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We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein
screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal
branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement.
We study higher-order correlation functions ξnðRÞ up to n ¼ 9 and associated reduced cumulants
SnðRÞ≡ ξnðRÞ=σðRÞ2n−2. We find that the matter probability distribution functions are strongly affected by
the fifth force on scales up to 50h−1 Mpc, and the deviations from general relativity (GR) are maximized at
z ¼ 0. For reduced cumulants Sn, we find that at small scales R ≤ 6h−1 Mpc the MG is characterized by
lower values, with the deviation growing from 7% in the reduced skewness up to even 40% in S5. To study
the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density
samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few
percent appearing only at the smallest pair separations (r ≤ 5h−1 Mpc). In contrast, we find a strong MG
signal in SnðRÞ’s, which are enhanced compared to GR. The strong model exhibits a > 3σ level signal at
various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to
be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a 3σ imprint at
small scales R ≤ 3h−1 Mpc, while the stronger model deviates from a GR signature at nearly all scales with
a significance of > 5σ. Since the signal is persistent in all halo samples and over a range of scales, we
advocate that the reduced kurtosis estimated from galaxy catalogs can potentially constitute a strong
MG-model discriminatory as well as GR self-consistency test.
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I. INTRODUCTION

The standard model of cosmology—Lambda Cold Dark
Matter (LCDM)—is one of the biggest accomplishments of
modern physics of the last three decades. This model
describes how the Universe cooled down and expanded
from the initial fireball of the big bang and formed the large-
scale structure (LSS) observed presently in wide and deep
galaxy spectroscopic surveys. Astonishingly, LCDM, being
a very simple model characterized by only six free param-
eters, passes a tremendous number of robust observational
tests. It explains the features and correlations observed in the
cosmic microwave background (CMB) (e.g. [1,2]), the
primordial nucleosynthesis and light element abundance
[3,4], the growth of tiny primordial density perturbations
into LSS [5–7] and the late-time observed accelerated
expansion [8–11]. However, this spectacular success comes
with a high price, since LCDM is mostly phenomenological
in its nature. This is because in the model, the main
contributors to the cosmic energy budget are dark matter
(DM) and dark energy (DE). The physical nature of both of
these constituents is far frombeing understood and assessed.

While the observational evidence for dark matter’s
existence is overwhelming, with the general consensus
being that the last piece of this puzzle is still missing due to
difficulties related to hunting for the DM particle in Earth-
based laboratories like CERN and Fermilab [12–14], the
conceptual and theoretical problems related to DE are of a
much more profound nature. One of the core assumptions
of LCDM is that general relativity (GR) is an adequate
description of gravity on all cosmic scales, from the size of
the Solar System (∼AU) to the scale of particle horizon
(∼Gpcs). Within this picture the only possibility to accom-
modate the late-time accelerated expansion of the Universe
is via a perfect fluid of an exotic equation of state parameter
w ¼ −1, dubbed dark energy. The simplest and most
natural candidate for DE is Einstein’s cosmological con-
stant (CC)—Λ—reflecting here the zero-point energy
associated with quantum vacuum fluctuations. Alas, iden-
tification of Λ with DE is spoiled by the gargantuan
discrepancy between the observed tiny value of CC and
the theoretical prediction from quantum field theory. This
precipice has at least 50 orders of magnitude [15]. One of
the commonly adopted solutions here consists of an

PHYSICAL REVIEW D 96, 023515 (2017)

2470-0010=2017=96(2)=023515(20) 023515-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.023515
https://doi.org/10.1103/PhysRevD.96.023515
https://doi.org/10.1103/PhysRevD.96.023515
https://doi.org/10.1103/PhysRevD.96.023515


arbitrary assumption that by some symmetry of nature the
true Einstein’s constant is set to exactly zero, and the
observed accelerated expansion is due to an exotic scalar
field or other similar phenomena dominating the cosmic
energy budget at late time [16]. The main problem with this
approach is that most theories experience only weak
coupling of the scalar field to matter, predicting growth
of structure that is the same as in GR. This makes these
models very hard to falsify.
Another way to approach the DE problem is rooted in the

observation that GR has been rigorously tested only on
small scales of the order of hundreds astronomical units at
most [17–23]. Thus, using GR to describe intergalactic,
cosmological and ultimately horizon scales, is an extrapo-
lation by a spectacular 15 orders of magnitude. Therefore,
one could argue for a different interpretation of the late-
time universe’s acceleration, which would not be due to a
mysterious DE, but could be a manifestation of the
breakdown of GR on cosmological scales. Such scenarios
have received large attention in the literature over the past
two decades and are commonly described as modified
gravity (MG) theories. Here, viable theories are usually
built as infrared modifications to GR that can fuel the low
redshift acceleration of the space-time via virtue of mod-
ifications to the Friedman equations stemming from an
altered Einstein-Hilbert action [24,25]. Most of such non-
trivial modifications of GR exhibit additional degrees
of freedom, propagation of which will locally manifests
as an additional fifth force acting on test matter particles.
Such a fifth force can be usually described in terms of a
local effective Newtonian gravitational constant (Geff ).
Notwithstanding, as mentioned earlier, we have stringent
precise tests of GR on small scales, thus any prospective
MG theory needs to employ a theoretical mechanism that
would allow it to recover standard GR behavior on Solar
System scales and around dense bodies (like black holes
and neutron stars). Such an appliance is called a screening
mechanism in MG parlance. While the screening mecha-
nism allows a given theory to pass the small-scale and
strong field regime observational tests, its introduction
comes with a high price, as theories with screening exhibit
much stronger nonlinear behavior [26].
The standard cosmological model, as any other success-

ful physical theory, is placed under continuous scrutiny.
The fact that GR has not been rigorously tested on
cosmological scales, put together with the fact that on a
theoretical side we are provided with a plethora of
interesting modified theories, indicates that we are in an
urgent need of precise observational tests of gravity applied
to intergalactic and cosmological scales. This worthy goal
was set as the aim of many currently undergoing and
approaching observational endeavors, such as Euclid and
DESI [27–29] to name a few. These programs aspire to
chart the Universe’s large scale structure on vast spatial and
time scales. The hope is that by analyzing properties of LSS

one can measure the growth rate of structure at different
epochs, which when determined with enough accuracy
would constitute a strong null test for GR on cosmic scales
[22,30,31]. The validity of this test relies on the observation
that within the standard paradigm the observed LSS
structures arose from tiny primordial density perturbations
via a mechanism called the gravitational instability.
This mechanism explains how due to self-gravity, in an
expanding background, small initial overdense regions
(ρðx⃗Þ > hρi) collapse into bound, and finally virialized,
structures that host luminous galaxies today. Here, the
theory aspires to describe the growth on tiny irregularities
in the course of the cosmic expansion history from initial
density perturbations of the order of ∼10−5, as observed in
the CMB [32], to present-day DM haloes characterized by
central densities of ≳106 (see e.g. [33–35]. Thus, to
connect the theoretical predictions with observations we
need an accurate description of the growth of structures
spanning more than 10 orders of magnitude in density.
On sufficiently large scales (i.e. ≳100h−1 Mpc) or

interdependently at sufficiently early times (z≳ 1) the
growth of structures can be described by linear and weakly
nonlinear perturbation theory (PT). This picture has been
shown to be accurate and has been tested rigorously in the
past, both for GR and non-GR theories (see e.g. [36]).
However, the bulk amount of cosmological observations
concerns the regime where the cosmic structure and its
dynamics are deep in the nonlinear regime. The only way to
probe and study the nonlinear regime of gravitational
instability is to use sophisticated and expensive computer
simulations. Use of simulations to study the growth of LSS
has become a standard practice over the past three decades
and is now considered a mature field [37,38].
Indeed, computer cosmological simulations have unde-

