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We revisit the physical properties of global and local monopoles and discuss their implications in the
dynamics of monopole networks. In particular, we review the velocity-dependent one-scale (VOS) model
for global and local monopoles and propose physically motivated changes to its equations. We suggest a
new form for the acceleration term of the evolution equation of the root-mean-squared velocity and show
that, with this change, the VOS model is able to describe the results of radiation and matter era numerical
simulations of global monopole networks with a single value of the acceleration parameter k, thus resolving
the tension previously found in the literature. We also show that the fact that the energy of global
monopoles is not localized within their cores affects their dynamics and thus the Hubble damping terms in
the VOS equations. We study the ultrarelativistic linear scaling regime predicted by the VOS equations and
demonstrate that it cannot be attained either on radiation or matter eras and thus cannot arise from the
cosmological evolution of a global monopole network. We also briefly discuss the implications of our
findings for the VOS model for local monopoles.
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I. INTRODUCTION

The production of topological defects in symmetry-break-
ing phase transitions in the early Universe is expected in a
large variety of Grand Unified theories [1]. The dimension-
ality of the defects that are created is determined by the type
of symmetry that is broken: monopoles may be created when
there is a breaking of spherical symmetry; linelike defects
known as cosmic strings may be formed when an axial
symmetry is broken; and 2þ 1-dimensional defects dubbed
domain walls may be formed when a discrete symmetry is
broken. Although the production of these defects may occur
in the early Universe, they are expected to survive through-
out cosmological history, potentially leaving behind distinct
signatures on a variety of observational probes. Describing
the evolution of topological defect networks is necessary in
order to accurately characterize these observational signa-
tures. Although this can be done using numerical simula-
tions, these may be computationally costly and limited in the
dynamical range. One may also resort to analytical models to
describe the evolution of topological defects, which—when
calibrated with the aid of simulations—are often more
versatile, allowing for accurate predictions of the observa-
tional signatures of cosmic defects.
Although the properties of topological defect networks

are dependent on the defects’ codimension, their macro-
scopic dynamics may be described in a unified framework

by resorting to a semianalytical model known as
the velocity-dependent one-scale (VOS) model. This
model—which may be derived from the (generalized)
Nambu-Goto action—describes the cosmological evolution
of networks of defects of arbitrary dimensionality by
following the evolution of two variables: the characteristic
length scale L and its rms velocity v̄ [2,3]. This character-
istic length scale is a measure of the energy density of
defects and is defined as

ρ ¼ σp
L3−p ; ð1Þ

where ρ is the average topological defect energy density, p
is the dimensionality of the defect (with p ¼ 0; 1, and 2
for point particles, strings, and domain walls in 3þ 1
dimensions respectively), and σp is the defect mass per unit
p-dimensional area (where σ0 ≡M is the particle mass,
σ1 ≡ μ is the cosmic string tension, and σ2 ≡ σ is the
surface tension of a domain wall). In this case, the evolution
equations for v̄ and L are of the form

dv̄
dt

¼ ð1 − v̄2Þ
�
κ

L
−

v̄
ld

�
; ð2Þ

dL
dt

¼ HLþ 1

D
L
ld

v̄2 þ ~c
D
v̄; ð3Þ

where H ¼ ðda=dtÞ=a is the Hubble parameter, a is the
cosmological scale factor, and D ¼ 3 − p. Here, we have
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also introduced the damping length scale l−1
d ¼

