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We consider gravitational waves from the point of view of both their production and their propagation in
doubly coupled bigravity in the metric formalism. In bigravity, the two gravitons are coupled by a
nondiagonal mass matrix and show birefrigence. In particular, we find that one of the two gravitons
propagates with a speed which differs from one. This deviation is tightly constrained by both the
gravitational Cerenkov effect and the energy loss of binary pulsars. When emitted from astrophysical
sources, the Jordan frame gravitational wave, which is a linear combination of the two propagating
gravitons, has a wave form displaying beats. The best prospect of detecting this phenomenon would come
from nano-Hertz interferometric experiments.
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I. INTRODUCTION

The recent direct detection of gravitational waves [1,2]
as predicted by general relativity (GR) [3] one hundred
years ago could also serve as a test for alternative theories
of gravity. For instance a loose bound on the deviation of
the speed of gravitational waves from the speed of light
has been extracted from the recent LIGO events [4].
Hence gravitational waves can be used to constrain certain
modified gravity theories. Motivated by the late time
acceleration of the expansion of the Universe [5,6], models
of massive gravity [7,8] have been recently considered
where gravity could be the result of the existence of two or
more gravitons [9,10]. In the case of bigravity, the general
case we will consider here is that of doubly coupled models
whereby a linear combination of the two gravitons couple
to matter [11,12]. The gravitational wave phenomenology
of the singly coupled case has already been considered
[13,14] with the existence of beats in the wave form, which
could be detectable by LIGO only if the speed of gravi-
tational waves is extremely close to one. In this paper, we
generalize these results to the doubly coupled case, where
the amplitude and the phase of the Jordan frame wave is
shown to have differing characteristics from the singly
coupled case. For instance, the modulation of the GR
wave emitted by far away sources does not vanish at large
frequency any more.
In bigravity, the two gravitons obey coupled propagation

equations with eigenmodes whose speeds deviate from one.
In this paper, we focus on the cosmological models where
the graviton mass is of order of the Hubble rate now—the

background and perturbative cosmology of such doubly
coupled models has previously been explored in [15–18].
On scales much shorter than the size of the Universe, the
mass terms can be neglected and the emission from local
sources resembles the one in GR for each individual
graviton. We examine the emission from such sources
and apply it to the case of binary pulsars. The energy loss is
modified compared to GR, which results in a tight bound
on the deviation of the speed of gravitational waves at the
per mil level [19]. Once emitted and far away from the
source, these waves propagate like plane waves which mix
and show birefringence, i.e. the Jordan frame gravitational
wave can be expressed as an effective propagation wave
with a frequency dependent amplitude and phase shift
whilst the effective gravitational speed differs from one and
is also frequency dependent. The gravitational Cerenkov
effect when the effective speed is smaller than the speed of
light leads to an even tighter bound [20–22] than the one
from binary pulsars.
In view of the recent direct detection of gravitational

waves, one may enquire whether gravitational birefrin-
gence could be observed. This would require us to disen-
tangle the frequency dependence of the wave form from
its amplitude, as the amplitude would be degenerate with
the features, such as the masses, of the emitting system.
We find that this can only be envisaged at best in the
nano-Hertz regime [23] and for small differences between
the effective gravitational speed and the speed of light.
Otherwise, it is likely that the modulation of the bigravity
signal would be averaged out resulting in an undetectable
change of the wave amplitude.
The paper is arranged as follows. In Sec. II, we recall the

main features of doubly coupled bigravity. In Sec. III, we
consider the tensor modes and their emission from local
sources. This allows us to use the binary pulsars to put a
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bound on the effective speed of gravity. In Sec. IV, we
analyze the propagation from a distant source and in
Sec. V the prospect of detecting the effects of gravitational
birefringence.

II. BIGRAVITY

A. The model

We consider massive bigravity models coupled to matter
in the constrained vielbein formalism, which is equivalent
to the metric formulation [24], for energy scales below the
strong coupling limit Λ3 ∼ ðMPlH2

0Þ1=3 corresponding to
scales larger than 1000 km’s.1 Bigravity can be formu-
lated using two vielbeins ea1μ and ea2μ [25], which couple
to matter with couplings β1;2 respectively [11,12].2 The
action comprises three very distinct parts. The first one is
simply the Einstein-Hilbert terms for both metrics g1;2μν

built from the two vielbeins

SG ¼
Z

d4xe1
R1

16πGN
þ
Z

d4xe2
R2

16πGN
ð2:1Þ

where R1;2 are the Ricci scalars built from the respective
metrics, and e1;2 are the determinants of the vielbeins viewed
as 4 × 4 matrices. The individual vielbeins eaαμ, α ¼ 1, 2 are
constrained to satisfy the symmetric condition

