fðRÞ models on halo

scales. We should mention that we did not attempt to
construct complete models which also explain the accel-
erated expansion of the present Universe. In fact, in order to
explain the dark energy, we need to modify the models on
cosmological scales. Since the cosmological critical density
is much lower than the dark matter density in the halo,
ρcr=ρ0 ∼ 10−5, we expect that the modification of the
functional form of fðRÞ on cosmological scales does not
affect the dynamics on halo scales.
The oscillating gravitational potential can, in principle,

be observed by using gravitational-wave detectors. So far,
two ideas for direct detection of the ultralight axion dark
matter through the gravitational interaction have been
proposed: pulsar timing array experiments [28] and laser
interferometers [29].3

Althoughwe have focussed on the presentUniverse, there
may be other phenomena caused by the oscillating axion
field. In particular, we should revisit the structure formation
process in the presence of the ultralight axion field. Structure
formation in modified gravity is often discussed assuming
the validity of static or quasistatic approximation on galactic
scales. However, if the ultralight axion is the darkmatter, the
situation is quite different. We should take into account the
oscillating pressure of the axion field when we discuss
structure formation in modified gravity.
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model cannot be distinguished from those in the R2 model except
for μ ∼ 1. The maximum amplitude is inversely proportional to λ
as seen in Eq. (42). The discontinuity of the curve seen in the case
λ ¼ 10−2 comes from the absence of a friction term, as in the case
of the R2 model.
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FIG. 4. Resonance points with μ ¼ q=5ðq ¼ 1; 2; 3…Þ for
λ ¼ 10−3. The plot shows the existence of multiple resonance
points in the case of the nonlinear model.

3Recently, a new detection method with binary pulsars was
also proposed [50]. The nonlinear resonance that we found in this
paper further enhanced the detectability of the ultralight axion.
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