ðpþ 1ÞH þ l−1
f that includes not only the effects of

cosmological expansion but also of the frictional forces
resulting from particle scattering (encoded in the frictional
length scale lf). The last term in Eq. (3) is a phenomeno-
logical term that accounts for the energy loss caused by
defect interactions, ~c is a phenomenological parameter that
quantifies the efficiency of this energy loss mechanism, and
κ is an adimensional momentum parameter. This parameter
characterizes the acceleration felt by the topological
defects. In the case of cosmic strings or domain walls,
this acceleration is mainly caused by their linear or surface
tension, respectively. This source of acceleration is not
present in the case of minimally interacting point particles
for which κ ¼ 0. Note, however, that for monopoles that
interact nonminimally with each other the specific form
of this acceleration term will depend on the type of
interaction.
The VOS model provides a good description of the

evolution of topological defect networks on sufficiently
large scales (see Ref. [4] for a derivation of these equations
from thermodynamical principles). In particular, it has been
shown to provide an accurate description of the cosmo-
logical evolution of cosmic string [5] and domain wall [6]
networks from early to late cosmological times, with a
unique calibration of the parameters κ and ~c. However, one
would need to adapt this model in order to be able to use it
to describe the dynamics of realistic monopole networks.
Strictly speaking, with p ¼ 0, these equations describe

the evolution of a network of minimally interacting point
particles. Although they capture essential aspects of
monopoles dynamics, both global and local monopoles
have specific properties that are not taken into account in
this model. A first attempt to describe realistic monopole
networks was done in Ref. [7]. However, subsequent
numerical simulations of global monopoles networks [8]
have shown that the model introduced in Ref. [7] fails to
describe the macroscopic dynamics of these networks with
a single value of the acceleration parameter. Here, we
revisit the problem of extending the VOS model to describe
global and local monopoles and propose physically moti-
vated changes to this model which allow for an improved
description of the dynamics of monopole networks in a
cosmological setting.
This paper is organized as follows. In Sec. II, we revisit

the properties of global monopoles and propose corre-
sponding alterations to the VOS equations that describe the
cosmological dynamics of these networks. In Sec. II A, we
discuss the linear scaling regime and use the results of the
most accurate numerical simulations to estimate the values
of the VOS parameters. In Sec. II B, we discuss the
ultrarelativistic linear scaling regime and argue that this
regime cannot be the end result of the evolution of global
monopole networks. In Sec. III, we briefly discuss the
properties of local monopoles and propose changes to the

VOS model to account for their specific properties. We also
briefly discuss the scaling regimes in this model. We then
conclude in Sec. IV.

II. GLOBAL MONOPOLES

The energy of global monopoles is not localized within
their cores, and, thus, treating them as point particles is
inadequate. As a matter of fact, the total energy of a global
monopole grows linearly with distance [1,9], and as a
consequence, they exert long-range forces on each other. It
is straightforward to show that these forces are independent
of distance and have a magnitude [1,9]

F ∼ 4πη2; ð4Þ

where η is the energy scale of the monopole-creating phase
transition (note that the total mass of a global monopole at a
distance L is M ∼ 4πη2L). This force, as pointed out in
Ref. [7], gives rise to an acceleration of the form k=L
(where k is a constant). Note, however, that a monopole or
antimonopole feels the acceleration caused by each monop-
ole and antimonopole within its causal volume. Since each
of the monopoles and antimonopoles exerts a force of
similar magnitude, the problem of computing the total
acceleration acting on a monopole is then analogous to
finding the distance traveled in a three-dimensional random
walk with constant step. If the average number of monop-
oles (and antimonopoles) per cosmic horizon,

N ¼
�
dH
L

�
3

; ð5Þ

where dH is the cosmological horizon,– is large and the
positions of monopoles/antimonopoles are uncorrelated,
we expect the total acceleration to be approximately

ffiffiffiffiffi
N

p k
L
; ð6Þ

since, in this case, the average number of monopoles and
antimonopoles within the causal volume of any given
monopole will also be given by N . Here, k is an adimen-
sional acceleration parameter, which should not depend
strongly on the cosmological background. Note, however,
that numerical simulations [8,10,11] seem to indicate that
N is small (N ∼ 2�7 was measured), and thus the average
total force acting on a monopole may deviate from Eq. (6).
To account for this possibility, we introduce the following
parametrization for the acceleration term

