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We study the relative contribution of cusps and pseudocusps, on cosmic (super)strings, to the emitted
bursts of gravitational waves. The gravitational wave emission in the vicinity of highly relativistic points on
the string follows, for a high enough frequency, a logarithmic decrease. The slope has been analytically
found to be −4=3 for points reaching exactly the speed of light in the limit c ¼ 1. We investigate the
variations of this high-frequency behavior with respect to the velocity of the points considered, for strings
formed through a numerical simulation, and we then compute numerically the gravitational waves emitted.
We find that for string points moving with velocities as far as 10−3 from the theoretical (relativistic) limit
c ¼ 1, gravitational wave emission follows a behavior consistent with that of cusps, effectively increasing
the number of cusps on a string. Indeed, depending on the velocity threshold chosen for such behavior, we
show that the emitting part of the string worldsheet is enhanced by a factor Oð103Þ with respect to the
emission of cusps only.
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I. INTRODUCTION

Applying grand unified theories in the context of the
early Universe, one concludes that as the Universe expands
and its temperature drops, it undergoes a series of phase
transitions followed by spontaneously broken symmetries,
which may leave behind topological defects as false vacuum
remnants [1–5]. Cosmic strings are a one-dimensional
example of such topological defects, generically formed
after a period of hybrid inflation [6]; they can lead to a
variety of observational consequences. In the context of
string-theoretic models, brane interactions can lead to
fundamental strings, one-dimensional Dirichlet branes,
and their bound states, which are collectively referred to
as cosmic superstrings [7–9]. These objects, which could be
formed for instance at the end of brane inflation [10–12], are
the quantum analogs of the field-theoretic one-dimensional
topological defects and can play a similar cosmological role.
It has been shown using analytical and numerical means

that the networks of cosmic (super)strings reach a scaling
regime, in which the overall energy density of such a
network remains constant throughout cosmic evolution.
The presence of subhorizon strings (loops) [13–15], in
addition to superhorizon ones (sometimes referred to as
infinite strings), does not alter this feature, nor does the
formation of Y junctions [16–22], which mainly occur on
superstrings. Indeed, while collisions of cosmic strings lead
the exchange of partners with probability equal to 1, cosmic
superstrings have an intercommutation probability several

orders of magnitude smaller and can therefore entangle and
form junctions [23–25]. Such a smaller intercommutation
probability will affect the string network evolution [26,27].
The main phenomenological consequence of a string

network is the emission of gravitational waves (GWs)
[28–37], generating bursts as well as a stochastic back-
ground of gravity waves. Indeed, several features such as
cusps (points temporarily reaching the speed of light
c ¼ 1), kinks (discontinuities of the tangent vector created
by intercommutation processes) and junctions, produce
high-frequency GW bursts (GWBs). Given the large mass
per unit length a string could possess, cusps, receiving
sizable Lorentz boosts, offer rich possibilities for detectable
signals from gravitational wave emissions. In particular, it
has been shown [30] that the spectrum of bursts from cusps
presents a logarithmic decrease following a slope of −4=3
for high frequencies. In order to estimate the signal one
could possibly expect to receive on Earth or in its
neighborhood, it is necessary to relate the occurrence of
cusps to such a model and its network parameters, for
instance the string tension and the interstring distance.
Complimentary to this, it is also of importance to under-
stand in greater detail which points should be considered
for such emission processes.
We aim in this paper to give an analysis of the high-

frequency slope dependence of the GW spectrum with
respect to the velocities of the emitting points on the string,
using numerical simulations. Indeed, to our knowledge, this
has only been done through analytical means and only for
points defined as exact cusps, that is, points reaching
exactly the velocity of light c ¼ 1. Equivalently, one can
define a cusp as the equality between the left- and right-
movers’ derivatives, under such decomposition of the
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string position vector. Still, it has been found [38] that a
significant number of important emitters would be ignored
if only cusps were to be considered. So-called pseudocusps
are points reaching highly relativistic velocities below the
speed of light, related to a point of close approach of the
left- and right-movers’ derivatives. As these points are also
thought to take part in the emission of GWBs, we intend to
both quantify their importance and refine their definitions
with respect to GWs.
In the following, we first review in Sec. II, the setup we

choose in order to study this problem and the analytical
results already known in the literature. We also review the
Kibble-Turok approach [39,40] to string trajectories along
with the important stages of Damour and Vilenkin’s
analytical study of GWBs [30]. In Sec. III, we give the
details of the approach and numerical methods we use for
our study while in Sec. IV we analyze and discuss the
findings we obtain. In particular, we show that a variety of
points around cusps but also points independent from cusps
(namely, not in a cusp’s vicinity), should be taken into
account when considering the GWemissions from cusps on
cosmic (super)strings. Finally in Sec. V we conclude our
findings.

II. STRING DYNAMICS AND GRAVITATIONAL
WAVEFORMS FROM CUSPS AND PSEUDOCUSPS

Cosmic (super)strings have been shown to appear in two
main forms: subhorizon strings (loops), whose size is of
the order of the coherence length scale, and superhorizon
(infinite) ones whose length is greater than the horizon
scale. A subhorizon string can self-interact, or two super-
horizon strings can intersect, forming smaller string loops.
In the presence of semilocal string interactions or in the
context of string theory, strings can entangle to form bound
states limited by Y junctions.
If we are to consider a cosmic string whose length scale

is sufficiently large as compared to its thickness, any long-
range interactions between the portions of the string can be
disregarded, enabling the string to be accurately modeled
as a one-dimensional object. Under this approximation the
string sweeps out a two-dimensional surface known as the
string worldsheet. We model the dynamics of a string using
the Nambu-Goto approximation, that is, in the limit that its
thickness goes to zero, following the Nambu-Goto action

S ¼ −μ
Z

dτdσ
ffiffiffiffiffiffi
−γ

p
; ð2:1Þ

where μ is the string tension, τ, σ are the worldsheet
coordinates (timelike and spacelike, respectively), and
γ is the induced metric on the string worldsheet. We will
then choose to impose the conformal (Virasoro) gauge
conditions,

ð _XμÞ2 þ ðX0
μÞ2 ¼ 0; ð2:2Þ

_XμX0
μ ¼ 0; ð2:3Þ

along with the temporal gauge constraint τ ¼ t≡ X0.
These conditions lead to the following string equation of
motion

X00 − Ẍ ¼ 0: ð2:4Þ

To solve this, we use the lightlike coordinates σ� ≡ σ � t,
and decompose the position vector Xðσ; τÞ into left- and
right-movers, XþðσþÞ, X−ðσ−Þ, as

Xðt; σÞ≡ 1

2
½XþðσþÞ þX−ðσ−Þ�; ð2:5Þ

and hence

X0ðt; σÞ ¼ 1

2
½ _XþðσþÞ þ _X−ðσ−Þ�; ð2:6Þ

_Xðt; σÞ ¼ 1

2
½ _XþðσþÞ − _X−ðσ−Þ�; ð2:7Þ

where the overdot denotes a derivative with respect to the
time coordinate t, while the dash denotes a derivative with
respect to the space coordinate σ or the only null coordinate
σ�. Recall that the Virasoro conditions in this gauge are
equivalent to j _Xþj ¼ 1 ¼ j _X−j where the worldsheet coor-
dinates give X0ðτ; σÞ such that X0þ ¼ σþ, X0

− ¼ σ−. It has
been shown [38] that loops and strings stretched between
fixed junctions with heavy strings have a periodic or
pseudoperiodic motion, that is, the curves described by
the vectors _Xþ and _X− are closed on the unit sphere.
The phenomena we are interested in are cusps and

pseudocusps, that is, the highly relativistic points on the
string. Cusps are defined as points whose velocity reaches
c ¼ 1, which is equivalent to an exact crossing of the two
curves _Xþ and − _X− on the unit sphere, namely

