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The covariance matrix of the matter and halo power spectrum and bispectrum are studied. Using a large
suite of simulations, we find that the non-Gaussianity in the covariance is significant already at mildly
nonlinear scales. We compute the leading disconnected non-Gaussian correction to the matter bispectrum
covariance using perturbation theory, and find that the corrections result in good agreement in the mildly
nonlinear regime. The shot noise contribution to the halo power spectrum and bispectrum covariance is
computed using the Poisson model, and the model yields decent agreement with simulation results.
However, when the shot noise is estimated from the individual realization, which is usually done in reality,
we find that the halo covariance is substantially reduced and gets close to the Gaussian covariance. This is
because most of the non-Gaussianity in the covariance arises from the fluctuations in the Poisson shot
noise. We use the measured non-Gaussian covariance to access the information content of the power
spectrum and bispectrum. The signal-to-noise ratio (S/N) of the matter and halo power spectrum levels off
in the mildly nonlinear regime, k ∼ 0.1–0.2 Mpc−1h. In the nonlinear regime the S/N of the matter and halo
bispectrum increases but much slower than the Gaussian results suggest. We find that both the S/N for
power spectrum and bispectrum are overestimated by the Gaussian covariances, but the problem is much
more serious for the bispectrum. Because the bispectrum is affected strongly by nonlinearity and shot noise,
inclusion of the bispectrum only adds a modest amount of S/N compared to that of the power spectrum.
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I. INTRODUCTION

Current large scale structure surveys such as those
aiming at measuring the baryonic acoustic oscillations
are giving important insights into the physics of the
Universe [1–6]. Future surveys such as Euclid [7] and
LSST [8] will measure the large scale structure over a large
volume and in deep redshift ranges with unprecedented
precision. To correctly interpret the data, the challenge is
not only to accurately model the observables, such as the
power spectrum and bispectrum, but the covariance matrix
of these quantities must also be known with sufficient
precision.
The covariance is often measured by running large

numbers of mocks, where the survey is modeled starting
from a large scale structure simulation. In this approach the
mocks not only can take into account the intrinsic corre-
lation, but also the survey geometry and various systematic
effects. To get good control of the covariance, often
hundreds or even thousands of simulations are required.
As it is computationally expensive to run the full N-body
simulations, various cheap approximate methods are often
used (see Ref. [9] and references therein for a review of
some of the methods that have been proposed).
However, to reach a better understanding and modeling

of the covariance it is easier to start with the relatively

simpler case of dark matter and halos in N-body simu-
lations. This approach has been used to study the covari-
ance of the power spectrum for dark matter [10–15] and
halos [12]. For the bispectrum PTHalos [16] has been used
to investigate the covariance systematically [17,18].
Analytical methods also prove fruitful, as they give

interesting insights into what the relevant contributions are
for the estimation of the covariance. The dark matter power
spectrum has been modeled using perturbation theory
[11,19,20] and halo model [21,22]. The Poisson model
has been invoked to model the shot noise contribution to
the covariance [12,23]. In particular, by combining the
analytical and numerical approaches, it has been realized
that beat coupling or supersample covariance can be a
significant contribution to the covariance in real surveys
[24–28].
In this paper we study the power spectrum and bispec-

trum covariance numerically and analytically. Taking
advantage of the large suite of simulations available in
the DEUS-PUR project, we study the covariance of the
dark matter and halo power spectrum and bispectrum. It is
worth stressing that this is the first systematic study of the
bispectrum covariance using such a large number of
N-body simulations. We also model the covariance and
compare the predictions with the numerical results.
As the power spectrum has been well explored and the

bispectrum becomes the next frontier in large scale struc-
ture, it is crucial to address how much information one can*chan@ice.cat
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gain by going beyond the two-point level. Previous work
[29] suggested that there is substantial information content
in the high-point statistics such as the bispectrum based on
the Gaussian covariance approximation. In the context of
weak lensing, a similar conclusion was found based on
Gaussian covariance [30]; however, when the non-
Gaussian covariance is used, the signal to noise (S/N) is
substantially reduced, especially for the bispectrum
[31,32]. Armed with the accurate covariance measured
from a large suite of simulations, we assess the information
loss in the power spectrum and bispectrum due to the
correlations that arise in the nonlinear regime.
This paper is organized as follows. In Sec. II, after

reviewing the basic theory of the power spectrum covari-
ance for dark matter and halos, we compare the model
prediction against the numerical covariance. Section III is
devoted to the bispectrum covariance. We first lay down the
theory of the dark matter and halo bispectrum covariance.
We then compare the numerical bispectrum covariance with
the theory predictions. The information content of the
power spectrum and the bispectrum is assessed by means of
the signal-to-noise ratio in Sec. IV. We conclude in Sec. V.
We check the probability distribution of the bispectrum
estimator in Appendix A. In Appendix B, we show the
derivation of some of formulas used in the main text. The
shot noise contribution to the halo power spectrum and
bispectrum covariance is derived using the Poisson model
in Appendix C. In Appendix D, we check the dependence
of the signal-to-noise ratio on the binning width.

II. COVARIANCE OF POWER SPECTRUM

The covariance of the dark matter power spectrum
has been studied quite extensively both numerically
[10,11,13,15] and theoretically [10,11,19,20]. On the other
hand the covariance of the halo power spectrum is relatively
less explored, but see Refs. [12,33]. Although the focus of
this section is on the covariance of the halo power
spectrum, we also present the results for dark matter for
comparison. We first review the basic theory of the power
spectrum covariance, which paves the way for the bispec-
trum covariance that we discuss later on.

A. Theory of the power spectrum covariance

Here we first review the theory of the covariance matrix
of the matter power spectrum, and then we discuss the
covariance of the halo power spectrum.
Suppose that the Fourier modes of the density contrast δ

are binned into bands of width Δk in Fourier space. The
power spectrum of δ, P, is defined as

hδðkÞδðk0Þi ¼ PðkÞδDðkþ k0Þ ð1Þ

where δD is theDirac delta function. From the definition, one
can construct a power spectrum estimator P̂ as (e.g. [11,34])

P̂ðkÞ ¼ k3F

Z
k

d3p
VsðkÞ

δðpÞδð−pÞ; ð2Þ

where kF is the fundamental mode of the box, 2π=Lbox (Lbox
is the size of the simulation box). Note that the integral is
done over all the modes that fall into the band of width
½k − Δk=2; kþ Δk=2Þ. Vs is the volume of the spherical
shell

VsðkÞ ¼
Z
k
d3p ¼ 4πk2Δkþ π

3
Δk3: ð3Þ

The covariance matrix of P̂ is defined as

CPðk; k0Þ≡ covðP̂ðkÞ; P̂ðk0ÞÞ
¼ h½P̂ðkÞ − hP̂ðkÞi�½P̂ðk0Þ − hP̂ðk0Þi�i
¼ hP̂ðkÞP̂ðk0Þi − hP̂ðkÞihP̂ðk0Þi: ð4Þ

1. Dark matter

The covariance matrix of the matter power spectrum was
first investigated using perturbation theory in Ref. [11], and
it has been extended to include loop corrections in
Refs. [19,20]. Here we limit ourselves to the theory laid
down in Ref. [11] as it is not the focus of this paper to
model the matter power spectrum covariance as accurately
as possible.
Plugging Eq. (2) into Eq. (4), for Gaussian δ, we get the

Gaussian covariance of the power spectrum estimator [34]

CP
Gðk; k0Þ ¼

2k3F
VsðkÞ

P2ðkÞδk;k0 ; ð5Þ

where δk;k0 is the Kronecker delta function that ensures that
the Gaussian covariance is diagonal. The Gaussian covari-
ance is inversely proportional to the number of modes in the
bin (and it is inversely proportional to the bin width Δk).
For Gaussian field, the power spectrum P in Eq. (5) should
be the linear one. As we include non-Gaussian corrections
below, one of the power spectrum should be the one-loop
one so that it is of the same order as the non-Gaussian
results. However, since the one-loop power spectrum
overpredicts the numerical power spectrum already at
k ∼ 0.1 Mpc−1h at z ¼ 0, we use the nonlinear power
spectrum measured from simulations in place of the one-
loop result.
The non-Gaussian contribution to the power spectrum

covariance comes from the trispectrum [10,11]

CP
NGðk; k0Þ ¼ k3F

Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ
Tðp;−p;p0;−p0Þ: ð6Þ

Only the parallelogram shape trispectrum contributes to the
power spectrum covariance. The non-Gaussian part does
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not depend on the bin width Δk. Note that both the
Gaussian and non-Gaussian covariance are inversely pro-
portional to the volume of the box (through k3F). We see that
the same is true for the bispectrum covariance. We can trace
back the factor k3F to the Dirac delta function in the
definition of the polyspectrum, which arises from the
statistical translational invariance of the field. Because of
this invariance, the amount of statistics is simply propor-
tional to the volume. On the other hand, when a window
function is imposed, the statistical translational invariance
is broken. Indeed the supersample covariance term scales
differently with volume [27].
Nonlinearity induces mode coupling and hence non-

Gaussianity. The tree-level dark matter trispectrum T has
two distinct contributions, T1 and T2 [11,35],

T1ðk1;k2;k3;k4Þ
¼ 6F3ðk2;k3;k4ÞPLðk2ÞPLðk3ÞPLðk4Þ þ 3 cyc:; ð7Þ

T2ðk1;k2;k3;k4Þ
¼ ½4F2ð−k3;k23ÞF2ðk4;k23ÞPLðk23ÞPLðk3ÞPLðk4Þ
þ ðk1 ↔ k2Þ� þ 5 cyc:; ð8Þ

where cyc. denotes cyclic permutations. PL is the linear
power spectrum, and F2 and F3 are the coupling kernels in
standard perturbation theory; see [36,37].
The T1 and T2 contributions to the covariance matrix are

then given by

T1ðk1;−k1;k2;−k2Þ
¼ 12F3ðk1;k2;−k2ÞP2

Lðk2ÞPLðk1Þ þ ðk1 ↔ k2Þ;
T2ðk1;−k1;k2;−k2Þ

¼ 4PLðjk1 − k2jÞ½F2ð−k1;k1 − k2ÞPLðk1Þ
þ F2ð−k1;k1 − k2ÞPLðk2Þ�2 þ ðk2 → −k2Þ: ð9Þ

The resultant covariance matrix contribution reads [11]

T̄ðk; k0Þ ¼
Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ
× f12F3ðp;p0;−p0ÞPLðpÞP2

Lðp0Þ þ ðp ↔ p0Þ
þ 8PLðjp − p0jÞ½F2ð−p;p − p0ÞPLðpÞ
þ ðp ↔ p0Þ�2g: ð10Þ

The contribution to the covariance of the power spectrum
can be represented graphically, and the results are shown in
Fig. 1. We apply similar techniques to the bispectrum
shortly, and it is more useful as there are more contributions
to the bispectrum covariance. In each diagram two black
dots on both sides represent the two δ’s in the power
spectrum estimator. The legs branching from each dot

represent the perturbation theory kernels. We use the wavy
line to represent the linear power spectrum, while the
additional dot on top means that the one-loop power
spectrum should be used instead. The term in the top-left
corner is the Gaussian term, while the others are the non-
Gaussian terms. The term CF3

gives the T1 contribution,
and both CF2I and CF2II combine to give T2.
It has also been shown that the large scale mode can

modulate the small scale modes to cause the so-called beat
coupling or supersample covariance [24–28]. This can be a
significant source of covariance at small scales in real
surveys. However, it only arises when a window function is
imposed such as in real surveys or when subparts of a huge
simulation are considered. In the simulations with periodic
boundary conditions, the wave vectors are sharp and the
supersample covariance does not appear. When a window
function is present, the wave vectors are broadened and the
large scale long modes can contribute. At tree level, there is
an extra diagram contributing to the trispectrum in addition
to the ones shown in Fig. 1, and this leads to beat coupling
at large scales.

2. Halos

We now turn to the halo power spectrum covariance. In
this case, besides the complications due to dark matter
nonlinearity and halo biasing, the discrete nature of halos
contributes further to stochastic fluctuations. In fact, shot
noise is the major source of halo covariance as we see
below. In Appendix C 1 we derive the Poisson shot noise
contribution to the covariance matrix of the power spectrum

FIG. 1. A diagrammatic representation of the leading contri-
butions to the covariance of the matter power spectrum. CNL

G is the
Gaussian term (top left), while the rest are non-Gaussian
contributions. The set of black dots on the left and right of each
diagram represent the two δ’s in each power spectrum estimator.
The legs branching from each dot represent the perturbation
theory kernel, F1, F2, and F3, respectively. Each wavy line
represents the linear power spectrum. In CNL

G , the filled circle
indicates that the linear power spectrum is replaced by the one-
loop power spectrum.
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using the Poisson model. In the Poisson model, we assume
the point particles are formed by Poisson sampling the
underlying continuous field. The Poisson fluctuations give
rise to the whole hierarchy of the n-point correlations in
general. In particular, the connected and disconnected four-
point function contributes to the power spectrum covari-
ance. We refer the readers to the Appendix C 1 for details
on the derivation. Here we summarize the key results.
There are both Gaussian and non-Gaussian contributions

to the covariance due to Poisson shot noise. The Gaussian
shot noise contribution, which can be represented diagram-
matically by the two disconnected diagrams in Fig. 24, can
be combined with the smooth Gaussian covariance Eq. (5)
to be written in a compact form [12,34]

CP
Gðk; k0Þ ¼

2k3F
VsðkÞ

�
PhðkÞ þ

1

~n

�
2

δk;k0 ; ð11Þ

where Ph is the smooth halo power spectrum and ~n ¼
ð2πÞ3n̄ with n̄ being the mean number density of halos.1

The non-Gaussian shot noise contribution is given by

CP
NGðk; k0Þ ¼ k3F

�
1

~n3
þ 2

~n2
ðPhðkÞ þ Phðk0ÞÞ

þ 2

~n2

Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ
Phðjpþ p0jÞ

�

þ � � � ð12Þ

where the dots denote the contribution associated with the
halo bispectrum and also the smooth trispectrum contri-
butions. See Eq. (C19) for the full expression. These terms
are due to the connected four-point function in the Poisson
model [diagrammatically, the three types of terms in
Eq. (12) can be represented by the first, second, and fourth
diagrams in the third row of Fig. 24]. For the halo power
spectrum we do not include the shot noise contribution
associated with the bispectrum for simplicity because
we find that the prediction without bispectrum works
reasonably well. A simple estimate suggests that this is
small compared to the dominant Gaussian term but not
negligible.
In Fig. 2, we plot the components of the Gaussian and

non-Gaussian contributions to the diagonal of the covari-
ance. Note that the covariance depends on the volume of the
simulation and the bin width Δk. For the theoretical
computations, unless otherwise stated, we use box size
656.25 Mpc h−1, which corresponds to the small or hires set
shown in Table I. For the power spectrum, we use the
binning width of 9.6 × 10−3 Mpc−1h, which is equal to the
fundamental mode of the small set. We show the results for

two representative halo groups, which correspond to the
large group 4 at z ¼ 0.5 and the hires group 2 at z ¼ 0
shown in Table II. We have combined the terms propor-
tional to 1= ~n2, which are similar in magnitude. For the low
number density group in the range k≲ 0.2 Mpc−1h, the
Gaussian term, CP

G, dominates, while for higher k, the non-
Gaussian term 1= ~n3 is the only significant term. On the
other hand, for the low bias and high number density
sample, the Gaussian term is dominant up to k ∼ 1 Mpc−1h.

B. Numerical results

In this paper we use the simulations from the DEUS-
PUR project [15,38]. We consider three sets of simulations
labeled as large, small, and hires, respectively. The detailed
properties of these simulations are shown in Table I. A flat
ΛCDM model with the WMAP7 cosmological parameters
[39] is adopted for these simulations. In particular,
h ¼ 0.72, Ωm ¼ 0.257, ns ¼ 0.963, and σ8 ¼ 0.801. The
Zel’dovich approximation is used to generate the Gaussian
initial conditions at zi ¼ 105 for the large and small sets,

FIG. 2. Various contributions to the diagonal elements of the
covariance of the halo power spectrum for two selected halo
groups. The Gaussian covariance (solid black) and the non-
Gaussian terms proportional to 1= ~n3 (dashed green) and P= ~n2

(dashed red).

