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The effects of both bulk and shear viscosities on the perturbations relevant for structure formation in late
time cosmology are analyzed. It is shown that shear viscosity can be as effective as the bulk viscosity at
suppressing the growth of perturbations and delaying the nonlinear regime. A statistical analysis of the
shear and bulk viscous effects is performed, and some constraints on these viscous effects are given.
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I. INTRODUCTION

The current cosmological concordance model is the so-
called ΛCDM model, which assumes a homogeneous and
isotropic Universe, where the gravitational interaction is
dictated by general relativity, making use of pressureless
cold dark matter (CDM) and a cosmological constant Λ.
It is a successful model since it fits, with high statistical
confidence, many observational tests, such as the cosmic
microwave background (CMB), supernovae, baryonic
acoustic oscillations (BAO), and indirect estimations for
the Hubble parameter as a function of redshift, HðzÞ. It is
called the concordance model because all such observations
can be described using the same set of parameter values. The
ΛCDMmodel gives a hydrodynamic treatment for thematter
components of the Universe, and the description of its
background dynamics is given by the Friedmann equation

H2ðaÞ ¼ H2
0

�
Ωm0

a3
þ Ωr0

a4
þ Ωk

a2
þΩΛ

�
; ð1Þ

where a is the scale factor, H0 is the present value for the
Hubble parameter, Ωm0 generically denotes the fractional
matter density components (assumed pressureless) of the
Universe, Ωr0 is the fractional radiation density term, Ωk is
the term related to the curvature, and ΩΛ denotes the
cosmological constant component. The last one is essential
to describe the late time accelerated expansion of the
Universe. In practice, the contribution of the radiation at
late times (i.e., at the time of structure formation) is negligible
compared to the matter and cosmological constant terms.
Also, observations indicate that the geometry of theUniverse

is almost flat. Hence, the contribution of the curvature is
practically irrelevant, Ωk ≈ 0.
Despite the ΛCDM model being in agreement with

several observational tests, there are still a few important
unsolved problems. Problems with the ΛCDM model that
are worth citing include the excessive agglomeration of
matter due to the nature of the CDM and the puzzle of
missing satellites [1,2], the cusp-core problem [3–5], and
also the issue related to the fact that the Planck Collaboration
observed fewer clusters than expected [6]. These problems,
in principle unexplained by the ΛCDM model, motivate the
search for possible modifications to the current cosmological
concordance model in order to solve such issues.
Given that the standard CDM model is plagued by the

apparent excess of clustered structures, we can see this as a
possible clue to the role that some physical mechanism able
to suppress the density contrast growth can play in solving
the small scale problems. To address the problem of finding
such a suppression mechanism, the approach we will use
in this work is to relax the assumption that dark matter
behaves on large scales as a perfect and adiabatic fluid;
instead, we will assume that it behaves as a fluid with
natural dissipative effects built in. Models with the intro-
duction of dissipative effects in the CDM component have
been previously studied as a step towards alleviating the
problems mentioned above, e.g., making use of bulk
viscous effects [7–10]. The inclusion of a bulk viscosity
makes the model more realistic since, during the structure
formation era, some nonperfect processes ought to occur.
There are many possible dissipative processes that can

occur during the cosmic evolution, such as particle pro-
duction [11–16], matter diffusion [17] and fluid viscosity
[7,18]. Within the latter, dissipative effects on the radiation
fluid, such as bulk and shear viscosities, has been shown to
be of particular importance during the inflationary epoch
[19–24] and also as a possible description for dark matter
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and dark energy [25–30]. The option for a late time
accelerated universe was mentioned well before the direct
evidence from Supernovae observations [18]. In fact, bulk
viscosity implies a negative pressure contribution that can
accelerate the universe. Although this effect can lead to a
realistic mechanism for phantom cosmologies [31], its use
as the agent playing the role of accelerating the late time
expansion has been revealed problematic [10,24,32,33],
and the presence of dark energy (e.g., in the form of a
cosmological constant) seems to still be necessary. A recent
review of the main results on bulk viscous cosmologies is
presented in Ref. [34].
In previous works, the role played by the bulk viscosity

in the linear structure formation process has been studied
[33,35–42]. In the present work, however, we aim also to
assess the role played by the shear viscosity and its
combined effect with the bulk viscosity on the structure
formation process. Shear viscosity has mostly been
neglected in these type of studies on the grounds of not
contributing for a homogeneous and isotropic universe,
which is certainly true at the background level but this is not
the case at the level of the perturbations. References [43,44]
should be mentioned here since the impact of shear-like
effects on CMB have been investigated, but using an
effective parametrization for the speed of sound which
differs from the present work. In this work, we seek to
determine whether or not shear viscosity alone, and also in
combination with the bulk viscosity, can have a similar
impact on the growth suppression as found for the bulk
viscosity alone. As already mentioned, shear viscosity does
not contribute to an isotropic and homogeneous back-
ground. However, it contributes to the evolution of pertur-
bations, which can be non-negligible, as already shown in
the case of early universe cosmology, in particular during
inflation [21,23]. In this work, we will perform a similar
inspection in the context of the dark matter models. The
behavior of the density contrast will be analyzed and
compared with the standard ΛCDM model. Moreover,
the results will be tested using the redshift space distortion
data. Other dissipative effects, like for instance heat
conduction, are not so relevant in our analysis. Such effects
are closely connected to the coupling of the baryonic matter
with the photon radiation, which are important either at
times closer to recombination, or in the highly nonlinear
regime of structure formation at small scales (e.g., galaxy
formation) and when it becomes important for modeling
astrophysical processes. In fact, it is well known that heat
conduction can be as important as shear viscosity when
considering their effects on the photon-baryon plasma,
affecting the baryon acoustic oscillations through Silk
damping [45]. Neither of these regimes where heat con-
duction would be of relevance will be treated in this work,
which is concerned with the linear regime only for the
cosmological scalar perturbations and it will refers, there-
fore, to an epoch where neither baryons nor photons