_XþðσðcÞþ Þ ¼ − _X−ðσðcÞ− Þ; ð2:8Þ

with the superscript (c) denoting the cusp’s coordinates. A
schematic representation of the occurrence of cusps in the
context of the unit sphere description is shown in Fig. 1.
Numerically, this exact equality is difficult to achieve, and
therefore one can allow for some leeway. In addition,
pseudocusps have been defined [38] as points reaching a
highly relativistic velocity but corresponding to an exact
velocity of c ¼ 1, for instance any velocity 10−6 to 10−3

below c ¼ 1. Recall that this definition was partly arbitrary
and related to the numerical accuracy of the simulation used
in the work presented in Ref. [38]. The nature of such a
definition is something we wish to clarify in this paper.
An imperative point to examine is that such velocities

could be reached in the neighborhood of cusps, since the
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velocity function j _Xðσ; tÞj is continuous in both t and σ. As
such, one would have σðpcÞþ ¼ σðcÞþ þ δσþ and σðpcÞ− ¼ σðcÞ− þ
ϵδσ− where ϵ≡�1 and jδσ�j ≪ σmax, with σmax being
either the periodicity of _X� or some coherence scale of _X�
on the unit sphere.1 In addition, a further extension of the
definition of such points could be pseudocusps appearing
per se, in a region whose velocity will never achieve c ¼ 1
exactly. This phenomena would be apparent in the neigh-
borhood of a close approach between the two curves on the
unit sphere, without any direct crossing. The inclusion of
points defined in this way will greatly increase the number
of points one might choose to look at as opposed to
enforcing the limit c ¼ 1.
Cosmic (super)strings are strong emitters of various

radiations (depending on the model one has in mind), in
particular GWs, since their energy density can be very high
and their motion relativistic. Every point of every string
contained in the cosmic network they form, thus emits
GWs, generating a stochastic background. We will be
directing our interest to bursts of GWs, and in particular
those produced by cusps and pseudocusps, since they have
been shown to dominate the high-frequency end of the
spectrum, with a logarithmic decrease with a slope of−4=3.
It has been estimated [38], using numerical simulations and
analytical work, that pseudocusps should be in significant
proportion with respect to cusps. In this study therefore we
wish to address the ability to estimate the importance of
GWBs from points classified as pseudocusps using our
previous definitions.

A. Pseudocusps

As we mentioned already, cusps, which are points of
the string that temporarily reach c ¼ 1, are maxima of the
two-dimensional velocity function j _Xjðσ; tÞ. Pseudocusps,
which are defined as points reaching a highly relativistic
velocity (strictly) below c ¼ 1, belong to one of two
classes, defined as follows. First, points can be located
in the neighborhood of a cusp: indeed, because the velocity
function j _Xjðσ; tÞ is continuous in both variables, the
immediate vicinity of the maximum j _XjðσðcÞ; tðcÞÞ ¼ 1

satisfies j _XjðσðpcÞ; tðpcÞÞ≲ 1, where one observes an infini-
tesimal deviation in the spatial and temporal directions, as
in σðpcÞ ¼ σðcÞ þ δσ and tðpcÞ ¼ tðcÞ þ ϵδt, where ϵ≡�1
and jδσj; jδtj ≪ σmax. Second, pseudocusps can also be
independent maxima of such a velocity function, i.e., points
at which the derivatives of the left- and right-movers
( _Xþ and _X−) approach each other very closely (enough
for such points to be highly relativistic) but are not exactly

equal, before moving apart. Points in the latter class are not
located in the vicinity of a cusp; they are hence called
independent pseudocusps. Their own neighborhood is
necessarily highly relativistic as well. For such points,

we define σðpcÞ� ¼ σðpcÞ � tðpcÞ to be the (null) coordinates at
which the velocity is a local maximum. Said differently,

ðσðpcÞþ ; σðpcÞ− Þ is where these two vectors _X� are locally the
closest, and we denote by θðpcÞ the angle between them

θðpcÞ ≡ arccos ð _XþðσðpcÞþ Þ · _X−ðσðpcÞ− ÞÞ: ð2:9Þ

We also define [38],

lμ ≡ _XμðσðpcÞ; tðpcÞÞ ¼ 1

2
ð _Xμ

þðσðpcÞþ Þ − _Xμ
−ðσðpcÞ− ÞÞ; ð2:10Þ

δμ ≡ 1

2
ð _Xμ

þðσðpcÞþ Þ þ _Xμ
−ðσðpcÞ− ÞÞ; ð2:11Þ

which are the half-sum and the half-difference between the
left- and right-movers’ (4-vectors) derivatives, computed at
the point of interest (here a pseudocusp). Note that despite
its appearance, we call lμ the half-sum, recalling that the
vectors we are interested in are _Xμ

þ and − _Xμ
−.

2

The 4-vector lμ is defined as the 4-velocity at the point of
interest and we recall that it is a null vector in the case of a
cusp. In the case of pseudocusps, the time component l0 is
also equal to 1, but the norm of the 3-velocity of the string

at that point ðσðpcÞþ ; σðpcÞ− Þ equals

jlij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðθcÞ

2

r
≈ 1 − θ2c=8: ð2:12Þ

However, δμ is spacelike, with δ0 ¼ 0 in the time gauge,
and

jδij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðθcÞ

2

r
≈ θc=2: ð2:13Þ

The angle θc can be thought of as measuring the softness of
a relativistic part of the string. The larger it is, the smaller
the velocity and the softer the pseudocusp; in the limit
θc ¼ 0, the event recovers a cusp such that the velocity
reaches c ¼ 1.
Note that in Ref. [38], only independent pseudocusps

(local maxima whose velocity is below c ¼ 1) were being
looked for, while the pseudocusps lying in the vicinity of
cusps were ignored. It was found, under a hypothesis that
will be reviewed here, that there exists a significant number

1For δσþ ¼ δσ− ¼ δσ > 0, if ϵ ¼ 1, the pseudocusp appears at
the same time as the cusp but further on along the string, with
σðpcÞ ¼ σðcÞ þ δσ and tðpcÞ ¼ tðcÞ; on the contrary, if ϵ ¼ −1, it is
at the point of the cusp but slightly after it occurred, that is,
σðpcÞ ¼ σðcÞ and tðpcÞ ¼ tðcÞ þ δσ.

2Still, because of symmetries of the form σ� → 2L − σ�, one
can generally study the þ _Xμ

� curves on the unit sphere, given a
careful computation of the event coordinates, e.g. σðcÞ� . See Fig. 3
and the discussion around it.
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of pseudocusps (about half as many) in comparison with
the number of cusps.

B. Gravitational wave radiation

Our numerical simulation closely follows the assump-
tions and analytical results of Damour and Vilenkin in
Refs. [30–32] as well as work in Ref. [34] in order to
consider the waveforms of both points defined as cusps and
pseudocusps. We start by considering the linearized metric
perturbation, gμν ¼ ημν þ hμν, with ημν defined as the flat
metric and jhμνj ≪ 1, where we choose the harmonic
gauge, ∂νhμν ¼ 0. Considering the traceless part, gravita-
tional waves from a localized source can be calculated
using the linearized Einstein equations

□hμν ¼ −16πGTμν; ð2:14Þ

which, for the far-field approximation can be expressed up
to first order in 1=r as

hμν ≃ 4G
r

X
ω

e−iωðt−rÞTμν: ð2:15Þ

Varying the Nambu-Goto action given in Eq. (2.1) with
respect to the metric yields the string energy-momentum
tensor for any position vector xλ

TμνðxλÞ ¼ μ

Z
dτdσð _Xμ _Xν − X0μX0νÞδð4Þðxλ − Xλðτ; σÞÞ;

ð2:16Þ

where the dependences of Xμ, X0μ and _Xμ on σ and t have
been hidden and δð4Þ is the four-dimensional Dirac delta
function. In the Fourier domain, for any point kλ in
momentum space, one obtains