ea1μe
b
2νηab ¼ ea1νe

b
2μηab; ð2:2Þ

which we explicitly enforce. This ensures the equivalence
with doubly coupled bigravity in the metric formulation, in
particular all the terms in the action can be written in terms of
the two individual metrics gαμν, α ¼ 1, 2 defined by

gαμν ¼ ηabeaαμebαν: ð2:3Þ

Matter, i.e. all the fields of the standard model of particle
physics, couple to the Jordan metric

gμν ¼ ηabeaμebν ð2:4Þ

built from the local frame [12]

eaμ ¼ β1ea1μ þ β2ea2μ ð2:5Þ

where a is a local Lorentz index and μ the global coordinate
index associated with the one forms ea ¼ eaμdxμ. The Jordan
metric gμν is explicitly related to the gαμν’s by

gμν ¼ β21g
1
μν þ β1β2Yμν þ β22g

2
μν ð2:6Þ

where we have defined the symmetric tensor

Yμν ¼ ηabðea1μeb2ν þ ea2μe
b
1νÞ ð2:7Þ

which is also directly linked to gαμν; α ¼ 1, 2 as the
symmetric condition is enforced.
Matter fields ψ i are (minimally) coupled to gμν and the

matter action involves the coupling of the matter fields ψ i’s
to the Jordan metric gμν

Smðψ i; gμνÞ: ð2:8Þ

Massive bigravity involves also a potential term [9,10,25]

SV ¼ Λ4
X
ijkl

mijkl

Z
d4x ϵabcdϵ

μνρσeaiμe
b
jνe

c
kρe

d
lσ ð2:9Þ

where

Λ4 ¼ m2M2
Pl ð2:10Þ

and m is related to the graviton mass while the dimension-
less and fully symmetric tensor mijkl involves five real
coupling constants of order one. Both the matter coupling
and the potential terms can be expressed as a function of
the individual metrics gαμν.
The Jordan frame energy-momentum tensor is

defined by

Tμν ¼ −
2

e
δSm
δgμν

; ð2:11Þ
which is obtained by varying the matter action with respect
to the Jordan metric, i.e. not with respect to the two metrics
gαμν. The Einstein equations for both metrics which follow
from this setting read

G1
μν ¼ 8πGNðT1

μν þ T 1
μνÞ ð2:12Þ

and

G2
μν ¼ 8πGNðT2

μν þ T 2
μνÞ ð2:13Þ

where we have introduced the tensors

Tα
μν ¼ −

2

eα

δSm
δgμνα

; T α
μν ¼ −

2

eα

δSV
δgμνα

ð2:14Þ

from which both the background cosmology and the gravi-
tational wave equations can be deduced. In the following, we

1Technically speaking this is the scale where perturbative
unitarity is lost for fluctuations around Minkowski. While this is
therefore an excellent guess for the cutoff scale, whether full
unitarity is lost at Λ3, i.e. whether this scale is a strict cutoff, is
still not known. Also note that, for backgrounds different to
Minkowski, this scale will get redressed. For example ratios of
the scale factors in the theory will modify this scale, when FRW
backgrounds are chosen for both metrics.

2Note that in general other consistent nonderivative matter
couplings exist [26], but when enforcing the symmetric vielbein
condition (as we do here) the couplings of [11,12] are the unique
consistent matter couplings [26–30]. In this context also note the
derivative couplings of [31].
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will recall how the background cosmological solutions
appear. For gravitational waves, we will derive them by
directly using the Lagrangian of bigravity at the second order
level in the gravitational perturbations.

B. Cosmological background

The previous model can be specialized by choosing the
cosmological ansatz for the metrics

ds21 ¼ a21ð−dη2 þ dx2Þ ð2:15Þ

and

ds22 ¼ a22ð−b2dη2 þ dx2Þ ð2:16Þ
where the ratio between the lapse functions b2 plays a
crucial role in the modification of gravity induced by the
bigravity models. We consider the coupling of bigravity to
a perfect fluid defined by the energy-momentum tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν ð2:17Þ

where the 4-vector uμ is uμ ¼ dxμ
dτJ

and the proper time in the

Jordan frame is simply dτ2J ¼ −gμνdxμdxν. Using the fact
that the Jordan interval is given by

ds2 ¼ −ðβ1a1 þ β2ba2Þ2dη2 þ ðβ1a1 þ β2a2Þ2dx2
ð2:18Þ

we can identify the Jordan frame scale factor

aJ ¼ β1a1 þ β2a2 ð2:19Þ
and the conformal times

dη1 ¼ dη; dη2 ¼ bdη ð2:20Þ
when the Jordan conformal time is

dηJ ¼
β1a1 þ β2ba2
β1a1 þ β2a2

dη: ð2:21Þ

Matter is conserved in the Jordan frame, as follows from the
residual diffeomorphism invariance of the matter action,
implying that