(radiation) are the most important component. This is very
reasonable, since in this regime the most important compo-
nent of matter is dark matter and given that we still do not
have a proper understanding of its nature, it is reasonable to
describe it beyond the ideal, pressureless fluid approxima-
tion, endowing it with viscous properties. Nevertheless, there
might be also an important contribution from the baryons
even in the linear regime and inwhich case the baryonic fluid
is well described as a pressureless fluid. Thus, we will also
investigate how the inclusion of a separated baryonic sector
(during the linear regime of structure formation) might
impact our bounds on the dark matter viscosity.
This paper is organized as follows. In Sec. II, we set the

background model, introducing a dissipative dark matter
component. In Sec. III, a perturbative analysis is performed
and the relevant expressions required for our analysis
are derived. In Sec. IV, we present our numerical results
concerning how the density contrast is changed as a
function of the bulk and shear viscosities. We also give
a statistical analysis and we determine the preferable values
for the viscosities using the most recent redshift-space-
distortion-based fðzÞσ8ðzÞ data. In Sec. V, we analyze how
the inclusion of baryon can change our results. In Sec. VI,
we discuss the results obtained and present our conclusions.

II. THE BACKGROUND DYNAMICS
OF THE Λ VISCOUS CDM MODEL

The present cosmological model that we investigate
shares some similarities with the standard ΛCDM.
However, in our approach dark matter behaves as a
viscous/dissipative component. The general structure of
this model is given by the field equation

Rμν −
1

2
gμνR − Λgμν ¼ 8πGTμν; ð2Þ

where Tμν stands for the energy momentum tensor of the
viscous matter. This tensor possesses both the perfect fluid
structure as well as the possible dissipative effects in the
form of bulk viscosity ξ and shear viscosity η, respectively,
such that [46,47]

Tμν ¼ ρuμuν − pðgμν − uμuνÞ þ ΔTμν; ð3Þ
where the component ΔTμν is the viscous contribution to
the fluid,

ΔTμν ¼ η½uμ;ν þ uν;μ − uρ∇ρðuμuνÞ�

þ
�
ξ −

2

3
η

�
ðgμν − uμuνÞ∇ρuρ: ð4Þ

For simplicity, we set the kinetic pressure to p ¼ 0.
Then, our dark matter possesses only the viscous pressure

pv ¼ −ξuμ;μ: ð5Þ
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The above viscous pressure will be assumed as the total
pressure of the dark matter component, but here it is
expedient a cautionary remark. It is widely known that
in nonequilibrium thermodynamics the viscous pressure
represents a small correction to the positive defined
equilibrium (kinetic) pressure. This condition applies both
to the noncausal Eckart theory [48], as in Eq. (5), and to the
causal Müller-Israel-Stewart formalism [49–51].
In addition to the viscous effects we consider in this

work, there could also be kinetic effects that could be of
importance (e.g., like radiation pressure, or velocity
dispersion effects). As far these effects are concerned in
the context of dark matter, we recall that in general viable
cold dark matter candidates (WIMPs, for instance) are
based on particle masses of ordermdm ∼OðGeVÞ, resulting
in an almost negligible kinetic pressure. However, one can
promote a fair estimation on mdm such that the kinetic
pressure would be relevant. Let us assume that the thermal
contribution has the upper limit given by the CMB temper-
ature (it is equal to this temperature in case of thermal
equilibrium of all the cosmic matter components). Note that
here we only want to get an estimate on the upper bound
contribution, so we will assume the unlikely case that
WIMPS would be in equilibrium with the CMB (which is
clearly not possible, otherwise these type of DM would
already been detected). This temperature today is T0 ¼
2.35 × 10−13 GeV and the (physical) temperature will scale
with the redshift as TðzÞ ¼ ð1þ zÞT0. Thus, the temper-
ature decreases as the universe evolves, while the rest mass
contribution remains constant. As an upper bound estima-
tion, let us suppose that both contributions are equal at a
given redshift z. Hence this assumption implies, m ¼
3ð1þ zÞT0=2. With this equality occurring, for instance,
at the decoupling time zeq ≃ 1000, then we readily obtain
an estimate for the mass as beingm ∼ 0.3 eV. This is of the
order of the estimated neutrino mass. If the equality happens
more recently, the value ofm is still smaller. Indeed, WIMPs
are expected to decoupled from the primordial bath much
earlier around T ∼ GeV. Hence, in order for the kinetic
contribution to be relevant, the mass of dark matter particles
must be extremely small. In fact, for dark matter candidates
that can have very small masses, like axions, or other typical
dark matter candidates, like WIMPs, are expected to freeze
out much earlier in the history of the universe and are
decoupled from the standard model particles well before the
decoupling time (we recall that present day cosmological
observations tends to strongly constrain any form of warm
dark matter). Furthermore, in the linear regime for the
perturbations that we will be focusing in this work, kinetic
effects have been estimate to contribute mostly at the
percentage-level only [52,53].
Using a FLRW metric the Friedmann equation reads

H2 ≡
�
_a
a

�
2

¼ 8πG
3

ρv þ
Λ
3
; ð6Þ

where G is the gravitational Newton constant and Λ the
cosmological constant. In the above equation, we are
assuming a flat Euclidean geometry and we have neglected
the radiation contribution, which is much smaller than the
matter component by the time of interest here, when
structures start to form in the Universe and which occurs
much later than radiation domination. In addition, we will
consider in the following that all the matter components,
represented by the ρv term, are endowed with viscous
properties. Indeed, if only the linear regime structure
formation is considered, which is the case considered in
this work, it is unnecessary a proper separation between
baryons and dark matter. Baryonic fluctuations δρb follow
the dark matter ones δρb=ρb → δDM=ρDM in the linear
regime. One should also recall that baryons totals about 1=6
of the present total matter distribution, thus, even if our
analysis fails in providing the correct estimation on the
impact of the viscosities due to neglecting the baryons
contribution, this is not expected to lead to appreciable
changes in our bounds on the viscosities. We could also in
principle assign for the dark and the baryonic matters
different viscous properties, but as far the objective of the
present work is concerned, i.e., to assess the relative
importance of the bulk and shear viscosities in the linear
structure formation process, this is an unnecessary com-
plication. In any case, the baryonic matter is a subdominant
component with respect to dark matter. Moreover, in the
later phases of the evolution of the Universe it exhibits
generally the pattern determined by the dark matter compo-
nent. An explicit analysis of the effects of the baryonic
component on our results will be performed in Sec. V.
By defining the fractional densities Ωv ¼ 8πGρv=ð3H2