TμνðkλÞ ¼ μ

L=2

Z
Σ
dτdσð _Xμ _Xν − X0μX0νÞe−ik·X; ð2:17Þ

where L is the period in σ� and Σ is the compact string
worldsheet ðσ; tÞ ∈ ½0;L=2�2. Note the 4-vector contraction
k · X ≡ kλXλ. Using the left- and right-movers’ decompo-
sition and the worldsheet coordinates given in Eq. (2.5), we
obtain

TμνðkλÞ ¼ μ

L

Z
Σ̄
dσþdσ−ð _Xðμ

þ _XνÞ
− Þe−i

2
ðk·Xþþk·X−Þ; ð2:18Þ

where we introduced the symmetrization over the indices μ
and ν and again chose not to explicitly write the depend-
ence of Xμ

� and _Xμ
� on σ�. Here, Σ̄ is the compact

worldsheet using the light-like coordinates ðσþ; σ−Þ ∈
½0;L�2. Using a complete factorization of the integrand,
we arrive at the final form for the stress-energy tensor

TμνðkλÞ ¼ μ

L
Iðμþ I

νÞ
− ; ð2:19Þ

where the factors appearing in the stress-energy tensor
which will be of interest in our study are

Iμ� ≡
Z

L

0

dσ� _Xμ
�e

−i
2
k·X� : ð2:20Þ

Due to the fact that the periodicity L is either the invariant
length of the string L, or it is of the order of a few times this
length at most [38], and since in our simulation we set
L ¼ L (without any loss of generality), we shall assume
this equality from this point onwards.
A final remark on the integration interval: as noted in

Ref. [31], the majority of the integral above comes from
the small interval around the coordinates σ� ¼ 0, that is,
around the position of a cusp or a pseudocusp. One can
therefore formally expand the limits of the integral to the
full length of the string when studying the high-frequency
behavior. In our code, this is where the precision can be
optimized (at most 200 000 points over the interval ½0; L�).
Similarly, the number of integrations performed is set by
the number of frequency points considered within the
region ½fu; fl� [see Eq. (3.2)].

C. Waveform frequency dependence
and gauge term considerations

The main steps derived in Ref. [31] which detail the
frequency dependence of the waveform from (exact)
cusps have been reproduced in this section. Let us start
by recalling that the direction of maximal emission is
along the velocity direction at the cusp, such that kλ ¼
ω _XλðσðcÞ; tðcÞÞ≡ ωlλ, where ω is the GW frequency.3 This
is the case of interest to us from now on.
The strings left- and right-movers, Xμ

�ðσ�Þ, can be
expanded around the point of intersection on the unit
sphere, and truncated at third order (in order to keep the
first non-null term in the final expression, as we will see
below). After a shift of worldsheet coordinates such that

σðcÞ� ¼ 0 and of spacetime coordinates such that Xμ
�ð0Þ ¼ 0,

one obtains

Xμ
�ðσ�Þ ¼ �lμσ� þ 1

2
Ẍμ
�ð0Þσ2� þ 1

6
X
⃛ μ

�ð0Þσ3�; ð2:21Þ

_Xμ
�ðσ�Þ ¼ �lμ þ Ẍμ

�ð0Þσ� þ 1

2
X
⃛ μ

�ð0Þσ2�; ð2:22Þ

where lμ ≡ _XμðσðcÞ; tðcÞÞ ¼ � _Xμ
�ðσðcÞ� Þ since we are

considering a cusp here.

3Recall the (c) superscript denoting the position of the cusp.
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Using the Virasoro conditions _X2
�ðσ�Þ ¼ 0, which one

can differentiate to obtain _X� · Ẍ� ¼ 0 and _X� · X
⃛

� þ
Ẍ2
� ¼ 0 at any σ�, one gets, at the cusp (only), l · Ẍ�ð0Þ¼0

and l · X
⃛

�ð0Þ ¼ −Ẍ2
�ð0Þ. One can use these to express the

quantity which enters in the phase of Eq. (2.20) as

k · X�ðσ�Þ ¼ ωlμX
μ
�ðσ�Þ ¼ −

1

6
ωðẌμ

�Þ2σ3�: ð2:23Þ

In addition, the three leading terms in the integrand of

Eq. (2.18), of the form lðμlνÞ þ lðμẌνÞ
− ð0Þσ− þ Ẍðμ

þ ð0ÞlνÞσþ,
are purely gauge terms and as such must be gauged away
[31]. The integrals Iμ� then become

Iμ� ¼ Ẍμ
�

Z
L

0

dσ�σ�e
i
12
ωẌ2

�σ
3
� ; ð2:24Þ

where Ẍμ
� is the leading-order (gauge-removed) term.

Computing these integrals yields

Iμ� ¼ 8πi
Γð1

3
Þ
Ẍμ
�

jẌ�j43
1

ω
2
3

: ð2:25Þ

Simply replacing ω ¼ 2πf reveals the frequency power
law for the quantities Iμ� and for the gravitational waves’
energy-momentum tensor

Iμ� ¼ iAμ
�ω

−2
3; ð2:26Þ

Tμνðkλ ¼ ωlλÞ ¼ −
μ

L
Aðμ
þA

νÞ
− jωj−4

3

¼ −
64π2

Γð1=3Þ2
μ

L
Ẍðμ
þ Ẍ

νÞ
−

½jẌαþjjẌβ
−j�4=3

ω−4=3; ð2:27Þ

where Aμ
� ≡ 8π

Γð1
3
Þ

Ẍμ
�

jẌ�j
4
3

are functions of the movers’ second

derivatives Ẍμ
�. The important feature one should extract

from the above expressions is the final form of the
frequency dependence.
As we have shown the waveform for cusps has been

found to have a frequency dependence in which the stress-
energy tensor follows a f−4=3 power law (f−1=3 in the
logarithmic Fourier representation) [31]. In order to attempt
to reproduce this dependence in our code, where c ¼ 1 is
never really achieved because of numerical inaccuracy, we
must ensure that we include only corresponding physical
components of the GWB. We are considering the point

of strongest emission, σðsÞ� , in the direction of strongest
emission kλ ∝ lλ ≡ _XλðσðsÞ; tðsÞÞ. Recall that we noticed
that, under a local Taylor expansion, the leading-order

terms are pure gauge and do not represent any physical
properties for GWB considerations. We will take that into
account, in the decomposition of the quantities we use in
our numerical code. Using the expansion and applying the
Virasoro conditions, we now have

Iμ� ¼
Z

l

0

dσ�ð _Xμ
�ðσ�Þ ∓ lμÞe−i

2
k·X�ðσ�Þ

¼
Z

l

0

dσ�

�
_Xμ
�ðσ�Þ ∓ 1

2
ð _Xμ

þðσðsÞþ Þ − _Xμ
−ðσðsÞ− ÞÞ

�

× e−
i
2
ωl·X�ðσ�Þ; ð2:28Þ

where the∓ sign is due to cusps occurring at _Xμ
þ ¼ − _Xμ

− in
our conventions. This definition of the integrals allows us to
also consider points which do not fully satisfy the con-
ditions set by cusps, that is a full realization of Eq. (2.8),
thus allowing for the study of pseudocusps in a similar
manner. Given the now correctly determined quantities Iμ�,
we will use the following scalar measure in order to
evaluate GWB amplitudes:

T¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TμνT�

μν−
1

2
jTμ

μT�ν
ν j

r

¼ μ

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðμþ IνÞ− ÞðI�þðμI

�
−νÞÞ−

1

2
jðIðμþ I−μÞÞðI�ðνþ I�−νÞÞj

r
; ð2:29Þ

T ¼ L
μ
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðμþ IνÞ− ÞðI�þðμI

�
−νÞÞ −

1

2
jðIðμþ I−μÞÞðI�ðνþ I�−νÞÞj

r
;

ð2:30Þ

where T is the quantity of interest we shall use in our
analysis in order to appraise the waveform’s slope
dependence.