k
L

�
dH
L

�
α

: ð7Þ

One would expect α ∼ 0 when there is, on average, only
one other monopole or antimonopole per cosmological
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horizon, and α → 3=2 for large N . So, one should expect
0 ≤ α ≤ 3=2. Negative values of α—such as the value
α ¼ −3=2 suggested in the VOS model for global monop-
oles in Ref. [7]—are not to be expected except perhaps
for very fine-tuned (and thus unrealistic) configurations
of monopoles and antimonopoles. The parametrization in
Eq. (7) will allow us to investigate the validity of these
expectations and to compare the adequacy of these two
choices for α (α ¼ −3=2 and α ¼ 3=2).
Moreover, for global monopoles, the main energy

loss mechanism is the annihilation of monopole and
antimonopole pairs (which carry opposite topological
charges). Monopoles and antimonopoles are attracted to
each other and may evolve to create bound states. Once a
monopole-antimonopole bound pair is created, they move
at ultrarelativistic speeds and loose energy by emitting
Goldstone-boson radiation. As a consequence, the separa-
tion between the monopole and antimonopole decreases
until they eventually annihilate within a Hubble time [9]. It
is this process of monopole-antimonopole annihilation that
provides an efficient energy loss mechanism and explains
the small values of N measured in numerical simulations.
Note, however, that the existence of such processes also
hints that the evolution of a global monopole network may
be misrepresented by a simple two-parameter VOS model.
The existence of long range forces between monopoles/

antimonopoles has other consequences beyond the form of
the acceleration term. For global monopoles, the average
energy density is of the form

ρ ¼ M
L3

¼ 4πη2L
L3

¼ 4πη2

L2
; ð8Þ

which—similarly to that of cosmic strings and unlike point
particles—scales as L−2. This is a consequence of the fact
that the mass of global monopoles grows linearly with
distance, which decreases the dependence of ρ on L. This
fact will necessarily affect the coefficients of the Hubble
damping terms in the VOS equations [see Eqs. (2) and (3)].
See Ref. [4] for a discussion of the dynamical effects
associated to variations of the defect mass per unit
p-dimensional area, σp.
Given these properties of global monopoles, we propose

the equations for v̄ and L,

dv̄
dt

¼ ð1 − v̄2Þ
�
k
L

�
dH
L

�
α

−
v̄
ld

�
; ð9Þ

dL
dt

¼ HLþ 1

θ

L
ld

v̄2 þ ~c
θ
v̄; ð10Þ

where l−1
d ¼ λH þ l−1

f , and one would expect θ ¼ λ ¼ 2

(since ρ ∝ L−2). These equations provide a VOS model for
global monopoles with three free parameters ðk; ~c; αÞ,
which differs from the one in Ref. [7] in the form of the

acceleration term and in the damping coefficients (which
were assumed to be θ ¼ 3 and λ ¼ 1 originally). In the next
subsection, we shall demonstrate that this new VOS model
is able to describe the results of radiation and matter era
numerical simulations of global monopole networks with a
single value of the acceleration parameter k. To allow for a
comparison with the original model, we shall consider two
situations: θ ¼ 3 and λ ¼ 1, which has the underlying
assumption that the damping effect caused by the expan-
sion is analogous to that felt by point particles, and
θ ¼ λ ¼ 2,- which treats monopoles as rigid bodies of
which the mass increases proportionally to the character-
istic length L. Although reality is likely significantly more
complex than either of these situations, the parameter
choice θ ¼ λ ¼ 2 is better motivated from the physical
point of view. If monopoles do not behave as rigid bodies,
the realistic value of λ may differ from λ ¼ 2 since this
value follows from that assumption [as to the value of
θ ¼ 2, it follows simply from Eq. (8), and thus one should
expect it to hold]. The determination of the set of
parameters of our model that best describes the dynamics
of global monopoles would give us more detailed infor-
mation about the properties of global monopoles them-
selves. It is thus a rather interesting question that warrants
further investigation in numerical simulations.