TABLE I. Details of the simulations.

Box
label

Box size
(Mpc h−1)

Number of
particles

Redshift
snapshots

Number of
realizations

Large 1312.5 5123 1, 0.5, 0 512
Small 656.25 2563 1, 0.5, 0 4096
Hires 656.25 10243 1, 0.5, 0 96

1The presence of the ð2πÞ3 factor is due to the Fourier
convention used in this paper. We can convert the formula to
the perhaps more popular convention by replacing ~n by n̄.
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and zi ¼ 190 for the hires set. The transfer function is
computed with CAMB [40]. The simulations are evolved
using the adaptive mesh refinement solver RAMSES [41].
We consider simulation snapshots at z ¼ 1, 0.5, and 0,
respectively. The large and small sets have the same mass
resolution although the box size of the large set is twice that
of the small set. The hires has higher mass resolution than
the small set while their box sizes are the same. For more
details on the descriptions of the simulations, see Ref. [15].
The halos used in this work are obtained using the

friends-of-friends algorithm with linking length set to 0.2
times the mean interparticle separation. Only halos with at
least 100 particles are used. We divide the halos into four
mass groups. The details of these mass groups are shown in
Table II. The simulations of the large and small sets only
have the highest mass group, group 4, while the hires set
has groups 1–4. Moreover, the results at z ¼ 1, 0.5 and, 0
are available for the large and small sets, while only z ¼ 0
ones are available for the hires set. We note that the number
density of the halo groups considered here is low compared
to the expected number density in future galaxy surveys,
e.g. the number density in Euclid is projected to be
n̄ ∼ 10−3 ðMpc h−1Þ−3.
We note that the output time of the simulations differs

from the nominal output time slightly, e.g. for the small set at
z ¼ 1, the fluctuation is about 0.3% on the scale factor. For
darkmatter, we correct for this bymultiplying byD2 andD4

to the power spectrum and bispectrum respectively (D is the
linear growth factor). As in the evolutionmodel, the decay of
the bias parameters roughly cancels the growth factor of the
density [42], the time dependence of the halo overdensity is
expected to be weak and we do not apply any correction for
the halos. The corrections reduce some noticeable
differences between the large and small set results for the
power spectrum covariance. We do not find any noticeable
effects for the case of bispectrum. However, the corrections
are imperfect in the nonlinear regime, and this may explain
that there are some differences between the large and small
sets for their power spectrum covariance.

1. Dark matter

The covariance of the dark matter power spectrum has
been shown in Ref. [15] using the same data set. Here we
only show the dark matter power spectrum results for
completeness. We also compare the results between the
small and large set, while in Ref. [15] only results from the
small set were shown.
The covariance depends on the volume and the binning.

For the power spectrummeasurements, we choose the same
band width Δk ¼ 9.6 × 10−3 Mpc−1h for all the simula-
tions. We normalize the covariance with respect to the
Gaussian one. In this way, the volume dependence is
expected to cancel out [see Eqs. (5) and (6)].
We estimate the covariance of the power spectrum as

CPðk;k0Þ ¼ 1

N−1

XN
i¼1

½PiðkÞ− P̄ðkÞ�½Piðk0Þ− P̄ðk0Þ�; ð13Þ

where N is the number of realizations used and P̄ is the
mean of the power spectrum measured from the
simulations.
In Fig. 3, we plot the diagonal elements of CP for dark

matter. We show the results using the three sets of
simulations. The results are normalized with respect to
the Gaussian covariance, in which the power spectrum is
the linear one. The results from the small and large set agree
with each other well. At low z the results from the small and

TABLE II. Properties of the halo groups.

Box
label

Mass
group

Redshift
snapshots

Mass range
(1012 M⊙h−1)

Linear
bias

Number
density

ðMpc h−1Þ−3
Large,
small

4 1 >120 6.44 1.94×10−6

Large,
small

4 0.5 >120 4.26 6.74×10−6

Large,
small

4 0 >120 2.90 1.57×10−5

Hires 1 0 1.88–5.63 0.94 9.77×10−4

Hires 2 0 5.63–18.8 1.13 4.60×10−4

Hires 3 0 18.8–120 1.57 1.77×10−4

Hires 4 0 >120 2.78 1.80×10−5

FIG. 3. The diagonal elements of the dark matter power
spectrum covariance at z ¼ 1, 0.5, and 0 (from top to bottom).
The results are normalized with respect to the Gaussian covari-
ance. The results from the large (blue circles), small (red
triangles), and hires (green squares) sets are shown. The pertur-
bation theory predictions are overplotted (black solid line).
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hires sets are very similar; thus the mass resolution effects
are small at low z, consistent with that reported in Ref. [15].
We also plot the perturbation theory results, which include
the nonlinear power spectrum correction to the Gaussian
covariance and the trispectrum Eq. (10). The agreement
between perturbation theory and simulation results seems
to be worse than what is shown in Ref. [13]. A possible
reason is that we have used the nonlinear power spectrum
from simulations, which is lower than the one-loop one in
the nonlinear regime.
We now show the correlation coefficient rP defined as

rPðki; kjÞ≡ CPðki; kjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CPðki; kiÞCPðkj; kjÞ

q : ð14Þ

In Fig. 4 we plot rPðki; kjÞ as a function of kj, with ki fixed
at the values of ki ¼ 0.076, 0.19, and 0.40 Mpc−1h
respectively. rp is expected to be independent of the
simulation volume, and indeed we find that the results
from a different simulation set agree with each other well.
When both ki and kj are small, the agreement between the
tree-level perturbation theory and the numerical results is
reasonable, but it deteriorates for large ki or kj as the mode

coupling becomes more significant in the nonlinear regime.
See Refs. [19,20] for the improvement of the agreement by
including the one-loop corrections to the trispectrum.
For Gaussian distribution, the error of the mean goes like

∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmodeNreal

p
, while the error of the covariance is

∝ 1=
ffiffiffiffiffiffiffiffiffi
Nreal

p
, whereNmode andNreal are the number of modes

in the bin and the number of independent realizations,
respectively; see e.g. [43].As the total volumeof the large set
is the same as that of the small set, we expect them to have a
similar error bar for themean.On the other hand, fromFig. 4,
the correlation coefficients for the large set are much noisier
than that of the small set because of a small number of
realizations. We find that the small scale trispectrum con-
tribution is largely insensitive to the simulation box and this
is consistent with [20] (as we mentioned, the small
differences between the large and small set could result
from the output time fluctuations). Thus to get the small
scale covariance, we can run a large number of small box
size simulations to beat down the noise on the covariance
without worrying about the volume effects.

2. Halos

We now look at the covariance of the halo power
spectrum. We are usually interested only in the continuous

FIG. 4. The correlation coefficients of the dark matter power spectrum covariance r at z ¼ 1, 0.5, and 0 (from left to right). rðki; kjÞ as
a function of kj for a list of fixed ki ¼ 0.076, 0.19, and 0.40 Mpc−1h (top to bottom). The results from the large (blue circles), small (red
triangles), and hires (green squares) sets are shown. The perturbation theory predictions are overplotted (black solid line).
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halo power spectrum signal, and the Poisson shot noise is
subtracted using Eq. (C6). Caution must be taken for the n̄
appearing in the shot noise formulas. The mean density of
halos n̄ is obtained by ensemble average, but it is usually
estimated using the volume-averaged density measured in a
particular simulation/survey. We see that using the volume
average number density results in a substantially smaller
covariance.
We first look at the case when the ensemble averaged

number density is used. This corresponds directly to the
Poisson model prediction given in Appendix C 1. The
ensemble averaged number density is obtained by further
averaging the volume-averaged ones over the realizations
of the simulations. It is clear that in this case the covariance
of the power spectrum with the Poisson shot noise
subtracted is the same as that of the raw power spectrum.
Here we use raw power spectrum to refer to the one
measured directly from simulation without any shot noise
subtraction.
In Fig. 5, we show the diagonal elements of the

covariance of the halo power spectrum. We normalize
the results using the Gaussian covariance in Eq. (11). Halo
groups from large, small, and hires sets are used. Similar to
the dark matter case, we find that the results from different
sets are similar. The differences between the large and small
may be due to the output time fluctuations. Because of the

low number of realizations available, the trends for the low
bias groups from the hires set are noisy. For clarity, we only
show the results from hires groups 1 and 4. Thanks to the
smallness of the non-Gaussian corrections for the abundant
halo group as expected from Fig. 2, the model agrees well
with simulation for group 1. Overall, the Poisson model
including the non-Gaussian corrections gives a reasonably
good agreement with the numerical covariance up to
k ∼ 1 Mpc−1h.
To compute the prediction we use a simple linear bias

model

PhðkÞ ¼ b21PðkÞ: ð15Þ

The linear bias b1 is obtained by fitting the model to the
mean of the autopower spectrum up to k ¼ 0.05 Mpc−1h.
The best-fit values are shown in Table II. To compute the
prediction in the Poisson model we should use the fully
nonlinear polyspectra, but for the high mass group 4, we
find that the results are similar even if we use the nonlinear
power spectrum measured from simulations instead.
However, for group 1, the nonlinear power spectrum must
be used because the magnitude of the halo power spectrum
is comparable to the Poisson shot noise for this abundant
group.
In Fig. 6, we plot the correlation coefficient rP for the

halo power spectrum. We choose the same sets of ki as in
Fig. 4. We note that for dark matter, rPðki; kjÞ generally
increases as kj goes beyond the pivot scale ki, while for
halos, rPðki; kjÞ tends to level off or increases very mildly
beyond the pivot scale. When ki is small, the model can
predict rPðki; kjÞ near the pivot scale, but tends to over-
predict it when the separation from the pivot is large. We
also note that the model performs worse at low z than at
high z. This is because at low z higher order correlators are
more important.
We now consider the case when the Poisson shot noise

obtained with the volume-averaged number density is
subtracted from each realization. The covariance can then
be expressed as

cov½PrawðkÞ − PPois; Prawðk0Þ − PPois�
≈ cov½PrawðkÞ; Prawðk0Þ� − varðPPoisÞ; ð16Þ

where PPois is defined as

PPois ¼
1

ð2πÞ3nva
; ð17Þ

with nva being the volume-averaged number density
obtained in a particular realization. In Eq. (16), we have
assumed that

cov½PPois; Prawðk0Þ� ≈ varðPPoisÞ: ð18Þ

FIG. 5. The diagonal elements of the halo power spectrum
covariance. The mean Poisson shot noise is subtracted. The
results from large group 4 (blue circles), small group 4 (red
triangles), and hires group 1 (violet squares) and group 4 (green
squares) are shown. The predictions are computed using Eq. (12)
(black lines).
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We see that this is indeed a good approximation. We find
that the fluctuations of the number density of the halo
groups in the simulation volume can be modeled as a
Poisson fluctuation.
In Fig. 7 we plot the diagonal elements of the halo power

spectrum covariance when the Poisson shot noise from the
individual realization is subtracted. For clarity we only
show the results from the small set. Note that we still
normalize the covariance using Eq. (11). First, we find that
the resultant covariance comes much closer to the Gaussian
one. This is good news because for the more realistic
scenario, where the mean density is computed as a volume
average over the survey/simulation, the halo power spec-
trum covariance is reduced and is easier to predict. This
makes sense intuitively since when the number density is
estimated from the realization, part of the fluctuations is
absorbed in the shot noise term. The distinction between the
local volume-averaged density and the global ensemble one
is analogous to the effects arising from defining the density
contrast with the local or global average density found in
Ref. [26]. We show the results obtained using Eq. (16), in
which the variance of the number density is measured from
simulations. We see that it agrees with simulation results
very well. This validates Eq. (18) and shows that the
Poisson shot noise does not correlate with the clustering.

FIG. 6. Similar to Fig. 4, except for the halo power spectrum covariance. The mean Poisson shot noise is subtracted. The results from
large group 4 (blue circles), small group 4 (red triangles), and hires group 1 (violet squares) and group 4 (green squares) are shown. The
predictions are computed using Eq. (12) (black lines). At z ¼ 0, the lower curve is the theory prediction for hires group 1.

FIG. 7. The diagonal elements of the halo power spectrum with
the mean shot noise subtracted (circles, upper data set) and the
shot noise estimated and subtracted from each realization
(triangles, lower data set). The data from the small set are used.
The prediction using Eq. (16) is overplotted (solid blue).
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Similarly, when the Poisson shot noise is subtracted from
the individual realizations correlation coefficients are also
significantly reduced as shown in Fig. 8. The predictions
using Eq. (18) also result in very good agreement with the
simulation results. However, even though from Fig. 7 it
appears that after subtraction of the individual shot noise
the diagonal elements are very close to the Gaussian one, it
is clear from Fig. 8 that after subtracting the variance of
PPois there are still large cross-correlation coefficients.
In summary, our results show that the difference between

the two different ways to subtract the Poisson shot noise
simply arises from the fluctuation in the number density of
the sample, and its effect can be modeled by a fluctuating
PPois. The fluctuations in the Poisson shot noise account for
a large amount of non-Gaussianity in the covariance matrix.
In the plots of this section the covariances are always

normalized with respect to the Gaussian covariance. Here
we comment on the magnitudes of the matter and halo
power spectrum covariances. For the massive halos in
group 4, the power spectrum covariance is 3 to 5 order of
magnitudes higher than the matter one, depending on the
redshift in question. Thus for these kinds of halos, the shot
noise contribution to the covariance completely dwarfs the
matter power spectrum covariance. However, as the number

density of halos increases, the shot noise contribution to the
power spectrum decreases. For the hires group 2, we still
find that the halo power spectrum covariance is 1 order of
magnitude higher than that of the dark matter. When the
number density is as high as that of the hires group 1,
we find that the halo covariance is comparable in magni-
tude to that of the dark matter. These explain why the
simple linear bias model works well except for the most
abundant groups. In Euclid, the number density of galaxies
is expected to reach ≳10−3 ðMpc h−1Þ−3 [7]; hence the
covariance is expected to get non-negligible contributions
from dark matter nonlinearity and galaxy biasing.
Finally we point out that [12] also studied the covariance

of halo power spectrum usingN-body simulations although
using only 30 simulations of box size 1500 Mpc h−1. Our
results are similar to those in [12] regarding the effects of
different shot noise subtraction procedures to the covari-
ance. Here we go on to show that the fluctuating Poisson
shot noise term accounts for most of the non-Gaussianity.

III. COVARIANCE OF THE BISPECTRUM

In this section, we first discuss the theory of the
bispectrum covariance for dark matter and halo. Then

FIG. 8. The correlation coefficients for the halo power spectrum with the mean shot noise subtracted (circles, upper data set) and the
shot noise estimated and subtracted from each realization (triangles, lower data set). The data from the small set are used. The prediction
using Eq. (16) is overplotted (solid blue).
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we present the numerical covariance results and the
comparison with theory.

A. Theory of the bispectrum covariance

The theoretical discussion on the bispectrum covariance
in previous works has been mainly limited to the Gaussian
contribution to the covariance [18,44]. This is partly
because the bispectrum covariance has a relatively large
number of elements and the number of available realiza-
tions in most of the existing simulation sets is not large
enough to get good signal to noise. Here we consider the
non-Gaussian contribution as well. We see shortly that this
is crucial to get good agreement with the simulation results.
Given the definition of the bispectrum

hδðk1Þδðk2Þδðk3Þi ¼ Bðk1; k2; k3ÞδDðk123Þ; ð19Þ

we can construct an estimator as [18,44]

B̂ðk1; k2; k3Þ ¼
k3F
V123

Z
k1

d3p
Z
k2

d3q
Z
k3

d3r

× δDðpþ qþ rÞδðpÞδðqÞδðrÞ; ð20Þ

where ki indicates the integration is over a spherical shell of
width ½ki − Δk=2; ki þ Δk=2Þ, with Δk being the width of
the bin in Fourier space. The term V123 counts the number
of modes satisfying the triangle constraint,

V123 ¼
Z
k1

d3p
Z
k2

d3q
Z
k3

d3rδDðpþ qþ rÞ: ð21Þ

In fact, we can compute V123 analytically to get [18]

V123 ¼ 8π2k1k2k3ðΔkÞ3βðΔÞ; ð22Þ

where Δ is defined as

Δ ¼ k̂1 · k̂2 ¼
k23 − k21 − k22

2k1k2
; ð23Þ

and βðΔÞ is given by

βðΔÞ ¼
8<
:

1
2

if Δ ¼ �1

1 if 0 < Δ < 1

0 otherwise

: ð24Þ

For more details on the derivation of Eq. (22), see
Appendix B. In Appendix A, we check the probability
distribution of B̂. We find that it is close to Gaussianly
distributed but with non-negligible skewness and kurtosis
as well.