III. NUMERICAL SIMULATION
CONFIGURATION AND METHODOLOGY

Our study comprises developing a numerical code in
order to evaluate the previously derived form of the stress-
energy tensor coming from Eq. (2.30) based on, in part, the
simulation used in Ref. [38]. Let us first recall some of its
properties before detailing the new computations. Our
initial simulation studies the noninteracting movement of
light strings stretched between two junctions with heavier,
fixed strings as displayed in Fig. 2. The end points of our
simulated string can thus only move in the z direction. As
the movement of the string is assumed periodic, without
any loss of generality [38], its initial position is described
by a sum of n̄i ≤ n Fourier modes, with amplitudes cik (for
the cosines) and sik (for the sines), as in
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Xðσ; 0Þ ¼ σ

σm
Δþ

�X̄nx
k¼1

cxkðhmÞ cos
�
2πkσ
σm

�
þ sxkðhmÞ sin

�
2πkσ
σm

��
ex

þ
�Xn̄y
k¼1

cykðhmÞ cos
�
2πkσ
σm

�
þ sykðhmÞ sin

�
2πkσ
σm

��
ey þ

�X̄nz
k¼1

czkðhmÞ cos
�
2πkσ
σm

��
ez; ð3:1Þ

where Δ ¼ ðΔ; 0; 0Þ, n̄i are random integers uniformly
drawn from ⟦1; n⟧ and all cikðhmÞ and sikðhmÞ yield random
real numbers uniformly drawn from ½−hm; hm�. n and hm
are input parameters of the simulation; they set up the
oscillatory behavior of the string, fixing a limit to the
highest frequency and amplitudes reached in its Fourier
decomposition.
Note that while these amplitudes are all drawn in

½−hm; hm�, with a uniform distribution, there is a bias:
indeed, too large amplitudes can sometimes lead to
velocities that are temporarily greater than c ¼ 1 (for
instance if a large amplitude is drawn for several similar
high frequencies). Still, the evolution equation implies that,

if at t ¼ 0 the velocity is well behaved and below c ¼ 1, it
will remain so during the whole period. The strings that do
not behave in this way are dismissed, therefore distorting
a posteriori the uniform draw within the amplitude interval.
It is also important to remark that our choice of uniform
distribution may affect the probability of cusps and
pseudocusps, as it may favor high frequencies in compari-
son to, for instance, a Gaussian distribution; this is not a
problem given that this should not distort the proportion of
cusps to pseudocusps.
The initial velocity is obtained in a similar way. Indeed,

one can remark first that the norm of the velocity vector
_Xðσ; 0Þ can be computed using the tangent vector X0ðσ; 0Þ
and the Virasoro condition ð _XÞ2 þ ðX0Þ2 ¼ 1 (which is
thus automatically satisfied). To fix its direction, we rotate
it within the orthogonal plane to the tangent vector X0. The
other Virasoro condition _X ·X0 ¼ 0 is then also satisfied
by such a construction. To assure both continuity and
periodicity, the rotation angle αðσÞ is also given by a
Fourier decomposition: a number of amplitudes are uni-
formly drawn from the interval ½αm; αm� where one gets
αðσÞ ¼ Pn̄α

k¼1 s
α
kðαmÞ sinð2πkσσm

Þ. The boundary conditions,
which impose a direction of the velocity at the end points,
are satisfied before and after such a rotation. One has now
obtained X0ðσ; 0Þ and _Xðσ; 0Þ, ∀σ, and the equation of
motion leads to the decomposition _X�ðσÞ ¼ X0ðσ; 0Þ�
_Xðσ; 0Þ, ∀σ ∈ ½0; 2σm�. This yields the complete (non-
interacting) evolution of the string over a period of time.
Note that we also check that various constraints, such as the
Virasoro conditions, are indeed well satisfied within the
whole ðt; σÞ ∈ ½0; σm�2 plane.
It is important to note that while the null coordinate

worldsheet Σ̄≡ fðσþ; σ−Þ ∈ ½0; L�2g is twice (and not 4
times) as large as its space and time coordinates counterpart
Σ≡ fðσ; tÞ ∈ ½0; L=2�2g, there exist symmetry properties,
coming from the boundary conditions of our numerical
simulation, that imply that all the information within Σ
appears exactly twice in Σ̄. Indeed, recall first that while the
string’s motion is L=2 periodic in time, the curves _X� are L
periodic. In addition, the string itself has been drawn such
that its velocity vector is symmetric under the transforma-
tion _Xμðσ; tÞ ¼ _XμðL − σ; tÞ. As shown in Fig. 3, let us
divide the Σ worldsheet into two parts according to t≶σ,
as in ΣA ≡ fðσ; tÞ ∈ ½0; L=2�2; t < σg and ΣB ≡ fðσ; tÞ ∈
½0; L=2�2; t > σg; similarly, let us divide Σ̄ into four parts

FIG. 1. Schematic representation of the _Xþ (in red) and _X− (in
blue) curves on the unit sphere, with black points highlighting the
cusp configurations, that is, the crossings of these curves.

x

y

z

FIG. 2. Visualization of string configuration used in our
numerical simulations depicting a light string stretched between
two junctions with heavier fixed strings.
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according to σþ≶σ− and σþ≶L − σ−, and denote them by
Σ̄NW ¼ ΣA, Σ̄NE, Σ̄SE and Σ̄SW. Using the aforementioned
symmetries, one can note that Σ̄NW and Σ̄SW are respec-
tively the symmetric of Σ̄NE and Σ̄SE (using σ → L − σ). In
addition, the symmetric of ΣB (using σ → L − σ) is the
equivalent of Σ̄SW (using the periodicity in σþ). Therefore,
Σ is half of Σ̄, in which each distinct point (such as cusps) of
Σ appears twice.
The total number of cusps forming on a simulated string

is found by analyzing the _X� curves on the unit sphere and
looking for direct crossings between these vectors. The
velocity is then computed and checked as to whether it
reaches the required limit of c ¼ 1 within the numerical
uncertainties of our code, which are generally ≲10−6. The
identified independent pseudocusps are the other points
of local maximum with highly relativistic velocities.
Arbitrarily, we a priori follow Ref. [38] and consider
“highly relativistic” to be any velocity above 0.999c.
Finally, it is checked that pseudocusps correspond to
configurations with a very small separation between the
two curves on the unit sphere. The angle θðpcÞ between the
two vectors _Xþ and − _X− is computed and its minimum is
found (within the grid approximation). This generally lies
between 10−1 and 10−3, in agreement with Eq. (2.12) and
our definition of pseudocusps with respect to their velocity.
To be clear following the work in Ref. [38] cusps are
accordingly defined as points corresponding to direct
crossings spanning the velocity range 1c → 0.999999c.