niably become a powerful tool of modern cosmology, but
they have also introduced a major obstacle that makes their
use for model testing difficult. Namely, for each set of initial
conditions described by some chosen values of cosmologi-
cal parameters and for each specific GR/MG model, one
needs to run a separate dedicated computer simulation. In
addition, due to intrinsic nonlinearity of the screening
mechanism employed by MG, dedicated numerical codes
are also needed for running nonstandard gravity simulations.
Covering the nonlinear regime of MG structure formation
with sufficient resolution is also much more computation-
ally expensive than standard GR simulations. These diffi-
culties made the study of MG theories very nontrivial and
challenging. Nonetheless, we need to stress out that it is
absolutely necessary to use dedicated MG simulations for
rendering theoretical predictions for growth rate of struc-
tures. This is because both the complicated nature of galaxy
formation physics and the nonlinear character of screening
mechanisms introduce various degeneracies and biases [39].
In order to formulate self-consistent predictions for MG
signatures in an observable one needs to assess, understand
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and disentangle various systematic effects from the ones that
are purely a result of altered dynamics stemming from
additional MG degrees of freedom [40].
The situation is not as hopeless as one might expect when

considering the very rich phenomenology of many MG
theories. Many different screening mechanisms can be
categorized as either being screened by gravitational poten-
tial or density. The first is a broad category, where the
screening suppresses the fifth force by either making locally
the scalar field very massive (the chameleon mechanism)
[41], forcing a small value of scalar field (the symmetron
fields) [42], or suppressing the strength of coupling of the
scalar field (the dilaton fields) to matter [43] in high density
regions. The flagship example of the latter screening
category is the Vainsthein mechanism [44], where due to
higher-order derivative interactions in the vicinity of mas-
sive objects the scalar-field fluctuations attain significant
kinetic terms and thus decouple from the matter fields. In
the past decade the nonlinear gravitational clustering in MG
theories has received much attention (see e.g. reviews in
[25,40,45]). With the chameleon screening employed by the
scalar-tensor theory of fðRÞ being by far the most thor-
oughly inquired theory [46,47]. It has been shown that this
class of theories exhibit very interesting behavior at late
times predicting strong observational features in anisotropic
galaxy redshift space clustering [48], matter and velocity
power spectra [49], halo and galaxy dynamics [50], real and
redshift space halo clustering [51,52] and higher-order
clustering statistics [53]. On the other hand the gravitational
instability mechanism with Vainshtein screening was
probed to a much lower extent, as most of the studies
concerned either only two-point matter clustering statistics
[54–56], some basic morphological LSS features [57,58],
screening of dark matter halos [58] or simple halo dynamics
[50], and further those studies were mostly based on
simulations with both limited resolution and volume. The
results presented in this paper are aimed to amend this
situation and provide comprehensive insights into nature of
gravitational instability within Vainshtein mechanism type
of screened theories.
As our test bed we chose to take the so-called normal

branch ofDvali-Gabadadze-Porattimodel (nDGP), a higher-
dimensional gravity brane-world model that employs
Vainshtein mechanism [59]. The choice of nDGP as our
test case for Vainshtein is motivated by the fact that this
model, in contrast to so-called self-accelerating branch
(sDGP) [60] or other models like covariant Galileons [61]
that employ Vainsthein, is fully consistent with LCDM’s
expansion history as precisely determined by modern obser-
vations. However, we ought to mention that there is a major
drawback here related to nDGP. In order achieve its compat-
ibilitywith the data, it still requires some small amount ofDE
[54]. Hence, its attractiveness as an alternative explanation of
accelerated expansion is largely diminished. This being said,
wewant to stress that ourmain intention here is not to present

and test a new fundamental theory of gravity as an alternative
explanation to cosmic acceleration, but rather to study
phenomenology of a large class of models by assessing
the impact on cosmic structure formation of a fifth force
moderated by Vainshtein screening.
In addition to the gravitational instability, the second

conventional assumption of the standard model for the
formation of structures is that the primordial density
fluctuations were described by Gaussian random field
statistics. The structure formation theory is bound by
providing an appropriate description of the initial power
spectrum of the density fluctuations. Now, by taking the
main ingredient to be cold DM, one obtains a hierarchical
model of structure formation, where the clustering and
gravitational collapse proceeds from small to large scales.
For power law perturbation spectra, P ∝ kns , this is always
true, provided ns > −3. In the nDGP gravity we assume that
all elements of the structure formation model are the same as
in LCDM, except for the nonlinear modifications to gravity
surfacing through the Vainshtein screened fifth force. As the
enhanced fifth-force dynamics become important at differ-
ent cosmic scales and epochs, it will lead to departures from
the standard well-established and tested hierarchical clus-
tering paradigm of GR. These changes in turn should be
imprinted in hierarchical clustering statistics of matter and
DM haloes. For the case of MG models with different
screening mechanisms it was shown that their modified
dynamics in most cases leave strong imprints on the matter
clustering hierarchy, especially in the higher-order moments
[53,62]. Since the hierarchical clustering as a main pre-
diction of the gravitational instability scenario was so
thoroughly tested in the case of GR and some other MG
models, it is now imperative to conduct such studies also for
the Vainshtein class of fifth-force cosmologies. This defines
the main goal of the analysis presented in this paper.
This paper is organized as follows: in Sec. II we provide

a general description of the physical properties of the nDGP
model, Section II B covers the details of N-body simu-
lations used in this study. In Sec. III we present the main
features of hierarchical clustering theory, this is followed
by the main results of our analysis presented in Sec. IV.
Finally, we conclude in Sec. V.

II. NDGP GRAVITY MODEL AND SIMULATIONS

A. Model

We consider the nDGP brane-world model [59] that has
the same expansion history as LCDM. Under the quasi-
static perturbations, the Poisson equation is given by [63]

∇2Ψ ¼ 4πGa2ρδþ 1

2
∇2φ;

∇2φþ r2c
3BðaÞa2 ½ð∇

2φÞ2 − ð∇i∇jφÞð∇i∇jφÞ� ¼ 8πGa2

3BðaÞ ρδ;

ð1Þ
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where Ψ is the Newtonian potential, G is the Newton
constant, a is the scale factor and φ is an additional scalar
field in the model. The function BðaÞ is given by

BðaÞ ¼ 1þ 2Hrc

�
1þ

_H
3H2

�
; ð2Þ

where rc is the cross-over scale above which gravity
becomes five dimensional. Now by defining Ωrc ≡
1=ð2rcH0Þ2 we obtain a single parameter that defines
any given nDGP model. Here, H0 is the present-day
value of the Hubble parameter and we have followed a
usual convention with c ¼ 1.
On linear scales, where we can ignore the nonlinearities

of the scalar field, the fifth force enhances the Newtonian
gravity. This can be quantified by means of an effective
Newton constant, which will be given by Geff ¼
Gf1þ 1=½3BðaÞ�g. Note that BðaÞ is positive and decreas-
ing in time, so the growth of structure formation is always
enhanced in this model and the enhancement becomes
larger at late times. For a larger Ωrc, BðaÞ is smaller so the
enhancement of gravity is stronger. On small scales, the
nonlinearity of the scalar fields by virtues of the Vainshtein
screening suppresses the coupling between the scalar field
and matter. Thus the effective gravity approaches the GR
case, Geff → G. This class of models experience rich
phenomenology, as the Vainshtein mechanism is intrinsi-
cally nonlinear.

