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We analyze the Galileon ghost condensate implementation of a bouncing cosmological model in the
presence of a non-negligible anisotropic stress. We exhibit its structure, which we find to be far richer
than previously thought. In particular, even restricting attention to a single set of underlying microscopic
parameters, we obtain, numerically, many qualitatively different regimes: depending on the initial
conditions on the scalar field leading the dynamics of the Universe, the contraction phase can evolve
directly towards a singularity, avoid it by bouncing once, or even bounce many times before settling into an
ever-expanding phase. We clarify the behavior of the anisotropies in these various situations.
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I. INTRODUCTION

Observational cosmology [1] mostly favors a primordial
phase of single field slow-roll inflation [2,3] (see Ref. [4]
for an alternative analysis of these data however).
Moreover, inflation remains the most widely accepted
paradigm permitting to solve the usual big bang puzzles
of horizon, flatness and entropy [5], leading to the currently
observed homogeneous and isotropic Universe. It also
provides a natural means of producing linear perturbations
with an almost scale-invariant spectrum. Noninflationary
scenarios, however unfavored, have also been proposed,
which yield an almost scale-invariant spectra for the scalar
modes [6,7]. The next step will perhaps come from
observation of the tensor modes, whose signal could be
used to discriminate various models, thus giving the
necessary tools to discard or to accept nonsingular and
noninflationary bouncing models.
The very first interest of a nonsingular cosmology is of

course that it avoids the singularity inherent to ever-
expanding scenarios, thereby allowing to increase the size
of the horizon as much as needed: with a long contraction
phase followed by a bounce connecting to the presently
expanding Universe, any region can have been in causal
contact with any other. Moreover, providing the contraction
is decelerated for a sufficiently long time, the Universe
reaches the bounce in an almost flat condition. In short,
bouncing models can also solve many of the above
mentioned standard big bang puzzles in ways that differ
from the inflationary solutions [8].

The so-called “matter”-bounce [9,10] belongs to this
particular class of models which may confront observa-
tions. During a contraction dominated by a field with
negligible effective pressure p ≪ ρ, the long wavelength
scalar perturbations, originating in vacuum state, reach the
bounce phase with a scale invariant spectrum [9]. Another
way to realize such a spectrum was proposed in Ref. [11]:
in this so-called ekpyrotic 5 dimensional model, the motion
of 4 dimensional branes yields an effective 4 dimensional
theory experiencing a contraction followed by an expansion
phase in the Einstein frame; this model however needs
to pass through a singular phase spoiling predictability
[12,13]. In terms of the effective Friedmann-Lemaître-
Robertson-Walker (FLRW) space-time, the dynamics can
be mimicked by assuming the stress-energy tensor to be
that of a scalar field ϕ with a negative potential describing
the relative motion of the branes. In the proposal of [9],
the exponential potential for the scalar field results in
w≡ p=ρ ∼ 0, for a specific choice of parameters.
An important issue possibly plaguing any bouncing

cosmological model, including in particular the matter
bounce proposal, is the excessive growth of any initially
small anisotropy deviation during contraction; this is usually
referred to as the Belinsky, Khalatnikov and Lifshitz (BKL)
[14] instability. Since the anisotropic stress goes with the
scale factor aðtÞ as a−6 (i.e. it can be seen as a fluid with
effective equation of state wσ ¼ 1), it can eventually domi-
nate over the other fluid energy densities if the bounce is
deep enough and/or the initial anisotropy is too large. This
scenario assumes that the other fluids have equations of state
w < 1 (wrad ¼ 1

3
or wmat ∼ 0), during the contraction phase.

Note however that, if the anisotropy is initially very small, for
instance resulting from initial quantum vacuum fluctuations,
the bounce can take place before the anisotropy dominates
over the other matter components [15,16].
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A way to solve the anisotropy problem in a contracting
universe followed by a nonsingular bounce, without merely
setting its initial value to being vanishingly small, was
suggested in Ref. [17]. In this model, the potential was also
chosen to be exponential so as to give the scalar field fluid
an effective equation of state wϕ ≫ 1. As a result, this field
dominates over the anisotropic stress during the entire
contraction epoch, hence preventing any growth of the
anisotropy compared to the other components. By the end
of the contraction phase, a second scalar field takes over
in a ghost condensate state, i.e., one for which the kinetic
term may develop a nonvanishing minimum inducing the
canonical kinetic term in the Lagrangian to change sign
for a finite amount of time. This leads to an effective
equation of state wϕ < −1, which drives the scale factor
evolution to a halt: the Universe goes through a bouncing
phase. The condensate is responsible not only for the
nonsingular transition between contraction and expan-
sion, but it also corrects the wavelength dependence of the
scalar modes [18]: this is required because the ekpyrotic
contraction yields a non-scale-invariant spectrum for the
perturbations.
Such a model has to face two problems. The first comes

from the scalar field in the ghost condensate state: in order
that it does not interfere with the background dynamics
during the ekpyrotic contraction, it should be sufficiently
diluted so as to dominate only during the final stages of
contraction. The second issue concerns the long wave-
length scalar perturbations, which may grow unstable after
exiting the ekpyrotic phase [19], leading to a spectrum very
different from the observed quasi scale invariant one.
To address these issues, in yet another version of this