Independent pseudocusps are points corresponding to
near crossings spanning the velocity range 0.999999c →
0.999c. Given we are interested in the behavior of points in
the neighborhood of the velocity limit c ¼ 1, which could
potentially deviate by several orders of magnitude, we refer
to point velocities on the string using the scale logð1 − vÞ;
therefore, −∞ < logð1 − vÞ ≤ −6 for cusps and −6 <
logð1 − vÞ ≤ −3 for independent pseudocusps. The sig-
nificance and validity of these limits is something we shall
explore in this paper.
Finally, it is worth noting that even though our

analysis is performed within a specific setup, our
qualitative results remain valid in the more realistic
string configurations, most importantly in the direct
environment of a cusp or pseudocusp as well as the
relative proportion of such events. Based on these
simulations, that is, starting with a sample of strings
with cusps and independent pseudocusps occurring
during a period of noninteracting movement, we com-
puted the energy-momentum tensor of the GWs emitted.
As the high-frequency end of the spectrum is insensitive
to the low-velocity portions of the string, one can
choose to integrate over the whole string, as we did,
or over a small region around the point of interest. In
addition, the accuracy of our results highly depends on
the accuracy of the initial code used to produce our
simulated strings and the cuspy (cusps and pseudocusps)
configurations, which is of order 10−6.
Before we look at the statistical implications of our

numerical simulations, we will briefly cover any approx-
imations or considerations we take over the full process
for the study of points on a single string. The frequency
window we limit ourselves to in our numerical compu-
tations is defined by the following modification to the
relation in Eq. (2.26):

TμνðfÞ ∝ Aðμ
þA

νÞ
− jfj−4

3Θðfu − fÞΘðf − flÞ; ð3:2Þ

where the step functions Θ serve as cuts in the upper
and lower frequency bounds, respectively fu ≃ 104 Hz
and fl ≃ 10 Hz. The purpose of the lower frequency
limit will be to disregard a frequency plateau at the
low end of the spectrum as our aim is to focus on the
high-frequency burst emissions coming from highly
relativistic (logð1 − vÞ < −3) parts of the string.
Regular [nonrelativistic, with logð1 − vÞ < −1] parts
of the string serve to generate a stochastic background
of GWs, emitted in no preferred direction and with an
amplitude that is almost independent of f. Similarly, our
upper limit removes a region of computational uncer-
tainty at large frequencies (roughly above 104 Hz),
where our code was found to be unreliable as it yields
very noisy, unrealistic outputs. We believe this is due to
the numerical inaccuracies coming from _Xμ

� or higher-
order derivatives, which appear in the exponential part

FIG. 3. String worldsheets using space and time coordinates (Σ
in red) and null coordinates (Σ̄ in blue). Even though Σ̄ is twice as
large as Σ, both contain the same information. Indeed, ΣA ¼ Σ̄NW

and Σ̄SW are the symmetric of Σ̄NE and Σ̄SE (respectively), under
the symmetry σ → L − σ; also, the symmetric of ΣB (using again
σ → L − σ) is equivalent to Σ̄SW due to the L periodicity of Σ̄.
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of the integrand of Iμ� which blows up as ω becomes
increasingly large. This leaves a (conservative) several-
orders-of-magnitude frequency window in which highly
relativistic points would emit GWBs and where we fully
trust our simulation’s results, namely ω ∈ ½10; 104�. It is
in this region that we expect to match the analytical
computations leading to the −4=3 linear decrease in the
log power spectrum (as shown by Damour and Vilenkin)
through our numerical simulations.
It is important to note that while variations in

acceptable bounds between each relativistic region could
allow for larger windows, there is no relation between
the upper and lower bounds for each point of each
string. Therefore, we have chosen safer, more stringent
limits to ensure that our automated treatment is con-
sidering the correct (stable, high-end) frequencies for
the study of T , reducing the window on each end by
two points on a logarithmic scale, from ω ∈ ½10; 104� to

ω ∈ ½16; 6400� Hz.4 This procedure leaves us with
a 2.6-order-of-magnitude investigation window, that is,
for the frequency f¼ω=2π in Eq. (2.28), an interval
f ∈ ½2.52; 1000� Hz, where we are considering the
waveform slope dependance for different highly
relativistic points.
Figure 4 details the convergence of the calculated slope

for a single cusp as the potential number of frequency
points we could consider, within our defined window, is
varied over 3 orders of magnitude. As the main focus of this
paper is to gain a statistical understanding of the overall
behavior of a range of highly relativistic points, we limit
ourselves to the approximation that the slope consists of
the lower number of frequency points, as we find this is
sufficient to fully encode the slope’s behavior at these

FIG. 4. Calculated slope for a single cusp using a different number of frequency points in the frequency interval [2.52,1000] Hz
defined in Sec. III. We find that the slope converges quickly enough that significantly optimizing computational time with a lower
number of points is an acceptable approximation, allowing for an analysis of a much larger sample of points.

4More accurately, the chosen interval is ½101.2; 103.8� Hz ¼
½15.9; 6310� Hz.
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points, while allowing for significantly decreased computa-
tional time. This in turn greatly increases the number of
both strings and points we are able to consider. Our code is
therefore limited to performing integrations for 26 loga-
rithmically equidistant frequency points. The increasingly
present numerical noise we observe in each plot in Fig. 4
comes from the sensitivity in the exponential in Eq. (2.28)
to the numerical inaccuracies of our code which are
manifest from the accuracy of decomposition in the string
coordinates.5

IV. NUMERICAL SIMULATION RESULTS
AND DISCUSSION

Our code considers a total of 119 simulated strings in
which we identified 3234 highly relativistic points corre-
sponding to either direct or near crossings above the
thresholds given in Sec. III. Of these, a total of 2123
points were classified as cusps and 1111 points were
classified as independent pseudocusps. We have also
investigated a further 7088 points corresponding to veloc-
ities below the lower velocity threshold for pseudocusps
by a single order of magnitude [−3 < logð1 − vÞ ≤ −2] in
order to fully decipher the transitional behavior and
apparent limits between the highly relativistic and non-
relativistic regimes. Indeed, we seek to identify a velocity
region in which points transition away from the analytically
derived behavior for cusp events for GWBs.
In order to adequately cover this region, we have chosen

to randomly select points spanning the entire set of strings
and binned them given that their respective velocities
fell inside this region. Taking into consideration the
previously arbitrarily defined lower bound for pseudocusps
[logð1 − vÞ ¼ −3], we chose to significantly increase the
number of points to span an order of magnitude on either
side of this limit [−4 < logð1 − vÞ ≤ −2] in order to
collect sufficient data for the yet undefined region of
transition. Here we should note that by expanding our
data in this way, we increase the number of points inside
the velocity bounds for pseudocusps. However these points
lie in the neighborhood of cuspy events and must not be
confused with independent pseudocusps. There is no such
reason to expect these points to behave in a manor
(see Appendix B) different to any identified independent
pseudocusp given that the parameter of interest here is the
velocity. Therefore these extended points offer no other
purpose than to enrich the statistical accuracy of our
analysis.
This gives a grand total of 10 326 points we have

analyzed over the 119 strings which focus on the velocity
range −∞ < logð1 − vÞ ≤ −2 up to a numerical accuracy

of Oð10−6Þ. Within these limits we can identify four
velocity regions we wish to explore in order to sufficiently
grasp the behavior of the waveform for points on the string,
namely cusps, pseudocusps, and transitional and external
regions. For the convenience of the reader, we repeat that
we began with cusps a priori defined as points in the
velocity range −∞ < logð1 − vÞ ≤ −6 and pseudocusps
defined as points in the region −6 < logð1 − vÞ ≤ −3. We
identify as transitional points any points that fall in such a
velocity region which leads to confined deviation from the
expected analytical value, while any points yielding a
nonrelativistic behavior will be labeled as external points.
The velocity bound for such transitional and external
regions have yet to be determined.