B. Simulations

In our analysiswewill use a set ofN-body simulations run
for LCDM and two nDGP models. These simulations were
conducted using the AMR code ECOSMOG [64]. The back-
ground cosmology is taken fromWMAP9 [1]:Ωm ¼ 0.281,
h ¼ 0.697, and ns ¼ 0.971. The box length is 1024 Mpc=h
with 10243 dark matter particles used and a starting
redshift of 49. The initial conditions were generated using
MPGrafic [65]. Using zini ¼ 49 assures that the system
will be evolved for time long enough in order towipe out any
transients effects that are affecting higher moments of initial
particle distribution displaced by Lagrangian methods [66–
68]. We note further, that since wewill focus in this analysis
on the relative deviations taken with respect to the LCDM
case all the remaining transients effects will mostly cancel
out in respective ratios. This is assured since, first all the
simulations had a very similar total number of time steps,
which guarantees the same degree of dynamical relaxation,
and second the amplitude of transients in the fifth-force
structure formation scenarios is comparable to the GR case
(see e.g. [62]). This design sets the resulting mass resolution
at mp ≅ 7.8 × 1010 M⊙h−1 and the Nyquist fluid approxi-
mation limit of kNyq ≅ πh=Mpc. The most refined AMR
grid was at the level 16, setting amaximal force resolution at
ϵ ¼ 1024=216 ¼ 0.015 Mpc=h. The LCDM run will con-
stitute our fiducial GR-reference point, in addition we

simulate two nDGP models implementing two values of
the cross-over scale parameter: Ωrc ¼ 0.0124, 0.438. The
first model (nDGPa) is characterized by only a mildly
enhanced growth of structure history and we will treat is
as a borderline case. The lattermodel (nDGPb)with the large
value of Ωrc parameter should experience sizeably larger
differences from the GR case, fostering a more realistic
detection prognosis. Both our MG runs use quasistatic
approximation for the scalar-field evolution.While for some
specific models the time evolution of scalar field can lead to
interesting effects (see e.g. [69]), other authors have shown
that for a scalar field with the speed of sound equal or very
close to c (i.e. like the nDGP) time variation of the scalar
field is vanishingly small compared to its spatial fluctuations
and thus use of the quasistatic limit can be safely exploited
for structure formation studies [70,71].
We evolve the dark matter density and velocity field from

the initial redshift to the present epoch, selecting and saving
for the analysis snapshots taken at three specific epochs:
z ¼ 0, 0.5 and 1. To identify DM haloes in our snapshots
we resort to the ROCKSTAR friends-of-firends (FOF)
phase-space halo finder [72]. We keep all the haloes and
subhaloes with 20 or more particles for further analysis. As
a main proxy for halo mass we settle down for a commonly
used virial massM200 ≡ 4=3πR3

200200 × ρc.WhereR200 is a
boundary radius at which the spherically averaged matter
density enclosed inside is equal to 200 times the Universe
critical density ρc. At z ¼ 0 for all three models we find a
very similar number of 0 ∼ 1.5 × 106 distinct haloes and
subhaloes, with a very similar satellite fractions of ∼6%
for GR and mild nDGP models and 7% for the strong
nDGP model.
Once we constructed our halo catalogs we split them into

samples of a fixed number density. This allows us to
approximate in a very simplistic way mock galaxy samples
in the spirit of abundance matching [73]. For our richest
and most complete sample we pick centralsþ satellite with
a number density of hni ¼ 1.4 × 10−3ðh−1MpcÞ−3. We
also consider sparser centrals-only samples with an effec-
tive number densities of 9 and 1 × 10−4ðh−1MpcÞ−3. The
specific details like the minimum halo mass cutoff for each
sample are given in Table I.

III. HIERARCHICAL CLUSTERING

Here, our main focus will be on the matter and halo
density fields, which we will describe in terms of the

TABLE I. The number densities and the corresponding cutoff
halo masses for our halo sample at z ¼ 0.

Number Density
h−3 Mpc3

GR Mmin

h−1M⊙
nDGPa Mmin

h−1M⊙
nDGPb Mmin

h−1M⊙
1.4 × 10−3 1.6 × 1012 1.6 × 1012 1.72 × 1012

9 × 10−4 1.93 × 1012 1.94 × 1012 1.96 × 1012

1 × 10−4 2.54 × 1013 2.57 × 1013 2.7 × 1013

HELLWING, KOYAMA, BOSE, and ZHAO PHYSICAL REVIEW D 96, 023515 (2017)

023515-4



density contrast, a quantity that measures local departure
from a background uniform density. Thus we define

ρðx⃗; tÞ ¼ hρðtÞi½1þ δðx⃗; tÞ�; ð3Þ

where hρðtÞi is the average background density of given
tracers (matter or haloes), and δðx⃗; tÞ (the density contrast)
characterizes local deviations from the background. Now,
the full statistical information about the density field and all
its correlation’s properties are encoded in the density
probability distribution function pðδÞ.
Cosmologies employing cold dark matter spectra for

initial Gaussian fluctuations exhibit so-called hierarchical
clustering. Here, the first structures to emerge from
expanding smooth background are tiny haloes correspond-
ing to the smallest density peaks with sizes just above the
dark matter streaming scale [37,74]. As the Universe
expands, larger and larger density perturbations reach the
turn-around radius and start to collapse to form bigger
structures. Simultaneously, some small haloes that formed
earlier become satellites of bigger and younger structures
and eventually sink and merge into them. Thus structure
formation proceeds from small to large scales. In this
picture the gravitational interactions during the evolution
drive away the density probability distribution function
from its initial Gaussian characteristics. This is reflected by
the growth of higher-order moments of the density field,
which measure departure from Gaussianity [75–77].
The first and most basic statistics that characterize

clustering is the two-point correlation function: ξðrÞ.
This is defined as the excess probability (with respect to
a Poisson process) of finding two matter particles (or
haloes) contained in two volume elements dV1 and dV2

at a distance r (see e.g. [74]):

dP12ðrÞ≡ n̄2½1þ ξðrÞ�dV1dV2; ð4Þ

where n̄ is the mean matter (halo) number density. In
general ξðrÞ characterizes the strength of matter (halo)
clustering across cosmic scales and epochs. However, as
mentioned above the gravitationally induced evolution
gives rise to significant departures of matter and halo
density distribution functions from a normal one. For a non-
Gaussian pðδÞ, the knowledge of only the second moment
is no longer enough to fully characterize the field, as Wick’s
theorem no longer holds.
In this context, the so-called reduced moments or

cumulants of the distribution function pðδÞ are especially
useful. The nth cumulant of the distribution function pðδÞ
is defined by recursive relation to the nth moments. This
relation can be expressed by the cumulant generating
function (e.g. [78])

hδnic ≡Mn ¼
∂n lnhetδi

∂tn
����
t¼0

: ð5Þ

The cumulants now can be expressed in terms of the
central moments, specifically, for the first five cumulants
we have [79,80]

nishδic ¼ 0; ðthe meanÞ
hδ2ic ¼ hδ2i≡ σ2; ðthe varianceÞ
hδ3ic ¼ hδ3i; ðthe skewnessÞ
hδ4ic ¼ hδ4i − 3hδ2i2c ; ðthe kurtosisÞ
hδ5ic ¼ hδ5i − 10hδ3ichδ2ic: ð6Þ