new ekpyrotic model, the ghost condensate is obtained via
a Galileon term that couples the scalar field with the metric
[20]. By means of two different functions of the scalar field,
namely, a negative potential VðϕÞ controlling the ekpyrotic
phase, and a nonstandard kinetic coupling gðϕÞ controlling
the ghost condensate, it was then argued that the anisotropy
growth is suppressed and the nonsingular bounce is
achieved even in the presence of small anisotropic
deviation [21,22]. A curvaton mechanism [23–25] is then
invoked to finally produce scale invariant perturbations in
the expansion phase.
Present calculations of the perturbations in models such

as those discussed above have been done assuming an
FLRW perturbed metric, under the assumption that the
anisotropic stress can be made negligible for the relevant
scales. On the other hand, if this assumption is not strictly
valid and the background space-time is in fact Bianchi I, at
least in some range of times, then it was shown [26] that the
scalar, vector and tensor modes evolve in a coupled way
already at first order. Even for an inflationary phase, this is
known to yield possible effects in the resulting spectrum
[27], and it is only natural to expect a similar conclusion to
hold in a contracting universe model. This could drastically

modify any prediction for the final perturbation spectrum
produced in such a model. Before addressing this question
however, it is necessary to discuss the dynamics of the
background itself.
The present work aims at exploring the evolution

stemming from the theory proposed in [22]; as it happens,
it is much richer than previously anticipated. The non-
singular models studied so far were for the most part based
on one nonsingular FLRW bounce. We show here that the
highly nonlinear features of the dynamical equations lead to
a variety of unforeseen different scenarios. We exhibit four
examples for which the underlying microscopic parameters
are chosen as in Ref. [22]: they lead, respectively, to a
singularity, one, two or even three bouncing stages depend-
ing on the chosen initial conditions. Our purpose is to
exemplify these possibilities in order to open up and
possibly constrain the relevant dynamical phase space of
the acceptable backgrounds from which one will have to
subsequently study the perturbations, to be eventually
compared with the observational data.
The paper is organized as follows: in the following

section, we review the model of Ref. [22], expand the
relevant equations of motion in the Bianchi I case and set
the dynamical system to be solved numerically. Section III
is devoted to a presentation of our numerical solutions
for different background behaviors, pointing out the main
phenomenology behind the different dynamics. Section IV
returns to the basic equations and discusses the role,
influence and evolution of the anisotropy in multiple bounce
scenarios, together with a discussion on the expected effects
of changing the model parameters. Section V summarizes
our findings and offers some concluding remarks and
expectations on the power spectrum and its properties in
these models.
In what follows, we work in units such that ℏ ¼ c ¼ 1

and the reduced Planck mass is MP ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
. The

metric signature is ðþ;−;−;−Þ. Throughout the paper, the
scale factor is normalized to unity at the first bounc-
ing point.

II. GENERAL EQUATIONS

Our starting point is to assume a Galileon scalar field ϕ
minimally coupled to Einstein gravity, i.e.

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PRþ L
�
; ð1Þ

where the scalar field Lagrangian is taken to be

L½ϕðxÞ� ¼ Kðϕ; XÞ þGðϕ; XÞ□ϕ; ð2Þ

K and G being functions of the field itself and its canonical
kinetic term,
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X ≡ 1

2
∂μϕ∂μϕ; ð3Þ

and □ϕ≡ gμν∇μ∇νϕ where ∇ν represents the torsion-free
covariant derivative compatible with the metric gμν.
Variations of L yield the relevant energy momentum

tensor,

Tϕ
μν ¼ ð−K þ 2XG;ϕ þG;X∇σX∇σϕÞgμν

þ ðK;X þ G;X□ϕ − 2G;ϕÞ∇μϕ∇νϕ

−G;Xð∇μX∇νϕþ∇νX∇μϕÞ; ð4Þ

where the notations F;ϕ and F;X stand for derivatives of
whatever F stands for with respect to ϕ and X, respectively.
Following Ref. [22], we choose

Kðϕ; XÞ ¼ M2
P½1 − gðϕÞ�X þ βX2 − VðϕÞ; ð5Þ

with the positive-definite parameter β ensuring the kinetic
term to be bounded from below at high-energy scales, and
we assume the scalar field ϕ is dimensionless, hence the
Planck mass coefficient on the first term. The arbitrary
functions in (5) must be such as to render an ekpyrotic
contraction phase together with a nonsingular ghost con-
densate dominated bounce possible. As explained in [22],
an acceptable choice is provided by

gðϕÞ ¼ 2g0

e−
ffiffi
2
p

p
ϕ þ ebg

ffiffi
2
p

p
ϕ
; ð6Þ

with g0 > 1, p > 0 and bg dimensionless constants, while
the potential can be taken as

VðϕÞ ¼ −
2V0

e−
ffiffi
2
q

p
ϕ þ ebv

ffiffi
2
q

p
ϕ
; ð7Þ

where V0 > 0 is constant with dimension of ðmassÞ4 and
two other dimensionless constants q and bv. This negative-
definite potential reduces to the exponential form of the
ekpyrotic scenario [9] for large values of ϕ. Finally, the
function Gðϕ; XÞ is of the Galileon type [28], again chosen
in agreement with [22] as GðXÞ ¼ γX, with γ is a positive
dimensionless constant.
With the matter content fixed, the system is complete

once we give the relevant geometrical symmetries. This
we do by assuming a flat, homogeneous and anisotropic
universe, whose dynamics is described by a Bianchi I
metric, namely,

ds2 ¼ dt2 − a2ðtÞ
X
i

e2θiðtÞdxidxi; ð8Þ

the average scale factor aðtÞ permitting to define a mean
Hubble rate through H ≡ _a=a, the “dot” denoting time
derivative with respect to cosmic time t.