The covariance matrix of B̂, CB is defined as

CBðk1; k2; k3; k01; k02; k03Þ≡ cov½B̂ðk1; k2; k3Þ; B̂ðk01; k02; k03Þ�
¼ hB̂ðk1; k2; k3ÞB̂ðk01; k02; k03Þi
− hB̂ðk1; k2; k3ÞihB̂ðk01; k02; k03Þi:

ð25Þ

In the following we skip the superscript B in the notation
for the sake of simplicity.

1. Dark matter

When δ is Gaussian, hB̂i is 0; however C does not
vanish. The Gaussian covariance can be written as [18]

CL
G ¼ k3F

V123

δk1k2k3;k01k02k03s123PLðk1ÞPLðk2ÞPLðk3Þ; ð26Þ

where δk1k2k3;k01k02k03 is nonvanishing only if the shape of the
triangle k1k2k3 is the same as that of k01k

0
2k

0
3. If none of

the sides of the triangle are equal to each other, s123 ¼ 1. If
the triangles are isosceles, s123 ¼ 2. For equilateral trian-
gles, we have s123 ¼ 6. The derivation of Eq. (26) is
reviewed in Appendix B. In Eq. (26), for Gaussian δ, PLðkÞ
is the linear power spectrum. As we consider the non-
Gaussian contribution below, we find that part of the
contribution can be resummed if we use the one-loop
matter power spectrum instead of the linear one for one of
the power spectra. However, the one-loop power spectrum
overestimates the matter power spectrum from simulation
in the weakly nonlinear regime already. Similar to the case
of power spectrum, we use the nonlinear power spectrum
measured from simulations in place of the one-loop results.
We use the notation CNL

G to distinguish the case when the
nonlinear power spectrum is used, that is

CNL
G ¼CL

Gþ
k3F
V123

δk1k2k3;k01k02k03s123

× ½PLðk1ÞPLðk2ÞðPNLðk3Þ−PLðk3ÞÞþ2cyc:�; ð27Þ

where cyc. denotes cyclic permutations and PNL denotes
the nonlinear power spectrum.
In the top-left corner of Fig. 9, we show a diagrammatic

representation of CNL
G . The rules are the same as those in

Fig. 1. The black dots on the left- and right-hand side
represent the three δ’s in each of the bispectrum estimators
B̂. The curly line represents the linear power spectrum. We
put a filled circle on one of the curly lines to indicate that
the nonlinear power spectrum is used instead of the linear
one. We see that the Gaussian term has the same structure
as the Gaussian covariance for power spectrum in Fig. 1.
The Gaussian covariance for the bispectrum is also
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inversely proportional to the number of modes in the bins
[and it scales with bin width as 1=ðΔkÞ3].
Nonlinear evolution causes mode coupling and departure

from Gaussianity. At the tree-level order, there are both
connected and disconnected contributions to the six-point
function. In this paper we evaluate the leading disconnected
tree-level contributions only. We estimate the leading
connected contributions and show that they are subleading
relative to the terms we consider.
The disconnected non-Gaussian tree level contributions

can arise either from the F3 or F2 kernel. In Fig. 9, we show
a graphical representation of these non-Gaussian contribu-
tions. There is one contribution due to F3, CF3

, in which F3

is represented as three legs branching from a black dot. The
non-Gaussian tree level can also arise from two F2 kernels.
We further classify these diagrams into type I if both F2

kernels are on the same triangle, and type II if they are
distributed on different triangles. There are two type I
diagrams and four type II.

First for convenience we define the notation

Z
D≡ k3F

V123V 0
123

Z
k1

d3p
Z
k2

d3q
Z
k3

d3rδDðpþqþ rÞ

×
Z
k0
1

d3p0
Z
k0
2

d3q0
Z
k0
3

d3r0δDðp0 þq0 þ r0Þ: ð28Þ

The contribution due to F3 reads

CF3
¼ 6

Z
DδDðpþ p0ÞF3ðq;q0; r0ÞPðpÞPðqÞPðq0ÞPðr0Þ

þ ½ð3! × 3þ k123 ↔ k0123Þ − 1� cyc: ð29Þ

By inspecting the diagrammatic representation of CF3
in

Fig. 9, it is easy to see that there are 3! permutations for
k1k2k3 and three permutations for k01k

0
2k

0
3 as two of the legs

are symmetric. There are also additional contributions from
interchanging k1k2k3 and k01k

0
2k

0
3. Thus there are altogether

36 permutations. For other diagrams the number of
permutations can be worked out in a similar manner.
The type I contributions due to F2 are

C1
F2I

¼ 2

Z
DδDðp − p0ÞF2ðq; r0ÞF2ðp0; rÞ

× PLðqÞPLðr0ÞPLðp0ÞPLðrÞ
þ ½ð3! × 3þ k123 ↔ k0123Þ − 1� cyc:; ð30Þ

C2
F2I

¼ 8

Z
DδDðpþ p0ÞF2ð−q0;qþ q0ÞF2ðqþ q0; r0Þ

× PLðpÞPLðq0ÞPLðr0ÞPLðjqþ q0jÞ
þ ½ð3 × 3þ k123 ↔ k0123Þ − 1� cyc: ð31Þ

The type II contribution reads

C1
F2II

¼ 4

Z
DδDðp − p0ÞF2ðq;pÞF2ðq0;pÞ

× PLðqÞPLðp0ÞPLðpÞPLðq0Þ
þ ½ð3! × 3!Þ − 1� cyc:; ð32Þ

C2
F2II

¼ 4

Z
DδDðpþ p0ÞF2ðr;pÞF2ð−p; r0ÞPLðpÞ

× PLðrÞPLðjqþ rjÞPLðr0Þ
þ ½ð3! × 3!Þ − 1� cyc: ð33Þ

C3
F2II

¼ 4

Z
DδDðp − p0ÞF2ðq; rÞF2ðq0; r0Þ

× PLðqÞPLðq0ÞPLðrÞPLðr0Þ
þ ½ð3 × 3Þ − 1� cyc: ð34Þ

FIG. 9. A diagrammatic representation of the covariance of the
matter bispectrum to the tree-level order. CNL

G is the Gaussian
term, while the rest are non-Gaussian contributions. The set of
black dots on the left and right of each diagram represents the
three δ’s in each bispectrum estimator. The legs branching from
each dot represent the perturbation theory kernel, F1, F2, and F3,
respectively. Each wavy line represents the linear power spec-
trum. In CNL

G , the filled circle indicates that the linear power
spectrum is replaced by the nonlinear power spectrum. The
Gaussian term couples only triangles of the same shape, while the
non-Gaussian terms couple triangles with at least one side equal
to each other.
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C4
F2II

¼ 4

Z
DδDðpþ p0ÞF2ð−r0;qþ r0ÞF2ðqþ r0; rÞ

× PLðpÞPLðr0ÞPLðrÞPLðjqþ r0jÞ
þ ½ð3! × 3!Þ − 1� cyc: ð35Þ

Note that the expressions are tree level only; thus there is no
loop integration, and the high-dimensional integrals result
from the bin width integration. The leading non-Gaussian
terms we consider here are all of the order P4

L. All the terms
contain a factor of Dirac delta function δDðp� p0Þ, and this
implies that these terms couple only triangles with at least
one side equal to each other.
In each of the non-Gaussian terms there are four

Dirac delta functions: two due to the triangle constraints
δDðpþ qþ rÞ and δDðp0 þ q0 þ r0Þ, and another two
imposed on two disjoint sets of p, q, r, p0, q0, and r0.
These can also be seen by inspecting the non-Gaussian
diagrams in Fig. 9. Hence it is clear that one of these latter
two Dirac delta functions is redundant, and it gives δDð0Þ.
That is why in

R
D there is a factor of k3F only. Hence the

non-Gaussian terms have the same volume dependence as
the Gaussian one, and we use this observation to compare
simulation results from different boxes. The other Dirac
delta function relates two vectors, each coming from
one of the bispectrum estimator, which is δDðp� p0Þ in
Eqs. (29)–(34). This Dirac delta function is analytically
integrable, and thus these integrals are nonvanishing only
for triangles with at least one side equal to each other. We
make use of the pattern of the Dirac delta functions
discussed here to construct an efficient Monte Carlo
integration method.
Except for the Dirac delta δDðp� p0Þ, the other two

remaining Dirac delta functions in general cannot be
integrated analytically. Thus the resultant 15-dimensional
integral is hard to compute. High dimensionality causes
problems for numerical integrators in general. The presence
of the remaining two Dirac delta functions makes the
integrand nonvanishing only in narrow regions. Although
high dimensional integrals can often be attacked by
Monte Carlo integration method, generic Monte Carlo
integration would fail as it would miss the narrow peaks
in the high dimensional space.
Here we present a Monte Carlo method that can

efficiently sample the points that satisfy the Dirac delta
function constraints. We first note that the vectors that fulfil
the triangle constraint must be some small perturbations of
the triangle k1k2k3 and k01k

0
2k

0
3. Thus instead of sampling

all the points in the full integration domain, we can proceed
as follows. We first generate a vector p in the k1 shell
randomly. For qwe must have p̂ · q̂≡ μ ≈ Δ. To determine
the allowed variation of μ, we consider

dΔ ¼ k21 − k23 − k22
2k1k22

dk2 þ
k3
k1k2

dk3: ð36Þ

Hence we sample μ uniformly in the range

�½ðk21−k23−k22
2k1k22

ΔkÞ2 þ ð k3
k1k2

ΔkÞ2�1=2. To further fix q, we

sample the polar angle of q, θ2, uniformly in the interval
½0; π�. The azimuthal angle of q, ϕ2 is fixed by the relation

cosðϕ1 − ϕ2Þ ¼
μ − cos θ1 cos θ2
sin θ1 sin θ2

; ð37Þ

where θ1 and ϕ1 are the spherical coordinates of p. If the
length jpþqj falls within the interval ½k3−Δ=2;k3þΔ=2Þ,
the vector r is assigned to be −ðpþ qÞ, and the three
vectors p, q, and r are accepted; otherwise the procedure is
repeated until the proposed vectors are accepted. We find
that the acceptance rate can reach about 20% and it does not
vary much with the triangle configuration considered. For
the triads p0, q0, and r0, we make use of the Dirac delta
function δDðp ∓ p0Þ and assign p0 ¼ �p accordingly. The
construction of q0 and r0 is then similar to those for q and r.
After developing an efficient algorithm to sample the

vectors satisfying the constraints imposed by the three
Dirac delta functions, we can attack the non-Gaussian
integrals using the Monte Carlo method (see e.g. [45] for a
review). The integrals can be schematically written as

ING ¼
Z

DδDðp ∓ p0Þfðp;q; r;p0;q0; r0Þ

¼ hfðp;q; r;p0;q0; r0Þi
Z

DδDðp ∓ p0Þ; ð38Þ

where the integrand f is averaged over the points in the
integration domain defined by the Dirac delta functions.
The success of this method relies on the fact that the
integration volume can be computed analytically and it
reads

Z
DδDðp ∓ p0Þ ¼ k3F

V123V 0
123

Uðk1; k01Þ; ð39Þ

where U is given by

Uðk1; k01; k2; k3; k02; k03Þ
¼ 24π3k2k3k02k

0
3ðΔkÞ5βðΔÞβðΔ0Þδk1;k01 : ð40Þ

In the Appendix B, we show the derivation of U.
From Eqs. (38) and (39), we find that the non-Gaussian

integral corrections scale with the bin width Δk as 1=Δk. In
contrast the Gaussian term CG exhibits a stronger scaling
1=ðΔkÞ3. From Eqs. (39) and (40), we explicitly see that the
non-Gaussian terms scale with the volume of the simulation
as k3F, the same as the Gaussian term. The volume
dependence is the same as that for the power spectrum
covariance. As we mentioned, this is a consequence of the
statistical translational invariance.
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Reference [31] computed the non-Gaussian contributions
to the weak lensing bispectrum covariance. The structures
of the terms are similar to the ones we consider here, with
the main difference that their results are for the two-
dimensional field, while ours are three-dimensional. The
authors classified the non-Gaussian terms into groups of
order bispectrum squared, BB, a product of power spectrum
and trispectrum, PT, and a connected six-point function.
Our terms CF3

, C2
F2I

, C2
F2II

, C4
F2II

would be classified as the
order PT. This can be easily seen from Fig. 9 as there is a
curvy line, which represents a power spectrum, directly
connecting the two sides of the bispectrum estimators on the
top of each of these diagrams. The rest of the diagram has
the same structure as the trispectrum terms shown in Fig. 1
except C2

F2II
. The trispectrum part in C2

F2II
is in fact the

contribution to the beat coupling for the power spectrum
discovered in [25]. For the periodic boundary condition
simulation we consider here, it does not contribute to the
power spectrum covariance. However, it can exist in part of
another diagram. The remaining terms C1

F2I
, C1

F2II
, and

C3
F2II

belong to the group BB. This is because each of the
diagrams in this set can be decomposed into two bispectrum
parts with each part consisting of two points from one of the
estimators and another one from the other estimator.
In addition, [31] also estimated the connected six-point

function using the one-halo term in the halo model. The
leading tree-level connected six-point function is of the
order of P5

L. Relative to those in Eqs. (29)–(34), there is no
explicit Dirac delta function such as δDðp� p0Þ in the
connected six-point contributions; thus they couple trian-
gles of different shapes. Furthermore they do not depend on
the bin width. We can make a simple estimate by taking the
equilateral triangle shape and assuming that Fn kernels are
of order 1. Neglecting the symmetry factors, the connected
six-point function contribution from perturbation theory is
∼k3FP5

L. The magnitude of the terms in Eqs. (29)–(34) is
∼k3FP4

LU=V2
123 ∼ k3FP

4
L=ð4πk2ΔkÞ. Thus the six-point con-

tribution is subdominant. For example at z ¼ 0 and
k ¼ 0.2 Mpc−1h, it is 7% of the non-Gaussian terms we
considered here. Of course, for triangles of different shapes,
the non-Gaussian terms we consider vanish; the connected
six-point contribution must be included.
Classifying the terms into groups PPP (the Gaussian

one), BB, PT, and the connected six-point contributions
provides a way to resum the perturbation series. As we
mentioned, using the nonlinear power spectrum in the
Gaussian term we effectively resum part of the higher order
contributions. Similarly, we can replace P, B and T with the
nonlinear ones obtained either from simulation measure-
ments or other analytic methods, such as the halo model.
This approach was taken in [31], but we do not pursue this
further in this paper.
In Fig. 10, we show the contribution to the covariance

for the equilateral shape. We have compared the linear

Gaussian term with the high order correction to the
Gaussian term and the non-Gaussian terms, which we have
grouped into BB and PT, respectively. We see that for
k≲ 0.06 Mpc−1h, the BB term is the dominant non-
Gaussian term, but it is negligible for high k. The PT
contribution becomes the dominant non-Gaussian contri-
bution for k≳ 0.06 Mpc−1h. Yet still the PT term is small
compared to the loop contribution to the Gaussian for
k≳ 0.1 Mpc−1h. For the isosceles shape, the results are
qualitatively similar.