Here the nth cumulant is obtained by taking the value of the
nth moment of the distribution pðδÞ and removing from it
the contributions from all the decompositions of a set of n
points in its subsets multiplied (for each decomposition) by
the cumulants corresponding to each subset [79].
For a field described by a normal distribution with a

zero mean all cumulants, but the variance σ2, vanish. In the
standard random field theory, the first two non-disappearing
connected moments above variance have special meaning
as they describe specific shape departures of the distribution
function from a Gaussian. The skewness describes the
asymmetry of the distribution function and the kurtosis
details the flattening of tails with respect to a Gaussian.
Higher-order moments characterize even more convoluted
aberrations of the distribution function shape.
Various studies of the higher-order cumulants of the

cosmic density fields have revealed that for the case of
initial adiabatic Gaussian density perturbations described
by a power-law spectrum, the gravitational instability
mechanism produces a quasi-Gaussian clustering hierarchy
of connected moments [81]. Moreover, in the linear and
weakly nonlinear regime this hierarchy is preserved by
gravitational time evolution [82,83]. Commonly, this hier-
archy is described in terms of the so-called hierarchical
scaling relations:

Sn ≡ hδnic
hδ2in−1c

: ð7Þ

Here Sn denote reduced cumulants (also called hierarchi-
cal amplitudes), and for unsmoothed fields these are
constant. In reality however, one always deals with
density fields that are smoothed at some given scale.
So what can be actually measured from observations and
compared to predictions from N-body simulations are
actually the volume averaged n-points moments (corre-
lation functions) of the underlying smoothed density field
δR. Now, if we define a smoothed field as

δRðx⃗Þ ¼
Z

δðx⃗0ÞWðjx⃗ − x⃗0j=RwÞd3x0; ð8Þ

with Wðx=RwÞ being a spherically symmetric smoothing
window. For practical reasons it is convenient to limit our
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analysis to only one window function that is easily applied
to numerical simulations. Namely, we will deal with
density fields smoothed over a ball of radius R ¼ Rw
with a window function normalized to unity

Z
WðyÞd3y ¼ 1 and

Z
WðyÞy2d3y ¼ R2

w: ð9Þ

This filter function describes what is commonly known as
the top-hat filtering. Now the volume averaged n-point
connected moments can be defined as

ξ̄nðRÞ≡hδnRic
¼
Z
d3x1…d3xnξðx1…xnÞWðx1=RTHÞ…Wðxn=RTHÞ:

ð10Þ

Classical PT for GR cosmology predicts that the reduced
cumulants computed for smoothed density fields should be
weakly monotonic decreasing functions of the smoothing
scale R [36]. This also has been also widely confirmed by
comparisons with N-body simulations [84]. The scale
dependence of the reduced cumulants is a function of
increasingly complicated combinations of growing order
derivatives of the matter variance taken effectively at a
given smoothing scale. For example for the reduced
skewness and kurtosis this was shown to be [79]

S3 ¼
34

7
þ γ1;

S4 ¼
60712

1323
þ 62

3
γ1 þ

7

3
γ21 þ

2

3
γ2; ð11Þ

with γ factors enumerating the variance derivatives

γnðRÞ≡ dn log σ2ðRÞ
d logn R

: ð12Þ

In the Einstein-de Sitter universe (i.e. with Ωm ¼ 1) the
skewness and kurtosis are constants, as effectively on all
scales γn → 0. In LCDM however, the γ factors represent
corrections to the reduced cumulants due to varying with
scale shape of the matter power spectrum (see e.g. [36,75]).
In the nDGP model the power spectrum is modified at

nonlinear scales by the fifth-force dynamics [54]. Thus we
can expect that this effect should also be reflected in higher-
order moments. This effect was found to be significant for
other MG models like fðRÞ [53] and ReBEL [62], where
the degree of deviation from the GR prediction increased
with the order of the cumulant.
We can expect that this well-understood picture can get

complicated, if we consider haloes rather then the matter
density fields. DM haloes are biased tracers of the

underlying smooth density fields. Therefore, for the case
of reduced cumulants the hierarchical scaling relations will
not only be simple functions of the power spectrum
derivatives, but also will be described by higher-order
hierarchical biasing [85,86]. In general, we can expect that
the higher-order bias can be a complicated function of
scale, time and halo mass. However, as in nDGP there are
no environmental effects, the higher-order bias should take
roughly the same time and scale dependence as in GR, with
only the halo mass being the major difference driver. A
detailed analysis of the hierarchical biasing in nDGP (and
in MG theories in general) is well beyond the scope of this
paper, as it would merit a whole dedicated study. Thus, we
leave it for future work, and will not discuss further the bias
issues in the current paper.

A. PT variance and skewness estimators

To test our numerical results we will benchmark them
against the estimators available in the context of the Eulerian
perturbation theory. Our approach will be to use a perturba-
tive formalism to calculate the variance and reduced skew-
ness of the matter fields [74,75,87]. Here, the additional
nonlinear evolution of the density contrast is modeled by
also tracing the contribution from the peculiar velocity
[vpðx⃗Þ] divergence field:

θðx⃗Þ ¼ ∇ · vpðx⃗Þ
aHðaÞf ; ð13Þ

where HðaÞ is the Hubble function and f ≡ d lnDþ=d ln a
is the logarithmic growth rate. Here, the scale factora is used
as a mean cosmic time variable andDþ is the growing mode
of the linear perturbation theory solution.
For the sake of brevity and simplicity it is very

convenient to express all relevant quantities and work in
Fourier space. Thus, we further define

δðk⃗Þ≡ ð2πÞ−2=3
Z

δðx⃗Þe−ik⃗·x⃗d3x⃗; ð14Þ

and

θðk⃗Þ≡ ð2πÞ−2=3
Z

θðx⃗Þe−ik⃗·x⃗d3x⃗; ð15Þ

respectively for the density contrast and the velocity
divergence fields.
The classical approach is to solve the continuity and

Euler equations for δðk⃗Þ order by order (for a comprehen-
sive review see e.g. [36]). The evolution equations are
expressed below as follows:

a
∂δðk⃗Þ
∂a þ θðk⃗Þ ¼ −

Z
d3k⃗1d3k⃗2
ð2πÞ3 δDðk⃗ − k⃗1 − k⃗2Þ

× αðk⃗1; k⃗2Þθðk⃗1Þδðk⃗2Þ; ð16Þ
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a
∂θðk⃗Þ
∂a þ

�
2þ aH0

H

�
θðk⃗Þ −

�
k
aH

�
2

Φðk⃗Þ

¼ −
1

2

Z
d3k⃗1d3k⃗2
ð2πÞ3 δDðk⃗ − k⃗12Þβðk⃗1; k⃗2Þθðk⃗1Þθðk⃗2Þ

ð17Þ

where the prime denotes a derivative with respect to the
scale factor a, k⃗12 ¼ k⃗1 þ k⃗2, δD is the Dirac delta function
and the mode coupling kernels, α and β, are given by

αðk⃗1; k⃗2Þ ¼ 1þ k⃗1 · k⃗2
jk⃗1j2

;

βðk⃗1; k⃗2Þ ¼
ðk⃗1 · k⃗2Þjk⃗1 þ k⃗2j2

jk⃗1j2jk⃗2j2
: ð18Þ

The linearized equations are given by setting α ¼ β ¼ 0

and expanding the Poisson term, k2Φ, to linear order in the
density perturbations. Gravity affects the evolution of the
perturbations through the Newtonian potential Φ and one
can encode any modifications to gravity there. The general
order solutions for the density contrast can then be
expressed as

δnðk⃗; aÞ ¼
Z

d3k⃗1…d3k⃗nδDðk⃗ − k⃗1…nÞ

× Fnðk⃗1;…; k⃗n; aÞδ0ðk⃗1Þ…δ0ðk⃗nÞ ð19Þ

where the nth order kernel Fn is obtained by recursively
solving Eq. (16) and Eq. (17) at nth order in the density
contrast and velocity divergence. δ0 is the initial density
contrast which we assume is Gaussian. We solve for these
kernels numerically at linear and second order within
nDGP gravity and GR. This is done using the tool
described in [88].
To get the smoothed fields we simply perform a Fourier

transformation on Eq. (8)