The equation of motion of the scalar field ϕ is derived
from the Lagrangian (2) and can be cast in the form of a
modified Klein-Gordon equation, namely,

Pϕ̈þD _ϕþ V;ϕ ¼ 0; ð9Þ

where the functions P and D depend on both the
scalar field itself and the geometry; they are, respectively,
given by

P ¼ ð1 − gÞM2
P þ 6γH _ϕþ 3β _ϕ2 þ 3γ2

2M2
P

_ϕ4; ð10Þ

and

D¼3ð1−gÞM2
PHþ

�
9γH2−

1

2
M2

Pg;ϕ

�
_ϕþ3βH _ϕ2

−
3

2
ð1−gÞγ _ϕ3−

9γ2H _ϕ4

2M2
P

−
3βγ _ϕ5

2M2
P
−
3

2
γ
X
i

_θ2i _ϕ: ð11Þ

The parameters of the model are g0, V0, bg, bv, p, q, β, γ all
real, positive and assumed nonvanishing. Without lack of
generality, we set MP → 1 for the rest of this work.
Defining the shear,

σ2 ¼
X
i

_θ2i ; ð12Þ

the Friedmann equations follow from the stress-energy
tensor (4); they are

H2 ¼ ρϕ
3
þ σ2

6
; ð13Þ

for the constraint and

_H ¼ −
ρϕ þ pϕ

2
−
1

2
σ2: ð14Þ

In (13) and (14), the energy density ρϕ and pressure pϕ of
the scalar field are given by

ρϕ ¼ 1

2
ð1 − gÞ _ϕ2 þ 3

4
β _ϕ4 þ 3γH _ϕ3 þ VðϕÞ; ð15Þ

pϕ ¼ 1

2
ð1 − gÞ _ϕ2 þ 1

4
β _ϕ4 − γ _ϕ2ϕ̈ − VðϕÞ: ð16Þ

Finally, as discussed in the Introduction, the shear
evolves as

σ2 ¼ σ2ini

�
aini
a

�
6

; ð17Þ
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i.e., as a stiff-matter fluid, where the subscript “ini” denotes
an arbitrary initial time. For future convenience, we shall
refer to the quantity

ρσ ≡ σ2

2
¼ pσ ð18Þ

as the energy density and pressure associated with
the anisotropy.

III. NUMERICAL SOLUTIONS

The dynamical equations presented in the last section
can be recast into a system of first-order differential
equations, namely,

_ϕ ¼ φ; ð19Þ

_φ ¼ −
Dφ

P
−
V;ϕ

P
; ð20Þ

_H ¼ −
ρϕ þ pϕ

2
−
σ2ini
2

�
aini
a

�
6

; ð21Þ

_a ¼ aH; ð22Þ

where we have introduced a new variable φ to reduce the
system order and used Eqs. (9), (14), (17) and the definition
of the mean Hubble rate H. We assume the underlying
parameters are those already chosen in [22], so the
numerical solutions presented below will be comparable
with this previous work. We have

V0 ¼ 10−7M4
P; g0 ¼ 1.1;

bv ¼ 5; bg ¼ 0.5;

p ¼ 0.01; q ¼ 0.1;

β ¼ 5; γ ¼ 10−3:

The initial conditions are given by the set

θ ¼ ðϕini;φiniÞ and σ2ini ¼ 5 × 10−12; ð23Þ

with φini chosen in such a way that the kinetic contribution
∝ φ2

ini be comparable to the shear contribution at the initial
time (recall we fixed aini ¼ 1), while H is given by the
constraint (13), namely,

Hini ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕini
3

þ 1

6
σ2ini

r
; ð24Þ

where ρϕini is obtained with Eq. (15) evaluated at ϕini and
φini. Finally, note that we have omitted the scale factor a
since it enters explicitly only in the expression for the shear
in Eq. (17) through the combination σinia3ini: without loss of

generality, one can renormalize the initial shear to account
for the initial value of the scale factor, which can thus be
chosen as aini ¼ 1 for simplicity.
Reference [22] considered the presence of a matter

component, p ≪ ρ, assumed to produce the initially
scale-invariant spectrum. Here, we want to focus on the
bounce itself, or the behavior of the scale factor, in general,
when the Universe is dominated by the scalar field. This
means we begin our analysis at a time for which we assume
the dust fluid contribution has already turned negligible,
having been overcome by the other components when we
set our initial conditions. In other words, for a < aini (we
set initial conditions in a contracting epoch), the matter
fluid is negligible and we shall accordingly forget it
altogether.
In the numerical solutions presented below in Figs. 1

through 9, the time t is expressed in units of 104M−1
P and

the Hubble rate H in units of 10−4MP. In order to compare
the solutions with the same reference point, we always
set the initial time to tini ¼ 0. The estimated absolute error
in the calculations shown are of order Oð10−10Þ during the
contraction and expansion epochs, and Oð10−7Þ during the
bounce phase. Since we are interested in the potential
effects of a remaining sub-dominant anisotropy during the
bounce, we consider in what follows initial conditions such
that the effective equation of state (EoS) is not very large
at the beginning, i.e., we are assuming that only a weak
ekpyrotic phase, where the EoS is only slightly above one,
has taken place in our scenario before we set our initial
conditions.