2. Halos

The discrete nature of halos causes stochastic fluctua-
tions. Similar to the case of power spectrum, the shot noise
is the main source of halo bispectrum covariance as we
discuss in the next section. In Appendix C 2, we use the
Poisson model to derive the contribution to the bispectrum
covariance due to Poisson fluctuations. In the Poisson
model we assume that the point particles Poisson sample
the underlying continuous density field. Both the contact
correlation function due to Poisson sampling and the
intrinsic correlation of the continuous field contribute to
the six-point function. This results in both connected and

FIG. 10. The leading tree-level contributions to the diagonal
elements of the dark matter bispectrum covariance matrix at
z ¼ 0 for the equilateral triangle configuration. The binning
Δk ¼ 0.019 Mpc−1h is used here and all the plots for the
bispectrum. Upper panel: the Gaussian contributions CL

G (solid
blue) and CLoop

G (red, solid for the positive part, dashed for the
negative part), the non-Gaussian BB contribution (solid, cyan)
and PT contributions (solid, green), and the sum of all the
contributions (solid black). Lower panel: the ratio of various
terms normalized with respect to CL

G. The violet line includes all
the high order correction terms.
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disconnected contributions to the six-point function [see
Eq. (C21)], which are represented diagrammatically in
Fig. 25. We can classify the terms (or diagrams) using
the correlator expansion mentioned in Sec. III A 1. The
diagrams that are disconnected with three separate com-
ponents are the Gaussian terms, and there are altogether
three such diagrams; i.e. they are in the PPP group. The
diagrams with two disconnected components are either in
the non-Gaussian group PT or BB. The connected dia-
grams represent the connected six-point function contri-
butions. Furthermore, within each group, there are terms
with various power of 1= ~n; we can regard it as an expansion
in 1= ~n. We refer the readers to the appendix for the details.
Here we summarize the main results.
There are three terms in the Poisson model that couple

only triangles of the same shape, as the Gaussian term in
Eq. (26). These terms contain two Dirac delta functions in
the six-point function Eq. (C21) (or three disconnected
components in Fig. 25). They can be combined with
Eq. (26) as

CG ¼ k3F
V123

δk1k2k3;k01k02k03s123
h
Phðk1Þ þ

1

~n

i

×
h
Phðk2Þ þ

1

~n

ih
Phðk3Þ þ

1

~n

i
: ð41Þ

Equation (41) agrees with [44]. Although the Poisson
contributions do not arise from Gaussian fluctuations, they
are on the same footing as the smooth Gaussian term; we
call them Gaussian terms as well.
There are also non-Gaussian contributions due to

Poisson fluctuations. The non-Gaussian terms with one
Dirac delta function in Eq. (C21) (with two disconnected
pieces in Fig. 25) belong to the PT or BB group. As they
contain the continuous correlator up to the halo tripsectrum,
in this paper we only explicitly evaluate the terms with halo
power spectrum or some terms with bispectrum. The terms
with one Dirac delta function that we evaluate, denoted by

Cð1Þ0
NG here, are the ones up to the seventh line in Eq. (C26).

The non-Gaussian terms due to the connected six-point
function are the ones without any Dirac delta Eq. (C21)
(diagrammatically, they are the connected diagrams in
Fig. 25). We only explicitly evaluate the first line of

Eq. (C27). We denote this by Cð0Þ0
NG.

We plot the shot noise contributions to the covariance of
the halo bispectrum in Fig. 11 for two selected halo groups,
which correspond to group 4 of the large/small simulation
set at z ¼ 0.5 and group 2 of the hires set at z ¼ 0. We plot
the diagonal elements for the equilateral triangle configu-
ration. The Gaussian covariance [Eq. (41)] is compared

with the non-Gaussian contributions Cð1Þ0
NG and Cð0Þ0

NG. For the

low density sample, Cð1Þ0
NG is comparable to the Gaussian

one, while Cð0Þ0
NG is subdominant until k ∼ 0.2 Mpc−1h. For

the more abundant sample, the Gaussian covariance

is the dominant one comparable to the non-Gaussian
contributions. Thus when the number density is high
n̄≳ 5 × 10−4 ðMpc h−1Þ−3, Gaussian covariance is a good
approximation. Recall that for the same sample, Gaussian
covariance is also a good approximation for the power
spectrum.

B. Numerical results

1. Dark matter

We first look into the covariance of the dark matter
bispectrum. The covariance is estimated from the available
realizations as

Cðk1; k2; k3; k01; k02; k03Þ

¼ 1

N − 1

XN
i¼1

½Biðk1; k2; k3Þ − B̄ðk1; k2; k3Þ�

× ½Biðk01; k02; k03Þ − B̄ðk01; k02; k03Þ�; ð42Þ

where N is the number of realizations used and B̄ is the
mean of the bispectrum measured from the simulations.
We show the diagonal elements of the bispectrum

covariance matrix for the equilateral triangle configuration
in Fig. 12. The results are normalized with respect to the

FIG. 11. Various shot noise contributions to the covariance of
the halo bispectrum. The diagonal elements for the equilateral
triangle configuration are shown. We have plotted the results for
two selected groups with the parameters used written on the plot:
the Gaussian term (dotted-dashed, blue), the non-Gaussian
contribution Cð1Þ0

NG (dashed, red) and Cð0Þ0
NG (dashed, green), and

the sum of the covariances (solid, black). In the low panel the
Gaussian covariance overlaps with the total covariance.
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Gaussian covariance CG, Eq. (26). As we noted before, for
both the Gaussian and non-Gaussian covariance, the
volume of the simulation factors out. Thus by dividing
by the Gaussian covariance, we are able to compare the
simulation results obtained from different box sizes. The
results from the large, small, and hires simulation sets agree
with each other well. We find that the non-Gaussian
contribution to the covariance increases rapidly as z
decreases from 1 to 0 in the mildly nonlinear regime
k ∼ 0.4 Mpc−1h. The covariance is within 20% from CL

NG
up to k ∼ 0.2 Mpc−1h at z ¼ 1 and k ∼ 0.1 Mpc−1h at
z ¼ 0. We also plotted the non-Gaussian prediction
described in Sec. III A 1. The non-Gaussian correction
gives the predictions agreeing with the simulation results
up to k ∼ 0.3 Mpc−1h at z ¼ 1 and 0.16 Mpc−1h at z ¼ 0.
Similar to the case of the power spectrum, the cross-

correlation coefficient r is defined as

rðk1;k2;k3;k01;k02;k03Þ

¼ Cðk1;k2;k3;k01;k02;k03Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðk1;k2;k3;k1;k2;k3ÞCðk01;k02;k03;k01;k02;k03Þ

p : ð43Þ

We plot r for the equilateral triangle configuration in
Fig. 13. In each subplot, we fix one of the lengths of
the triangle ki and vary the length of the other one, kj. In

FIG. 12. The diagonal elements of the dark matter bispectrum
covariance matrix for equilateral triangle configuration at z ¼ 1,
0.5, and 0 (from top to bottom). The results from the small (red
triangles), large (blue circles), and hires (green squares) simu-
lation sets are shown. The perturbation theory predictions (solid
black lines) are also overplotted.

FIG. 13. The correlation coefficient for the dark matter bispectrum. The equilateral triangle configurations are used. Results at z ¼ 1,
0.5, and 0 (left to right columns) are shown. The three rows correspond to the results obtained with ki fixed to be 0.076, 0.19, and
0.40 Mpc−1h, respectively. The results from the small (red triangles), large (blue circles), and hires (green squares) simulation sets and
the prediction (solid black) are shown.
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these plots, we have fixed ki to be 0.076, 0.19, and
0.40 Mpc−1h, respectively.
As we noted previously, the Gaussian covariance couples

only the triangle of the same shape, while the leading non-
Gaussian corrections couple triangles with at least one side
equal to each other. Thus both theGaussian and disconnected
non-Gaussian tree-level corrections cannot give rise to cross
correlations between equilateral triangles of different sizes.
We see that indeed when both ki and kj are small, the
correlation coefficients are consistent with being 0. As one of
the wave numbers increases r also starts to increase. The
larger thevalue of thewave numbers the larger the covariance.
This is expected from the fact that nonlinearity increases the
coupling of different wave modes. The accuracy of the
perturbation theory prediction is qualitatively similar to that
for the power spectrum covariance shown in Fig. 4.

2. Halos

We now move to the halo bispectrum covariance. The
Poisson shot noise contribution is given by Eq. (C10), i.e.

BPoisðk1; k2; k3Þ ¼
1

~n
½Phðk1Þ þ Phðk2Þ þ Phðk3Þ� þ

1

~n2
;

ð44Þ
where Ph is the smooth halo power spectrum. As we are
interested only in the smooth correlation function signal,
the contribution to the halo bispectrum due to Poisson
fluctuations is usually subtracted. Similar to the case of the
power spectrum, we distinguish between the mean Poisson
shot noise subtraction and the Poisson shot noise estimated
and subtracted from each realization.
We first show the results when the mean Poisson shot

noise is subtracted. This case corresponds precisely to the
derivation done in Appendix C 2 and briefly summarized in
Sec. III A 2. In Fig. 14, we plot the diagonal elements of the
covariance for the equilateral triangle configuration. The
results are normalized with respect to the Gaussian covari-
ance Eq. (41). We have also plotted the theory prediction,
which includes the Gaussian term and the non-Gaussian
corrections Cð0Þ0

NG and Cð1Þ0
NG. We find that the deviation of the

numerical results from the Gaussian covariance is signifi-
cant even at low k for the rare mass groups large/small
group 4 at z ¼ 0.5 and 1. The model tends to underestimate
the covariance in comparison with the numerical results.
The reason is that we have only evaluated parts of the six-
point function contributions in the Poisson model. On the
other hand, for the relatively more abundant groups, the
deviation from the Gaussian result is mild and the model
agrees with the data well. This is mainly because for these
low bias groups the non-Gaussian corrections are small as
we have seen in Sec. III A 2. Note that for group 1, we have
to use the measured nonlinear power spectrum to compute
the Gaussian covariance as Eq. (15) is not adequate.
In Fig. 15, we plot the correlation coefficient for the halo

bispectrum with the mean Poisson shot noise subtracted.

The triangle configurations are equilateral. One of the wave
numbers, ki, is fixed to be 0.076, 0.19, and 0.40 Mpc−1h,
respectively. The theory predictions are also overplotted for

comparison. AsCð1Þ0
NG couples triangles with at least one side

equal to each other, it vanishes for equilateral triangles of

different shapes. Hence only Cð0Þ0
NG contributes to the

correlation coefficient. Similar to the diagonal case, for
the rare halo groups at z ¼ 1 and 0.5 the model under-
estimates the covariance compared to the simulation
results, while the model agrees reasonably well with the
data for the more abundant groups at z ¼ 0.
We now consider the scenario when the Poisson shot

noise is subtracted from individual realizations. The
covariance of these two scenarios is related by

covðBraw − BPois; B0
raw − B0

PoisÞ
¼ covðBraw; B0

rawÞ − covðBraw; B0
PoisÞ

− covðBPois; B0
rawÞ þ covðBPois; B0

PoisÞ
≈
?
covðBraw; B0

rawÞ − covðBPois; B0
PoisÞ: ð45Þ

In the last line we assume that

covðBraw; B0
PoisÞ≈

?
covðBPois; B0

PoisÞ: ð46Þ

We shortly check how good this ansatz is.

FIG. 14. The diagonal elements of the halo bispectrum for
the equilateral triangle configuration. The mean Poisson shot
noise is subtracted. The halo groups from large (blue circles),
small (red triangles), and hires [violet squares (group 1) and green
squares (group 4)] simulation sets are shown. The theory
prediction (solid black lines) includes the Gaussian covariance
and the non-Gaussian terms Cð0Þ0

NG and Cð1Þ0
NG .
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Unlike the former case, which is equivalent to no shot
noise subtraction at all, we have to rely on the accuracy of
the Poisson model here. We find that the shot noise
subtracted equilateral bispectrum goes negative for k≳
0.35 Mpc−1h at z ¼ 1. At z ¼ 0, for group 4, this occurs at
k ∼ 0.21 Mpc−1h. Although there seems to be no funda-
mental reason that the smooth halo bispectrum must be
positive, this may well indicate that the Poisson model is
not accurate enough. Therefore we do not show the results
for k beyond 0.35 Mpc−1h. In Fig. 16, we compare the
diagonal elements of the covariance obtained with the mean
Poisson shot noise subtraction and the individual shot noise
subtraction. We normalize the covariance by the Gaussian
covariance Eq. (41). Similar to the power spectrum case,
the subtraction of shot noise from the individual realiza-
tions significantly reduces the covariance, and it gets much
closer to the Gaussian one. From Fig. 17, we find that the
off-diagonal elements also exhibit a substantially lower
level of correlation, especially for the groups at z ¼ 1 and
0.5. The correlations are roughly consistent with 0 for the
groups at z ¼ 0.5 and 0 within the scatter.
In Fig. 16 we also show the covariance varðBPoisÞ and

covðBraw; BPoisÞ. At low k, they are quite different, but
they approach each other at high k. Because we found that
the number density fluctuation does not correlate with the
continuous clustering, i.e. halo power spectrum in Sec. II B 2,

FIG. 15. The correlation coefficient for the halo bispectrum of the equilateral triangle shape. The mean Poisson shot noise is subtracted.
The halo groups from large (blue circles), small (red triangles), and hires [violet squares (group 1) and green squares (group 4)] simulation

sets are shown. The predictions (solid black lines) include Gaussian covariance and non-Gaussian corrections Cð0Þ0
NG and Cð1Þ0

NG .

FIG. 16. The diagonal elements of equilateral triangle halo
bispectrum obtained with the mean Poisson shot noise subtrac-
tion (blue circles) and individual shot noise subtraction (violet
triangles) are compared. The variance of the Poisson shot noise,
varðBPoisÞ (solid green line), the covariance between the raw halo
bispectrum and the Poisson shot noise, covðBraw; BPoisÞ (solid red
line), and the prediction using the ansatz in Eq. (45) (cyan
squares) are also plotted.
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the difference between them must come from the continuous
power spectrum in BPois. On the other hand, at high k the
number density fluctuation dominates, so these two cova-
riances agree. To test the ansatz in Eq. (45), we plot the
prediction using varðBrawÞ − varðBPoisÞ in Figs. 16 and 17,
which yields a covariance close to the one obtained by
subtracting shot noise from individual realizations. This
demonstrates that Eq. (46) is a reasonable approximation.
Our results show that most of the non-Gaussianity in the halo
bispectrum covariance arises from the fluctuations in BPois.
We now comment on the magnitudes of the dark matter

and halo bispectrum covariances. For the rare group 4,
depending on the redshift, the covariance of the halo
bispectrum is 9 to 5 orders of magnitude larger than that
of the dark matter bispectrum covariance. The differences
decrease when the number density of the sample increases.
Even for the abundant group, hires group 2, the covariance
of the halo bispectrum is still an order of magnitude
higher than that of the dark matter. When the number
density reaches as high as that of the hires group 1
[n̄ ∼ 10−3 ðMpc h−1Þ−3], the magnitude of the halo covari-
ance is comparable to that of the dark matter. Hence the
relative differences are quite similar to the power spectrum
covariance. This suggests that shot noise is the dominant
contribution to the halo bispectrum covariance.
Gaussian covariance for the bispectrum is often used in

forecast e.g. [46–48].When the mean number density is used,
our results show that the Poisson fluctuation gives rise to large
non-Gaussianity in the covariance unless the number density
of the sample is sufficiently high n≳ 5 × 10−4 ðMpc h−1Þ−3.
Fortunately, in reality, the number density is estimated from

the local average and by subtracting the shot noise from
individual realizations, the covariance gets much closer to the
Gaussian covariance. This is because most of the non-
Gaussianity is due to the fluctuations in the Poisson shot
noiseBPois. However, there is still a significant amount of non-
Gaussianity left. We see in Sec. IV that use of the Gaussian
covariance severely overestimates the signal-to-noise ratio.

IV. THE INFORMATION CONTENT OF THE
POWER SPECTRUM AND BISPECTRUM

As the power spectrum has been well explored, and the
bispectrumbecomes the next frontier in large scale structure,
it is crucial to address howmuch information one can gain by
going to higher order correlators. The S/N is often used to
quantify the information content in the power spectrum and
bispectrum, e.g. [13,15,18,29]. The Fisher information [49]
is an alternativeway to characterize the information content.
However, we do not consider it here as it involves the
derivatives of the polyspectra with respect to the cosmo-
logical parameters, which would require a dedicated set of
simulations with varying cosmological parameters.
The Gaussian covariance is usually used to make a

forecast and quantify the information content. In particular,
the forecast based on the Gaussian covariance suggests that
there is a lot of information in the bispectrum ([29], see also
below). However, since we have seen in the previous
sections that the non-Gaussian contributions significantly
increase the covariance already in the weakly nonlinear
regime, it is important to ask how the results are modified
when the non-Gaussian covariance is taken into account.