δðRÞ ¼
Z

d3k0

ð2πÞ3 δðk⃗
0ÞWðk0RÞ; ð20Þ

where Wðk0RÞ is the Fourier transform of the smoothing
function. For top-hat smoothing this is simply

Wðk0RÞ ¼ 3

ðk0RÞ3 ðsinðk
0RÞ − k0R cosðk0RÞÞ: ð21Þ

The variance of the smoothed fields is then

σ2ðRÞ ¼
Z

d3k
ð2πÞ3WðRkÞ2F1ðk⃗; aÞ2PLðkÞ ð22Þ

where the initial linear power spectrum, PLðkÞ is defined
as δDðk⃗þ k⃗0ÞPLðkÞ ¼ hδ0ðk⃗Þδ0ðk⃗0Þi. As the nDGP gravity
effects at very early times are negligible, for both models
we can use the LCDM initial linear power spectrum. This
can be calculated for a given cosmology using a Boltzmann
solver code such as CLASS [89].
On top of the variance we also consider the third

moment, expressed as reduced skewness. By using the
properties of Gaussian random fields we have [74]
hδ3ic ¼ 3hðδð1ÞÞ2δð2Þi. In terms of the generalized density
contrast kernels and linear power spectrum this can be
expressed as

hδ3ic ¼ 3

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 PLðk1ÞPLðk2ÞF1ðk1; aÞWðRk1Þ

× ½2WðRk2ÞWðRk12ÞF1ðk2; aÞF2ðk⃗1; k⃗2; aÞ
þWð0ÞWðRk1ÞF1ðk1; aÞF2ðk⃗2;−k⃗2; aÞ�: ð23Þ

Note that in GR and nDGP the last term (the 3rd line)
of Eq. (23) vanishes. Finally, performing some of the
integrals we obtain the following expression for the
reduced skewness;

S3 ¼ 3

Z
dk1dk2duk21k

2
2Pðk1ÞPðk2ÞF1ðk1; aÞF1ðk2; aÞ

× F2ðk1; k2; u;aÞWðRk1ÞWðRk2ÞWðRk12Þ
�

�Z
dkk2PðkÞF1ðk; aÞ2WðkRÞ2

�
2

: ð24Þ

We will use the estimators of Eq. (22) and Eq. (24)
computed for the initial power spectrum used in our N-
body simulations, together with F1 and F2 evolution
kernels expressed specifically for nDGP and GR (see
[90] for details) as our PT prediction for the skewness
and variance of the matter density field.

B. Numerical methods

We will specifically consider matter and halo autocorre-
lation function and also volume averaged moments. For the
2-point correlation function (2PCF) we will use a simple
estimator

ξðrÞ ¼ DDðrÞ
Nn̄vðrÞ − 1; ð25Þ

where DDðrÞ is the number of pairs of tracers with
separation in the range ½r; rþ Δr�, N is the total number
of tracers in the sample, n̄ is their number density, and vðrÞ
is the volume of a spherical shell of radius r and width Δr.
As we will deal only with N-body simulation data the
sample selection functions in all cases are complete,
isotropic, and homogeneous. In addition, because we have
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periodic boundary conditions, there are no edge effects.
This makes the estimations of ξðrÞ for matter and halo
samples straightforward. We rely on a numerically efficient
publicly available package CUTE [91,92].
For the case of volume averaged moments we adopt the

fast method presented in [53]. Here the density field for a
given sample is estimated using the Delaunay Tesselation
field estimatormethod [93,94] implemented in the publicly
available software DTFE provided by [95]. Once the density
field on a regular grid with Ng cells have been constructed
we proceed to apply a range of top-hat smoothing (using a
FFT method) and calculate the central moments for
smoothed fields:

hδnRi ¼
1

Ng

XNg

i

ðδiR − hδRiÞn: ð26Þ

Then we proceed to obtain connected moments and
reduced cumulant using the relations of Eqs. (6)–(10).
For all the DM-based density fields in this work we use the
main grid resolution for the initial density assignment,
which gives the limiting resolution of 1h−1 Mpc.
Since even our most dense halo samples are character-

ized by an average interhalo separation of hli ∼ 15h−1 Mpc
using the density grid based method described above might
introduce significant artifacts at scales ≪ hli. To avoid this
for the case of our halos samples we resort to slower but
more accurate at small-scales method of classical counts in
cells (CIC) (with the same implementation as in [62]),
where we follow the usual procedure to subtract the small-
scale shot-noise contribution as described in [80]. We
bin the moments against the halo separation from R ¼
1h−1 Mpc to 100h−1 Mpc.
In the general case our correlation function estimators

will be affected by two sources of errors: the shot noise due
to sparse sampling and classical cosmic variance. Since we
have only one realization for the initial perturbation phases,
we adopt a standard Poisson estimator for the cosmic
variance error, which here is a function of the number of
independent density modes present in the simulation box at
a given scale. To estimate the shot noise we use the same
estimator with the number counts per bin as the sampling
indicator. In the case of our DM samples the shot noise
for nearly all scales (i.e. R > 2h−1 Mpc) is subdominant to
the cosmic variance contribution. For haloes we find
that the cosmic variance is dominant at large scales of
≳10–30h−1 Mpc (depending on the halo sample number
density), while at smaller scales the shot noise dominates.
We illustrate our error budget contributions in the Fig. 1.

IV. RESULTS

In the following we present the results of our analysis,
where we use two-point correlations functions alongside
the higher-order reduced cumulants as well as the density

distribution functions themselves, to study the gravitational
instability mechanism and the hierarchical clustering it
induces for the matter and halo density fields estimated for
a range of scales at three distinctive cosmic epochs z ¼ 0,
0.5 and 1.

A. Dark matter

We start by focusing on the dark matter density field.
First, we want to test the implementation of our numerical
moments estimators. We do this by comparing our N-body
measurements for the variance, σ2, and the reduced skew-
ness, S3, with the PT predictions. The results of this
procedure are shown in Figs. 2 and 3. Both figures illustrate
a strikingly good match of PT and N-body predictions,
which agree nearly perfectly down to R ¼ 10h−1 Mpc for

FIG. 1. The contributions of the cosmic variance and the shot
noise to the correlation functions estimators we use in this work.

FIG. 2. Comparison of matter density variance for z ¼ 0
estimated from N-body simulations (points) with the PT pre-
dictions of Eq. (22). The lower panel shows the fractional
difference of both nDGP models taken with respect to the GR
case. The shaded region illustrates the cosmic variance error for
the GR fiducial case.
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variance and down to ∼15h−1 Mpc for the reduced skew-
ness. This is the case for all three models studied here.
Below these scales the nonlinearity in the density fields
become severe and PT starts to significantly under-predict
the moments. However, the good agreement at scales that
are already mildly nonlinear reassures that our numerical
estimators are accurate and unbiased.
Interestingly, we can notice that when we focus only on

the deviations of nDGP models from the fiducial GR
predictions, as quantified by fractional differences ratios
(ΔX ¼ XnDGP=XGR − 1) shown in the lower panels, the
PT predictions remain surprisingly accurate down to the
smallest scales we consider (1h−1 Mpc). While the PT fails
to capture all the effects of the nonlinear gravitational
evolution at small scales and under-predicts the absolute
amplitudes of the cumulants, this failure has a universal

character for all our models. This behavior most likely
reflects the fact that both of our nDGP models exhibit only
very mild deviations from GR gravitational dynamics. This
agreement with N-body also reassures us that when it
comes to relative ratios between nDGP and GR results all
systematics effects (like transients) are largely suppressed.