FIG. 1. Time evolution of the Hubble constant H (top left) and
scale factor a (bottom left) for φini ¼ 8 × 10−6 and two different
values of ϕini: ϕini ¼ −3 (full brown) and ϕini ¼ −2.5 (dashed
blue). The bounce times are marked as tb. The discontinuity is
only apparent and a mere consequence of the fact that the relevant
time scale is extremely short for the fast bounce that takes place in
this theory: the right panels show the details of this actually
smooth transition (shown only for ϕini ¼ −3.5) over the much
smaller time interval of Δt ¼ 10−4 around the bounce time tb.
Although not shown explicitly on later plots, all the following
curves are, in fact, smooth on the relevant scales as we did check
for all cases.
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A. One bounce scenario

The single bounce scenario is the most widely discussed
background evolution for bouncing cosmologies. The
background evolves dominated by the scalar field during
contraction, passes through the ghost condensate phase,
makes a single nonsingular bounce and enters an ever

lasting expansion phase afterwards, as exemplified in
Fig. 1. These numerical solutions were obtained for
ϕini;1 ¼ −2.5 and ϕini;2 ¼ −3.0, with φini ¼ 8 × 10−6 in
both cases. As noted earlier, the initial shear value is close
to the kinetic term φ2 ∼ ×10−11, and is subsequently
diminished (in comparison to ρ) during the ekpyrotic phase.
The ghost condensate and ekpyrotic phases are presented

in Fig. 2 where the time development of the kinetic term
coefficient g and the potential V are presented. Before the
bounce takes place, the scalar field is driven by the potential
which becomes very negative all through the ekpyrotic
phase, until g takes over, at which point the bounce occurs.
Figure 3 shows, for this case and the following (with more
than one bounce taking place), the time evolution of the
energy contained in the scalar field and in the shear. The top
panel is for the case at hand: the difference between ρϕ and
ρσ is entirely due to VðϕÞ in this case, and as expected, the
shear contribution decreases with respect to that of the field.
Reducing the shear is what the ekpyrotic phase is made

for. Indeed, with the potential (7), there exists an attractor
solution with EoS for the scalar field wϕ

wϕ ≈ −2þ 2

3q
; ð25Þ

FIG. 2. Time development of the kinetic function g½ϕðtÞ� (top
left) and potential V½ϕðtÞ�=V0 (bottom left), with the same
convention as Fig. 1. The ghost condensate phase begins as
soon as gðϕÞ ≥ 1. The right panel shows how smooth the
transition goes when looked at on shorter timescales.

FIG. 3. Comparative evolution of the energy densities for the anisotropy, ρσ (red dashed) and the scalar field, ρϕ (blue full) for
the initial conditions fϕini ¼ −2.5;φini ¼ 8 × 10−6g (top, single bounce), fϕini ¼ −3.5;φini ¼ 8 × 10−6g (middle, two bounces) and
fϕini ¼ 1.9;φini ¼ −10−6g (bottom, three bounces). The initial anisotropic stress for all the plots is σ2ini ¼ 5 × 10−12. The indicated tT
are the turning points at which the scalar field goes through the maximum of gðϕÞ.
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while on the other hand, Eq. (17) implies that the EoS of the
shear is wσ ¼ 1. For small values of q, as the one we are
interested in and have chosen for the numerical calcula-
tions, the shear can never dominate during contraction.
Although we did not start on the attractor (25), we obtained
that behavior for two different choices of initial conditions
for ϕini. The more negative ϕini, the longer the contraction
phase, because the scalar field begins farther away from the
ghost condensate state that permits the bounce. There is a
degeneracy in the initial condition space, since one could
achieve a similar behavior by changing φini, an initially
small velocity for the field leading to a longer contraction
phase as it takes more time to reach the ghost conden-
sate phase.
At first sight, one is tempted to conclude from the

previous discussion that ϕini or φini could be chosen as
small as one wishes in order to yield a longer contraction
phase and varying the bounce characteristic features. As it
turns out, this is not the case at all: as we show in the
following section, changing the initial conditions produces
drastically different solutions involving more than one
bounce.