FIG. 17. The correlation coefficients for the equilateral triangle halo bispectrum with the mean shot noise subtraction (blue circles) and
individual shot noise subtraction (violet triangles). The black solid line shows the prediction using the ansatz in Eq. (45). Only the results
for ki ¼ 0.076 and 0.19 Mpc−1h are shown.
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The signal-to-noise ratio is defined as

ðS=NÞ2 ¼ SiC−1
ij Sj; ð47Þ

whereC−1 is the inverse of the covariancematrix, also called
the precisionmatrix, andS is the signal.Herewe use the non-
Gaussian covariance measured from simulations to quantify
the information content in the power spectrum and bispec-
trum. For dark matter, the signal S is simply the mean of the
measured power spectrum and bispectrum, respectively. For
halos, we use the power spectrum and bispectrum with the
Poisson shot noise subtracted, using Eqs. (C6) and (C10),
respectively, with the Poisson shot noise estimated and
subtracted from each realization. At high k the Poisson shot
noise subtracted power spectrum and bispectrum can go
negative, which is deemed unphysical; hence we only show
the results that are reliable.We also show the results obtained
using the Gaussian covariance for comparison.
There is one more complication because we require the

precision matrix rather than the covariance matrix.
Reference [50] pointed out that for a p × p covariance
matrix, p must be smaller than the number of realizations,
n, for the covariance matrix estimated from the realizations
to be invertible. The basic reason is that we can regard
each realization as an independent random vector in p-
dimensional space.Whenn is larger thanp, thesevectors are
sufficient to span the space of dimension p; otherwise the
rank of the covariancematrix is less thanp. See [50,51] for a
formal proof. Moreover, even when the covariance matrix is
invertible, because inversion is a nonlinear operation, the
inverse of an unbiased estimator is in general biased. If the
distribution of the estimator is Gaussian, the bias-corrected
estimator for the precision matrix reads [50,51]

C−1
unbiased ¼

n − p − 2

n − 1
C−1
sample; ð48Þ

where Csample is the unbiased sample covariance matrix.
For the power spectrum the number of bins, p, is

typically smaller than the number of realizations available
in our case, e.g. the maximum number of bins for the power
spectrum is 90. Reference [52] checked that Eq. (48) works
very well for the power spectrum precision matrix when
n=p≳ 2. On the other hand, because of the large number of
configurations, the number of bins of the measured
bispectrum can be comparable to or even larger than the
number of realizations that we use. For example, for
the binning of the small simulation set that we used in
the previous sections, there are 2825 bins.2 As Eq. (48)

assumes that the distribution of the bispectrum estimator is
Gaussian, a priori it is not clear how well it works for the
bispectrum covariance. In Appendix A, we check that
the distribution of the bispectrum estimator follows the
Gaussian distribution reasonably well, although there are
also some non-negligible deviations. To test Eq. (48), we
use the small simulation set as it has the largest number of
realizations. Because the key parameter in Eq. (48) is the
ratio n=p, we rebin the bispectrum into wider bins so that
the sides of the bispectrum are in units of 8kF instead of 2kF
that we have been using so far. After rebinning, there are
altogether p ¼ 429 bins of bispectrum configurations. As
the correction is only an overall factor, following [50], we
plot the trace of the precision matrix against n=p in Fig. 18.
We show the dark matter and halo data from the small set at
z ¼ 0. Each data point in this figure corresponds to the
results obtained with a precision matrix estimated by
randomly choosing n realizations from the total 4096 ones.
We compare the results from the naive estimate C−1

sample and
the bias-corrected estimate C−1

unbiased. As n increases, the
naive estimate decreases and approaches the bias-corrected
estimate. For n=p≳ 2, the correction works very well
already. Note that for n=p≲ 1 we encounter difficulties in
inverting the covariance matrix due to the reason mentioned
above. As Eq. (48) works very well, we use the bias-
corrected precision matrix for both the power spectrum and
bispectrum.

FIG. 18. The trace of the precision matrix as a function of n=p,
where n is the number of realizations used to estimate the
covariance matrix and p is the number of the bispectrum bins,
which is equal to 429 here. Both the results from dark matter and
halo (group 4) at z ¼ 0 are shown. The results from the naive
estimate C−1

sample (blue triangles) and bias-corrected estimate

C−1
unbiased (green circles) are compared.

2We can compute the total number of distinct triangle
configurations (including the folded ones) with the formulaP

n
j¼1 ⌈

jþ1
2
⌉⌊ jþ1

2
⌋þ ⌊ j

2
⌋, where ⌈⌉ and ⌊⌋ are the ceiling and

floor functions. This formula is derived from the integer sequence
A002620 in https://oeis.org/A002620 (see also [53]). In this case
we use n ¼ 30 bins, and we get 2825 configurations.
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Finally, we are ready to present the S/N of the power
spectrum and bispectrum. We only show the results from
the small set due to its large number of realizations
available. However, we also comment on the results from
hires. In Fig. 19, we plot the S/N for both dark matter and
the halo power spectrum against the maximum k used to
compute the S/N, kmax. For the power spectrum, the S/N
does not depend on the binning widthΔk used to the lowest
order. Of course there is some binning dependence if the
field varies appreciably across the bin, but this dependence
is of higher order in the binning width. A similar statement
was also made in [13]. We verify it in Appendix D.
We find that for the power spectrum of dark matter, the

information content increases as kmax increases in the linear
regime. The S/N then starts to level off at the weakly
nonlinear regime kmax ∼ 0.2 Mpc−1h. The flattening of the
S/N becomes more and more serious as the redshift
decreases. In particular at z ¼ 0, there is almost no increase
in the S/N beyond kmax ∼ 0.2 Mpc−1h. In contrast, the S/N
obtained with Gaussian covariance keeps on increasing
with the phase volume. The saturation of the information
content of the dark matter PðkÞ in the weakly nonlinear
regime has been observed by many authors [13,15,54–56].
This casts doubts on the efforts to model the nonlinear
power spectrum accurately beyond the baryon acoustic
oscillation scales and has motivated using alternative
statistics to extract information from the large scale struc-
ture, notably the log transform [57–59]. Nevertheless,

Fisher analysis seems to suggest that the information
content on cosmological parameters is not completely
erased in the nonlinear regime [52].
We find that the Poisson shot noise subtracted halo

power spectrum goes negative for k in between 0.5 and
0.8 Mpc−1h for group 4. Because the power spectrum must
be non-negative, this is mathematically inconsistent. This
happens when the signal is so low that the theoretical
uncertainty of the Poisson model is larger than or compa-
rable to the signal. As we believe the contribution to the
cumulative signal to noise from this range of data is
negligible, we show it as well. For the halo power spectrum,
the trends are qualitatively similar to that of the dark matter
and they are roughly constant at kmax ∼ 0.1–0.2 Mpc−1h
depending on the number density of the sample. The
saturation of the information content of the halo power
spectrum is also hinted in [12,33]. We find that the signal to
noise is in between a factor of a few to 1 order of magnitude
lower than that of the dark matter for the rare halo group 4.
Reassuringly for the more abundant groups from hires, the
S/N is comparable to that of the dark matter. We find that
the Gaussian approximation overestimates the S/N by a
factor of 2 to a few at kmax ∼ 0.4 Mpc−1h.
We now turn to the S/N for the bispectrum. We consider

all the triangle configurations with the sides of the triangle
less than certain kmax, against which is plotted in Fig. 19. In
order to sample the low kmodes well, and also to be able to
probe the S/N to high k, we combine the results from two

FIG. 19. The signal-to-noise ratio for dark matter and halo power spectrum and bispectrum. Dark matter and halo group 4 data from
the small simulation set are used. The signal-to-noise ratio of the power spectrum (blue) and bispectrum (red), and the sum of them
(yellow) are shown. The results obtained with the full non-Gaussian covariance results (circles, solid line) are compared with the
Gaussian covariance (triangles, dotted line) ones.
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different binnings for the bispectrum measurements. For
the low k results we use Δk ¼ 2kF ¼ 0.019 Mpc−1h, while
for high k we bin the bispectrum with Δk ¼ 8kF ¼
0.077 Mpc−1h. In Appendix D, we verify that the S/N is
invariant to rescalings of the bin width to the lowest order.
For the dark matter bispectrum, already at kmax ∼

0.2 Mpc−1h the S/N increases significantly slower than
what the Gaussian predictions suggest. The departure from
Gaussian prediction sets in at lower and lower k as
the redshift decreases. We also find that the deviation
generally occurs at lower k than the case of the power
spectrum, thus suggesting that the Gaussian appro-
ximation is worse for the bispectrum. The non-Gaussian
contribution significantly degrades the S/N for the bispec-
trum. For example, at z ¼ 0, according to the Gaussian
covariance predictions, the S/N of the dark matter bispec-
trum should surpass that of the power spectrum
at kmax ¼ 0.14 Mpc−1h, while the full non-Gaussian
case shows that the S/N of the bispectrum is only 30%
of the power spectrum value. However, it is encouraging
to find that relative to the dark matter power spectrum,
whose S/N already saturates at kmax ∼ 0.2 Mpc−1h, the
S/N of the bispectrum still keeps on increasing mildly up
to kmax ∼ 0.5 Mpc−1h. Interestingly, at kmax ∼ 1 Mpc−1h,
the S/N increases sharply and overshoots the S/N of the
power spectrum. Thus by delving into the nonlinear
regime, the information gain of the bispectrum is higher
than that from the power spectrum. We note that the
information content of the dark matter power spectrum
was found to increase sharply at kmax ∼ 1.5 Mpc−1h
beyond the plateau [54,55]. We suspect that this sharp
rise in bispectrum S/N is also due to the same reason.
However, we do not investigate this further here.
After the Poisson shot noise subtraction, the halo

bispectrum of group 4 at z ¼ 1 starts to go negative for
kmax ≳ 0.35 Mpc−1h. For group 4 at z ¼ 0, it happens at
even lower k, k≳ 0.22 Mpc−1h. This occurs at lower k than
that for the halo power spectrum. This first happens for the
triangles of shape close to the equilateral. As kmax
increases, we find that more squeezed shapes also become
negative. Although there appears to be no fundamental
reason that the bispectrum must be positive, we believe
these negative values could well indicate that the Poisson
model is not reliable as the bispectrum signal gets too
small. To be conservative, we do not show the halo
bispectrum results beyond kmax ¼ 0.35 Mpc−1h. For the
halo bispectrum case, the overall trends are also similar to
that of the power spectrum. Again for these rare groups
shown, the Gaussian approximation significantly over-
estimates the S/N, even more seriously than for the dark
matter bispectrum. At kmax ∼ 0.35 Mpc−1h, the S/N can be
overestimated by as much as an order of magnitude.
However, the Gaussian approximation gets better for the
more abundant groups, and the overestimation is narrowed
to a factor of a few at kmax ∼ 0.35 Mpc−1h.

We also show the S/N obtained by combining the
power spectrum and bispectrum measurements. We have
properly included the cross covariance between the power
spectrum and bispectrum in the joint covariance matrix.
The covariance between the power spectrum and bispec-
trum are in general non-negligible. We will leave it for
future work to model the cross covariance in details. The
joint S/N coincides with the power spectrum one in the
low k regime. In the mildly nonlinear regime, the total S/
N is slightly higher than that of the power spectrum, this
suggests that the power spectrum is the main source for
the total S/N. The S/N also saturates for k≳ 0.2 Mpc−1 h,
similar to the trend of the power spectrum.
As a contrast, we compare with the case that the cross

covariance between P and B ignored in Fig. 20. For dark
matter, the cross covariance lowers the total S/N at low kmax
by 10%, while in the high k regime, it is enhanced by 20 to
40%. We find that the effect of the cross covariance is
smaller for the case of halos. When the shot noise is large
(z ¼ 1), the cross covariance lowers the total S/N by a few
per cent up to kmax ∼ 0.3 Mpc−1 h. For higher abundance,
the trend is qualitatively similar to the dark matter case, and
the cross covariance enhances the S/N by a few per cent in
the mildly nonlinear regime. On the other hand, the amount
of S/N in the nonlinear regime is much less than that

FIG. 20. The combined S/N ratio obtained with the cross
covariance between P and B properly taken into account and
the cross covariance ignored. The upper panel is for dark matter,
while the lower one is for halo group 4. The results at z ¼ 1
(blue), 0.5 (red), and 0 (green) are compared. Both the narrow
bispectrum binning results (2kF, solid line) and the wide binning
one (8kF, dashed line) are shown.
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suggested by the Gaussian covariance approximation. Our
results shows that adding the bispectrum information to the
power spectrum only improves the total information con-
tent mildly.
In the context of weak lensing, the authors of [31]

compared the S/N ratio for the power spectrum and
bispectrum, and the total, using the non-Gaussian covari-
ance. Their results are consistent with ours; in particular,
they also found that non-Gaussian covariance significantly
degrades the S/N in the nonlinear regime.
In cosmology, we are ultimately interested in how well

the measurements of the polyspectra can put constraints
on the cosmological parameters, and this can be estimated
using the Fisher analysis. Furthermore, it has previously
been shown that the Fisher analysis results may not be
easily interpreted from a simpler signal-to-noise analysis.
For example, Ref. [60] found that the power spectrum
can still place a strong constraint on the parameters which
are not sensitive to the amplitude of the power spectrum
in the nonlinear regime (see also [52]). We will leave
a Fisher analysis for the combined power spectrum
and bispectrum for future work (for weak lensing,
see [32,61]).