A. Linear scaling regime and parameter fitting

Numerical simulations of global monopole networks
[8,10,11] have demonstrated that they evolve toward a
linear scaling regime during which

L ¼ ξt; and v̄ ¼ constant; ð11Þ

with constant ξ, both in the matter- and radiation-
dominated epochs. Equations (9) and (10) admit solutions
of this form in the case of a power-law cosmological
expansion, with a ∝ tβ, in the frictionless regime (with
lf ¼ þ∞). This regime would be characterized by

ξ ¼ ~c v̄
θð1 − βÞ − βλv̄2

; and v̄ ¼ k
λβð1 − βÞαξαþ1

: ð12Þ

The VOS equations [Eqs. (9) and (10)] may also admit an
ultrarelativistic linear scaling solution (with v̄ ¼ 1) that will
be discussed in the next subsection.
Since numerical simulations have established the exist-

ence of a (subluminal) linear scaling regime, the measured
values of ξ and v̄ may be used to calibrate the values of k
and ~c:

k ¼ λv̄βð1 − βÞαξαþ1; ð13Þ

~c ¼ ξ

v̄
½θð1 − βÞ − βλv̄2�: ð14Þ
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The authors of Ref. [8] did precisely that using the
VOS model for global monopoles developed in Ref. [7]
(characterized by α ¼ −3=2, θ ¼ 3, and λ ¼ 1). The
(averaged) values measured for the scaling parameters in
the radiation era,

ξr ¼ 1.47� 0.09; and vr ¼ 0.76� 0.07; ð15Þ

and in the matter era,

ξm ¼ 1.98� 0.07; and vm ¼ 0.65� 0.08; ð16Þ

yielded, in both eras, values of ~c that are compatible.1

However, a tension between the inferred values of k in
the matter and radiation eras was found in Ref. [8].
Nevertheless, although the expression of ~c is independent
of α, that is not the case for k, and thus our physically
motivated changes to the form of the acceleration term may
resolve this tension.
To study this possibility, we have computed the values of

k using the values of ξ and v̄ obtained in radiation and
matter era simulations [given in Eqs. (15) and (16)], as a
function of α. The results are plotted in Fig. 1, as are the
errors associated to this computation, which were calcu-
lated using a linear propagation of uncertainties. Figure 1
shows that, independently of the choice of θ and λ, the
tension between the values of k in the radiation and matter
eras is resolved if α is sufficiently large. In particular, for
α≳ 1.15, the values of the parameter k obtained for the
matter and radiation eras seem to be compatible with each
other within error margins. Our proposed value of α ¼ 3=2
is well within the allowed interval of α. In this case
(α ¼ 3=2), for θ ¼ λ ¼ 2, the values of the parameter k
for the radiation- and matter-dominated epochs are

kr ¼ 0.7� 0.13 and km ¼ 0.92� 0.14; ð17Þ

which are not only compatible but also appear to be
perfectly reasonable values for this parameter. For θ ¼ 3
and λ ¼ 1, one obtains kr ¼ 0.35� 0.06 and km ¼ 0.46�
0.07. Note, however, that the values of kr and km can be
reconciled for a large range of (positive) values of α, since k
varies rather slowly as a function of α in this range. As
matter of fact, km ¼ kr only happens when α≃ 4. Still, as
we have discussed, one would not expect α to be larger than
3=2 (or, being less restrictive, 3—which would correspond
to the rather unrealistic situation in which all monopoles are
perfectly aligned). To shorten this range, one would either
need to decrease the systematic error of numerical simu-
lations or to run simulations with other values of β for
calibration.