1. 1-point statistics

It is very illustrative to begin our analysis by taking a
close look at 1-point statistics of the cosmic density field.
This is readily characterized by 1D density probability
distribution functions (PDFs), pðδþ 1Þ=ðΔδÞ. For a pri-
mordial density perturbation field described by adiabatic
fluctuations these functions are Gaussian on all scales. For
evolved fields the distribution functions develop exponen-
tial tails and at sufficiently large scales can be described by
log-normal distributions [96]. In all cases the linear and
nonlinear gravitational evolution driving the structure
formation is encoded in the shape departures of the density
pðδÞ from a Gaussian.
To get a first intuition of the differences caused by

modified nDGP dynamics we show the 1D density PDFs in
Fig. 4. Here, the three panels from left to right correspond
to three different top-hat smoothing lengths applied to our
reconstructed density fields: R ¼ 0.5, 25 and 50h−1 Mpc
respectively. For all scales we show the PDFs obtained at
three different epochs for z ¼ 0, 0.5 and 1, where the lines
corresponding to z > 0 are tiered down for clarity. First, as
expected by following the previous results from PT and
N-body simulations [54,63], we notice that the difference
from the fiducial GR case is maximized at the present time.
Another interesting feature illustrated by Fig. 4 is the

broadening of the PDFs towards low density (δ < 0)
values. This feature is present at all smoothing scales we

FIG. 3. Same as the previous figure, but for the reduced density
skewness S3 compared against the estimator of Eq. (24).

FIG. 4. The distribution functions for our models computed for density fields smoothed at R ¼ 0.5, 25 and 50h−1 Mpc (panels from
left to right). For each panel the GR case is marked by solid blue line, nDGP Ωrc ¼ 0.0124 is dashed orange and nDGP Ωrc ¼ 0.438 is
marked by dot-dashed line. In each upper panel three groups of lines correspond to three redshifts z ¼ 0, 0.5 and 1, where the data for
latter two was scaled down for clarity. For each case the smaller bottom panel illustrates the pðδÞ ratio taken with respect to the GR case
only for z ¼ 0 case. Mark the change to linear scaling for the δþ 1 axis in the most left panel.
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consider. It clearly indicates that we can expect deeper
density profiles of cosmic voids, which also should get
larger, as matter is more effectively evacuated towards
surrounding higher density areas. While this is a very
promising feature, and potentially could leave an observable
imprint in e.g. void lensing potentials, we will not study this
here further, leaving this interesting opportunity for a future
work. Additionally, we can observe that at larger smoothing
scales the high-density tails of the nDGP distribution
functions get significantly enhanced. This feature reflects
a simple conservation of mass, as the matter that was
evacuated from the voids has to be deposited somewhere.
This is reflected in an increased virial mass of big haloes (i.e.
cluster and super-cluster scales), as was noted in [51,97,98].
Hence, this compensation effect is much better appreciated
at large smoothing scales, as Rth ¼ 0.5h−1 Mpc is way too
small to encompass cluster and super-cluster density per-
turbations. The general impression we can obtain by this
analysis is that reduced cumulants of higher order, like for
example kurtosis, should bear the nDGP signature at both
small and large scales, while for the case of the PDF
asymmetry measure, the skewness, we can expect that the
MG-induced differences should be much more pronounced
at smaller scales. We will get back to this observation later,
when we discuss the higher-order density field statistics.

2. 2-point statistics

Studying the 1-point density field statistics was useful to
obtain general insights into the differences between GR and
nDGP at various scales and density thresholds. However, in
the observational context, the 2-point statistics used com-
monly to study clustering in cosmological and extra-galactic
context should be much more illuminative. Figure 2 already
hints at nDGP’s effects on the matter field variance. There
we can observe that the second moment is enhanced by an
approximately constant factor on all scales. The amplitude
of this increase takes ∼4% (∼20%) for Ωrc ¼ 0.0124
(Ωrc ¼ 0.438) models. This is of course readily character-
ized by increased effective σ8 ≡

ffiffiffiffiffi
σ2

p
ð8h−1 MpcÞ values of

the nDGP simulations, which are higher by 2% and 10% for
both nDGPmodels respectively. The variance of a smoothed
density field is a position space counterpart of a matter
density power spectrum PðkÞ ¼ hδkδ�ki, which is a 2-point
variance statistic for Fourier modes. For completeness we
show the power spectra alongside their fractional deviations
in Fig. 5. The picture fostered here is consistent with the
behavior exhibited by real-space variance, σ2. The degree of
the deviation from a GR fiducial value, as well as the similar
scale independence of this enhancement agree well with
what we have observed earlier. However, thanks to the
decomposition of the density field into an orthogonal basis
of density fluctuationmodes, we can easier depict character-
istic features of the Vainshtein screening mechanism.
Namely, at small scales, where the density field variance
is dominated by the interiors of virialized haloes,we can start

to observe the suppression of the nDGP enhanced clustering
due to effective screening of the fifth force. This was studied
inmuch greater detail by other authors (see e.g. [99]), but we
can confirm that our simulations, up to their rather limited
mass resolution, abide to those findings (see also [58]). An
important observation here consists of noting that aswe have
predicted, the simple 2-point statistics is not capable of fully
capturing and describing the otherwise complicated depar-
tures of the nDGP cosmic density field from the fiducial GR
case, as was hinted by the PDFs shown in Fig. 4. This
indicates a need to look at higher-order moments in order to
get further insights into the gravitational evolution of
clustering in MG theories with the Vainshtein screening.

3. Higher moments and hierarchical cumulants

In this section we look into the behavior of higher-order
moments of the density fields on a range of cosmic scales
and epochs. We first take a look at the averaged correlation
functions themselves before focusing on the reduced
cumulants. In Fig. 6 we plot the beautiful correlation
hierarchy formed by all the central moments from ξ̄2 up
to ξ̄9 at z ¼ 0 (left panel) and z ¼ 1 (right panel). For all our
models the consecutive higher-order correlation functions
exhibit tiered behavior with the same monotonic scale
dependence. Here, the picture broadly agrees with what we
have observed already for the variance alone. Namely, the
main effect of the nDGP fifth force is reflected in the ξ̄n’s
amplitudes, which are increased by a nearly constant factor
over the range of the scales. We can also comment on a
clear emergence of the effects induced by the finite volume
of our simulations. In agreement with well-established
theory [100], the higher-order moments are more severely
affected by the limited size of our simulations, which is
indicated by the fact that the moments from ξ̄6 and

FIG. 5. The matter density power spectrum computed at z ¼ 0
for our fiducial GR model (solid line) and two nDGP flavors
(dotted and dashed-dotted lines). The shaded region illustrate the
cosmic variance error. The bottom panel illustrates the fractional
difference of both MG models with respect to the GR case.
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above could only be reliably estimated up to scales
of ∼10–20h−1 Mpc.
The situation gets much more interesting when we

contemplate the reduced cumulants, Sn’s, which are shown
for the same two redshifts in Fig. 7. We can observe here the
sensitivity of these statistics to the nonlinear gravitational
evolution, as was established by many other authors
[75,77,78,101,102]. In contrast to the connected moments
alone, the nDGP-induced deviations of the matter hierar-
chical amplitudes are characterized by a strong scale
dependence. Here, at z ¼ 0, the deviations take significant
values at small scales R≲ 6h−1 Mpc, while going back to
the fiducial GR predictions at larger separations. This
behavior is nearly not present at z ¼ 1, indicating that the
features we observe here in Sn’s are induced by nonlinear
gravitational dynamics, which at late times induce the
change of the power spectrum shape at small scales, where
the Vainsthein mechanism is at play (see e.g. the high-k tail

in the lower panel of Fig. 5). The ratios for reduced
cumulants as described in Eqs. (7) and (12), are sensitive
by this shape change induced by modified structure
formation. Hence we can confirm the potential of the
density field hierarchical amplitudes as potential probes of
modified gravitational dynamics, a finding already empha-
sized in clustering studies for a different class of MG
theories [53,62].
We now want to obtain a more quantitative measure of

the general Sn’s behavior observed above. Since our N > 5
moments are severely affected by finite-volume effects at
even intermediate scales, in the following we will limit our
analysis to only first three reduced cumulants: skewness
(S3), kurtosis (S4) and S5. We are interested in the fractional
differences (ΔS) of the nDGP hierarchical amplitudes taken
as always with respect to the fiducial GR case assessed for a
range of scales and epochs. We plot the results for the three
cumulants taken at three redshifts: z ¼ 0, 0.5 and 1 in the