V. CONCLUSIONS

Gaussian covariance is often assumed in making a
forecast. In this paper, we have used a large suite of
simulations from the DEUS-PUR project to study the
covariance of the power spectrum and bispectrum, paying
special attention to quantifying the effects of the
non-Gaussian contributions to the covariance. This work
is the first to use such a large number of N-body
simulations (altogether 4704) to estimate the covariance
of the bispectrum.
We find that the non-Gaussianity is significant in the

dark matter bispectrum covariance. The diagonal elements
of the covariance of the dark matter bispectrum already
deviate from the Gaussian covariance at k ∼ 0.1 Mpc−1h
by 10% at z ¼ 0. The correlation increases as the redshift
decreases and we find that at z ¼ 0 the correlation
coefficient rðki; kjÞ is within 20% if ki and kj are less
than 0.2 Mpc−1h for the equilateral triangle configurations.
The covariance of the dark matter bispectrum significantly
increases in the mildly nonlinear regime. To compare with
the simulation results, we have computed the leading
disconnected non-Gaussian corrections in the six-point
function. Including these non-Gaussian corrections we find
that the predictions give good agreement with the simu-
lation results in the weakly nonlinear regime. For the
equilateral triangle configurations, the diagonal term agrees
with the simulation results up to k ∼ 0.3 Mpc−1h at z ¼ 1

and 0.16 Mpc−1h at z ¼ 0.
We have also studied the covariance matrix of the halo

power spectrum and bispectrum. We distinguished
between the case when the mean Poisson shot noise is

subtracted and the Poisson shot noise is estimated and
subtracted from each realization. On the theory side we
used the Poisson model to derive the Poisson shot noise
contribution to the covariance of the power spectrum and
bispectrum. The model corresponds to the scenario in
which the mean Poisson shot noise is subtracted. For the
power spectrum, the Poisson model describes the diago-
nal elements of the covariance matrix reasonably well, but
it tends to overpredict the correlation coefficients. For the
bispectrum, the model underpredicts the covariance,
especially when the number density of the sample is
low. The covariance of the power spectrum and bispec-
trum depends on the four-point and six-point functions,
respectively. The expansion contains a large number of
terms and also various high order correlators. In the
prediction, we only computed the terms with the power
spectrum terms and some of the bispectrum terms. This
can cause part of the disagreement between the model and
simulation results.
On the other hand, in simulations or observations, we

often have to estimate the shot noise using the volume-
averaged density. When the individual Poisson shot noise
is subtracted, we find that the halo covariance is signifi-
cantly reduced and gets close to the Gaussian covariance.
These hold for both the halo power spectrum and
bispectrum. This is because most of the non-Gaussian
covariance arises from the fluctuations in the Poisson shot
noise term. Therefore, although the shot noise covariance
is large, in reality because we use the number density
estimated from the simulation/survey directly to subtract
the shot noise, the halo covariance is close to the Gaussian
covariance.
We note that the magnitudes of the halo power spectrum

and bispectrum covariances are generally higher than those
of the dark matter ones. The magnitudes of the halo power
spectrum and bispectrum relative to those of the dark matter
are quite similar. The shot noise contribution decreases as
the number density of halos increases. Even when the
number density is 5 × 10−4 ðMpc h−1Þ−3, the halo covari-
ance is still higher than that of the dark matter by 1 order of
magnitude. Thus matter nonlinearity and halo biasing are
not expected to play an important role in this case. Only
when the number density is as high as 10−3 ðMpc h−1Þ−3 is
the covariance of the matter polyspectrum comparable to
that of the halo.
In this work we consider simulations with periodic

boundary conditions; thus the supersample covariance does
not contribute. The study of the impact of the bispectrum
supersample covariance is presented elsewhere. We have
compared the simulation results obtained from the large
and small box sizes, and found that the power spectrum and
bispectrum covariances are not sensitive to the volume of
the box as expected from theory. Hence, to efficiently beat
down the noise on the covariance, we can simulate the
small scale non-Gaussianity using small box size.
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As the power spectrum has been well explored, it is
important to ask how much information one can gain by
studying the bispectrum in large scale structure. In the
second part of the paper, we have quantified the informa-
tion content of the power spectrum and the bispectrum with
the S/N ratio using the non-Gaussian covariance matrix
measured from simulations.
The S/N of the dark matter power spectrum reaches a

plateau in the mildly nonlinear regime. This is because in
this regime the covariance increases faster than the signal,
causing the S/N to reach a plateau. At z ¼ 0, it flattens at
kmax ∼ 0.15 Mpc−1h. This is in line with the findings of
previous works. Similarly, we find that the S/N of the
halo power spectrum flattens in the regime kmax ∼
0.1–0.2 Mpc−1h depending on the number density of the
samples. The S/N of the halo power spectrum increases
as the number density of the sample increases. We find
that at z ¼ 0 only the samples with number density
≳5 × 10−4 ðMpc h−1Þ−3 yield the S/N comparable to that
of dark matter. In contrast, the Gaussian covariance
approximation overestimates the S/N by a factor of 2 to
a few at kmax ∼ 0.4 Mpc−1h, depending on the number
density of the sample.
For the bispectrum, we have computed the S/N using all

the triangle configurations with lengths less than certain
kmax. For the case of the dark matter bispectrum, the S/N
increases much slower than the Gaussian approximation
suggests. For example, at z ¼ 0, the S/N at kmax ¼
0.2 Mpc−1h is an order of magnitude lower than the
Gaussian result. Although the Gaussian covariance sug-
gests that the S/N of the matter bispectrum surpasses that of
the matter power spectrum at kmax ∼ 0.14 Mpc−1h at z ¼ 0,
using the non-Gaussian covariance we find that the S/N is
only 30% of the Gaussian one at this scale. In the nonlinear
regime, the S/N of the dark matter bispectrum is still mildly
increasing but it stalls at kmax ∼ 0.4 Mpc−1h. The S/N of
the halo bispectrum shares similar trends as that of the
matter bispectrum. The Gaussian covariance approximation
significantly overestimates the S/N. We find that the
overestimation varies from an order of magnitude for the
rare sample [n ∼ 10−5 ðMpc h−1Þ−3] to a factor of a few for
the abundant sample [n ∼ 5 × 10−4 ðMpc h−1Þ−3] at kmax ∼
0.3 Mpc−1h for the redshift range considered.
We conclude that the bispectrum S/N is degraded more

seriously by nonlinearities and shot noise relative to the
power spectrum S/N. Thus the bispectrum only adds a
small amount of increment to the total S/N when the
bispectrum is combined with the power spectrum.
Despite more than a decade of efforts to measure the

three-point statistics in Fourier space [62–65] and configu-
ration space [66–72], the information gain that we get is
still modest compared to that from the two-point statistics.
It is well known that the three-point statistics are more
sensitive to nonlinearities and halo biasing, both the local
[73] and nonlocal [42,74] ones. This is both a blessing and

curse. On one hand, it is easier to estimate the nonlinear
coupling and higher order bias parameters using the
bispectrum. On the other hand, it suffers from stronger
nonlinear effects and is harder to model. In this sense our
analysis simply reveals the cursing part that strong non-
linearities cause large information loss.
Given the low S/N of the bispectrum, it is not very useful

to constrain the cosmological parameters alone. However,
there are subtle effects for which the bispectrum analysis is
particularly useful. When the power spectrum is combined
with the bispectrum, some degeneracies can be broken. For
example the degeneracy between the linear bias b1 and the
growth rate can be broken when the halo power spectrum is
combined with the halo bispectrum. The bispectrum is
also an important tool to constrain primordial non-
Gaussianities. These subtle effects are not reflected in
the general signal-to-noise analysis.
As we are ultimately interested in how well the poly-

spectra can constrain the cosmological parameters, the
Fisher matrix analysis is preferable. Previous works found
that the power spectrum in the nonlinear regime can still
constrain some of the cosmological parameters which are
not sensitive to the amplitude of the power spectrum [60]
and that the weak lensing bispectrum can yield strong
constraints on the cosmological parameters even though its
S/N is relatively low [32,61]. We leave the Fisher analysis
for future work.
Even though we have only analyzed the cases of the

power spectrum and bispectrum, we speculate that higher
point correlators, such as the trispectrum, may suffer
information loss due to nonlinearities and shot noise even
more seriously than the Gaussian approximation suggests.
If this is true, then it is not a fruitful program to keep on
measuring the correlation hierarchy. We can instead con-
sider alternative ways to extract information. Some of the
interesting methods include log transformation [57–59], the
clustering of voids [75–79] and trying to recover informa-
tion from the phases of the density field [80–82].
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APPENDIX A: THE DISTRIBUTION OF THE
BISPECTRUM ESTIMATOR

The distribution of the estimator being Gaussian is
crucial for many analytic results, e.g. the bias correction
formula Eq. (48). References [13,15] checked that the
power spectrum estimator for dark matter follows the
Gaussian distribution well. The skewness and kurtosis of
the estimator agree with the chi-square distribution, which
is a consequence of the underlying density field being
Gaussian. However, [15] also found that the skewness
deviates from the chi-square distribution result at low z for
k≳ 0.2 Mpc−1h. In this section, we check the distribution
of the bispectrum estimator B̂ [Eq. (20)].
In Fig. 21, we plot the distribution of the bispectrum

estimator. We have transformed the measured data B̂data to
the standard normal variable as

B̂snv ¼
B̂data − μ

σ
; ðA1Þ

where μ and σ are the mean and the standard deviation of
the data. Here we use the data from the small simulation set
at z ¼ 1, 0.5 and 0, and only the results from the equilateral
triangle configuration are shown. Upon comparison with
the standard normal distribution, we find that the data
across the three redshifts follow the Gaussian distribution
reasonably well. Furthermore, the results for both dark
matter and halos are similar. The tendency for the

distribution to be Gaussian results from the central limit
theorem because in the estimator Eq. (20), a large number
of modes are averaged over. Nonetheless we note that there
are some visible deviations from Gaussianity.
There are two counterinteracting effects at work. First,

the central limit theorem works asymptotically for a large
number of samples. When k increases, there are more
modes available to be averaged over in the estimator; see
Eq. (22). Thus we expect the central limit theorem to
perform better for high k. On the other hand, the underlying
density field becomes more non-Gaussian and the modes
couple with each other at high k. This violates the key
assumption that the samples are independent in the central
limit theorem. Therefore we anticipate that the central limit
theorem will fail at both the low k and high k regimes.
In order to quantify the deviation from Gaussianity, we

compute the sample skewness and kurtosis as

S3 ¼
1
n

P
n
i¼1ðB̂i − B̄Þ3

½1n
P

n
i¼1ðB̂i − B̄Þ2�32 ; ðA2Þ

S4 ¼
1
n

P
n
i¼1ðB̂i − B̄Þ4

½1n
P

n
i¼1ðB̂i − B̄Þ2�2 − 3: ðA3Þ

We plot the skewness in Fig. 22. If the underlying density
field is exactly Gaussian, as the skewness is essentially the
nine-point function of the underlying density field, it
vanishes. Thus the finite value of the skewness is an
indication of the deviation of the underlying density field

FIG. 21. The distribution of the bispectrum estimator. The results from the small simulation set at z ¼ 1 (blue), 0.5 (green) and 0 (red)
are shown. The upper panels correspond to the results from dark matter while the lower panels are for halo group 4. The equilateral
triangle configuration is used. Results at three different wave numbers k ¼ 0.06, 0.25 and 0.44 Mpc−1h (from left to right) are displayed.
The data have been transformed to the standard variable by Eq. (A1). The Gaussian distribution with zero mean and unity variance is
overplotted (solid black line).
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from Gaussianity. For dark matter, at low k we find that the
skewness is large precisely because the number of modes
available to estimate the results is small. The skewness first
decreases but eventually increases again as k increases.
This is because the mode coupling in the underlying
density field increases in the nonlinear regime. The fact
that the lower the redshift is the larger the value of the
skewness supports this interpretation. For the halo, we
again find that the skewness is large at low k. The skewness
increases with redshift and this can be attributed to the fact
that there are larger Poisson fluctuations at high redshift
due to lower number density. On the other hand, we also
find that as k increases the skewness saturates to some
constant value, which is harder to understand.
We present the kurtosis in Fig. 23. For the dark matter

bispectrum, similar to the skewness, we find that kurtosis is

large at low k, and then decreases to 0 as k increases, but
eventually increases again at high k. Curiously, there is a
bump in the kurtosis at k ∼ 0.4 Mpc−1h at z ¼ 0. We
checked and confirmed that for other shapes, their kurtosis
also exhibits a bump. This bump is hard to interpret without
a concrete model. Note that there is a small bump in
skewness as well; however, this is not present in other
shapes. The halo bispectrum kurtosis behaves in a similar
way to the skewness.
We have checked that the results are qualitatively similar

for other shapes.

APPENDIX B: A COLLECTION
OF DERIVATIONS

In this appendix, we present the derivations of some of
the formulas used in the main text.

1. V123

We can analytically integrate V123 [Eq. (22)] as

V123 ¼
Z
k1

d3p
Z
k2

d3q
Z
k3

d3rδDðpþ qþ rÞ

¼
Z
k1

d3p
Z
k2

d3q
Z
k3

d3r
Z

d3x
ð2πÞ3 e

ix·ðpþqþrÞ

¼
Z

d3x
ð2πÞ3

Z
k1

dp4πp2j0ðpxÞ
Z
k2

dq4πq2j0ðqxÞ
Z
k3

dr4πr2j0ðrxÞ

¼
Z
k1

dp4πp2

Z
k2

dq4πq2
Z
k3

dr4πr2
1

2π2

Z
dxx2j0ðpxÞj0ðqxÞj0ðrxÞ: ðB1Þ

We now make use of an identity for the integral of a product of three spherical Bessel functions [83]

Z
∞

0

drr2j0ðk1rÞj0ðk2rÞj0ðk3rÞ ¼
πβðΔÞ
4k1k2k3

; ðB2Þ

FIG. 22. The skewness of the bispectrum estimator. The results
from the dark matter (upper panel) and halo group 4 (lower panel)
of the small simulation set are shown. Only the equilateral
triangle configuration is used. The results from z ¼ 1 (blue
circles), 0.5 (red triangles) and 0 (green squares) are compared.

FIG. 23. Similar to Fig. 22 except for kurtosis.
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where Δ and βðΔÞ are defined in Eqs. (23) and (24), respectively. Therefore we get

V123 ¼ 8π2k1k2k3ðΔkÞ3βðΔÞ: ðB3Þ

2. Gaussian covariance of the bispectrum estimator B̂

For Gaussian δ, the only nonvanishing contribution to the Gaussian covariance CL
G [Eq. (26)] reads

CL
G ¼

Z
Dδk1k2k3;k01k02k03s123δDðpþ p0ÞPLðpÞδDðqþ q0ÞPLðqÞδDðrþ r0ÞPLðrÞ: ðB4Þ

δk1k2k3;k01k02k03 is nonvanishing only if the shape of the triangle k1k2k3 is the same as that of k01k
0
2k

0
3. If none

of the sides are equal s123 ¼ 1. If the triangles are isosceles, s123 ¼ 2. For the equilateral triangle, we
have s123 ¼ 6. Both δk1k2k3;k01k02k03 arises from the fact that the three Dirac delta functions must be satisfied and s123
accounts for the number of possible contractions.
Then we can simplify it further as

CG ¼ k6F
V2
123

δk1k2k3;k01k02k03s123

Z
k1

d3p
Z
k2

d3q
Z
k3

d3rδDðpþ qþ rÞδDð0ÞPLðpÞPLðqÞPLðrÞ

¼ k3F
V2
123

δk1k2k3;k01k02k03s123

Z
k1

d3p
Z
k2

d3q
Z
k3

d3rPLðpÞPLðqÞPLðrÞ
Z

d3x
ð2πÞ3 e

ix·ðpþqþrÞ

¼ k3F
V2
123

δk1k2k3;k01k02k03s123

Z
d3x
ð2πÞ3

Z
k1

dp4πp2j0ðpxÞ
Z
k2

dq4πq2j0ðqxÞ
Z
k3

dr4πr2j0ðrxÞPLðpÞPLðqÞPLðrÞ

≈
k3F
V123

δk1k2k3;k01k02k03s123PLðk1ÞPLðk2ÞPLðk3Þ; ðB5Þ

where in the last line we have assumed that the bin is narrow and have taken the power spectra out of the integral. We note
that in the first line, there is a factor of δDð0Þ. This arises from the structure that there are two sets of Dirac delta functions,
δDðpþ qþ rÞ and δDðp0 þ q0 þ r0Þ, and δDðpþ p0Þ, δDðqþ q0Þ, and δDðrþ r0Þ. Hence one must be redundant; it results
in δDð0Þ. We find a similar pattern for the dark matter bispectrum non-Gaussian covariance terms as well.

3. Integration domain volume U

The volume of the integration domain defined by the Dirac delta functions in the dark matter bispectrum non-Gaussian
covariance terms can be computed analytically as

Uðk1; k01; k2; k3; k02; k03Þ≡
Z
k1

d3p
Z
k2

d3q
Z
k3

d3rδDðpþ qþ rÞ
Z
k0
1

d3p0
Z
k0
2

d3q0
Z
k0
3

d3r0δDðp0 þ q0 þ r0ÞδDðpþ p0Þ

¼ δk1;k01

Z
k1

d3p
Z
k2

d3q
Z
k3

d3r
Z
k0
2

d3q0
Z
k0
3

d3r0δDðpþ qþ rÞδDð−pþ q0 þ r0Þ

¼ δk1;k01

Z
d3x
ð2πÞ3

Z
d3y
ð2πÞ3

Z
k1

dp4πp2j0ðpjx − yjÞ
Z
k2

dq4πq2j0ðqxÞ
Z
k3

dr4πr2j0ðrxÞ

×
Z
k0
2

dq04πq02j0ðq0yÞ
Z
k0
3

dr04πr02j0ðr0yÞ: ðB6Þ

We can expand j0ðjx − yjrÞ using the addition theorem for the spherical Bessel function [Eq. (10.1.45) in [84]]

j0ðjx−yjrÞ¼4π
X∞
l¼0

Xl

m¼−l
jlðxrÞjlðyrÞYlmðx̂ÞY�

lmðŷÞ: ðB7Þ

After taking the angular integrals of x and y, we get
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U ¼ 28πδk1;k01

Z
k1

dpp2

Z
k2

dqq2
Z
k3

drr2
Z
k0
2

dq0q02

×
Z
k0
3

dr0r02
Z

dxx2j0ðpxÞj0ðqxÞj0ðrxÞ

×
Z

dyy2j0ðpyÞj0ðqyÞj0ðryÞ: ðB8Þ

Using Eq. (B2), we arrive at

Uðk1; k01; k2; k3; k02; k03Þ
¼ 24π3k2k3k02k

0
3ðΔkÞ5βðΔÞβðΔ0Þδk1;k01 : ðB9Þ

The result is the same for δDðp − p0Þ.