As to the parameter ~c, which depends on the coefficients
θ and λ, the results for the radiation and matter eras are
compatible in both cases under study. For θ ¼ λ ¼ 2, these
yield, respectively,

cr ¼ 0.82� 0.29 and cm ¼ 0.31� 0.46; ð18Þ

where the uncertainties were also computed using linear
propagation of the errors in ξ and v̄. These results are
compatible, but the uncertainties are rather larger (despite
the error in v̄ and ξ being small) as a consequence of the
nonlinear dependence of ~c on v̄. Note, however, that, given
Eq. (14), a significant reduction of the magnitude of this
uncertainty would require a significant reduction in the
error in the determination of ξ and v̄ (particularly, in v̄). As
for the values of ~c for θ ¼ 3 and λ ¼ 1, we found

cr ¼ 2.34� 0.35 and cm ¼ 2.19� 0.49: ð19Þ

These results are also compatible. Although the uncertain-
ties are of the same magnitude, they result in smaller
relative errors because the predicted values of ~c are larger.
The values of ~c, however, may seem atypical; for both
cosmic strings and domain walls, ~c is smaller than unity.
Nevertheless, we must stress that the scenario in which θ ¼
λ ¼ 2 appears to be more physically motivated, and it’s
what one would (naively) expect, given the fact that energy
is not localized within the monopoles’ cores.
These results show that the physically motivated changes

to the VOS equations we have proposed allow for an
improved description of numerical simulations of global
monopole networks. As a matter of fact, the proposed
changes to the acceleration term of the evolution equation
for v̄ (particularly, having α ≥ 1.15) are essential to

FIG. 1. The value of the acceleration parameter k measured
using the radiation (orange line) and matter (blue line) era
simulations in Ref. [8] as a function of α. The shaded areas
represent the uncertainties associated with the determination of k
(obtained using linear propagation of the uncertainties in ξ and v̄).

1However, there is an error in the expression for ~c used in
Ref. [8] [in Eq. (5.4)], and for this reason, the values of the energy
loss parameter obtained therein (as well as the uncertainties)
differ from the ones of the present paper.
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describe both matter and radiation era simulations with a
unique value of the acceleration parameter k.

B. Ultrarelativistic regime

Equations (9) and (10) also admit an ultrarelativistic
linear scaling solution characterized by

v̄ ¼ 1 and ξs ¼
~c

θð1 − βÞ − βλ
; ð20Þ

for β < θ=ðθ þ λÞ. This means that, for θ ¼ λ ¼ 2, this
ultrarelativistic regime would only be allowed for β < 1=2,
and this fact could explain why this regime was not
observed in the radiation and matter era numerical simu-
lations of Ref. [8]. For θ ¼ 3 and λ ¼ 1, this regime is
admissible, in principle, for β < 3=4 and thus in both
matter and radiation eras.
Note, however, that this is not the only restriction

that applies to this regime and that the range of values
of β for which it is attainable may be considerably smaller.
Although the regime in Eq. (20) is an equilibrium point of
the VOS equations, it will only result from the evolution of
the monopole network if it is a stable attractor. Let us
assume that the network is initially in the regime defined in
Eq. (20) and that v̄ and ξ are perturbed such that v̄ ¼ 1 − δv
and ξ ¼ ξs þ δξ. We then have, to first order in δv and δξ,
that

dðδvÞ
dt

¼ −
2δv
t

�
k

~cαþ1

½θð1 − βÞ − βλ�αþ1

ð1 − βÞα − λβ

�
: ð21Þ

Therefore, this ultrarelativistic scaling regime is only
attainable if the quantity in brackets is positive. The range
of β for which this regime is stable is dependent on α and on
the parameters k and ~c. However, since we shall investigate
it for different values of α, no unique calibration of k and ~c
exists (particularly for negative values of α, since there is a
tension between the values of km and kr that result from
simulations). For this reason, we chose to study the stability
using the two different calibrations that result from radi-
ation and matter simulations. In particular, when using
radiation (matter) era simulations for calibration, we use
Eqs. (13) and (14) to compute, for each value of α and β, the
values of k and ~c using the central values of the scaling
parameters in Eq. (15) [Eq. (16)]. Since, for θ ¼ λ ¼ 2 it is
clear that the ultrarelativistic regime is not allowed both in
the matter and radiation eras, we shall only investigate the
stability of this regime for θ ¼ 3 and λ ¼ 1 to establish
whether it is attainable in a realistic cosmological back-
ground. In Fig. 2, we plot the region of parameter space
ðβ; αÞ for which the ultrarelativistic linear scaling regime is
excluded using both calibrations. This figure clearly shows
that the values of β for which this regime may be attained
may be severely reduced for some values of α. However,
since a definite calibration of k and ~c does not exist for all