FIG. 6. Hierarchy of n-point volume averaged correlation functions ξ̄nðRÞ computed for smoothed dark matter density fields at z ¼ 0
(left panel) and z ¼ 1 (right panel). Shaded regions (hardly visible) mark a combination of sampling and cosmic variance errors for the
GR cases.

FIG. 7. Hierarchical clustering amplitudes SnðRÞ computed for smoothed dark matter density fields at z ¼ 0 (left panel) and z ¼ 1
(right panel). Shaded regions (hardly visible) mark a combination of sampling and cosmic variance errors for the GR cases.
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nine panels of Fig. 8. As already observed in the previous
plots, the non-GR signatures decrease with redshift
and increase with the reduced cumulant order. For all
the cases except the reduced skewness, we can observe
some erratic behavior at large scales. This is driven by the
relatively limited volume of our simulation, and we can
attribute this behavior to noise, as indicated clearly by the
cosmic variance shaded areas engulfing all the lines at
R≳ 6h−1 Mpc. However, at large scales there could be
potentially interesting features appearing around the baryon
acoustic osscilations (BAO) wiggle, which is a common
feature predicted to exist at a fraction of the acoustic
horizon scale in the higher-order moments (see the details
in [103]). Our current limited simulations prevents us from
charting this territory, and we will leave the studies of the
BAO-related scales for the future.
Focusing on small scales, where cosmic variance is

subdominant, we note that there is a strong signal at a level
of significance > 2–3σ present for both our nDGP models
in S4 and S5. The predicted deviations of the large cross-
over scale model of Ωrc ¼ 0.0124 for S3 are too small to be
significant in the presence of our sampling noise. However,
for the case of the stronger nDGP model its signature is
prominent enough to constitute a > 2σ strong signal for all
redshifts even in the skewness alone.

B. Haloes

It is always very insightful to trace and study the
correlation hierarchy induced by gravitational clustering
on the matter density field. In the previous section we have
seen that the fifth force induced by the scalar-field

propagation in the nDGP cosmology affect the higher-
order moments of the matter density field only at relatively
small scales. This was consistent with the behavior we
could trace in the full 1D PDFs of the density field.
However, in reality the matter density field is not accessible
to us directly from observations. This is why we will now
analyze the clustering hierarchy exhibited by dark matter
halo populations as found in our simulations. As described
in Sec. II B we split our DM haloes into various popula-
tions, based on their spatial averaged abundances. In this
way, we can study the clustering of different density tracers,
and in principle such halo populations can be (after making
some simplifying assumptions) related to various popula-
tions of observed luminous galaxies. We shall not attempt
to model here any more complicated effects that are related
to a given galaxy survey selection, nor any geometry
effects. This would require construction of a dedicated
survey-specific mock galaxy catalog and our current
simulations are too limited in volume and resolution to
allow for such a procedure. However, in the future, once
more advanced and bigger MG simulations become avail-
able, it will be worthwhile to apply our analysis to survey-
dedicated mocks.

1. 2-point statistics

We begin with taking a look at the 2-point clustering
statistics expressed in terms of the configuration space 2-
point correlation functions ξðrÞ. In Fig. 9 we plot in three
panels, the scaled r2ξðRÞ for the dark matter subsample
with n̄ ¼ 1.8 × 10−3h3=Mpc3 (left panel), the centralþ
satellites halo sample with n̄ ¼ 1.4 × 10−3h3=Mpc3 at

FIG. 8. Fractional differences from the GR taken across three epochs z ¼ 0, 0.5, 1 (rows of panels from top to bottom) of the first three
matter density reduced cumulants S3, S4 and S5 (columns of panels from left to right). Shaded regions illustrate the total error budget
(cosmic varianceþ shot noise) on the ratios.
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z ¼ 0 (middle panel) and the centrals only sample with
n̄ ¼ 1.3 × 10−3h3=Mpc3 (right panel). We consider the
three epochs z ¼ 0, 0.5 and 1, with the higher redshifts
lines down-scaled for brevity. As usual we show the relative
ratios to the fiducial GR case in the bottom panels, here
displayed only for the z ¼ 0 case, where the deviations
from GR are the strongest. Since now we have individual
pair-number counts for each model in each separation bin
rþ Δr, we decide to show the Poisson error bars reflecting
given number counts separately from the cosmic variance
error (shaded region). For the matter ξ2 we observe that the
nDGP deviations appear on all scales probed, however due
to large cosmic variance plaguing our simulations, the 1σ
significance is limited to pair-separation scales of r≲
15ð40Þh−1 Mpc for nDGPa (nNDGb)models. The situation
for both our most-abundant halo populations is in stark
contrast. Firstly, we need to note that the relative differences
are much smaller. While for the DM 2PCF the model with
the smallest cross-over scale attained a difference of a 25%
magnitude, for haloes the maximum departure from the GR
2PCF amplitude is around 5%, except for the smallest
separations r ∼ 1–3h−1 Mpcwhere it reaches 10% strength.
We have also check the 2PCF amplitudes for our more
diluted halo samples. There, the error due to sparse-
sampling shot noise is much more severe rendering all
the differences from the GR at small scales to be statistically
insignificant.
This was a very important exercise. The study of the

ξ2ðrÞ amplitudes has revealed that in the case of nDGP

gravity the strong signal present in the matter density field
clustering gets strongly suppressed and nearly diminishes
when one look at the clustering of DM haloes. There still
might be a possibility to identify and extract a more robust
MG signal in the 2PCF alone. For example one might try to
use a specific combinations of ξ2 amplitudes taken at
different scales and for different galaxy/halo samples such
as the clustering ratios advocated in [52]. However, a
detailed study of this kind would require simulations with
more realizations, so the cosmic variance contribution
would be minimized. Thus we postpone it for the future,
when such data sets will become available.