dρ
dηJ

þ 3aJHJðρþ pÞ ¼ 0 ð2:22Þ

where the Jordan frame Hubble rate is identified with

HJ ≡ daJ
a2JdηJ

¼ 1

ðβ1a1 þ β2ba2ÞaJ
ðβ1a21H1 þ β2a22H2Þ

ð2:23Þ
and we have introduced the two Hubble rates H1 ¼
da1
a2
1
dη1

≡ da1
a2
1
dη, H2 ¼ da2

a2
2
dη. The cosmological dynamics are

governed by the two Friedmann equations

3H2
1M

2
Pl ¼ β1

a3J
a31

ρþ 24Λ4m1jkl ajakal
a31

; ð2:24Þ

and

3H2
2M

2
Pl

b2
¼ β2

a3J
a32

ρþ 24Λ4m2jkl ajakal
a32

: ð2:25Þ

These equations have two types of solutions. Here we
consider only the branch of solutions which satisfies the
constraint

b ¼ a2H2

a1H1

: ð2:26Þ

This choice is dictated by the fact that the standard
background Friedmann-Robertson-Walker (FRW) cosmol-
ogy in the radiation and matter eras can be retrieved along
this branch. The other branch suffers from inconsistencies
at the background level in the radiation era [16]. It turns out
that the dynamics simplify both at late and early times.
When dark energy is negligible, i.e. in the radiation and
matter eras, we have that the ratio X ¼ a2

a1
converges to a

constant

X → Xm ¼ β2
β1

ð2:27Þ

and in the asymptotic future when dark energy dominates,
i.e. when the terms in Λ4 in both Friedmann equa-
tions (2.24) and (2.25) are dominant, we have that

X → Xd ð2:28Þ

where

Xd ¼
m2jklajakal
m1jklajakal

: ð2:29Þ

In both cases we have that

b ¼ 1: ð2:30Þ
3Between these eras, and in particular now, b ≠ 1 and X is
not equal to its asymptotic value [24], see Fig. 1. Although
we have not performed a thorough investigation of the

3It is interesting to notice that although Xm diverges formally
when β1 → 0, the physical Hubble rate in the Jordan frame HJ in
both the matter and radiation eras is given by

H2
J ¼

β21 þ β22
3m2

Pl

ρ ð2:31Þ

which is well-behaved and shows that the effective Newton
constant is rescaled by a factor β21 þ β22.
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dependence of the maximal deviation of b from unity as a
function of the parameter space of the model, yet some
conclusions can be drawn easily. For instance, b deviates
from unity only when the two couplings β1;2 differ or the
five constants mijkl differ too. In [24], some examples
where the couplings or the constants mijkl differ were
considered. What we find is that the percentage of devia-
tion of b from unity is roughly given by the percentage
of difference of the couplings or the constants mijkl

respectively. In the numerical example of Fig. 1, the two
couplings deviate by 10% which is also the maximal
deviation of b from unity. This deviation will prove to
be particularly important for gravitational waves as the
effective speed of propagation deviates from one when
b ≠ 1, i.e. we can expect to have non-standard gravitational
wave propagation in the recent Universe.

III. TENSOR MODES: EMISSION
AND PROPAGATION

A. Propagation equations in vacuum

There are two gravitons in bigravity models. They can be
characterized using the tensor perturbations of the two
vielbeins

δeαij ¼ aαhiαj ð3:1Þ

where α ¼ 1, 2 and hiαj is a symmetric transverse and
traceless tensor with two degrees of freedom. In the rest of

this paper, we do not consider scalar and vector perturba-
tions and only concentrate on the helicity two parts of the
perturbations [24]. The potential term of bigravity induces a
mass term for the gravitons which reads

M2
αβðaγÞ ¼ −24m2ðbαbβÞ1=2mαβðaγÞ ð3:2Þ

which is a symmetric matrix of order m2 where

mαβðaγÞ ¼
X
γδ

mαβγδ ~aγaδ: ð3:3Þ

and ~aα ¼ bαaα with b1 ¼ 1 and b2 ¼ b. This mass matrix
is solely determined by the overall scale m and the
constants mαβγδ from the potential term of bigravity.
Here we assume that these constants are all naturally
chosen to be of order one implying that the whole mass
matrix is of orderm, i.e. of the order of the Hubble rate now
H0. We have normalized the tensor modes according to