0Þ
and ΩΛ ¼ Λ=ð3H2

0Þ, where H0 is the present value for the
Hubble parameter, the Friedmann equation (6) becomes

H2 ¼ H2
0ðΩv þ ΩΛÞ: ð7Þ

Using now the fluid equation for ρv,

_ρv þ 3Hðρv þ pvÞ ¼ 0; ð8Þ

and recalling that for a bulk viscous matter fluid in a FLRW
metric the pressure is pv ¼ −3Hξ, we can recast Eq. (8) as
an equation for the fractional density Ωv as

a
dΩv

da
þ 3Ωvð1þ ωvÞ ¼ 0; ð9Þ

where we have defined the fluid equation of state parameter
for the viscous dark matter fluid, ωv, as

ωv ≡ pv

ρv
¼ −

3Hξ

ρv
: ð10Þ

We note that in the present work the formalism devel-
oped in Refs. [46,48] is employed such as to keep contact
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with similar previous works. Moreover, for the late
Universe (the period of the cosmic evolution we are
interested in) this noncausal formalism constitutes a good
approximation. Furthermore, the validity of the hydro-
dynamic equations describing the bulk, and similarly for
the shear, viscous contributions considered here, typically
requires jωvj ≪ 1; otherwise, a higher-order hydrodynam-
ics formulation is required [54] (see, for instance, Ref. [22]
for a contrast of different viscous hydrodynamic formula-
tions as far as early Universe cosmology is concerned). We
will then limit our analysis within the regime of validity of
the present hydrodynamics formalism.
In the following, it will also be useful to define

dimensionless bulk and shear viscosities, ~ξ ¼ 24πGξ=H0

and ~η ¼ 24πGη=H0, respectively. We will also assume a
general form for the viscous coefficients such that [55],

ξ≡ ðΩv=Ωv0Þνξ0; ð11Þ

η≡ ðΩv=Ωv0Þλη0; ð12Þ

where the exponents ν and λ are real numbers, while ξ0 and
η0 are constant parameters. In general, the coefficients of
bulk and shear viscosities can be proportional also to the
particle free mean path, but this requires the knowledge of
the microscopic details of the interactions involving the
dark matter particles. In this work, we are not considering
specific candidates for dark matter particles and by assum-
ing the functional forms given by Eqs. (11) and (12) has the
advantage of allowing for a completely model independent
analysis. In fact, the above general forms assumed for the
viscosities are quite natural for an isotropic and homo-
geneous Universe and, under this symmetric configuration,
it may cover for example the expressions displayed in
Refs. [47,56].

III. PERTURBATIVE DYNAMICS

To study the perturbative dynamics when including the
viscosities, we will work in the Newtonian gauge. Hence,
the line element for scalar perturbations in an homogeneous
and isotropic flat Universe is

ds2 ¼ a2ðτÞ½−ð1þ 2ϕÞdτ2 þ ð1 − 2ψÞδijdxidxj�; ð13Þ

where τ is the conformal time and ϕ and ψ are the metric
perturbations, which are in general equal in the absence of
anisotropic stresses, e.g., shear viscosity, but for dissipative
processes, as it will be considered here, they are indepen-
dent functions [57].

A. Perturbed Einstein equations

Applying Eq. (13) to the Einstein equations we obtain,
for example, the (0,0)-component, in momentum space, as
given by

−k2ψ − 3Hðψ 0 þHϕÞ ¼ 3

2
ΩvH2

0a
2Δ; ð14Þ

while the ð0; iÞ-component is

−k2ðψ 0 þHϕÞ ¼ 3

2
H2

0Ωvð1þ wvÞaθ; ð15Þ

where H ¼ a0
a , with the symbol “ 0” corresponding to a

derivative with respect to the conformal time, k is the
(comoving) momentum. In the above equations, we have
also defined the density contrast, Δ ¼ δρ=ρ. From the
(0; i)-component of the Einstein’s equation (15), we obtain
the definition for the velocity potential θ ¼ ∂iδui.
Finally, the evolution of the potentials ψ and ϕ are

encoded in the i − j component of the Einstein equation,

�
ψ 00 þHð2ψ þ ϕÞ0 þ ð2H0 þH2Þϕþ 1

2
∇ðϕ − ψÞ

�
δij

−
1

2
∂i∂jðϕ − ψÞ ¼ 4πGa2δTi

j; ð16Þ

where

δTi
j ¼ δpδij − ξ

�
δum;m −

3H
a

ϕ −
3ψ 0

a

�
δij − ðδξÞ 3H

a
δij

− ηgikδlj

�
δuk;l þ δul;k −

2

3
a2δum;mδkl

�
; ð17Þ

and from the i ≠ j case of the above equation, we find

−
k2

2
ðϕ − ψÞ ¼ 3H2

ρ
ηθ: ð18Þ

From Eq. (18), one notices that ϕ ≠ ψ if η ≠ 0. This
demonstrates a clear feature of the presence of shear
viscosity (anisotropic stress), i.e., the Newtonian potentials
do not coincide. It is worth noting that ϕ ≠ ψ is also seem
as a manifestation of modified gravity theories [58–61].
Therefore, this aspect represents an important degeneracy
in cosmological perturbation theory, which is not fre-
quently noticed in the literature.