A. Numerical simulation results

In Fig. 5, we present all of the data for the calculated
slope at the high-frequency end of the GW waveform’s
power spectrum, from all 10 326 points of the 119 strings,
with respect to the logarithmic deviation of their velocity
from c ¼ 1. We separated the velocity range into a cusp
region [in red, for logð1 − vÞ ∈ ½−10;−6�], a pseudocusp
region (in orange, for ½−6;−3�) and an external region (in
grey, for ½−3;−2�). In addition to the arbitrary configured
regions, subject to our analysis we also present a green
region between the two vertical dashed lines which
indicates (as we will detail below) a region for the threshold
between highly relativistic points (of interest for the GWB
emissions) and external points (surplus to requirements for
this study). The convoluted moving average μ of the slope
is represented by the solid black line, while the expected
high-velocity slope−4=3 is denoted by the horizontal black
dot-dashed line. Finally, the red band gives the 1σ deviation
from the average μ.
First, one can see that in the high-velocity limit, the

convoluted moving average of the slope reaches the
expected value of −4=3, as expected from analytic com-
putations. This is true for all points in the velocity range
which defines them as cusps. Similarly, for low enough
velocities [around logð1 − vÞ≃ −2], the slope strongly
deviates from such behavior. We turn our attention to
the region in between such limits as a focal point of interest
in our results. Indeed, the expected high-velocity behavior
remains exactly the same, down to almost all velocities
defining pseudocusps [that is down to logð1 − vÞ≃ −3.5 at
least]. This confirms that such points outside the formal
definition of a cusp should be considered of interest in the
same regard as actual cusps regarding their significance for
GWB considerations.
As this high-velocity behavior carries on through the

velocity region for pseudocusps, we would like to use
this to accurately define the limits on how these points
are classified. Said differently, using the information in
Fig. 5, we can identify the limits in which we see a
transition away from the GWB behavior. First, one can

5Figure 10 in Appendix B presents the output for every cusp
identified on a single string when taking into account these
considerations, which serves to confirm that our methodology is
valid across a large number of points.
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remark that the a priori threshold, namely logð1 − vÞ ¼
−3 is roughly correct for a lower velocity bound. Still,
we need to define an accurate way to draw this lower
velocity bound, which we chose to extract in two
different situations.
A conservative limit was set by seeking a “significant”

deviation from the average behavior at high velocities.
Since the relative error of the calculated moving average,
with respect to the expected, analytical behavior −4=3,
is roughly ∼2% [on average in the velocity range
−10 < logð1 − vÞ ≤ −4], we defined 5% as a significant
deviation.6 Such a constraint gives a conservative threshold
of v ¼ 0.99961, or logð1 − vÞ ¼ −3.41, that is, an upper
limit of the transition region. Our second approach is to
consider a more relaxed limit coming from the crossing of
μþ σ with the analytical value (where the dashed line exits
the red band). This yields a lower transitional limit of
v ¼ 0.99707, or logð1 − vÞ ¼ −2.53.
Using these two bounds we can now define a transitional

region between 0.99961 > v ≥ 0.99707, or −3.41 <
logð1 − vÞ ≤ −2.53, where points could still exhibit some

significant implications for GWB emissions but are ulti-
mately beginning a transition away from the analytical
behavior of cusps. At this point, one can redefine the
previous limits for pseudocusps as a velocity range of either
−6.0 < logð1 − vÞ ≤ −3.41 or −6.0< logð1−vÞ≤−2.53.
Alternatively, as the original bound lies roughly in the
middle of the transition region, one could chose to keep
−6.0 < logð1 − vÞ ≤ −3.0 as a valid limitation. These
considerations give a combined band of −∞< logð1−vÞ≤
−3.41 or −∞ < logð1 − vÞ ≤ −2.53 for an inclusive region
for cuspy events, referring to all points one would need to
consider for GWB emissions.
For clarity, let us zoom into the region in which we

identify the transition between the −4=3 frequency slope
for the waveform to one that decreases as a function of
velocity, as displayed in Fig. 6. One can clearly see how the
various thresholds clearly define three regions: at the high-
velocity end down to logð1 − vÞ ≲ −3.5, the average and
the 1σ band are horizontal and the GW emissions closely
follow the analytical results for cusps; at the low-velocity
end up to logð1 − vÞ ≳ −2.5, the expected −4=3 result is
far (and always further away) from the average, outside
the 1σ band; in the medium range, roughly between
−3.5≲ logð1 − vÞ≲ −2.5, the average almost linearly
deviates from the expected −4=3 value, but the 1σ band
still contains it. This transitional region can be either
excluded in a conservative way, included in a more relaxed
approach, or approximately averaged via splitting it in half,

FIG. 5. Calculated slope of the high-frequency end of the GW waveform’s power spectrum with respect to logð1 − vÞ, the logarithmic
deviation of velocity from c ¼ 1, using all of the 10 326 points in the velocity range 1 > v ≥ 0.99. The convoluted moving point average
is represented by the dot-dashed horizontal black line along with a �σ deviation band in red. The velocity ranges are split into four
regions, namely cusps [in red, for logð1 − vÞ ∈ ½−10;−6�], pseudocusps (in orange, for ½−6;−3�), external (in grey, for ½−3;−2�) and
transitional (in green, for ½−3.41;−2.53�). The vertical dashed lines limit the transition region, giving a conservative and a relaxed
threshold.

6In order to define a significant deviation we only
initially required that an average deviation should track in
the limits corresponding to points defined as cusps
(−10 < logð1 − vÞ ≤ −6). We find however this average
deviation tracks to smaller velocities than the lower velocity
bound for cusps (−6 < logð1 − vÞ ≤ −4).
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where −3 is the defining threshold. Note that this value lies
approximately where the average deviates by about 10%
from the analytical value.

B. Statistical distribution of string points

To gain a good understanding of how such a change
of the choice of velocity ranges included in a GWB
computation could impact the potential output, Table I
details the average percentage of the string moving in each
velocity range of interest in our simulation. We divided the
worldsheet of each string into 20 0002 points (using a local
interpolated increase in the accuracy) in which we com-
puted the velocity at each point and binned according to the
following bounds. Region A corresponds to cusps, that is
−∞ < logð1 − vÞ ≤ −6, while (a priori) pseudocusps have
been segregated into three regions, B, C and D, with each
one spanning 1 order of magnitude. Due to the fact that we
wanted to explore the possibility of changing the threshold
with respect to the GW behavior, we also considered a bin
for velocities falling in the range −3 < logð1 − vÞ ≤ −2,
namely region E. Region F contains all of the other points,
which we expect to behave as nonrelativistic points. The
results found for each string were then combined with the
averages over the 119 strings presented. As we have stated,
we chose to define the transitional region using both
conservative and relaxed approaches, with the former using
the shift of the average from the expected analytical value
and the latter using the point when this expected value exits
the standard deviation band. We then compared this to the
previous arbitrarily set bound chosen for pseudocusps in
Ref. [38]. In Table I, it is obvious that the velocity bound
for a point approaching the limit c ¼ 1 can have a large
impact on the selected proportions of the string to evaluate
for GWB emissions. Interestingly, one can note that not
only do cusps represent not only a very small fraction of the

whole worldsheet (which is to be expected), but also of the
highly relativistic patches. The important concern we wish
to note is the relationship between the velocity constraints
placed on points of interest and the fraction of the string
we are considering. This may be taken into account in
further studies of string network evolution. Indeed, the
proportion of the string moving at velocities above 0.999
(namely points within regions A to D) produces an order
Oð103Þ enhancement to the proportion of the string we
could otherwise consider. With independent pseudocusps
appearing at an order of Oð1Þ–Oð10Þ per string as shown
in Fig. 7(b) and the total number of points above the
pseudocusp lower velocity bounds (see Table II) repre-
senting a far greater number of points on the string, this
indicates that independent pseudocusps will only re-
present a rather small fraction of the total number of
pseudocusps. More importantly, it also implies that con-
sidering only cusps and independent pseudocusps pro-
vides an extremely limiting approach with respect to
considering the emission of high-frequency GWs from
cosmic strings.
In addition, one can look at how the modification of the

bound [using the a priori fixed limit logð1 − vÞ ¼ −3, the
conservative limit logð1 − vÞ ¼ −3.41 or the relaxed limit
logð1 − vÞ ¼ −2.53] would impact such proportions.
Table II details the averaged percentage of the worldsheet
in newly defined regions taking into account our findings
from Fig. 5. Regions δ and ε detail the corresponding
variations of the considered proportion of the worldsheet
that different velocity cutoffs play with respect to the
previously defined arbitrary limits. The former encom-
passes velocities between the conservative bound
(logð1 − vÞ ¼ −3.41) and the a priori bound (logð1 − vÞ ¼
−3), while the latter contains velocities between the a
priori bound and the relaxed bound (logð1 − vÞ ¼ −2.53).
Alternatively, region δ details the intersection of the a priori
defined pseudocusp regions (B, C and D) and the transition
region, while region ε is the intersection between the
external region (E) and the transition region. Regions δ̄

TABLE I. Averaged percentage of the worldsheet Σ̄≡
fðσþ; σ−Þ ∈ ½0;L�2g yielding a velocity within the intervals
defining regions A to F. The percentages are computed on each
string and then averaged over all 119 strings.