h̄1ij ¼ MPla1h1ij; h̄2ij ¼ MPl
a2
b1=2

h2ij: ð3:4Þ

Notice that the mass matrix is not diagonal and evolves
with time. This induces a mixing of the two gravitons, i.e.
birefrigence. The evolution equations for the two gravitons
h1 and h2 in vacuum can be deduced from the action
expanded to second order in the perturbations and read

d2h̄1
dη2

− Δh̄1 þ
�
M2

11ðaγÞ −
1

a1

d2a1
dη2

�
h̄1 þM2

12ðaγÞh̄2 ¼ 0

ð3:5Þ

and

d2h̄2
dη2

− b2Δh̄2 þ
�
M2

22ðaγÞ −
b1=2

a2

d2ða2b−1=2Þ
dη2

�
h̄2

þM2
21ðaγÞh̄1 ¼ 0: ð3:6Þ

The coupling between the two gravitons will induce beats
in the Jordan gravitational waves. This follows from the
fact that matter couples to the Jordan frame combination of
gravitons

aJhijJ ¼ β1a1hij1 þ β2a2hij2 ð3:7Þ

and one can see that this evolves with time, i.e. matter
couples to different gravitons in the history of the Universe.
Let us now consider the propagation when matter sources
are taken into account.

B. Gravitational waves from local sources

Let us now consider a gravitational source and the way
gravitational waves are emitted. This can be conveniently

FIG. 1. The variation of b as a function of ln aJ for a model
where all themijkl ¼ 1, β1 ¼ 1.1 and β2 ¼ 1. In the recent past of
the Universe, b starts deviating from 1 before settling back to one
in the far future.
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analysed starting from the action of the two gravitons
coupled to matter. Let us recall first how this operates in
general relativity. The action involves

LGR ¼ 1

2

�
dh̄ij
dη

dh̄ij

dη
− ∇⃗h̄ij∇⃗h̄ij þ 1

a
d2a
dη2

h̄ijh̄ij

�

þ a
MPl

h̄ijT̄ij ð3:8Þ

where T̄ij ¼ Tij −
δij
3
T and indices are raised with δij.

The gravitational equation becomes

d2h̄ij
dη2

− Δh̄ij −
1

a
d2a
dη2

h̄ij ¼
a
MPl

T̄ij ð3:9Þ

where here a is the scale factor of the FRW Universe and
T̄ij the traceless part of the spatial energy momentum
tensor. Notice that in general relativity we have 8πGN ¼
M−2

Pl . In bigravity, matter couples to the Jordan frame
energy-momentum tensor too via

Sin ¼
Z

d4x ~aJðβ1h̄ij1 þ β2b1=2h̄
ij
2 ÞT̄ij: ð3:10Þ

As a result the coupled gravitational equations become

d2h̄1ij
dη2

− Δh̄1ij þ
�
M2

11ðaγÞ −
1

a1

d2a1
dη2

�
h̄1ij

þM2
12ðaγÞh̄2ij ¼ β1

~aJ
MPl

T̄ij ð3:11Þ

and

d2h̄2ij
dη2

− b2Δh̄2ij þ
�
M2

22ðaγÞ −
b1=2

a2

d2ða2b−1=2Þ
dη2

�
h̄2ij

þM2
21ðaγÞh̄1ij ¼ β2

b1=2 ~aJ
MPl

T̄ij: ð3:12Þ

Notice that the source terms involve both couplings to
matter β1;2 and complement the propagation equations in
vacuum (3.11) and (3.12). In the following, we shall be
only interested in waves which propagate on distances for
which one can neglect the effects of the cosmological
evolution. The generalization to the cosmological case
can be easily analyzed too and is left for future work.
We will also assume that the waves are emitted at a redshift
corresponding to aJ in bigravity and aGR in Λ-CDM. Both
in bigravity and in GR, the scale factors aJ and aGR are
normalized to be one now. As a result, the metrics read

ds2GR ∼ −dt2GR þ dr⃗2GR ð3:13Þ

and

ds2J ∼ −dt2J þ dr⃗2J ð3:14Þ

where dtJ ¼ ~aJdη and dtGR ¼ aGRdη. Moreover we have
dr⃗J ¼ aJdx⃗ and dr⃗GR ¼ aGRdx⃗. As aGR ∼ aJ ∼ 1 in the
recent past of the Universe, the only difference between
the two metrics now comes from the different clocks with
aJ ¼ β1a1 þ β2a2 and ~aJ ¼ β1a1 þ β2ba2 when b ≠ 1.
We also assume that the waves can be well approximated
by plane waves sufficiently far from the source.