B. Quasistatic approximation

We are interested in the evolution of small scale (inside
the Hubble radius) perturbations along the matter domi-
nated period. In such a situation, the Newtonian potentials
ϕ and ψ almost do not vary in time. Hence, a quasistatic
approximation for these quantities is a good approximation.
Thus, the continuity equation can be written as

Δ0 − 3HωvΔþ ð1þ 2ωvÞðaθÞ −
9H2ðδξÞ

ρa
≈ 0; ð19Þ
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and the (0-0) component of the Einstein’s equation
becomes

−k2ψ ≈
3

2
ΩvH2

0a
2Δ: ð20Þ

By combining Eqs. (19) and (20), the (0—i) component
equation (15) becomes

ðaθÞ0 þ
�
Hð1 − 3wvÞ þ

w0
v

1þ wv
þ k2ð~ξþ 4

3
~ηÞ

aρð1þ wvÞ
�
ðaθÞ

þ k2wvψ
0

Hð1þ wvÞ
−

k2ϕ
1þ wv

−
wvk2ðδξÞ
ξð1þ wvÞ

¼ 0: ð21Þ

Using the Eqs. (7), (9) and (10), we obtain that

a
H
dH
da

¼ −
3

2
ð1þ ωvÞΩv

H2
0

H2
; ð22Þ

and

a
dωv

da
¼ 3ωvð1þ ωvÞ

�
1 − ν −

Ωv

2

H2
0

H2

�
: ð23Þ

Then, using Eq. (21), after some algebra, we can express
Eq. (19) for the density contrast as a closed second-order
differential equation in the form

a2
d2Δ
da2

þ
�
3 −

3

2
Ωv

H2
0

H2
þ Aþ k2B

�
a
dΔ
da

þ ðCþ k2DÞΔ ¼ 0; ð24Þ

where the factors A, B, C, and D appearing in the above
equation are defined, respectively, as

A ¼ 3ωv

1þ 2ωv

�
2νð1þ ωvÞ − 3 − 4ωv − ωvΩv

H2
0

H2

�

−
2ωv

1þ ωv

R
Ωv

; ð25Þ

B ¼ −
wvð1þ 4

3
RÞ

3H2a2ð1þ wvÞ
; ð26Þ

C ¼ −
3Ωv

2

H2
0

H2

�
1

ð1þ ωvÞð1þ 2ωvÞ

þ ωv

1þ 2ωv
½3νð4ω2

v þ 5ωv þ 2Þ − 12ω2
v − 15ωv − 2�

�

−
3ð1 − νÞωv

1þ 2ωv
½−3νð2ω2

v þ 2ωv þ 1Þ þ 7ωv þ 5�

þ 2ð1 − 3νÞω2
v

1þ ωv
R; ð27Þ

D ¼ w2
vð1þ 4

3
RÞ

H2a2ð1þ wvÞ
ð1 − νÞ þ νωvð1þ 2wvÞ

1þ wv

�
Ωv

Ωv0

�
ν

ð28Þ

where in the above equations we have also introduced the
quantity R≡ ~η=~ξ, i.e., the ratio between the (dimension-
less) shear and bulk viscosities. Using Eqs. (11) and (12), R
can also be explicitly written as

R ¼ ~η0
~ξ0

�
Ωv

Ωv0

�
λ−ν

: ð29Þ

Note that in the absence of bulk viscosity, ωv → 0,
ωvR → −~ηH=ð3H0ΩvÞ and the above expressions for the
factors A, B, C, and D reduce to

A ¼ 2~η

3Ω2
v

H
H0

; ð30Þ

B ¼ 4~η

27a2ΩvHH0

; ð31Þ

C ¼ −
3

2
Ωv

H2
0

H2
; ð32Þ

D ¼ 0; ð33Þ

and we can see explicitly how the differential equation for
the density contrast depends on the shear.

IV. NUMERICAL RESULTS AND
STATISTICAL ANALYSIS

We now present our numerical results concerning how
the density contrast Δ is changed as a function of the bulk
and shear viscosities. We analyze the behavior in terms of
both the magnitude for the bulk and shear viscosities, ξ0
and η0, but also how the dependence of the viscosities in
terms of the fluid density, parameterized by the exponents ν
and λ in Eqs. (11) and (12), influence the results. Finally,
we will provide a statistical analysis to determine preferable
values for the viscosities using the most recent redshift-
space-distortion-based fðzÞσ8ðzÞ data.

A. Linear growth of viscous dark matter halos

In the following, we show the results for the linear
evolution of the density contrast Δ considering the scale
k ¼ 0.2h Mpc−1, which corresponds to the scale for typical
galaxy clusters. According to the ΛCDM standard cosmol-
ogy, such objects became nonlinear; i.e., the density
contrast approaches Δ ∼ 1 at recent times, when the scale
factor is anl ∼ 0.5, or equivalently, at redshift znl ∼ 1. In all
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of our results, the initial conditions are taken at the matter-
radiation equality and they are set with the help of the
CAMB code [62].
In Fig. 1, we compare the combined effects of bulk and

shear with their isolated effects. Here, for convenience, we
have assumed constant coefficients, by taking the expo-
nents ν ¼ λ ¼ 0 in Eqs. (11) and (12). We can see clearly
from the results shown in this figure that both bulk and
shear contribute in a similar way. Both viscosities act in a
way to attenuate the matter perturbation growth. For the case
~η0 ¼ 10−6 and ~ξ0 ¼ 10−6, panel (a), the evolution of Δ
remains close to the concordanceΛCDMmodel. The R ¼ 1
curve means that both effects are acting simultaneously with

the same magnitude, i.e., ~η0 ¼ ~ξ0 ¼ 10−6 in panel (a) and
~η0 ¼ ~ξ0 ¼ 10−5 in panel (b).
In Fig. 2, we show the isolated effects of the shear,

shown in panel (a), and that due to the bulk, shown in panel
(b), on the density contrast Δ. As in the previous figure, we
are also here assuming constant viscosities, i.e., we have
considered ν ¼ λ ¼ 0 in Eqs. (11) and (12). It is clear that
both the shear and the bulk act in a similar way on how they
suppress (damp) the growth of Δ.
In general, bulk and shear viscosities act to suppress the

growth of density perturbations, as it could be expected
from the beginning. It must be stressed once again that even
though the shear does not contribute for the background