values and β and α, the shape of the exclusion region cannot
definitely be established. In any case, it is clear that, for the
values of α that describe current simulations more
adequately (α≳ 1.15, so that km and kr may be reconciled),
this regime is unstable in both matter- and radiation-
dominated epochs. Curiously, when one uses the radia-
tion-era calibration (k ¼ kr and ~c ¼ ~cr), this regime seems
also to be excluded in the VOS model for global monopoles
introduced in Ref. [7].
Here, we should note that, in the region of parameter

space ðβ; αÞ in which it is allowed, the ultrarelativistic
linear scaling regime is the attractor solution of the VOS
equations instead of the subluminal linear scaling regime
discussed in the previous section. This has to be taken into
account when using simulations with small β to calibrate
the VOS model. However, it is also important to stress that
the VOS model is not expected to accurately describe the
macroscopic dynamics of global monopole networks in
the ultrarelativistic regime. First of all, strictly speaking, the
expression for the force between monopoles in Eq. (4) is
only valid in the nonrelativistic limit. One would expect
that, as a monopole network approaches an ultrarelativistic
regime, corrections to this force and to their mass (and
consequently to the acceleration term) will become increas-
ingly relevant. Moreover, in this regime, the characteristic
length of the network [defined in Eq. (8)] is no longer an
accurate measure of the average intermonopole physical
distance, and a single length scale is not expected to be
sufficient to describe their dynamics. Thus, in this regime,
the VOS model will lose its capability to predict global
monopole network evolution. In any case, one would
expect the process of monopole and antimonopole

FIG. 2. Region of parameter space ðβ; αÞ for which the ultra-
relativistic linear scaling regime is unstable, assuming that θ ¼ 3
and λ ¼ 1. The blue shaded area corresponds to the region which
is excluded using the values of k and ~c inferred from matter-era
simulations for calibration, while the pink shaded area corre-
sponds to the additional exclusion region obtained when radia-
tion-era simulations are used for calibration.
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annihilation to accelerate in this ultrarelativistic limit. If
several monopoles and antimonopoles per cosmological
horizon exist, one would then expect N to decrease rather
quickly as the ultrarelativistic regime is reached. Thus, the
relative importance of the acceleration caused by the
interaction between monopoles with respect to the decel-
eration caused by Hubble damping is expected to decrease.
Furthermore, in the ultrarelativistic regime, the effects of
dynamical friction—resulting from the gravitational scat-
tering of particles in the gravitational field of the monopole
(due to the existence of a deficit angle in the metric around
the monopole [9])—are expected to become relevant (as is
the case for cosmic strings [12,13]). This dynamical friction
is expected to cause a transfer of part of the monopoles’
momenta to the background fluid, and thus it will be an
additional source of damping in this regime. For these
reasons, we do not expect the cosmological evolution of
global monopoles to result in a luminal scaling regime.
Finally, we note that monopoles involved in the final

stages of the process of monopole and antimonopole
annihilation are expected to become ultrarelativistic (this
effect is even more important in the case of local monopoles
due to the rapid increase of the magnitude of the force as
the distance between monopoles decreases). Hence, some
care must be taken in order to ensure that this contribution
does not dominate the estimate of the rms velocity in
numerical simulations of monopoles network evolution.