C. Emission from binary pulsars

The emission of gravitational waves by binary pulsars
leads to tight constraints on modified gravity. Here the
emission takes places on scales much smaller than the
inverse mass of the gravitons, i.e. less than the size of
the Universe. The perturbative equations that we adopt are
only valid at low energy corresponding to time scales larger
than the inverse cut-off Λ−1

3 ∼ 10−2 s. As the typical period
of binary pulsars is of the order of a fewhours, the description
which follows, where the emission of gravitational waves
is considered in bigravity, can be applied to binary pulsars.
Thewave equations in the emission region therefore simplify

d2h̄1ij
dη2

− Δh̄1ij ¼ β1
~aJ
MPl

T̄ij ð3:15Þ

and

d2h̄2ij
dη2

− b2Δh̄2ij ¼ β2
~aJb1=2

MPl
T̄ij: ð3:16Þ

The Newtonian trajectories of the binary objects are not
modified in doubly-coupled bigravity (see Sec.Vof [24]) and
here we consider that this is still a reasonable assumption in
the case of compact objects with Newtonian potentials
ΦN ≲ 0.1. In the quasistatic limit and in a Minkowski
background this follows from the fact that the extra scalar
field in the spectrum of bigravity decouples from matter in
the doubly coupled case. This can also be seen in the
decoupling limit where the coupling of the scalar field π
appears in the form ∂μ∂νπTμν which does not lead to a source
term for π and therefore implies that there is no new force
acting on massive objects. The solutions to the wave
equations are simply

h̄1ijðx⃗; ηÞ ¼ β1
~aJ

4πMPl
Λkl
ij

Z
d3y

T̄klðη − jx − yj; yÞ
jx − yj ð3:17Þ

in conformal coordinates and

h̄2ijðx⃗; ηÞ ¼ β2
~aJb1=2

4πMPl
Λkl
ij

Z
d3y

T̄ijðη − jx−yj
b ; yÞ

jx − yj : ð3:18Þ

Assuming that the energy-momentum tensor of the source has
compact support and jxj ≫ jyj we have the approximation
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h̄1ijðx⃗; ηÞ ¼ β1
~aJ

4πMPl

1

jxjΛ
kl
ij

Z
d3yT̄ijðη − jxj; yÞ ð3:19Þ

in conformal coordinates and

h̄2ijðx⃗; ηÞ ¼ β2
~aJb1=2

4πMPl

1

jxjΛ
kl
ij

Z
d3yT̄kl

�
η −

jxj
b
; y

�
:

ð3:20Þ
Using the identity

d2

dη2

Z
d3yyiyjT00ðη − jxj; yÞ ¼ 2

Z
d3yTijðη − jxj; yÞ

ð3:21Þ
for the conserved energy-momentum in the Jordan frame, we
find that

h̄ijα ðx⃗; ηÞ ¼ βαb
1=2
α

a4J
~aJ8πMPl

1

jxjΛ
ij
kl
d2Īkl

dη2
ð3:22Þ

where indices are raised and lowered with the flat δij.
This implies that

h̄ijα ðx⃗; ηÞ ¼ βαb
1=2
α

β21 þ β22

a4J
~aJa3GR

h̄ijGRðx⃗; ηÞ: ð3:23Þ

where we have used the fact that the local and cosmological
Newton constants in bigravity models is [24]

Glocal ¼ Gcosmo ¼ ðβ21 þ β22ÞGN ð3:24Þ

where GN is only a parameter in the action. We have
introduced the usual tensor

Λkl
ij ¼ Pk

i P
j
l −

1

2
PijPkl ð3:25Þ

where

Pij ¼ δij − ninj ð3:26Þ
which is the projector orthogonal to the propagationvectorni.
The tensor Λkl

ij enforces the transverse traceless condition.
We also have the Jordan combination

hJijðx⃗; ηÞ ¼ Gcosmo
a3J
~aJ

β21 þ bβ22
β21 þ β22

1

jxjΛijkl
d2Īkl

dη2
ð3:27Þ

where, in terms of the matter density ρ,

Īij ¼
Z

d3y
�
yiyj −

1

3
δijjyj2

�
ρðη − jxj; yÞ ð3:28Þ

to leading order in a multipolar expansion. We have assumed
that b is very close to unity.