0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

0.80

0.85

0.90

0.95

1.00

0.4 0.5 0.6 0.7 0.8

0.75

0.70

0.80

0.85

0.90

0.95

1.00

FIG. 1. The density contrast Δ as a function of the scale factor a showing the combined effects of bulk and shear for two different
values for the dimensionless viscosities (when setting one of them to zero) and the comparison with the case R ¼ 1, i.e., ~ξ ¼ ~η, and the
standard ΛCDM case.
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FIG. 2. The density contrast Δ as a function of the scale factor a showing the individual effects due to bulk and to the shear viscosity.
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dynamics, it affects the perturbations. The contribution of
the shear viscosity for the suppression of the growth of the
matter perturbation is seen as effective as the bulk viscosity
is and it might be even more relevant, as the results shown
in Figs. 1 and 2 indicate. The simultaneous combination
of both dissipative effects enhances the suppression of the
matter perturbation growth. For the perturbations to be able
to reach the nonlinear regime (as required to give birth to
local structures such as galaxies and clusters of galaxies),
the dimensionless coefficients ~ξ and ~η, for the bulk and
shear viscosities, respectively, when acting individually or
in combination, must be at most of the order of 10−6. The
relative contribution between the two dissipative compo-
nents, R, is also relevant. For instance, when R is greater
than one the perturbations in general do not reach the

nonlinear regime. This reveals the important role played by
the shear viscous component.
In Fig. 3, we analyze the effect of the dependence set

for the bulk viscosity in Eq. (11) through its exponent ν.
Surprisingly, we find that the presence of the bulk viscosity
is able to lead to an enhancement, as opposite to suppres-
sion, when the shear is absent and ν is positive. This is seen
explicitly in panels (a) and (b) of Fig. 3. This anomalous
behavior has already been detected in Ref. [35]. Note,
however, this same trend does not happen for the case of
the shear viscosity, where it always leads to a suppression
of the perturbations for either positive or negative exponent
λ in Eq. (12) and when the bulk is absent. This is explicitly
shown by the results displayed in Fig. 4. The inset in Fig. 4
zoom in the region around the transition to nonlinearity for
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FIG. 3. The density contrast Δ as a function of the scale factor a for fixed bulk viscosity at the dimensionless value ~ξ0 ¼ 10−6 and for
different exponent ν and ratio R. The shear viscosity exponent in all cases is λ ¼ 0.
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the perturbations. Note, however, that these results also
show that a shear viscosity with a negative exponent λ
suppresses less the growth of Δ than the cases with a
positive λ, where we see a relatively larger damping of Δ.
This indicates the crucial role played by the shear in the
suppression of power in the matter agglomeration in
general situations.
Both of these results observed with the bulk and the

shear with respect to the sign of the exponents in Eqs. (11)
and (12) can be understood from the equations derived in
the previous section. The bulk viscosity influences both the
damping term (the first-order derivative term) in Eq. (24) as
also the term in front of the linear term, i.e., the “frequency”
term, in an analogy with the damped harmonic oscillator
equation in basic mechanics. The most relevant change
caused by the exponent ν happens in particular in the later.
The term Cþ k2D is dominated by the last contribution in

Eq. (28). For a bulk viscosity with a positive exponent ν it
leads to a larger negative frequency like-term. Thus,
favoring a larger growing mode with respect to ΛCDM.
The opposite happens with a negative ν, which increases
the frequency-like term positively and causes a larger
suppression effect on the growth of Δ. This change of
behavior for Δ for a negative or positive ν explains the
results seen in Fig. 3. When the bulk viscosity is absent and
only the shear viscosity is present, the frequency-like term
is unchanged with respect to theΛCDMvalue and the shear
viscosity will affect only the damping-like term in Eq. (24).
When the bulk viscosity is absent, it follows the Eqs. (30),
(31), (32) and (33). Recalling that in this case that the
solution of Eq. (9), when ωv ¼ 0, is Ωv ∝ 1=a3. Using
Eq. (12), we can easily observe that for a positive exponent
λ the term Aþ k2B in the damping-like term in the
differential equation (24) will grow slower with the scale
factor than in the case when the exponent λ of the shear
viscosity is negative. Thus, we have (recalling that for our
initial conditions a < 1) that the damping-like term for
λ > 0 will get larger than in the case when λ < 0. Hence,
there is a larger damping of Δ when the exponent λ is
positive than in the case when λ is negative. Thus, a
negative λ will always lead to results that are closer to the
ΛCDM case. This explains the behavior seen in Fig. 4.
Both of these behaviors with respect to the exponents ν and
λ for the viscosities get evident also when we present results
for the density contrastΔ at some fixed value of the scale a.
In Fig. 5, we show the ratio of the density contrast Δ with
respect to the ΛCDM value, ΔΛCDM, i.e., in the absence
of viscosities. For convenience, we have fixed the scale at
the value a ¼ 0.1, for which ΔΛCDM ≃ 0.2 and, thus, well
before the nonlinear regime. The behavior explained above
gets evident when analyzing the results in this figure. For
example, in panel (a) of Fig. 5, we see that a negative ν
leads to a result for Δ that is smaller than in the ΛCDM
case, while the opposite is seen when ν is positive, in which
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FIG. 4. The density contrastΔ as a function of the scale factor a
when the bulk viscosity is absent and for different values for the
shear viscosity exponent λ.