B. Two bounce case

Figure 4 illustrates what happens if one keeps decreasing
ϕini, trying to trigger a longer contraction phase: one
reaches a region in parameter space in which the
Universe instead experiences two bounces. The Universe
contracts, bounces, expands again, passes through a maxi-
mum, starts contracting again and moves towards a second

bounce, from which it finally expands forever. For that to
happen, the scalar field must go twice through the ghost
condensate phase, a possibility which was always assumed
hard to achieve, whereas in fact, we found it actually goes
through this phase three times (see Fig. 5) even though only
two bounces took place.
This evolution is exemplified by φini ¼ 8 × 10−6 and the

two initial field conditionsϕini;1¼−3.49 andϕini;2 ¼ −3.50,
whose subsequent time development is depicted in Figs. 4
and 5.
The behavior we find here is due to the existence of a

turning point for ϕ, marked as tT in Fig. 3. At this point, the
scalar field passes through the first ghost condensate phase
while still contracting. It eventually returns and goes back
to pass through the top of the potential gðϕÞ another time.
Then, the Universe bounces.
In Fig. 5, we show that after the first bounce took place,

the expansion phase is again dominated by the ekpyrotic
potential VðϕÞ. As we mentioned before, during the
ekpyrotic phase, the effective EoS of the scalar field is
built to be larger than that of the anisotropy. This means
that, during contraction, the scalar field dominates for small
values of a, but conversely also that during expansion, the
anisotropy becomes more and more important. This is
illustrated in Fig. 3 where the shear domination after the
first bounce is clearly visible.
With the expansion dominated by the anisotropy, ϕ

reaches a second turning point, while H became negative
again. This is the beginning of the second contraction phase
that will eventually drive ϕ into the ekpyrotic phase again
(see the third peak of Fig. 5), thereby reducing the shear
contribution again. When the scalar field again reaches the
peak of gðϕÞ, (third ghost condensate phase), this triggers
the bounce in an even more isotropic state.
From that example, one can envisage two possible

scenarios. Without the first turning point, the Universe

FIG. 4. Evolution of the Hubble parameter H (top left) and the
scale factor a (bottom left) for the two different initial conditions:
ϕini ¼ −3.5 (full yellow) and ϕini ¼ −3.49 (blue dashed). The
bounces are marked as tb. The first bounce of the two solutions
are indistinguishable on the figure (numerically extremely close),
but the solutions then drift away and bifurcate, yielding a second
bounce at very different times, first for ϕini ¼ −3.5, then for
ϕini ¼ −3.49. This indicates an extreme sensibility in the initial
conditions that has never been discussed in such a context. The
plots on the right detail what happens during the first time the
system goes through the ghost condensate phase, with a time
scale of the plot taken as Δt ≈ 3 around tb.

FIG. 5. Time developments of gðϕÞ (top) and the potential VðϕÞ
(bottom). The two solutions are for ϕini ¼ −3.5 (full yellow),
ϕini ¼ −3.49 (blue dashed), both with φini ¼ 8 × 10−6. As in
Fig. 2 the peaks only appear discontinuous but in actuality are
smooth.
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would have gone through a ghost condensate phase without
triggering a bounce and a singularity would have ensued. It
is often stated that one of the most dangerous effect that can
prevent a bounce from taking place is the uncontrolled
growth of anisotropy. We found that the scalar field initial
conditions are also important in order to ensure the bounce
can occur. Below we also argue that in fact, it is thanks to
the existing anisotropy that the Universe does not plunge
straightforwardly into a singularity. The second scenario is
when conditions are such as to avoid the second turning
point altogether. In that case, the last expansion epoch
begins anisotropic: the ekpyrotic contraction, although
controlling the relative shear decay, is not sufficient as
the multiple bounces subsequently spoil its effect. A phase
of ekpyrotic contraction is thus not necessarily enough to
guarantee that the resulting Universe, after the bounce,
expands isotropically, the scalar field initial conditions
playing a crucial role in the overall evolution of the
Universe.

C. Three bounces

Our final example is rather counter intuitive. It begins
with an anisotropic contraction phase not leading to a BKL
instability and resulting into a final expansion phase even
more isotropic than the previous cases (see Fig. 3). To
produce this scenario, we tune the value of ϕini, chosen
positive, keeping the amount of initial anisotropy as before,
σ2ini ¼ 5 × 10−12, and we set φini ¼ −10−6, together with the
two field values ϕini;1 ¼ 1.9 and ϕini;2 ¼ 1.9001, noting that
since the initial field time derivative is smaller, the anisotropy
is initially larger than the kinetic term φ2 ¼ 10−12.
The usual ekpyrotic approach consists in beginning with

the ekpyrotic phase so as to lower, dissolve really, the
relative shear contribution immediately, during the initial
contraction, thereby solving the anisotropy problem. The
case here is completely different, as we start with ϕini > 0
and φini < 0 so that the scalar field starts evolving from the
right hand side of the potential VðϕÞ and of gðϕÞ. This
means that, contrary to the cases discussed above, we do
not begin the evolution of the Universe with the ekpyrotic
phase: this phase only happens after the first ghost con-
densate peak, as shown in Fig. 6.
As in the two bounce case of Sec. III B, the existence of

a turning point is mandatory for the observed behavior.
Otherwise, the Universe merely collapses into a singularity.
The presence of three ghost condensate phases, i.e., the

peaks of gðϕÞ in Fig. 6, leads to the three bounces of Fig. 7.
The first contraction, containing no ekpyrotic phase, is
completely dominated by the anisotropy (Fig. 3). After the
first bounce, the Universe expands ekpyrotically as it
reaches the first peak of VðϕÞ, Fig. 6. During this ekpyrotic
expansion, ϕ reaches a turning point and H changes sign,
initiating the second contraction.
After the second contraction, the Universe once again