The energy flux emitted by the object can be evaluated as
in [32] where it is the energy given to matter minus the
one that matter radiates subsequently. As the gravitational
waves couple to matter in the Jordan frame, this depends
only on the derivatives of hJ

F ¼ 1

8πa4J

��
dhij
dtJ

�
2
�

ð3:29Þ

where the average is a time average. The energy loss is
given

dE
dtJ

¼ −
Z

Fa2Jjxj2dΩ ð3:30Þ

and therefore

dE
dtJ

¼ −
a4J
2~a4J

G2
cosmo

�
β21 þ bβ22
β21 þ β22

�
2

hð ⃛I ijÞ2i ð3:31Þ

where the time derivatives are with respect to η. As a result

dE
dtJ

¼
�
β21 þ bβ22
β21 þ β22

�
2 a4J
~a4J

dE
dtGR

: ð3:32Þ

Notice that the deviation from the GR result is only present
when b ≠ 1. As we have already recalled, this is the case in
the present Universe. There is a tight constraint on the
possible difference with GR and it reads [19]

0.995 <

�
β21 þ bβ22
β21 þ β22

�
2 a4J
~a4J

< 1 ð3:33Þ

which gives a constraint on b at the 10−3 level. In the
following, we shall investigate what happens to the
propagation of the gravitational waves when b is con-
strained at a level tighter than one per mil.
Our calculation has taken into account the quadrupolar

emission from binary pulsars. In this case, the distance
between the two stars is much larger than the cutoff distance
of bigravity and our calculation is valid where the two stars
are considered to be orbiting subject to Newton’s law.
On the other hand, since the stars themselves (typically

neutron stars) are much smaller than the cutoff scale of
bigravity, their dynamics will most likely be sensitive to
details of the UV completion of the theory. For example,
the additional decoupled scalar degree of freedom of
doubly coupled bigravity [24], which naively becomes a
ghost below the cutoff distance, may correspond to a
healthy degree of freedom in the UV-completed theory
and lead to stars acquiring scalar charges. This would lead
to the possible emission of dipolar gravitational waves
[33,34]. Another phenomenon which is beyond the present
treatment corresponds to the last phase of the merger
between two black holes when their distance falls below
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1000 km’s. The calculation of the emission spectrum
cannot be tackled using the models described here.
All these effects are beyond the present work.

IV. PROPAGATION

Let us come back to the propagation of gravitational
waves in empty space, when the initial wave is due to a
localized source which is far-away and the waves can be
considered to be plane-waves.

A. Eigenmodes

It is convenient to define the effective mass matrix

~M2 ¼

0
BB@

M2
11 − 1

a1
d2a1
dη2 M2

12

M2
12 M2

22 − b1=2
a2

d2ða2b−1=2Þ
dη2 Þ

1
CCA: ð4:1Þ

The two propagation equations for gravitons have two
eigenmodes which can be described by

hα� ¼ Aα�eiðω�t−ik⃗:x⃗Þ ð4:2Þ

where α ¼ 1, 2. The eigenfrequencies are given by the
quartic dispersion relation

ω4 − ω2ðð1þ b2Þk⃗2 þ ~M2
11 þ ~M2

22Þ − ~M2
12

~M2
21

þ ðk⃗2 þ ~M2
11Þðβ2k⃗2 þ ~M2

22Þ ¼ 0: ð4:3Þ

Defining the discriminant

Δ ¼ ðð1 − b2Þk⃗2 þ ~M2
11 − ~M2

22Þ2 þ 4 ~M2
12

~M2
21 ð4:4Þ

we have the two eigenfrequencies

ω2
� ¼ ω2ðk⃗2 þ ~M2

11 þ b2k⃗2 þ ~M2
22Þ �

ffiffiffiffi
Δ

p

2
: ð4:5Þ

We only consider gravitational waves such that k⃗2 ≫ ~M2
ij

as the mass matrix elements are of order H0 and astro-
physical waves are much more energetic than this. As a
result we obtain the expansion

ω2þ ∼ k⃗2 þ ~M2
11 þ

~M4
12

ð1 − b2Þk⃗2 þ ~M2
11 − ~M2

22

ω2
− ∼ b2k⃗2 þ ~M2

22 −
~M4
12

ð1 − b2Þk⃗2 þ ~M2
11 − ~M2

22

: ð4:6Þ

The two eigenmodes are then obtained as

h− ¼ h2 − Ch1; hþ ¼ h1 þ Ch2 ð4:7Þ

in terms of h1;2 where

C ¼
~M2
12

ð1 − b2Þk2 þ ~M2
11 − ~M2

22

: ð4:8Þ

Equivalently we have

h1 ¼
hþ − Ch−
1þ C2

; h2 ¼
h− þ Chþ
1þ C2

ð4:9Þ

which will be useful when defining the Jordan frame
graviton. It is convenient to define the characteristic wave
number

k̄2 ¼ j ~M2
11 − ~M2

22j
j1 − b2j : ð4:10Þ

Hence when k ≫ k̄, C goes to zero in 1=k2 whilst when
k ≪ k̄, C goes to a constant or order one. In fact we have

k ≪ k̄; C ∼
~M2
12

~M2
11 − ~M2

22

ð4:11Þ

and

k ≫ k̄; C ∼
~M2
12

~M2
11 − ~M2

22

k̄2

k2
: ð4:12Þ

The wave number k̄ depends on how small the deviation

jωþ − ω−j
k

∼ jb − 1j ð4:13Þ

can be, i.e. how small jb − 1j is.
The initial conditions for h̄α are related to the waves

obtained in general relativity (as the size of the regions
where the waves are created is smaller than the cosmo-
logical horizon and their energy is very large compared to