III. LOCAL MONOPOLES

The formation of local or magnetic monopoles [14]—so
named because they carry a magnetic charge—may occur
when there is a gauge symmetry breaking [15,16]. The
properties of local monopoles differ from those of global
monopoles, and thus their dynamics cannot be described by
the VOS model we have described in the previous section.
In this section, we will briefly review the properties of local
monopoles and construct a VOS model to describe their
dynamics.
The positions of local monopoles and antimonopoles

were found to be correlated [17]. This means that the
characteristic length scale, which is a measure of the
average density of local monopoles, and the correlation
or persistence length, the distance above which monopole
positions are uncorrelated, are different. This may mean
that one length scale may be insufficient to accurately
describe local monopole networks. Note, however, that if
the correlation length scales with L, the construction of a
one-scale model is still possible. In this section, we shall
assume that this is the case and discuss what form such a
VOS model for local monopoles should take.
Unlike global monopoles, the energy of local (or

magnetic) monopoles is essentially localized within a finite
region, and thus their energy density is given by Eq. (1)
with p ¼ 0. This does not mean, however, that they do not
interact. As a matter of fact, local monopoles carry a

magnetic charge g ¼ 4π=e, and thus there is electromag-
netic interaction between them (see, e.g., Refs. [1,18]). The
force between monopoles is then of the form F ∼ g2=L2,
and thus the acceleration felt by the monopole is

a ∼
g2

ML2
≡ k

ηL2
ð22Þ

in the nonrelativistic limit, where we have used the fact that
the monopole mass, in this case, is given by M ∼ gη.
As was the case for global monopoles, a local monopole

will feel the (electromagnetic) force exerted by each
monopole and antimonopole located within its causal
volume. However, because of the correlations between
the positions of monopoles and antimonopoles found in
Ref. [17], the average number of monopoles/antimonopoles
in causal contact with any given monopole may not be
exactly equal to the average number of monopoles per
cosmological horizon N . Note also that the magnitude of
the electromagnetic force between local monopoles
decreases as the distance between monopoles (squared)
increases, and thus the expectation that the total acceler-
ation felt by a monopole or antimonopole would be aN 1=2

may not be realistic, and we may expect a weaker
dependence on N . For this reason, as for the case of
global monopoles, we shall introduce a free parameter α.
Moreover, the authors of Ref. [7] claim that, for global
monopoles, the average number of local monopoles and
antimonopoles per cosmological horizon is given by

N l ¼
�
dH
L

�
2

: ð23Þ

Note, however, that this claim is inconsistent with the
definition of the characteristic length scale, and there is no
evidence to support it. As a matter of fact, it follows from
the definition of L that N l should be given by Eq. (5). We
then include an acceleration term of the form

k
ηL2

�
dH
L

�
α

ð24Þ

in the evolution equation for v̄. Again, we opt to leave α as a
free parameter, given the discussion we had previously in
this section. However, we shall note that, as for global
monopoles (and for the same reason), we expect α ≥ 0.
Since the magnitude of the force between monopoles
decreases with the distance, the total acceleration felt by
a monopole should be mainly determined by the force
exerted by the closest monopole or antimonopole, and thus
we shall expect α to be smaller than that of global
monopoles. This is, however, a complex problem that
can only be fully addressed with numerical simulations.
It has been demonstrated [7,19,20] that, given the

electromagnetic nature of monopole interactions, the form
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of the energy loss term (caused by monopole and antimono-
pole annihilations) should be different from that of global
monopoles,

dL
dt

			
ann:

¼ C
3

ηp−2

L2Tp ; ð25Þ

where C is an adimensional constant, T is the background
temperature, and one should expect p ≤ 3 [20]. In
Ref. [20], it was suggested that there should be a high-
temperature transient regime during which p ¼ 2 followed
by a regime in which p ¼ 9=10.
Given Eqs. (24) and (25), the VOS model for local

monopoles should take the form

dv̄
dt

¼ ð1 − v̄2Þ
�

k
ηL2

�
dH
L

�
α

−
v̄
ld

�
; ð26Þ

dL
dt

¼ HLþ v̄2

3

L
ld

þ C
ηp−2

3L2T
; ð27Þ

where l−1
d ¼ H þ l−1

f and lf is the frictional length scale
which, given the nature of local monopoles, should be
determined by their interactions with charged particles.
This VOS model for local monopoles differs from that of