goes through the ghost condensate phase and another

bounce occurs. The ensuing expansion is still anisotropic,
until the scalar field reaches another turning point, at which
point the Universe begins contracting for the third time
while ϕ climbs back up in gðϕÞ. During this third con-
traction, which is not ekpyroticlike, the scalar field energy
contribution appears to grow faster than the anisotropy, as
shown in Fig. 3. The scenario ends after ϕ crosses the last
peak of gðϕÞ, and the Universe bounces for the third time.
As can be seen in Fig. 7, the third contraction is a very

short phase with a minimum Hubble scale of Hmin ≈ 10−2

before the third bounce. Because the contraction was
shorter than the expansion, the anisotropy is more diluted.
At the same time, ϕ starts to grow faster than the
anisotropy. This is a very unexpected behavior. As we
can see in Fig. 6, there is no ekpyrotic potential contribu-
tion before the third bounce to render the effective EoS of
the scalar field larger than that of the anisotropy.
The final stage of the process described above is the third

bounce itself, at which point the scalar field overcomes the
anisotropy, leading the Universe to the required isotropic
expansion. Even though the expansion in dominated by the
scalar field in the ekpyrotic phase (Fig. 6), the difference
between the energy densities is large enough that the
anisotropy does not end up dominating.

D. Singular solutions

Despite the presence of an ekpyrotic phase and a ghost
condensate regime, the existence of a bouncing solution is
not guaranteed. In Fig. 8, we show a sequence of solutions
for different values of ϕini, assuming in all cases φini ¼
8 × 10−6 and σ2ini ¼ 5 × 10−12, some solutions being regu-
lar and bouncing, other contracting endlessly to a singu-
larity, for initial values of the scalar field not too far away

FIG. 6. Time developments of gðϕÞ (top) and the potential VðϕÞ
(bottom). The three peaks leads to the three bounces of Fig. 7
with initial conditions given by ϕini ¼ 1.9001 (full yellow), and
ϕini ¼ 1.900 (blue dashed). The fine-tuning required on ϕini
reflects the fact that it is extremely difficult to obtain a final
isotropically expanding state when beginning with a shear
dominated contracting universe. In fact, almost any other initial
condition leads to a singularity.

ANISOTROPIC MULTIPLE BOUNCE MODELS PHYSICAL REVIEW D 96, 023517 (2017)

023517-7



from one another. The list of initial conditions used here is
ϕini;1¼−2.5, ϕini;1¼−3.5, ϕini;1 ¼ −4.0, and ϕini;1 ¼ −4.5.
This last case leads us to conclude that the more negative

ϕini, the longer the contraction phase and the larger the
anisotropy when the system reaches the ghost condensate
state. Figure 8 shows the transitions from one bounce, two
bounces and no bounce solutions while decreasing ϕini. As
it turns out, the singular solution is not the limit of a single
bounce case, but rather a two-bounce situation in which the
second bounce is failed, the Hubble rate suddenly increas-
ing while the scalar field passes through the ghost con-
densate phase, but not enough to render it positive, so the
ghost condensate epoch terminates in a still contracting
phase, and the Universe has subsequently no chance to
return to expansion.

IV. DISCUSSION

The main feature enabling the Universe described by our
model to bounce a few times is the possibility of one or
more turning points, making the scalar field climb the
potentials more than once. Let us now examine their
properties and the consequences they can have on the
evolution of the Universe.
As discussed earlier, a turning point at time tT is

characterized by φðtTÞ ¼ 0 and _φðtTÞ < 0, if ϕðtTÞ is a
local maximum or _φðtTÞ > 0, if ϕðtTÞ is a local minimum.
This solution should necessarily satisfy the Friedmann
equation (13). Substituting φ ¼ _ϕ ¼ 0 in Eq. (13) and
defining

FIG. 7. Evolution of the Hubble constant H (top left) and the
scale factor a (bottom left) for the same initial conditions as in
Fig. 6. The other initial conditions for both cases are φini ¼
−10−6 and σ2ini ¼ 5 × 10−12. The first two bounces happen at
roughly the same time for both initial conditions, and the
solutions then drift away as in the previous example before
reaching the third bounce. The top right panels emphasizes the
smoothness of the evolution of H around the third bounce in the
case ϕini ¼ 1.9001 (the other has a similar shape). It turns out
the Hubble scale becomes slightly negative only, and for a very
limited amount of time, indicating a very short contraction phase.
The bottom left panel details the first two bounces for the case
ϕini ¼ 1.9001. The time scale of the plots are Δt ≈ 10−3 around
the third bounce, tb (top right panel) and Δt ≈ 10−1 around the
first two bounces, indicated by tb (bottom right). Enlarging the
time scale more on this latter plot shows the bounces are, again,
smooth and only appear discontinuous because of the time scales
used to represent them.