H0) scaled by βαb
1=2
α

β2
1
þβ2

2

a4J
a3GR ~aJ

j0, see (3.23), i.e.

h̄α0 ¼
βαb

1=2
α

β21 þ β22

a4J
a3GR ~aJ

j0hGR ð4:14Þ

where the first denominator comes from the rescaling
between the cosmological and local, i.e. physical,
Newton constant and the fiducial one in the action.
This follows from the calculation in Sec. III of the wave
form emitted from a local source. The local source
generates the initial wave which then propagate far away
in a plane wave approximation. The resulting waves after
emission are then simply
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h̄1 ¼
�

β1
β21 þ β22

�
eiωþt þ C2eiω−t

1þ C2

�

þ β2C
β21 þ β22

�
eiωþt − eiω−t

1þ C2

��
e−ik⃗:x⃗

a4J
~aJa3GR

����
0

hGR

ð4:15Þ
and

h̄2 ¼
�
β2b1=2

β21 þ β22

�
eiω−t þ C2eiωþt

1þ C2

�

−
β1C

β21 þ β22

�
eiω−t − eiωþt

1þ C2

��
e−ik⃗:x⃗

a4J
~aJa3GR

����
0

hGR:

ð4:16Þ
As a result we get for the Jordan frame gravitational wave

h̄J ¼ aJhJ ¼ β1h̄1 þ β2b1=2h̄2 ð4:17Þ

the following

h̄J ¼
�ðβ1 þ β2b1=2CÞ2

1þ C2
eiωþt þ ðβ2b1=2 − β1CÞ2

1þ C2
eiω−t

�

× e−ik⃗:x⃗
a4J

~aJa3GR

����
0

hGR
β21 þ β22

ð4:18Þ

This is the wave-form emitted by a far-away source when
the gravitational waves show a birefringent behavior.

B. The effective speed of gravitational waves

When the b is very close to one, the wave generated by a
distant source AJ ¼ ℜðhJÞ reads

AJ ¼
�ðβ1 þ β2CÞ2

1þ C2
cosðiωþt − ik⃗:x⃗Þ

þ ðβ2 − β1CÞ2
1þ C2

cosðiω−t − ik⃗:x⃗Þ
�

×
a4J

~aJa3GR

hGR
β21 þ β22

ð4:19Þ

where ωþ ∼ ω−. Defining ω ¼ ωþþω−
2

and Δω ¼ ω− − ωþ,
we have

AJ ¼
ðβ1 þ β2b1=2CÞ2 þ ðβ2b1=2 − β1CÞ2

1þ C2

× cosðΔωtÞ
�
cosðωt − ik⃗:x⃗Þ

þ ðβ1 þ β2b1=2CÞ2 − ðβ2b1=2 − β1CÞ2
ðβ1 þ β2b1=2CÞ2 þ ðβ2b1=2 − β1CÞ2

× tanðΔωtÞ sinðωt − ik⃗:x⃗Þ
	

a4J
~aJa3GR

����
0

hGR
β21 þ β22

: ð4:20Þ

This represents wave beats compared to the usual wave
front of GR. When the two eigenfrequencies satisfy
Δωt ≪ 1, the wave form can be cast into a propagating
wave with a time dependent phase shift

AJ ¼ A cosðωt − ik⃗:x⃗ − δÞ ð4:21Þ

where the amplitude is given by

A ¼ ðβ1 þ β2b1=2CÞ2 þ ðβ2b1=2 − β1CÞ2
1þ C2

× cosðΔωtÞ a4J
~aJa3GR

����
0

hGR
β21 þ β22

ð4:22Þ

with a small time dependence and a phase shift

δ ¼ ðβ1 þ β2b1=2CÞ2 − ðβ2b1=2 − β1CÞ2
ðβ1 þ β2b1=2CÞ2 þ ðβ2b1=2 − β1CÞ2

tanðΔωtÞ: ð4:23Þ

The wave propagates with the energy

ω ¼ cTkþ
~M2
11

4k
þ

~M2
22

4bk
ð4:24Þ

in an expansion in
~M2
ij

k2 and k ¼
ffiffiffiffiffi
k⃗2

p
. We have introduced

the effective speed of the gravitational waves

cT ¼ 1þ b
2

: ð4:25Þ

This effective speed is highly constrained when b < 1, i.e.
when the effective speed is less than the speed of light.
Indeed in this case, high energy cosmic rays can emit
gravitons in a Cerenkov fashion and this would deplete the
number count of cosmic rays on earth. This is not the case if
and only if [20,21]

ð1 − bÞ≲ 10−17: ð4:26Þ

One can check that in this case Δωd ≪ 1 for sources such
that d ≪ 100 Mpc. Of course the energy of cosmic rays is
higher than the cutoff scale of doubly coupled bigravity so
this constraint may be relaxed when considering the UV
completion of the model.
As a result, we see that the effective speed of gravita-

tional waves is extremely constrained by observations.
In the following section, we will consider the prospects of
detecting deviations from GR when the parameter b is so
tightly bounded.