Region Velocity range

Logarithmic
velocity
range

Averaged
percentage of the
worldsheet (%)

A 1.0 > v ≥ 0.999999 ½−∞;−6� 0.000192
B 0.999999 > v ≥ 0.999990 ½−6;−5� 0.001651
C 0.999990 > v ≥ 0.99990 ½−5;−4� 0.016057
D 0.99990 > v ≥ 0.9990 ½−4;−3� 0.162562
E 0.9990 > v ≥ 0.990 ½−3;−2� 1.640088
F 0.990 > v ≥ 0.0 ½−2; 0� 98.179450

FIG. 6. Zoomed-in region of Fig. 5, where the high-frequency
behavior transitions from its −4=3 analytical slope, away from
the cusp behavior.
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and ε̄ are respectively the complements of δ and ε within
regions D and E (meaning that δ̄∪δ ¼ D and ε̄∪ε ¼ E).
These regions, along with their complements, can be

used to define three areas which encode the total number
of points leading to important GWB contributions, hence
providing a behavior indicative of cuspy events on cosmic
strings. Indeed, while choosing the a priori bound would
impose, for GWB analyses, selecting all points within the
region A∪B∪C∪D, choosing the conservative (relaxed)

bound implies selecting points within A∪B∪C∪δ̄ (respec-
tively A∪B∪C∪D∪ε). Due to the bend that the transitional
region exhibits away from cusp behavior, we find that
this grants an allowance for a Oð102Þ enhancement to the
fraction of the string we could consider of interest with
either relaxed or conservative bounds. It is worth noting
that in regions δ and ε, we find a −0.110% or þ0.349%
increase to the considered worldsheet with respect to the
a priori, arbitrary limit logð1 − vÞ ¼ −3. Alternatively, this

FIG. 7. (a), (b) and (c): Relationship plots for cusps and pseudocusps per string over the total of 119 strings highlighting the
approximate 2∶1 relationship of cusps to pseudocusps as argued in Ref. [38]. (d): The number of events contributing to each velocity
region.
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means a factor 2 to 3 enhancement between the worldsheet
proportions defined by each bound. We believe this to be
insignificant compared to the factor 102 to 103 gained with
respect to the cusp-only bound.
Let us emphasize that following the analytical studies of

Ref. [40] for example, one may conclude that there is Oð1Þ
cusp per string. The purpose of our study was not to
quantify the number of cusps that occur, since this would
depend on the parameters of a natural string network, but
to give an order-of-magnitude estimate of the number of
points (per cuspy event) on the string’s worldsheet that can
play the same role as cusps with respect to the emission of
GWBs. In Ref. [38], the number of cusps in the numerical
setup was quite high [see Fig. 7(a)] with the number of
near crossings, or independent pseudocusps representing
approximately half the number of cusps [see Fig. 7(b)].
Figure 7(c) shows the contour density plot for the number
of cusps and independent pseudocusps we identified,
giving a relatively good realization of this relationship in
our simulation. Of course, this approximate trend depends
highly on the velocity thresholds for a point to be labeled as
either a pseudocusp or as a cusp7 but as we have seen, the
cuspy event bound logð1 − vÞ < −3 is a posteriori suit-
able. As we are predominantly interested in the properties
of pseudocusps, we wanted to ensure that we have analyzed
a significant number of points with a velocity that is a
significant distance away from the limits between regions
in order to counteract possible numerical uncertainties in
our code. That is, we demand a sizable fraction of the
number of events to fill each of the regions A to D in
Table I, as can be seen from Fig. 7(d).
A final note on our method and numerical inaccuracies.

For any direct crossing in which we calculate the velocity
of the point to be superluminal, such error comes from the
initial numerical accuracy of the string position vector. As
previously stated, any point, including a cusp, will satisfy
j _Xþj ¼ 1 ¼ j _X−j. The numerical uncertainty in our code
however can allow for fractional variations away from a

unitary value which in turn allows for superluminal veloc-
ities below the numerical accuracy of 1.0þ 10−6. To correct
these very minor offsets we allow for a normalization of the
velocity with respect to its norm defined as

_X →
_X

j _X�j
: ð4:1Þ

It is worth noting that this logic also extends to the lower
limit, such that direct crossings can have velocities just inside
the upper pseudocusp limit.8

The important aspect of our study and the global picture
presented in Fig. 5 is that any points of importance for
GWBs should be classified as a function of their velocity
and not just the nature of the encounter between the _Xþ
and − _X− curves. Certainly, it is also clear that so-called
independent pseudocusps from near crossings produce the
same behavior as the analytical predictions for cusps, with
some freedom as to how far this behavior tracks with
respect to their velocity parameter. Said differently, both
independent pseudocusps and those in the neighborhood
of a cusp must be accounted for by allowing fractional
deviations of the velocities of any point of interest away
from the luminal limit c ¼ 1. Such results from our study
are of importance as this would lead us to consider a
significant increase in the number of points when comput-
ing the GWB output given that they adhere to certain
velocity constraints. This enhancement to the proportion of
the worldsheet we should look at, when incorporating the
lowest acceptable velocities, that is, for points in regions
A∪B∪C∪D∪ε as opposed to just direct crossings, can
account for an enhancement by a factor of Oð103Þ.

TABLE II. Averaged percentage of the worldsheet Σ̄≡ fðσþ; σ−Þ ∈ ½0;L�2g yielding a velocity within new intervals, considering the
results from Fig. 5. We define regions δ and ε as the transition regions, and their (respective) complements δ̄ and ε̄ relative to
(respectively) D and E. For each choice of the threshold, namely logð1 − vÞ ∈ f−3.41;−3.0;−2.53g, we also give the physically
relevant percentages of cuspy events. The percentages are computed on each string and then averaged over all 119 strings.

Region Velocity range Logarithmic velocity range Averaged percentage of the worldsheet (%)

D
n

δ̄ 0.99990 > v ≥ 0.99961 ½−4.0;−3.41� 0.052367
δ 0.99961 > v ≥ 0.9990 ½−3.41;−3.0� 0.110196

E
n

ε 0.9990 > v ≥ 0.99707 ½−3.0−2.53� 0.348867
ε̄ 0.99707 > v ≥ 0.990 ½−2.53;−2.0� 1.291221

A∪B∪C∪δ̄ 1.0 > v ≥ 0.99961 ½−∞;−3.41� 0.070267
A∪B∪C∪D 1.0 > v ≥ 0.9990 ½−∞;−3.0� 0.180462
A∪B∪C∪D∪ε 1.0 > v ≥ 0.99707 ½−∞;−2.53� 0.529329

7We recall that in Ref. [38], due to numerical inaccuracies,
points were labeled as cusps as soon as −∞ < logð1 − vÞ ≤ −6.