APPENDIX C: POISSON SHOT NOISE
CONTRIBUTION TO THE COVARIANCE

OF THE HALO POWER SPECTRUM
AND BISPECTRUM

In this section, we derive the Poisson shot noise con-
tribution to the covariance of the halo power spectrum and
bispectrum. We consider the Poisson model in which the
number density of the tracers is given by

nðxÞ ¼
X
i

δDðx − xiÞ: ðC1Þ

The discrete density contrast δd is defined as

δdðxÞ ¼
nðxÞ
n̄

− 1; ðC2Þ

where n̄ is the mean number density n̄≡ hnðxÞi. In this
section, all the smooth correlators such as ξ, P, ζ, B etc.
refer to the nonlinear correlators of the tracers. The tracers
can be unbiased such as the dark matter particles in N-body
simulations. Halos are the prototypical example of biased
tracers. The Poisson model can be applied to both kinds of
tracers.

1. Poisson shot noise contribution to the power
spectrum covariance

To get the Poisson shot noise contribution to the
covariance of the power spectrum we need the Poisson
shot noise contribution to the two-point and three-point
functions as well. As the computations are similar but less
cumbersome, it is instructive to first review the derivations
for the two-point and three-point functions. One can also
include weighting; see Ref. [85]. However we do not
consider this here. In Ref. [23] the correlators including
the Poisson shot noise are derived using an elegant
functional method. Reference [12] applied the Poisson
model to compute the shot noise contribution to the

covariance of the cross power spectrum between matter
and halo. We compare our results with theirs whenever
possible.
The two-point correlation of the discrete field is

given by

ξdðx1;x2Þ¼hδdðx1Þδdðx2Þi¼
1

n̄2
hnðx1Þnðx2Þi−1: ðC3Þ

The two-point correlator of n can be written
as

hnðx1Þnðx2Þi ¼
�X

i

δDðx1 − xiÞδDðx2 − xiÞ
�

þ
�X

i;j

δDðx1 − xiÞδDðx2 − xjÞ
�

¼ δDðx1 − x2Þn̄þ n̄2½1þ ξðjx1 − x2jÞ�:
ðC4Þ

In this section, all the dummy indices in the summation are
unequal. For discrete points, we need to separate the part
when two points are the same from the case when the points
are different. The latter case can be modeled by the smooth
correlation function ξ. Therefore the discrete correlation
function can be written as

ξdðjx1 − x2jÞ ¼ ξðjx1 − x2jÞ þ
1

n̄
δDðx1 − x2Þ: ðC5Þ

Upon Fourier transforming, the discrete power spectrum
reads [86]

PdðkÞ ¼ PðkÞ þ 1

~n
; ðC6Þ

where PðkÞ is the continuous power spectrum and
~n≡ ð2πÞ3n̄. This is the well-known shot noise correction
for the power spectrum [the presence of ð2πÞ3 is due to the
Fourier convention used in this paper].
Similarly the discrete three-point function reads

ζdðx1;x2;x3Þ ¼ hδdðx1Þδdðx2Þδdðx3Þi

¼ hnðx1Þnðx2Þnðx3Þi
n̄3

−
�hnðx1Þnðx2Þi

n̄2
þ 2 cyc:

�
þ 2; ðC7Þ

where cyc. denotes cyclic permutations. As in Eq. (C4), we
can express the three-point correlator of n as
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hnðx1Þnðx2Þnðx3Þi¼
�X

i

δDðx1−xiÞδDðx2−xiÞδDðx3−xiÞ
�
þ
��X

i;j

δDðx1−xiÞδDðx2−xjÞδDðx3−xjÞ
�
þ2cyc:

�

þ
�X

i;j;k

δDðx1−xiÞδDðx2−xjÞδDðx3−xkÞ
�

¼δDðx1−x2ÞδDðx1−x3Þn̄þ½δDðx2−x3Þn̄2ð1þξ12Þþ2cyc:�þ n̄3ð1þξ12þξ23þξ31þζÞ; ðC8Þ

where ζ is the continuous three-point function. For convenience, we have used ξ12 to denote ξðjx1 − x2jÞ, etc.
Using Eqs. (C4) and (C8), we get

ζdðx1;x2;x3Þ ¼
1

n̄2
δDðx1 − x2ÞδDðx1 − x3Þ þ

�
δDðx2 − x3Þ

n̄
ξ12 þ 2 cyc:

�
þ ζ123: ðC9Þ

In Fourier space we get the discrete bispectrum [23]

Bdðk1; k2; k3Þ ¼
1

~n2
þ 1

~n
½Pðk1Þ þ 2 cyc:� þ Bðk1; k2; k3Þ; ðC10Þ

with B being the continuous bispectrum.
The discrete four-point correlation function is given by

ηdðx1;x2;x3;x4Þ¼
1

n̄4
hnðx1Þnðx2Þnðx3Þnðx4Þi−

�
1

n̄3
hnðx1Þnðx2Þnðx3Þiþ3cyc:

�
þ
�
1

n̄2
hnðx1Þnðx2Þiþ5cyc:

�
−3: ðC11Þ

The four-point function of n reads

hnðx1Þnðx2Þnðx3Þnðx4Þi ¼ n̄δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4Þ þ ½δDðx2 − x3ÞδDðx2 − x4Þn̄2ð1þ ξ12Þ þ 3 cyc:�
þ ½δDðx1 − x2ÞδDðx3 − x4Þn̄2ð1þ ξ13Þ þ 2 cyc:�
þ ½δDðx1 − x2Þn̄3ð1þ ξ23 þ ξ24 þ ξ34 þ ζ234Þ þ 5 cyc:�
þ n̄4ð1þ ξ12 þ ξ13 þ ξ14 þ ξ23 þ ξ24 þ ξ34 þ ζ123 þþζ124 þ ζ134 þþζ234 þþη1234Þ; ðC12Þ

where η is the continuous four-point function.
Using Eqs. (C4), (C8), and (C12), we get

ηdðx1;x2;x3;x4Þ ¼
1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4Þ þ

�
1

n̄2
δDðx2 − x3ÞδDðx2 − x4Þξ12 þ 3 cyc:

�

þ
�
1þ ξ13
n̄2

δDðx1 − x2ÞδDðx3 − x4Þ þ 2 cyc:

�
þ
�
δDðx1 − x2Þ

n̄
ðξ34 þ ζ234Þ þ 5 cyc:

�
þ η1234: ðC13Þ

In Fourier space, the four-point correlator

T dðk1; k2; k3; k4Þ ¼
1

~n3
þ 1

~n2
ðPðk1Þ þ 3 cyc:Þ þ 1

~n2
½δDðk12Þ þ Pðk12Þ þ δDðk13Þ þ Pðk13Þ þ δDðk14Þ þ Pðk14Þ�

þ
�
1

~n
½δDðk12ÞPðk3Þ þ Bðk12; k3; k4Þ� þ 5 cyc:

�
þ T ðk1; k2; k3; k4Þ; ðC14Þ

where T is the continuous four-point correlator in Fourier space. Note that T is not the trispectrum as it usually refers to the
connected part of the four-point function only, while T contains the disconnected part as well. Reference [23] wrote down
the connected trispectrum, which corresponds to the terms without δD in Eq. (C14).
Recall that the covariance of the power spectrum is given by

CPðk; k0Þ ¼ k6F

Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ
½hδdðpÞδdð−pÞδdðp0Þδdð−p0Þi − hδdðpÞδdð−pÞihδdðp0Þδdð−p0Þi�: ðC15Þ
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The covariance operator in Eq. (C15) is now given by

hδdðpÞδdð−pÞδdðp0Þδdð−p0Þi − hδdðpÞδdð−pÞihδdðp0Þδdð−p0Þi

¼ 1

k3F

�
1

~n2
½δDðpþ p0Þ þ δDðp − p0Þ� þ 2

~n
½δDðpþ p0Þ þ δDðp − p0Þ�PðpÞ

þ 1

~n3
þ 1

~n2
ð2PðpÞ þ 2Pðp0Þ þ Pðjpþ p0jÞ þ Pðjp − p0jÞÞ

þ 1

~n
½2Bðjpþ p0j; p; p0Þ þ 2Bðjp − p0j; p; p0Þ þ Bð0; p; pÞ þ Bð0; p0; p0Þ� þ T ðp;−p;p0;−p0Þ − PðpÞPðp0Þ

�
:

ðC16Þ

The first line of the rhs of Eq. (C16) is the Gaussian terms.
Although we use the terminology Gaussian here, these
terms are not related to the Gaussian distribution. In fact in
the Poisson model, the discrete particles are Poisson
distributed. They are called Gaussian because they con-
tribute only to the diagonal covariance as the smooth
Gaussian terms. The second and third lines are the non-
Gaussian terms and they can couple different bins. The last
line is the continuous part of the four-point function.
We can easily integrate over the Gaussian terms in the

first line to get

2k3F
VsðkÞ

δk;k0

�
2PðkÞ

~n
þ 1

~n2

�
: ðC17Þ

This term can be combined with the Gaussian contribution
from the continuous part as

CP
Gðk; k0Þ ¼

2k3F
VsðkÞ

δk;k0

�
PðkÞ þ 1

~n

�
2

: ðC18Þ

Equation (C18) agrees with Ref. [34]. In other words, the
Gaussian covariance of the power spectrum for the halo is
the same as the case for dark matter except with the dark
matter power spectrum replaced by the halo one plus the
shot noise term.
The non-Gaussian contribution due to the Poisson shot

noise is given by

CP
NGðk; k0Þ ¼ k3F

�
1

~n3
þ 2

~n2
ðPðkÞ þ Pðk0ÞÞ þ 2

~n2

Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ
Pðjpþ p0jÞ

�
þ
Z
k

d3p
VsðkÞ

Z
k0

d3p0

Vsðk0Þ

×

�
1

~n
½4Bðjpþ p0j; p; p0Þ þ Bð0; p; pÞ þ Bð0; p0; p0Þ� þ T ðp;−p;p0;−p0Þ − PðpÞPðp0Þ

�
: ðC19Þ

Reference [12] also derived the shot noise contribution to
the power spectrum covariance. Comparing Eq. (C19) to
the result in Ref. [12], besides the minor difference that we
have assumed small binning width to simplify the expres-
sions, we note that the terms Bð0; p; pÞ þ Bð0; p0; p0Þ are
missing in [12]. These terms do not vanish in general.
Suppose the tree-level halo bispectrum is used for
Bð0; p; pÞ, although the local b1-term and the nonlocal
bias term [42] both vanish because they are generated by
large-scale gravitational evolution; the local nonlinear bias
term gives finite contribution b21b2P

2ðpÞ.

2. Poisson shot noise contribution
to the bispectrum covariance

The complexity of the perturbation series increases
rapidly when the number of points in the n-point function

FIG. 24. Diagrammatic representation of the two-point, three-
point and four-point correlation including the shot noise con-
tributions.
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increases. We first summarize a set of diagrammatic rules to
represent then-point correlation function forn ¼ 2, 3, and 4.
Apart from the Dirac delta function, the rules are similar to
the continuous case. In real space,we can represent theDirac
delta function δDðxi − xjÞ by a new link between the points
xi and xj. This link is analogous to the continuous
correlation function. We can further simplify the diagram
by shrinking all the points linked by theDirac delta functions
to a dot. Graphical representations of the two-point, three-
point, and four-point correlation functions for Eqs. (C5),
(C9), and (C13) are shown in Fig. 24. For example the first
two diagrams in Fig. 24 denote the two terms in Eq. (C5).
The first circle dot represents the two points connected by a
δD; the wavy line in the second diagram denotes the
continuous correlation function ξ. In the second line, the
diagrams represent the three terms in Eq. (C9). The first
diagram denotes the three points connected by Dirac delta
functions. In the second diagram, the circle dot represents
the two points connected by the Dirac delta function and
they are connected to the third point by a correlation
function. The last one represents the three points connected
by the continuous three-point function. By comparing
Eq. (C13) with the diagrams for the four-point function
in Fig. 24, it is clear that similar rules apply. The terms that
contribute to the Gaussian covariance of the power spectrum
are the two disconnected diagrams in the four-point func-
tion. Among the non-Gaussian terms, the one as a circle dot
corresponds to 1= ~n3, and the second and fourth diagrams in
the third row of Fig. 24 represent the terms with power
spectrum in the first line of Eq. (C19).
We now apply the rules to the six-point function and the

results are shown in Fig. 25. They are arranged based on the
number of Dirac delta functions, ranging from 5 to 0. From
these diagrammatic representations, it is straightforward to
write down the discrete six-point function σd,

σdðx1;x2;x3;x4;x5;x6Þ

¼ 1

n̄5
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4ÞδDðx1 − x5ÞδDðx1 − x6Þ

þ 1

n̄4
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4ÞδDðx1 − x5Þξ56 þ 5 cyc:

þ 1

n̄4
δDðx1 − x2ÞδDðx1 − x3ÞδDðx4 − x5ÞδDðx4 − x6Þξ34 þ 9 cyc:

þ 1

n̄4
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4ÞδDðx5 − x6Þξ45 þ 14 cyc:

þ 1

n̄4
δDðx1 − x2ÞδDðx3 − x4ÞδDðx3 − x5ÞδDðx3 − x6Þ þ 14 cyc:

þ 1

n̄4
δDðx1 − x2ÞδDðx1 − x3ÞδDðx4 − x5ÞδDðx4 − x6Þ þ 9 cyc:þ 1

n̄3
δDðx1 − x2ÞδDðx3 − x4ÞδDðx5 − x6Þζ246 þ 14cyc:

þ 1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx4 − x5Þζ346 þ 59 cyc:þ 1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4Þζ156 þ 14cyc:

FIG. 25. Diagrammatic representation of the six-point corre-
lation including the shot noise contributions.
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þ 1

n̄3
δDðx1 − x2ÞδDðx3 − x4ÞδDðx5 − x6Þ þ 14 cyc:þ 1

n̄3
δDðx1 − x2ÞδDðx3 − x4ÞδDðx5 − x6Þξ24 þ 44 cyc:

þ 1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx4 − x5Þξ16 þ 59 cyc:þ 1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx4 − x5Þξ56 þ 59 cyc:

þ 1

n̄3
δDðx1 − x2ÞδDðx1 − x3ÞδDðx1 − x4Þξ56 þ 14 cyc:þ 1

n̄2
δDðx1 − x2ÞδDðx5 − x6Þη2345 þ 44 cyc:

þ 1

n̄2
δDðx1 − x2ÞδDðx1 − x3Þη1456 þ 19 cyc:þ 1

n̄2
δDðx1 − x2ÞδDðx5 − x6Þξ34 þ 44 cyc:

þ 1

n̄2
δDðx1 − x2ÞδDðx5 − x6Þζ234 þ 89 cyc:þ 1

n̄2
δDðx1 − x2ÞδDðx5 − x6Þξ25ξ34 þ 44 cyc:

þ 1

n̄2
δDðx1 − x2ÞδDðx5 − x6Þξ23ξ45 þ 89 cyc:þ 1

n̄2
δDðx1 − x2ÞδDðx1 − x3Þζ456 þ 19 cyc:

þ 1

n̄2
δDðx1 − x2ÞδDðx1 − x3Þξ34ξ56 þ 59 cyc:þ 1

n̄
δDðx1 − x2Þχ23456 þ 14 cyc:þ 1

n̄
δDðx1 − x2Þξ34ξ56 þ 44 cyc:

þ 1

n̄
δDðx1 − x2Þξ26ζ345 þ 59 cyc:þ 1

n̄
δDðx1 − x2Þη3456 þ 14 cyc:þ 1

n̄
δDðx1 − x2Þζ234ξ56 þ 89 cyc:þ σ123456;