C. The emitted spectrum and detection prospects

Let us now consider the spectrum of gravitational waves
at a distance d from the source. For that, it is convenient to
consider the spectrum as obtained from the square of the
amplitude
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jh̄Jj2 ¼
�

a4J
~aJa3GR

����
0

�
2
�
β21 þ bβ22
β21 þ β22

�
2
�
1 − 4

ðβ1 þ β2b1=2CÞ2ðβ2b1=2 − β1CÞ2
ðβ21 þ bβ22Þ2

sin2
�ðωþ − ω−Þt

2

��
jhGRj2: ð4:27Þ

This means that the signal has a change of amplitude and a time modulation, and that at a time t ¼ d

PJðkÞ ¼
�

a4J
~aJa3GR

����
0

�
2
�
β21 þ bβ22
β21 þ β22

�
2
�
1 − 4

ðβ1 þ β2b1=2CÞ2ðβ2b1=2 − β1CÞ2
ðβ21 þ bβ22Þ2

sin2
�ðωþ − ω−Þd

2

��
PGRðkÞ ð4:28Þ

the spectrum is modulated by a frequency dependent
prefactor. Let us first connect with the case of singly
coupled gravity. When β1 or β2 vanishes we find that

jh̄Jj2 ¼
�

a4J
~aJa3GR

����
0

�
2
�
1 − 4C2sin2

�ðωþ − ω−Þd
2

��
jhGRj2

ð4:29Þ

where C is constant for k≲ k̄ and vanishes at large k [14].
This retrieves the known results of the singly coupled
case. In the doubly coupled case, the term in sin2 never
vanishes, i.e. this is a clear difference with the singly
coupled case.
Let us notice that the modulation should only be effective

when the variation of the sin2 term is not too rapid
compared to the frequency of the signal in GR. If this is
the case and the averaged hsin2i ¼ 1=2 is used, the effects
of bigravity are only a change in the amplitude of the
signal, i.e. degenerate with the astrophysical features of the
emitting system. On the other hand when

jb − 1j ≲ 1

kexpd
ð4:30Þ

where kexp is the most sensitive frequency of the detecting
device, and d the distance to the emitting source, the
modulation of the GR signal would be relevant. For sources
around d ¼ 100 Mpc and a sensitivity peaking in the nano
Hertz regime [23], we can hope to observe effects for
jb − 1j≲ 10−7, four orders of magnitude lower than the
pulsar bound. The pulsar bound would be probed only by
the detection of nano Hertz events in our immediate vicinity
around 10 kpc.

V. DISCUSSION AND CONCLUSION

We have discussed the emission and the propagation of
gravitational waves in doubly coupled bigravity. The
deviations from GR are essentially governed by one
parameter b which differs from one only in the transient
cosmological era between the matter era in the past and the
future dark energy dominated one. It turns out that the
deviation of this parameter from one measures the effective

speed of gravitational waves in bigravity. This can be
constrained by both the absence of gravitational Cerenkov
effect and the energy loss of binary pulsars. As a result, we
do not expect that the effective speed of gravitational
waves differs from one by more than one per mil. This is
still large enough to induce possible modulations of the
wave form of the gravitational wave signal in the Jordan
frame, i.e. the gravitational wave coupled to matter. The
best prospect of detecting this gravitational birefringence
would be with nano-Hertz interferometry experiments,
and deviations of the gravitational speed up to 10−7 would
be observable from sources further than 100 Mpc. Another
way of detecting these effects would be to monitor nearby
sources of both gravitational and electromagnetic waves
and trying to detect a phase difference between these
signals [35].
The bound on jb − 1j≲ 10−3 from binary pulsar con-

straints implies that other effects of bigravity such as a
change in the growth of cosmological structures would also
be tightly restricted. Indeed, as an order of magnitude, the
growth parameters such as μ and Σ deviate from GR as
jb − 1j and therefore one would not expect effects on
structure formation much larger than the percent level.
This would have implications for the detection of bigravity
effect by future cosmological surveys [36]. The details of
this comparison are left for future work.
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