FIG. 8. Time evolution of the Hubble constant, H (top left),
and the scale factor, a (bottom left), for _ϕini ¼ −8 × 10−6 and
σ2ini ¼ 5 × 10−12, with four different initial conditions on ϕini

leading, respectively, to one bounce (blue dot-dashed line,
ϕini ¼ −2.5), two bounces (yellow small dashed line,
ϕini ¼ −3.5) and singular solutions (red full line, ϕini ¼ −4.0
and green long dashed line, ϕini ¼ −4.5). The right panel details
what happens at the point where the dynamics would lead to a
bounce in a regular solution: the system goes through the ghost
condensate, but for an insufficient amount of time, so that even
though H increases (top right), changing the slope of a (bottom
right), it remains negative, leading ultimately to an unavoidable
singularity. The time scale for the right panel plots is Δt ¼ 10−4

around t ¼ 9.7.

FIG. 9. Evolution of the effective energy density for the
anisotropic stress, ρσ (left) for φini ¼ 8 × 10−6 and σ2ini ¼ 5 ×
10−12 with ϕini ¼ −2.5 (red dashed line, single bounce) and
ϕini ¼ −3.5 (full yellow line, two bounce case), previously
discussed in Secs. III A and III B respectively. The top right
panels shows a detail of the first peak of the anisotropy energy
density in the two bounces case. We can see the effect of the first
turning point and the ekpyrotic expansion in the increase of the
anisotropy before the first bounce, highest peak. The bottom right
panel is a zoom in of the highest peak to emphasize the
smoothness of the numerical solutions. The time scales of the
relevant plots are respectively Δt ≈ 10−1 around t ¼ 9.7 (top
right panel) and Δt ≈ 10−4 around t ¼ 9.7 (bottom right panel).
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y≡ e
ffiffi
2
q

p
ϕ; ð26Þ

the Friedmann constraint reads

y−1 þ ybv þ 2

3
V0

�
H2 −

σ2

6

�−1
¼ 0: ð27Þ

Demanding that there exists a turning point means that
there should be at least one root to the above equation.
Let us define fðyÞ from Eq. (27), namely,

fðyÞ ¼ y−1 þ ybv þ 2

3
V0

�
H2 −

σ2

6

�−1
: ð28Þ

The range of variation of this function follows from that
of ϕ, so that y → 0 implies ϕ → −∞, and y → ∞ leads to
ϕ → ∞. One can easily check that

lim
y→0

fðyÞ ¼ ∞ and lim
y→∞

fðyÞ ¼ ∞; ð29Þ

so that if there exists ȳ such that fðȳÞ < 0, then, by virtue of
Bolzano’s theorem on intermediate values for continuous
functions, one is guaranteed that fðyÞ possesses at least two
roots, which we call, respectively, ϕ�

1 ∈� −∞;
ffiffiffiffiffiffiffiffi
q=2

p
ln ȳ�

and ϕ�
2 ∈ ½ ffiffiffiffiffiffiffiffi

q=2
p

ln ȳ;∞½, eligible as turning points.
The condition fðȳÞ < 0 is only possible provided the

condition,

H2 <
σ2

6
; ð30Þ

holds. This last expression shows that the anisotropy plays
a nontrivial part in the existence of the turning point,
enabling fðyÞ to have a root. For an isotropic universe, the
shear, by definition, vanishes, σ2 ¼ 0, and the system can
only bounce once. By continuity, for very small values of
the initial anisotropy, the initial condition on ϕ dictates
whether it is possible that Eq. (30) is satisfied. The higher
the shear, the more likely one encounters a regime during
which Eq. (30) is valid during the evolution and thus, the
more likely the existence of turning points. Contrary to the
common lore, a high value of the primordial anisotropy
may therefore not necessarily spoil the bouncing scenario,
or even the resulting isotropic expansion.
From the modified Klein-Gordon equation (9), at the

turning point, we have

_φ ¼ −
V;ϕ

ð1 − gÞ : ð31Þ

Differentiating VðϕÞ, one can show that the sign of V;ϕ is
opposite to that of v, defined through

v≡ 1 − bve
ð1þbvÞ

ffiffi
2
q

p
ϕ; ð32Þ

as can be seen from

V;ϕ ¼ −2V0

ffiffiffi
2

q

s �
1þ e

ffiffi
2
q

p
ð1þbvÞϕ

�
−2
v: ð33Þ

The definition (32) implies that v is positive (negative) if ϕ
is less (resp. greater) than ϕlim defined by

ϕlim ¼ −
ffiffiffi
q
2

r
lnðbvÞ
1þ bv

: ð34Þ

From Eq. (31), signð _φÞ ¼ signðvÞ, since outside the ghost
condensate phase, ð1 − gÞ > 0. We therefore conclude that,
at the turning point, _φðtTÞ is positive (negative) if ϕðtTÞ is
less (resp. greater) than ϕlim.
Evaluating Eq. (28) in ylim ¼ yðϕlimÞ ¼ b−1=ð1þbvÞ

v , we
have

fðylimÞ ¼ b
1

1þbv
v þ b

− bv
1þbv

v þ 2

3

V0

H2 − σ2

6

; ð35Þ

so that, for the chosen parameters, we obtain

b
1

1þbv
v þ b

− bv
bvþ1

v ≈ 1.5 ∼Oð1Þ:

As can be read from the graph, H2 is of order 10−11–10−12
around the turning point (marked as tT in Fig. 3), whereas
ρσ ≈ 10−10, so we can neglect the former with respect to the
latter and assume H2 < σ2=6 for an order of magnitude
estimate. We then get

2

3

V0

H2 − σ2

6

≈ −
10−7

10−10
≈ −103;

and therefore that fðϕlimÞ < 0. This means, according to
our previous considerations, that Eq. (28) admits two roots

ϕð1Þ
T ∈ ½ϕlim;∞½ and ϕð2Þ

T ∈� −∞;ϕlim�, only one of which
satisfying the necessary condition on the sign in φT to be a
maximum or a minimum.
One should notice that the relative importance of the

anisotropy with respect to the average Hubble parameter is
precisely what permits fðyÞ to become negative somewhere
and hence to have a root, i.e., to lead to the existence of
a turning point. This estimate is in agreement with our
previous remark that a longer contraction phase is related to
scenarios with multiple bounce stage: as can be seen on
Fig. 9, the single bounce case exhibits a relatively small
contribution of anisotropy compared with the two bounce
case. Longer contraction phases permit the buildup of
larger anisotropies, which in turn eases the condition
ρσ > 3H2 necessary for the appearance of a turning point.

ANISOTROPIC MULTIPLE BOUNCE MODELS PHYSICAL REVIEW D 96, 023517 (2017)

023517-9



V. CONCLUSIONS

Classical nonsingular bouncing cosmology as a para-
digm faces many problems [6] that need be addressed
before any realistic model can be constructed and seriously
compared with the available data [1]. Among the chal-
lenges lies the question of the shear, whose behavior during
a contraction phase endangers any model of a BKL
instability irremediably pushing the dynamics towards a
singularity. To date, there is no other means to cure this
potential plague but to invoke a long-enough ekpyrotic
phase. This must be followed by the actual bounce in order
to connect the resulting universe to ours, currently expand-
ing. It appears the most economical way to do so is to
invoke a scalar field ϕ whose potential VðϕÞ can drive an
ekpyrotic epoch while a nonstandard kinetic term gðϕÞ can
yield a ghost-condensate phase sufficient to initiate a null
energy condition violation from which a bounce can result.
Such a simple model has already been discussed and
analyzed in [21], and the question of the evolution of
the shear during the bounce transition was addressed
in [22].
In this work, we returned to the model of [22], and found

the dynamics potentially much richer than previously
thought. In particular, assuming the same underlying
microscopic parameters, we numerically found and pre-
sented four different scenarios depending only on the
choice of initial conditions. These are a singular solution,
following a long contraction phase which increases the
anisotropy despite the presence of an ekpyrotic potential
and failing to bounce because of a too fast ghost condensate
phase; a single-bounce solution, already encountered in the
existing literature, in which the Universe contracts, passes
through a minimum scale factor, and expands again
isotropically; two and three bounce solutions, in which
the Universe shows many turning points and consequently
passes more than once though the top of the kinetic
coefficient gðϕÞ and the potential VðϕÞ.
As it turns out, the failed bounces are not in fact a

limiting situation of a single bounce case, but rather they
are multiple-bounce cases for which the last turning point
yielded a ghost-condensate phase whose duration was not
long enough to actually bounce. Thus, the slope of the scale
factor changes through this phase, with the Hubble scale
increasing in much the same way as during a bounce,
except that it never reaches positive values. The conditions
right after this phase are such as to throw the Universe into
the singularity.
All but the singular scenarios lead to a final isotropic

expansion which render them indistinguishable from the
background point of view if confronted with observations.
However, one should expect severe changes in the

primordial power spectrum, in particular in that the differ-
ent regimes we obtained may not only spoil the scale
invariance of long wavelength modes that might have been
produced in the early stages, but also in that it could imprint
a privileged direction in this spectrum due to the fact that
the shear is not negligible during many phases of the
evolution. We even found cases for which the turning point,
and hence the very existence of a bounce, was demanding
the shear to dominate at some stage!
There are many potentially observable consequences

such a rich background dynamics may lead to, that should
be derived and subsequently either confronted with the data
or constrained by them. In particular, since the shear is not
necessarily negligible at all times, and because there is a
long and crucial contraction phase, vector modes can be
produced which should be limited in order not to spoil the
bounce and the following isotropic expansion. Besides,
couplings between the scalar, vector and tensor modes
could trigger new imprints and correlations [26], whose
exact properties and characteristic features should be
provided by a more complete and thorough analysis. As
we have seen, the background dynamics seems very
sensitive (chaotic?) to the initial conditions on the scalar
field, and it may well be that this sensitivity also transfers to
the perturbations. The negative side of this fact is that the
models are probably not as generic as one would have
wanted them to be, but this also means a positive side,
namely that some a priori unwanted consequences may
induce very easily identifiable effects, either in the pertur-
bation spectra (e.g., specific correlations between scalars or
tensors going beyond the consistency relation) or in higher-
order functions (non -Gaussianities) [29]. Finally, we
should like to mention that because this category of models
can lead to a potentially observable privileged direction in
the expanding Universe, this could also induce large scale
anomalies that should be compared with those present in
the existing or future observations, for instance in the
cosmic microwave background data [30,31].
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