ðC20Þ

where χ and σ are the continuous five-point and six-point functions. Note that some of the diagrams correspond to more
than one term in Eq. (C20).
Then in Fourier space, the six-point function reads

Ydðk1; k2; k3; k4; k5; k6Þ

¼ 1

~n5
þ
�
1

~n4
Pðk6Þ þ 5 cyc:

�
þ
�
1

~n4
Pðk123Þ þ 9 cyc:

�

þ
�
1

~n4
Pðk56Þ þ 14 cyc:

�
þ
�
1

~n4
δDðk56Þ þ 14cyc:

�
þ
�
1

~n4
δDðk123Þ þ 9 cyc:

�

þ
�
1

~n3
Bðk12; k34; k56Þ þ 14 cyc:

�
þ
�
1

~n3
Bðk123; k45; k6Þ þ 59 cyc:

�
þ
�
1

~n3
Bðk1234; k5; k6Þ þ 14 cyc:

�

þ
�
1

~n3
δDðk12ÞδDðk34Þ þ 14cyc:

�
þ
�
1

~n3
δDðk56ÞPðk12Þ þ 44cyc:

�
þ
�
1

~n3
δDðk45ÞPðk6Þ þ 59cyc:

�

þ
�
1

~n3
δDðk123ÞPðk6Þ þ 59cyc:

�
þ
�
1

~n3
δDðk56ÞPðk6Þ þ 14cyc:

�

þ
�
1

~n2
T ðk12; k3; k4; k56Þ þ 44 cyc:

�
þ
�
1

~n2
T ðk123; k4; k5; k6Þ þ 19 cyc:

�

þ
�
1

~n2
δDðk12ÞδDðk34ÞPðk3Þ þ 44cyc:

�
þ
�
1

~n2
δDðk56ÞBðk12; k3; k4Þ þ 89cyc:

�

þ
�
1

~n2
δDðk34ÞPðk12ÞPðk3Þ þ 44 cyc:

�
þ
�
1

~n2
δDðk123ÞPðk3ÞPðk4Þ þ 89cyc:

�

þ
�
1

~n2
δDðk123ÞBðk4; k5; k6Þ þ 19 cyc:

�
þ
�
1

~n2
δDðk56ÞPðk4ÞPðk6Þ þ 59cyc:

�

þ
�
1

~n
Xðk12; k3; k4; k5; k6Þ þ 14cyc:

�
þ
�
1

~n
δDðk12ÞδDðk34ÞPðk3ÞPðk5Þ þ 44 cyc:

�

þ
�
1

~n
δDðk126ÞPðk6ÞBðk3; k4; k5Þ þ 59 cyc:

�
þ
�
1

~n
δDðk12ÞT ðk3; k4; k5; k6Þ þ 14 cyc:

�

þ
�
1

~n
δDðk56ÞBðk12; k3; k4ÞPðk5Þ þ 89 cyc:

�
þY123456; ðC21Þ
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where X and Y are the Fourier transform of the continuous
five-point and six-point functions. In Ref. [23], the six-point
function including the Poisson shot noise, but limited to
connected terms only, was written down. They agree with
the terms without δD in the first three lines of Eq. (C21).
We are going to classify the terms in Yd based on the

number of Dirac delta functions. This is directly related to
the correlator expansion we mentioned in Sec. III A 1. The
terms with two Dirac delta functions in Eq. (C21) are the
Gaussian terms, and they are in the PPP group.
Diagrammatically, they are represented by the disconnected
diagrams with three disconnected parts, i.e. the most
disconnected diagrams in Fig. 25. The terms with one
Dirac delta function in Eq. (C21) belong to either the PT or
BB group. They are the diagrams with two disconnected
parts in Fig. 25. Finally, the connected six-point function
contribution in Eq. (C21) is represented by the connected
diagrams in Fig. 25. In each group of terms, we can regard
it as an expansion in 1= ~n. Depending on the relative
importance of 1= ~n and P, we can retain the terms with
high or low power of 1= ~n. As Yd contains connected two-,
three-, four-, five-, and six-point functions in general, it is
formidable to evaluate in the most general case. To proceed,
in this paper, we only explicitly evaluate the terms con-
taining the continuous power spectrum or bispectrum.
Using the shorthand notation in Eq. (28), the shot noise

contribution to the covariance can be written as

C ¼
Z

DcovYdðp;q; r;p0;q0; r0Þ; ðC22Þ

where covYd is defined as

covYdðp;q; r;p0;q0; r0Þ ¼ Ydðp;q; r;p0;q0; r0Þ

−
1

k3F
Bdðp;q; rÞBdðp0;q0; r0Þ:

ðC23Þ

First the terms with two Dirac delta functions in
Eq. (C21) are the Gaussian terms. They are nonvanishing
only if triangle k1k2k3 is the same as k01k

0
2k

0
3. There are

altogether three such terms in Ydðp;q; r;p0;q0; r0Þ, and
they are highlighted in red in Eq. (C21). However, because
of the triangle constraint, all the Dirac delta functions in
these three terms must couple one of the vectors in k1k2k3

with another one in k01k
0
2k

0
3 to give nonvanishing contri-

bution to the covariance. This leaves us with

�
1

~n3
þ 1

~n2
½PðpÞ þ PðqÞ þ PðrÞ�

þ 1

~n
½PðpÞPðqÞ þ PðpÞPðrÞ þ PðqÞPðrÞ�

�

× ½δDðpþ p0ÞδDðqþ q0ÞδDðrþ r0Þ þ 5 cyc:�: ðC24Þ

This term can be combined with the continuous
Gaussian terms ½δDðpþ p0ÞδDðqþ q0ÞδDðrþ r0Þ þ
5 cyc:�PðpÞPðqÞPðrÞ. Therefore, in the presence of
Poisson shot noise, Eq. (26) is modified to

CG ¼ k3F
V123

δk1k2k3;k01k02k03s123

�
Pðk1Þ þ

1

~n

��
Pðk2Þ þ

1

~n

�

×

�
Pðk3Þ þ

1

~n

�
: ðC25Þ

Equation (C25) agrees with the results in [44]. Clearly,
these terms would be classified as PPP in the correlator
expansion we mentioned in Sec. III A 1. Again, similar
to the case of power spectrum, the Gaussian covariance
of the halo bispectrum including the shot noise contri-
bution can be obtained by replacing the continuous power
spectrum with the halo power spectrum plus the shot noise
contribution. Similar to the comments for the Gaussian
power spectrum covariance, they are called Gaussian here
simply because they are on the same footing as the true
Gaussian terms, not because they arise from the Gaussian
distribution.
We now look at the terms with one Dirac delta function

in Yd. There are altogether 14 such terms, and they are
highlighted in green in Eq. (C21). Some of them can be
computed analytically making use of Eq. (40). Among
these terms, there are terms with a Dirac delta function
connecting three vectors, δDðpijkÞ. When three of the
vectors are from the same bispectrum estimator, they are
exactly canceled by the corresponding terms in hBihB0i.
The net results due to the terms with one Dirac delta
function in covYd are

Cð1Þ
NG ¼ k3F

Uðk1; k01Þ
V123V 0

123

�
2

~n4
þ 1

~n3
½Pðk2Þ þ Pðk3Þ þ Pðk02Þ þ Pðk03Þ�

þ 1

~n3
½Pðk1Þ þ Pðk2Þ þ Pðk3Þ þ Pðk01Þ þ Pðk02Þ þ Pðk03Þ� þ

1

~n3
Pðk1Þ

þ 1

~n2
½Pðk1Þ þ Pðk02Þ þ Pðk03Þ�½Pðk01Þ þ Pðk2Þ þ Pðk3Þ�
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þ 1

~n2
Pðk1Þ½Pðk2Þ þ Pðk3Þ þ Pðk02Þ þ Pðk03Þ�

�
þ 8 cyc:

þ 1

~n2

Z
DδDðpþ p0Þ

	
PðpÞ þ 1

~n



½Pðjqþ rjÞ þ Pðjqþ q0jÞ þ Pðjqþ r0jÞ� þ 8 cyc:

þ k3FUðk1; k01Þ
VV 0

�
1

~n2
½Bðk1; k02; k03Þ þ Bðk01; k2; k3Þ� þ 8 cyc:

þ 1

~n
½ðPðk01Þ þ Pðk2Þ þ Pðk3ÞÞBðk1; k02; k03Þ þ ðPðk1Þ þ Pðk02Þ þ Pðk03ÞÞBðk01; k2; k3Þ� þ 8 cyc:

�

þ
Z

D
1

~n2
δDðpþ p0Þ�½Bðjqþ rj; q0; r0Þ þ Bðjqþ q0j; r; r0Þ þ Bðjqþ r0j; r; q0Þ

þ Bðjrþ q0j; q; r0Þ þ Bðjrþ r0j; q; q0Þ þ Bðjq0 þ r0j; q; rÞ� þ 8 cyc:

þ
Z

D
1

~n
δDðpþ p0ÞPðpÞ½Bðjqþ rj; q0; r0Þ þ Bðjqþ q0j; r; r0Þ þ Bðjqþ r0j; r; q0Þ

þ Bðjrþ q0j; q; r0Þ þ Bðjrþ r0j; q; q0Þ þ Bðjq0 þ r0j; q; rÞ� þ 8 cyc:þ � � � ; ðC26Þ

where the dots denote the term with the continuous four-point function.
The terms without any Dirac delta function are the connected six-point function and they are represented by the

connected diagrams in Fig. 25. These terms read

Cð0Þ
NG ¼ k3F

~n5
þ k3F

~n4
½Pðk1Þ þ 5 cyc:� þ

Z
D

1

~n4
f½Pðjpþ p0jÞ þ 8 cyc:� þ ½Pðjpþ qjÞ þ 14 cyc:�g

þ
Z

D
1

~n3
Bðjpþ qj; jrþ p0j; jq0 þ r0jÞ þ 14 cyc:þ

Z
D

1

~n3
Bðjpþ qþ rj; jp0 þ q0j; r0Þ þ 59 cyc:

þ
Z

D
1

~n3
Bðjpþ qþ rþ p0j; q0; r0Þ þ 14 cyc:þ…; ðC27Þ

where the dots denotes the terms involving higher order
connected correlators.

APPENDIX D: THE INDEPENDENCE OF THE
SIGNAL-TO-NOISE RATIO ON THE BINNING

In this section, we discuss the possible dependence of the
S/N on the binning width Δk. We first consider the case of
power spectrum and then move to the bispectrum. Of
course small inaccuracies arise when a coarse binning is
used as the field varies across the bin. This is not the case
we discuss here; instead we investigate whether the S/N
explicitly depends on the binning to the lowest order.
For the power spectrum, the Gaussian covariance scales

with the binning as ðΔkÞ−1, while the trispectrum contri-
bution does not depend on Δk. The latter case is true for
both the matter power spectrum case Eq. (6) and the
Poisson model result Eq. (C19). Suppose we change the
binning in δ from Δk to gΔk. For illustration purposes, let
us take g ¼ 2. When the binning is coarse grained by a
factor of g ¼ 2, the coarse-grained data vector S0 is related
to the original data vector S as

S0i ¼
S2i−1 þ S2i

2
; ðD1Þ

i.e. an average over the neighboring bins. For the sake of
simplicity here we use a simple average instead of the
phase-volume weighted one, but the discussion is still valid
when a weighted mean is used. Correspondingly, the
covariance matrix of the coarse-grained data vector, C0,
is given by

C0
ij ¼ hS0iS0ji

¼ 1

4
ðhS2i−1S2j−1i þ hS2i−1S2ji

þ hS2iS2j−1i þ hS2iS2jiÞ: ðD2Þ

Therefore the coarse-grained covariance matrix is obtained
by locally averaging the square block in the original matrix.
In fact, the scalings of the Gaussian and non-Gaussian parts
with respect to Δk respect the averaging prescription
Eq. (D2). Clearly the non-Gaussian matrix elements are
invariant with respect to binning up to the accuracy of the
field represented by the binned value. When the Gaussian
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covariance matrix is coarse grained, the diagonal element
of the coarse-grained one is obtained by averaging the g
diagonal elements and gðg − 1Þ off-diagonal ones, which
are 0’s. This is equivalent to simply averaging over the
diagonal elements, and we get the 1=g scaling for the
diagonal element.
We can expand the inverse of the covariance matrix

perturbatively as

C−1 ¼ ðCG þ CNGÞ−1
¼ ðI þ C−1

G CNGÞ−1C−1
G

¼ C−1
G − C−1

G CNGC−1
G þ ðC−1

G CNGÞ2C−1
G þ � � � : ðD3Þ

This series expansion is valid when the non-Gaussian part
is smaller than the Gaussian one in some appropriate sense.
Plugging Eq. (D3) into the signal-to-noise ratio STC−1S,

we can check the binning dependence term by term.
Clearly the first term STC−1

G S is invariant because although
the number of bins is reduced by a factor of g, the Gaussian
precisionmatrix is enhanced by g. Because the enhancement
by a factor of g in C−1

G compensates the reduction in the
number of rows in CNG, the end result of STC−1

G CNGC−1
G S is

also invariant. By inspecting the perturbation series term by
term, we conclude that the signal to noise for the power
spectrumdoes not depend on the binning to the lowest order.
This result was also stated in Ref. [13].
We now consider the case of the bispectrum. When the

binning is rescaled by a factor of g, say g ¼ 2, the triangles
in the bins ½2i − 1; 2i�½2j − 1; 2j�½2k − 1; 2k� are mapped
into the triangle ½i�0½j�0½k�0 in the coarse-grained case. Here
the triangle sides are in units of the fundamental mode kF.
For example, when the binning is changed fromΔk ¼ kF to
2kF, the scalene triangles, [7][5][3], [7][5][4], [7][6][3],
[7][6][4], [8][5][3], [8][5][4], [8][6][3], and [8][6][4], are
mapped to ½4�0½3�0½2�0. For triangles with some symmetries,
i.e. the isosceles and equilateral triangles, the counting is
slightly different. For example, for the equilateral triangle
set [7,8][7,8][7,8], there are four distinct triangle sets

[7][7][7], [7][7][8], [7][8][8], and [8][8][8], and they are
mapped to ½4�0½4�0½4�0. We should not include triangles such
as [8][7][7] as it is identical to [7][7][8] and its inclusion
would cause the covariance matrix to be singular. The
symmetry factor is important for the consistency of
counting. We comment that using a coarse binning for
the bispectrum is not very accurate for the bins with the
smallest sides as triangles of many different shapes are
mapped to a certain coarse-grained one. Yet for triangles of
larger lengths, triangles are mapped to a triangle of similar
shape by the coarse-graining transformation, and hence we
expect that the coarse-grained field reflects the original one
accurately.
The Gaussian bispectrum covariance scales with the

binning as ðΔkÞ−3. The leading disconnected non-Gaussian
contribution to the dark matter bispectrum covariance and

also the non-Gaussian terms Cð1Þ
NG [Eq. (C26)] scale as

ðΔkÞ−1 and couple only triangles with at least one side

equal to each other. On the other hand Cð0Þ
NG [Eq. (C27)]

does not depend on Δk and it couples all triangles. Again
using Eq. (D3), we can check if the S/N changes when the
binning is rescaled by a factor of g, such as g ¼ 2. For
scalene triangles, the number of bins is reduced by a factor
of 8, while C−1

G is enhanced by a factor of 8, and hence it is
invariant with respect to binning. For other shapes, such as
the equilateral triangles, taking the symmetry factor s123
into account, we can also show that STC−1

G S is invariant. As

the non-Gaussian term Cð0Þ
NG does not scale with Δk, by

reasoning similar to the case of the power spectrum, we also
deduce that this term is invariant under bin width rescaling.
For the terms that scale as ðΔkÞ−1, the coupling is nontrivial
in the covariance matrix, and it is hard to make an analytical
argument. By considering some explicit examples for
scalene, isosceles and equilateral triangles, we check that
this particular scaling and coupling also result in the S/N
invariant with respect to the binning width. Thus we have
verified that the bispectrum S/N is invariant with respect to
Δk to the leading order.
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