FIG. 5. The ratio of the density contrastΔwith respect theΛCDMvalue, both fixed at the scale a ¼ 0.1, as a function of the viscosities
exponents ν and λ and for different values for the viscosity coefficients.
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case Δ > ΔΛCDM. Now, in the absence of a bulk viscosity
but for a nonvanishing shear viscosity, we have the results
shown in panel (b) of the same figure. In Fig. 5(b), we see
that a shear viscosity always damp the density contrast and
a positive λ produces results that are more strongly damped
than for a negative λ, which tend to remain closer to the
ΛCDM value.
Based on the above results, it is interesting to investigate

when a larger viscosity gets favored. From the results
shown in Fig. 5, we see that a bulk viscosity with a negative
exponent ν always damp the growth of Δ and the nonlinear
regime is delayed or even prevented for a sufficiently large
(and negative) ν and some given bulk viscosity amplitude
ξ0. On the other hand, a bulk viscosity with a positive
exponent ν leads to a nonlinear regime for Δ that can
happen much earlier in the evolution than one would
desire, thus exacerbating the problems that suffers the
ΛCDMmodel and explained in the Introduction. A positive
exponent ν for the bulk viscosity seems, thus, disfavored.
As for the shear viscosity, we always has a suppression of
the density contrast with respect to the ΛCDM case.
Furthermore, a positive and larger exponent λ damps Δ
more strongly than a negative λ. Hence, we see that the
larger growth of the density contrast observed with a bulk
viscosity with a positive ν can be compensated with a
shear viscosity that also has a positive exponent λ, which is
the case that leads to the larger damping of Δ. This state of
affairs caused by the combined effects of both bulk and
shear viscosities is exemplified in the results shown in
Fig. 6, where we show the same ratio of density contrast
used in Fig. 5 but now given as a function of the magnitude
of the shear viscosity, η0. The results are presented in terms
of the ratio r, where r ¼ ~η0=~ξ0, i.e., the ratio between the
(dimensionless) magnitude for the shear and bulk viscos-
ities. We have once again fixed the scale at the value
a ¼ 0.1 for convenience and we have chosen the bulk and
shear viscosities coefficients at the values ν ¼ 0.1 and

λ ¼ 1, respectively. From the results shown in Fig. 6, we
see that we can easily compensate the growing behavior of
Δ due to a bulk viscosity with a positive and large exponent
ν with an equally large and positive shear viscosity
exponent λ and a larger magnitude for the shear viscosity.
This is mostly likely a more natural situation from a
physical view point, since viscosities tend to increase with
the density (see, e.g., Refs. [47,56]) and not the opposite
(i.e., viscosities that decrease when the fluid density
increases, as in the case where the exponents ν and λ are
negative).

B. Constraints from redshift space distortions

The features presented by dissipative effects on the
linear perturbation theory can also be studied via the
growth rate of matter fluctuations data. Observational
projects have inferred from large scale clustering the
redshift-space-distortion-based fðzÞσ8ðzÞ at different red-
shifts. This observable combines the linear growth rate f,

DðaÞ ¼ ΔðaÞ
Δða0Þ

⇒ fðaÞ≡ d lnDðaÞ
d ln a

; ð34Þ

with the variance σ2 of the density field smoothed on
8h−1 Mpc scales. The value of the scale factor today is
taken as a0 ¼ 1. The sample for the redshift-space-
distortion-based fðzÞσ8ðzÞ that we consider has 21 data
and the values are shown in Table I.
We have inspected in the previous subsection the

evolution of the mode k ¼ 0.2h Mpc−1, which is in the

FIG. 6. The ratio of the density contrast Δ with respect the
ΛCDM value, both fixed at the scale a ¼ 0.1, as a function of
the shear to bulk viscosity (dimensionless) coefficients ratio,
r ¼ ~η0=~ξ0 and for different values for the bulk viscosity coef-
ficient. The viscosities exponents have been fixed at the values
ν ¼ 0.1 and λ ¼ 1.

TABLE I. The redshift-space-distortion data considered in our
statistical analysis.

z fðzÞσ8ðzÞ Reference

0.02 0.360� 0.040 [63]
0.067 0.423� 0.055 [64]
0.10 0.37� 0.13 [65]
0.17 0.51� 0.06 [66]
0.22 0.42� 0.07 [67]
0.25 0.3512� 0.0583 [68]
0.30 0.407� 0.055 [69]
0.32 0.427� 0.056 [70]
0.35 0.440� 0.050 [66]
0.37 0.4602� 0.0378 [68]
0.40 0.419� 0.041 [69]
0.41 0.45� 0.04 [67]
0.50 0.427� 0.043 [69]
0.57 0.427� 0.066 [71]
0.57 0.426� 0.029 [70]
0.6 0.43� 0.04 [67]
0.6 0.433� 0.067 [69]
0.727 0.296� 0.078 [72]
0.77 0.490� 0.180 [66]
0.78 0.38� 0.04 [67]
0.80 0.47� 0.08 [73]
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borderline dividing the linear and the nonlinear regime
today. The results obtained are consistent with the initial
hypothesis of the validity of the linear regime. Hence, in
order to compare with the redshift distortion observational
data, which refers to modes that stay in the linear regime
up to z ∼ 0, it is more convenient to now consider the value
of k ¼ 0.1 Mpc−1, which is quite far from the nonlinear

regime until today and all the expressions derived in the
previous section remain valid.
The linear growth studied in the previous subsection is

now shown against the fσ8 data of Table I in Figs. 7–9
and 10.
The confidence levels at 1σ and 2σ are shown in Fig. 11,

where the best-fitting values for the parameters ~ξ and ~η are

FIG. 10. The linear growth against the fσ8 data as a function of the redshift for a fixed value of bulk at ~ξ0 ¼ 10−6, but varying R and
the shear exponent ν.

FIG. 7. The linear growth against the fσ8 data as a function of the redshift in the absence and presence of the viscosities.

FIG. 8. The linear growth against the fσ8 data as a function of
the redshift with the combined effects of both bulk and shear
viscosities.