Ref. [7] only in the form of the acceleration term. However,
this change makes a significant difference in the type of
evolution these equations allow for the dynamics of local
monopoles. In particular, in Ref. [7], the authors found that
their model predicts the existence of scaling regimes with

L ∝ a; and v̄ ∝ a−1 ð28Þ

for p < 3 − 1=β and

L ∝ tðβpþ1Þ=3; and v̄ ∝ a−1 ð29Þ

for p > 3 − 1=β. It is straightforward to show that these
regimes can only arise for α ¼ −1, which corresponds to
the model they have built, and since α ≥ 0 in our physically
motivated model, these regimes are not expected to exist.
On the other hand, Eqs. (26) and (27) admit an ultra-
relativistic regime of the form

L ∝ aY; and v̄ ¼ 1; ð30Þ

for p < 2 (corresponding to the case in which the effect of
the energy loss on the dynamics is negligible) and
p ¼ 2þ Y − 1=β, with Y ≤ 1þ 1=β (which would arise
when the energy loss process is the main factor affecting
the dynamics of the network). However, as we have
discussed in the previous section, we do not expect the
predictions of the VOS model to hold in the ultrarelativistic
regime. As a matter of fact, as discussed for global
monopoles, one shall not expect luminal scaling regimes

to be stable on physical grounds; the relative importance of
the Hubble damping term, when compared to the accel-
eration term, is expected to increase as the network
approaches these regimes and the effects of dynamical
friction are expected to become relevant.

IV. CONCLUSIONS

In this paper, we have revisited the VOS model for global
and local monopoles, with particular emphasis on the
global case. We have proposed a physically motivated
change to the acceleration term of the rms velocity equation
of motion and have demonstrated that such a change is
necessary in order for the VOS model to accurately
describe the most recent numerical simulations of global
monopole networks with a unique value for the acceleration
parameter k. However, we have also shown that, although
this change is necessary, it is not sufficient for an accurate
description of their dynamics. The fact that the energy of
global monopoles is not localized within its core compli-
cates the problem significantly. Although this means that
the coefficients of the Hubble damping terms should be
different from those of point particles, it is not clear for
now which value these coefficients should take. Moreover,
given the complexity of this problem, it is not clear whether
a simple velocity-dependent one-scale model is sufficient
to describe the intricacy of global monopole dynamics.
Settling this question will require further analytical
and numerical modeling of global monopole network
evolution.
Nevertheless, we shall note that, despite these open

questions, the changes to the VOS model for global
monopoles we have proposed—both to the acceleration
term and to the Hubble damping coefficients—already
allow for a more adequate description of numerical
simulations by resolving the tensions between the radiation
and matter era simulation results (since with this changed
model one may find a unique calibration of k and ~c that fits
both simulations). We have also proposed the correspond-
ing changes to the acceleration term of the VOS model for
local monopoles. In this case, no simulations to assert the
validity of these changes exist. However, on physical
grounds, we shall expect this new form of the acceleration
term to also provide a more adequate description of realistic
local monopole networks.
This work also has implications for analytical studies of

the dynamics of hybrid defect networks in which monop-
oles are connected by cosmic strings [21–23]. The case of
semilocal strings, which are (nontopological) open-ended
strings of which the ends behave as global monopoles, is of
particular physical relevance since their production is
predicted in some brane inflationary models [24,25].
Some attention was thus naturally devoted to numerical
simulations of their dynamics and to developing VOS-type
models to describe these simulations. These models have
been based on the VOS model for monopoles introduced in
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Ref. [7], which has, as we have pointed out, some flaws,
and thus they should not be expected to provide an accurate
depiction of the evolution of these networks. We expect that
using our VOS model for global and local monopoles will
also improve the analytical description of hybrid defect
networks and of networks of semilocal strings.
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