8This means we will have a small difference in the number
of points we have identified as direct crossings (formal cusp)
and the number of points present in the cusp velocity band.
This plays no significant role in our conclusions given that
these points do not lie in a transitional region anyway. These
discrepancies are shown in Fig. 7(d) which details the number
of formally defined points which contribute to each velocity
region defined in Table I.
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V. CONCLUSIONS

The overarching message from our study has been that
the consideration of points classified as pseudocusps can
provide a significant enhancement [namely Oð103Þ] to the
fractional percentage of the worldsheet one might choose
to examine as important for GWB emissions from cosmic
strings. The consideration of independent pseudocusps
provides approximately a 50% enhancement to the num-
ber of points to consider over just looking at cusps.
Certainly then we have shown that there is a large increase
in the number of points to consider when we extend these
considerations to include pseudocusps in the vicinity of
cuspy events. We have considered the noninteracting
movement coming from light strings stretched between
two junctions with fixed heavy strings, whereby we
assume that our qualitative results remain valid for more
realistic string configurations. Our analysis of the set of
119 strings allowed us to identify 2123 points classified as
cusps, that is, points reaching the speed of light c ¼ 1 in
relation to a crossing of the _Xþ and − _X− curves on the
unit sphere, and approximately half as many, 1111 to be
precise, classified as independent pseudocusps, that is,
points reaching highly relativistic velocities but not
exactly c ¼ 1, due to the close approach of the _Xþ and
− _X− curves.
It was first shown analytically in Ref. [30] that (exact)

cusps on cosmic strings present a decreasing power law
at the high-frequency end of the power spectrum which
amounts to f−4=3. They only incorporated the treatment of
exact cusps but not two classes of highly relativistic points,
corresponding to either an independent close approach of
the _Xþ and − _X− curves or points in the neighborhood of
a cusp which are slightly displaced either spatially or
temporally. We first clarified that the nature of such highly
relativistic points, designated as pseudocusps, does in fact
follow the same analytical behavior and implies the same
physical significance with a power law dependence equiv-
alent to cusps. These points were initially designated by
velocity limits −6 < logð1 − vÞ ≤ −3 and as such we
found that any point within this range exhibited a behavior
much the same as cusps.
The second phase of our study was to determine the

fractional magnitude from the limit c ¼ 1 to which points
begin to deviate from points classified as important for
GWB emission considerations. To do this we analyzed the
limits coming from three regions—cusps, pseudocusps and
transitional points—along with points external to this lower
limit, for consistency. In doing so we were able to both
reinforce the importance of highly relativistic points, along
with points which may maintain some of this importance
(transitional), and reclassify the velocity thresholds in
which such points appear within our numerical environ-
ment. In particular we showed that points to be considered
for GWBs should be determined by their velocity, relaxing

the concept of just focusing on points moving at exactly the
speed of light.
From the results of our study we arrive at a classification

for a set of points that are important regarding high-
frequency GWBs whose velocity lies roughly within
−∞ < logð1 − vÞ ≤ −3, accounting for about 0.18% of
the worldsheet in our case [to be compared with the
0.00019% if one considers only −∞ < logð1 − vÞ ≤ −6,
that is, a factor Oð103Þ]. One could select a more
conservative velocity limit −∞ < logð1 − vÞ ≤ −3.41,
implying a reduction of the size of the considered part
of the worldsheet by a factor 2 to 3. Alternatively, one could
choose a more relaxed one, namely −∞ < logð1 − vÞ ≤
−2.53, leading to an increase in size by a factor of 2 to 3.
In addition to the possible higher number of cusps per

string [than the analytical Oð1Þ], this means that the high-
frequency gravitational wave output from a string network
can be significantly enhanced with respect to previous
computations. An interesting follow-up would be to trans-
late this work to incorporate the bounds on the strings’ and
network’s parameters, in particular the tension Gμ.
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APPENDIX A: VISUALISATION OF POINTS
OF IMPORTANCE FOR GWBS

We seek here to represent, to provide a clearer under-
standing to the reader, the cuspy events and their environ-
ment, both in the unit sphere description as well as on the
string.
Figure 8 shows representations of events on the unit

sphere of the _Xþ and _X− curves in the case of cusps and
pseudocusps. While one can see the crossings of the curves
in Fig. 8(a) and note the separation angle θ ¼ 0 at the
cusps, Fig. 8(b) shows their close approach without any
crossing, with θ remaining non-null (and positive). Recall
that it is the equality between such vectors which allows, in
the GW emission computations, to cancel the leading term
by choosing the emission direction to be aligned with such
vectors and thus to enhance the high-frequency end of the
power spectrum, therefore leading to a GWB. Note that in
the neighborhood of a cusp, the vectors _Xþ and _X are very
close but not equal, implying a region of the string, in the
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vicinity of the cusp, which travels at highly relativistic
velocities.
As we mentioned already, a cusp, characterized by

_X ¼ 1 and X0 ¼ 0 [thanks to the Virasoro condition
(2.2)], is a point of infinite acceleration and null radius
of curvature. This is shown in Fig. 9 where the immediate
vicinity σ ∈ ½x − δ̄; xþ δ̄� of a cusp on the string is
simulated and given at different instants, both before and
after the formation of the cusp itself. The dotted line allows

to track the movement of the point σ ¼ x which becomes
the cusp at the instant τ ¼ y. One can clearly see the spiky
shape of the string at the cusp as well as the continuous
deformation which leads to such an event.

APPENDIX B: NUMERICAL SIMULATION
OUTPUT EXAMPLES

In this appendix we provide a few outputs from our
numerical simulation at various stages, providing details on
a few key stages of the processes involved in our study.
Figure 10 provides, for each cusp of one of our strings, the

(26-point) high-frequency window of the GW power spec-
trum as well as the calculated slope’s linear regression in red.
As one can see at a glance, our choice of frequency range
provided consistent behavior for such a panel of cusps. This
is the treatment we imposed on each of the cusps found on
each string of our simulation, leading to Figs. 5 and 6.
In addition, Fig. 11 presents, for a random cusp, the slope

obtained when considering its immediate environment.
Indeed, while the cusp itself is represented by the far left
point in red (with a velocity around 1–10−8.9 and a slope
slightly above−1.33), we then studied the GWemissions of
points at the same instant τ ¼ tðcÞ but slightly off along the
string, that is, for σ ¼ σðcÞ � δσ, as shown in Fig. 11(a), as
well as the GW emissions of the point σ ¼ σðcÞ but at
instants slightly before or after the cusp event, that is, for
τ ¼ tðcÞ � δτ, as shown in Fig. 11(b). The red curve
represents the approach of these points to the cusp
(σ < σðcÞ or τ < tðcÞ) while the black one yields the decline
(σ > σðcÞ or τ > tðcÞ). Note that because we selected space
and time intervals of fixed lengths, the velocity range is not

FIG. 9. Simulation of a cusp’s formation, with snapshots of a
section of the string at different instants both before and after
the formation of the cusp. The dotted line represents the time
evolution of the point σ ¼ x on the string which becomes a
cusp at the time τ ¼ y.

FIG. 8. Representations of the close approach of the _Xþ and _X− curves on the unit sphere, used to identify cusps (direct crossings) and
pseudocusps (near crossings) respectively.
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FIG. 11. Calculated slope of the GW power spectrum with respect to logð1 − vÞ, the logarithmic velocity, in the neighborhood of a cusp.
The velocity ranges (vertical and horizontal dashed lines) are defined as in Fig. 5. The red dot represents the cusp event, while the red
(black) curve shows the approach to (respectively, the decline out of) the cusp, that is σ < σðcÞ or τ < tðcÞ (respectively σ > σðcÞ or τ > tðcÞ).
Panel (a) shows the behavior of the vicinity of the cusp in the spatial σ direction, while panel (b) shows the same in the temporal τ direction.

FIG. 10. High-frequency window of the GW power spectrum for all the cusps (20) of a random string, as well as the linear regression
yielding the calculated slope, in red. Only 26 frequency points in the frequency range [2.52,1000] Hz have been used.
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explored with as much detail as one may desire. Still,
one can see that the neighborhood of the cusp is indeed
made of highly relativistic points whose GW emissions are
cusp-like, namely they have a linear high-frequency power

spectrum behavior with a slope around −4=3. This con-
firms the tendency for such points in the vicinity of cusps
to provide the same output as cusps and independent
pseudocusps.
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