FIG. 9. The linear growth against the fσ8 data as a function of
the redshift for fixed bulk viscosity ~ξ0 ¼ 0 and shear ~η0 ¼ 10−6,
for different values for the shear exponent λ.
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also indicated. For convenience and simplicity of analysis,
we consider two free parameters: The (dimensionless)
coefficients for the bulk and the shear viscosities, ~ξ0 and
~η0, respectively, fixing the respective exponents ν and λ
equal to zero in Eqs. (11) and (12). Using the χ2 parameter,
the best fitting is obtained with χmin ¼ 15.67, for ~ξ0 ¼
1.427 × 10−6 and ~η0 ¼ 2.593 × 10−6. The striking small
value of the χ2min per degree of freedom (about 0.55) is
connected with the very large error bars. The imprecision
coming from the redshift space distortions used here
indicates that the observational constraints must be faced
with caution; they have, at the other hand, the advantage of
not suffering too much from model calibration problems,
since it is essentially a kinematic effect. Even though, we
can construct the parameter estimations using the Bayesian
statistical analysis. Since the values for the coefficients ~ξ
and ~η span many negative orders of magnitude, being very
near zero, it is more convenient to use a logarithmic scale to
present the results in Fig. 11. One notes that the ΛCDM
value (ξ ¼ η ¼ 0) is excluded at 1σ, but it is still compat-
ible with the data at 2σ.

V. THE EFFECTS OF BARYONS ON
THE DARK MATTER GROWTH

We now investigate whether a separated baryonic com-
ponent modifies our bounds on the dark matter viscous
properties. Indeed, a realistic scenario should take baryons
into account. Galaxies are formed when baryons radiate
away their kinetic energy falling towards the dark matter
potential wells. This process starts already at high redshifts
when most of the astrophysical scales of interest are still in

the linear regime. When the nonlinear stage is reached,
many distinct processes like for instance radiative pressure
feedback, stellar winds, Supernova feedback or local
ultraviolet flux from young stars, drive the final evolu-
tionary stage of galaxies. All such physical mechanisms
also involve obviously dissipative effects in the baryonic
sector, but only a full hydrodynamical simulation (includ-
ing Boltzmann transport equations) can properly inves-
tigate the impact of baryons, endowed with such properties,
on the final matter clustering patterns and this is beyond the
applicability of linear cosmological perturbation theory
used in this work. Thus, we stay focused on the linear
structure formation regime, where the baryonic sector does
not develop such departures from the perfect fluid behavior,
i.e., we deal their clustering dynamics as the one of a
pressureless fluid.
Including baryons (pb ¼ 0) in our model, the Einstein

equation (0 − 0)-component is changed, but the i ≠ j
component is not, since the stress-tensor Tij is not affected
by zero pressure components. Thus, the Einstein equations
relevant here are

−k2ψ − 3Hðψ 0 þHϕÞ ¼ 3

2
H2

0a
2

�
Ωb0

a3
Δb þΩvΔv

�
;

ð35Þ

and

−
k2

2
ðϕ − ψÞ ¼ 3H2

ρ
ηθv: ð36Þ

At the background level, it is well established that Big Bang
nucleosynthesis (BBN) sets a today’s fractionary density
to Ωb0 ≃ 0.05.
The continuity equation for baryons reads

Δ0
b þ aθb − 3ψ 0 ¼ 0; ð37Þ

and the Euler equation

ðaθbÞ0 þHaθb − k2ϕ ¼ 0: ð38Þ

Now, following a similar derivation as used previously to
treat the dark matter fluid and applying again the quasistatic
approximation, the Einstein equations become

−k2ψ ¼ 3

2
H2

0a
2

�
Ωb0

a3
Δb þΩvΔv

�
; ð39Þ

−
k2

2
ðϕ − ψÞ ¼ 3H2

ρ
ηθv; ð40Þ

while the continuity equation for baryons is

FIG. 11. Contours of statistical confidence level at 1σ and 2σ
using the data from Table I. The dot indicates the best fit. The
standard pressureless case is discarded only within the weak
confidence of 1σ.
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aθb ¼ −Δ0
b: ð41Þ

From the background dynamics, we have that

a
H
dH
da

¼ −
3

2

H2
0

H2

�
ð1þ ωvÞΩv þ

Ωb0

a3

�
; ð42Þ

and

a
dωv

da
¼ 3ωvð1þ ωvÞ

�
1 − ν −

Ωv

2

H2
0

H2

�
−
3

2

H2
0

H2
ωv

Ωb0

a3
:

ð43Þ

Now, using Eq. (43) in the Euler equation, the equation
for the density perturbation contrast for the baryons,
Δb ≡ δρb=ðρv þ ρbÞ, becomes

a2
d2Δb

da2
þ
�
3 −

3

2

H2
0

H2

�
Ωvð1þ ωvÞ þ

Ωb0

a3

��
a
dΔb

da
−
3

2

H2
0

H2

Ωb0

a3
Δb

¼
�
3

2

H2
0

H2
Ωv þ

2~ηa
3H0Ωvð1þ 2ωvÞ

�
3Hωv

a
þH2

H2
0

~ξν

Ωv

�
Ωv

Ωv0

�
ν
��

Δv

−
2~ηHa

3H0Ωvð1þ 2ωÞ
dΔv

da
: ð44Þ

The previous viscous fluid density perturbation equa-
tion (24) is also modified when including baryons and it
now becomes

a2
d2Δv

da2
þ
�
3 −

3

2
Ωv

H2
0

H2
−
3

2

Ωb0

a3
H2

0

H2
þ Āþ k2B

�
a
dΔv

da

þ ðC̄þ k2DÞΔv ¼
3

2

H2
0

H2

Ωb0

a3
ð1þ 2ωvÞ
ð1þ ωvÞ

Δb; ð45Þ

with Δv ≡ δρv=ðρv þ ρbÞ and where the factors B and D
have the same form as defined before, Eqs. (26) and (28),
respectively, while the factors Ā and C̄ appearing in
Eq. (45) above are defined, respectively, as

Ā ¼ Aþ 3ωv

2ð1þ 2ωvÞð1þ ωvÞ
Ωb0

a3
H2

0

H2
; ð46Þ

and

C̄ ¼ Cþ 9ωvð2þ 6ωv þ 5ω2
vÞ

2ð1þ 2ωvÞð1þ ωvÞ
Ωb0

a3
H2

0

H2
: ð47Þ

We have now a two-fluid system described by the coupled
Eqs. (44) and (45) and where the baryon density contrast
enters as a source term in the dark matter viscous Eq. (1).
In the previous sections, we have analyzed the viscous

dark matter overdensity growth (when in the absence of
baryons) assumingΩv0 ¼ 0.3. When including the baryonic
component, we now have the splitting Ωmatter ≡Ωv þ Ωb,
with Ωv0 ¼ 0.25 and Ωb0 ¼ 0.05. Hence, one possible
interpretation is that we have previously considered that
even baryons were subjected to the viscous effects.
In Fig. 12, we fix ~ξ ¼ 10−5 and R ¼ 1 in the constant

viscosities case as an illustrative example of the effect of

baryons on the evolution of the effective total density contrast
Δeff , defined as being the weight averaged quantity,

Δeff ¼
ΩvΔv þΩbΔb

Ωv þ Ωb
: ð48Þ

In Fig. 12, the dashed-dotted line corresponds to the case
previously shown in panel (b) of Fig. 1, while the solid line
corresponds to the case where baryons are accounted for,
followingEq. (48). In both cases, we notice that the influence
of the background expansion is almost the same. This is
simple because values of the viscosities of order 10−5 do not
lead to a relevant deviation from the standard pressureless
dark matter background scaling ∝ a−3, at low values of the

FIG. 12. The density contrast Δ as a function of the scale factor
a with ~ξ ¼ 10−5, ν ¼ λ ¼ 0 and R ¼ 1. The solid line represents
Δeff (where baryons are present). The dashed-dotted line is the
same as in panel (b) of Fig. 1.
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scale factor a. Nevertheless, we note that the inclusion of
standard pressureless baryons make the growth suppression
in Δeff to be not so efficient for a fixed viscosity as it did in
the previous case of absence of baryons. Thus, a higher value
of the viscosity parameters are required such as to be able
to lead to the same growth suppression as observed before.
Therefore, we can conclude that the inclusion of baryons
tends to lead to slightly different upper bounds on the dark
matter viscosity.

VI. CONCLUSIONS

In this work, we have studied the combined effects of
both bulk and shear viscosities on how they affect the
perturbations relevant for structure formation. Our study is
motivated by the observational evidence in favor of
modifications of the concordance ΛCDM model, which
has difficulty in explaining a number of important prob-
lems, such as the excessive agglomeration of matter due the
nature of the CDM, the puzzle of missing satellites, the
cusp-core problem and also the issue related to the fact that
the Planck Collaboration observed fewer clusters than
expected. In particular, the apparent excess of clustered
structures indicates the importance of processes able to
suppress the density contrast growth, such as viscous
effects. Previous studies on this issue have included only
effects due to the bulk viscosity and by assuming that the
dark matter fluid is endowed only with this viscous effect.
Shear viscosity has always been tacitly assumed to lead to
negligible effects. This, at first, seems to be a good
assumption given that shear effects can only act at the
level of the perturbations for a homogeneous and isotropic
universe described by the FLRW metric, while bulk effects
act already at the background level. However, our results
show that the shear can be as efficient as the bulk in
damping the perturbations and delaying the transition to the
nonlinear regime. In fact, we have seen that is physically
more acceptable and also natural to have a shear viscosity
acting concomitantly with the bulk viscosity, as far as their
dependence on the cosmological fluid density is concerned.
Our results obtained with the bulk viscosity and in the

absence of the shear viscosity, they are found to be in
agreement with previous ones [35,36,39], indicating that a
bulk viscous dark matter can have the effect of alleviating
the excess of power existing in the standard cold dark
matter scenario. On the other hand, when the effect of the
shear viscosity is considered, our results show a strength-
ening of the suppression of power at small scales (except
for some special cases discussed in Sec. IV). This sup-
pression is similar in many aspects to that verified in the
warm dark matter scenario [74]. However, perturbations in
the viscous fluid may exhibit important differences with
respect to the warm dark matter case for some range of
scales, mainly at very small scales. The construction of a
complete realistic viscous model for the dark sector faces,
however, important challenges as, for example, the analysis

of deep nonlinear regime addressing the cusp-core problem
in galaxies. This requires numerical simulations taking into
account the viscous properties discussed here. Our results,
thus, points to the importance of considering the possible
effects of the viscosities of the fluids considered in these
simulations, such as to modeling a more physical and
realistic situation that can be in effect in the structure
formation problem. Moreover, as a future follow-up of the
present work, a more fundamental approach to the hydro-
dynamics formulation will be interesting to be analyzed,
determining more precise forms for the viscous coeffi-
cients, and asking probably for a causal description for the
viscous fluid, in the spirit of the Müller-Israel-Stewart
formalism [49–51].
As a consequence of our results on the effects of the

viscous effects on the density contrast and done in con-
junction with a statistical analysis, we have been also able
to determine some upper bounds on the overall magnitudes
for the bulk and shear viscosities as ξ≲1.427×10−6H0=
ð24πGÞ∼4.0×10−12GeV3≃58.6Pa sec and η≲2.593×
10−6H0=ð24πGÞ∼7.8×10−12GeV3≃106.5Pasec, respec-
tively. It must be recalled, however, that these results are
based on the much simpler situation where the viscosities
are constant. We have shown that varying viscosities with
the fluid density can lead to a much richer and varied
possibilities. A detailed statistical analysis in this case is, on
the other hand, a difficulty task, but we hope to address this
with more details elsewhere. We also have shown that the
inclusion of baryons, done in the most conservative analysis
where the baryons are taken as a pressureless fluid, leads to
looser upper bounds on the dark matter viscosity.
Finally, since the viscous effects studied here can be

expected to be associated with intrinsic properties of the
dark matter component of the universe, these bounds can
eventually help to provide future constraints on dark matter
candidates and in their searches, through the properties they
might have, e.g., their interactions. The study done in this
work can be seen as a necessary initial study on the
combined effects of both bulk and shear viscosities on
structure formation and whose results can very well have
other ramifications and to be of importance in unveiling the
properties of dark matter.
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