2. Higher moments and hierarchical cumulants

As we have mentioned a couple of times already the two-
point statistics are not enough to tell the full story. As in the
case of the DM clustering, we can expect that MG effects
on the halo clustering statistics might be better visible in the
higher-order moments. The general picture for the case of
plain central averaged moments ξ̄n is very similar to the one
we have observed for the matter clustering moments shown
in Fig. 6, thus we will skip this and jump straight away to
the reduced cumulants Sn’s. We plot them at z ¼ 0 for two
halo samples (centrals only and centralsþ satellites) in
Fig. 10. First, we would like to focus on the impact made by
removing the satellites from the halo sample. This effect is
clearly visible in the lower panel for R≲ 3h−1 Mpc, where
especially the higher-order cumulants starting from S6
experience a dramatic suppression of amplitude at those

FIG. 9. Two-point correlation functions computed as a pair separation function R. Left panel: Two-point statistics for subsampled dark
matter particles three our models: GR (solid blue), nDGP Ωrc ¼ 0.0124 (dashed orange) and nDGP Ωrc ¼ 0.438 (dashed-dotted red).
The shaded regions mark illustrative cosmic variance error for the GR case. Three distinctive epochs are shown: z ¼ 0, 0.5 and 1.
Consecutive values of r2ξ2ðrÞ were scaled down to allow better presentation. Middle panel: Same as the left panel but for all DM haloes
(centrals and satellites) identified in our simulations. Right panel: Same as the middle panel but only for main haloes. In all three cases
the lower subpanels illustrate the fractional departure from the fiducial GR case (ξ2=ξGR2 − 1) at z ¼ 0. Here the error bars mark the
Poisson sampling errors for the pair-number counts in each rþ Δr separation bin. In contrast the shaded region (shown only for z ¼ 0
for clarity) reflect the cosmic variance error contribution.
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scales. This effect is caused by halo exclusion. By remov-
ing the subhaloes from our sample we are unable to probe
the 1-halo regime any more. Thus at scales that are
comparable with halo sizes we are left with only two
limiting cases, one or zero halo count in a given region of
space. This is a well-known effect [104,105]. However, an
important observation can be made here. By studying the
scale and the magnitude of the halo exclusion effect we
have found that they are in quantitative agreement for all
three models we study here. This is consistent with the very
similar satellites fractions we have found for all the three
simulations (see Sec. II B).
The second important feature fostered by the results

shown in Fig. 10 is that the differences between models are
much larger and also extend to larger scales than what we
have observed for the matter field. The additional contrast
here is the fact that now the differences from GR can take
both negative and positive sign, while they only were
negative in the case of DM. As we will see later, especially

for the Ωrc ¼ 0.438 case, for most of the scales considered
the reduced cumulants take actually larger amplitudes than
in the GR case. This behavior is exactly opposite to the one
we have witnessed for the matter density hierarchical
amplitudes. Since the reduced cumulants are scaled by
the averaged variance this effect ought to be driven mostly
by higher-order biasing of haloes.
To obtain a more quantitative insight into the nDGP

effects we will focus on the first three cumulants (S3 − S5)
estimated at z ¼ 0 for which we find the strongest
differences. We show the relative deviations from GR of
these hierarchical amplitudes for three halo samples in
Fig. 11. Since the ratios get too noisy to allow for a more
robust analysis we take an average 3-bin centered value to
smooth the data. The general trend that the non-GR
signature gets stronger as we consider higher moments
is also confirmed. Interestingly, we observe that the relative
differences here can take much larger values than in the
case of DM cumulants and they are carried up to much
larger scales. While for the matter density all cumulants
started to converge on the GR values for R≳ 10h−1 Mpc,
here for all our halo samples the differences can still be as
large as 10%–40% up to R≲ 50h−1 Mpc.
For the case of the reduced skewness the difference

is only significant for the stronger nDGPb model and only
for the richest one of our halo samples (centralsþ
satellites), where themagnitude of non-GR signal is varying
from 5% to 10% at the scales we consider. Despite the fact
that ΔS3 is relatively small, there is a significant departure
from the GR mean, reaching for 4 ≤ Rðh−1 MpcÞ−1 ≤ 9
a 3σ statistical strength. By considering two main halo
samples only (hni¼9×10−4h3=Mpc3 and hni¼1×
10−4h3=Mpc3) we observe, that the relative differences
from the GR case are larger for the sparser of the two
samples. We need to conclude however that the errors
connected with the shot noise and sparse sampling are so
severe that the non-GR signature is enveloped by the noise
for the case the two central halo samples.We can expect that
going to higher spatial abundances (hence lower-mass
haloes) would improve the situation. However, a new class
of higher-resolution simulations are needed to perform such
a study. It is also clear that for all three halo samples the
Ωrc ¼ 0.0124 signature is too weak to be significant. It
emerges above the sampling-noise error envelop only at the
smallest probed scale (R ¼ 1h−1 Mpc) for centralsþ
satellites sample, alas with a statistical signal less than 2σ.
Now we want to focus on the reduced kurtosis, since it

appears that this cumulant can be potentially the most
promising observable to look for a significant non-GR
signature. Here all halo samples contain a significant nDGP
signal at different scales. For the large cross-over scale of
nDGPa model we find that at R≲ 3h−1 Mpc the signal
reaches a few σ significance. For the stronger nDGPbmodel,
the signal is significant and very prominent for all scales
when we consider the centralsþ satellites sample and up to

FIG. 10. The hierarchical amplitudes tiered from the reduced
skewness, S3, (the most bottom group of lines in each panel) to S9
(the top group of lines in each panel) calculated for the DM halo
overdensity field at z ¼ 0. In the top panel we show the data for
all haloes found in our simulations (centralsþ satellites), while in
the bottom panel we use main haloes only (centrals).

HELLWING, KOYAMA, BOSE, and ZHAO PHYSICAL REVIEW D 96, 023515 (2017)

023515-14



R≲20h−1Mpc for centrals with hni¼ 9×10−4h3=Mpc3.
For the lowest density sample the departure from the GR
case is so strong that it is still significant in the regime
2≲ R=ðh−1 MpcÞ≲ 20. This is a very promising result, as
such a number density of tracers can be already attained by
for example the luminous red galaxy (LRG) sample in the
SDSS/BOSS survey [106]. Thus, our findings open an
exciting possibility to use the reduced kurtosis of LRG
clustering as a discriminatory test for non-GR theories
involving the Vainshtein screening. For the large cross-over
scale model we observe that it departures from the GR case
in a significant way only at small scales. For the main halo
sample at R ≤ 3h−1 Mpc the signal becomes marginally
(2–3σ) strong.
Finally, we move to S5, which fosters, as predicted, the

largest relative deviations from the GR case. Alas, at larger
separations (R≳ 20h−1 Mpc) and for sparser samples the
ratio of nDGP to GR becomes very erratic and starts to
fluctuate around zero. This reflects both the fact that our
simulations are characterized by relatively low volume
coverage and the fact that higher-order moments are very
vulnerable to sparse sampling noise. Nonetheless, for our
richest sample the non-GR signature reaches∼40% (∼10%)
for nDGPb(nDGPa) at R ∼ 8–10h−1 Mpc. The correspond-
ing statistical significance is 8σ and 3σ respectively. For the
centrals only with hni ¼ 9 × 10−4 h3=Mpc3 we find that the
strong nDGP model experiences a significant departure
from the GR for R≲ 20h−1 Mpc, where at the smallest
scales (R≲ 5h−1 Mpc) the statistical significance for the S5

reaches up to 6 − 7σ from the GR mean. Here, for the same
sample, the mild nDGPmodel at larger separations fluctuate
around the GR case, but again at the small scales <
3h−1 Mpc the deviation becomes strong, reaching magni-
tude of 5σ. For both models and at all scales the ratio of S5
experiences a large scatter with the hni¼ 1×10−4h3=Mpc3

sample. Here, the signal could in principle be strong enough
for a prospective detection, but our simulations are not good
enough to allow us to make that claim.
We can conclude that our analysis indicates that the

reduced kurtosis, S4, appears to offer a most beneficial
combination of the non-GR signature amplitude and noise
properties to maximize the signal strength. While S5 fosters
usually stronger relative differences, it appears to be really
noisy for our halo samples as well. However in principle,
one could imagine that with a data sample covering a much
larger volume, the impact of the finite-volume effect would
be suppressed, increasing the quality of the signal in S5. We
also see that for most of the cases, if one considers only a
very mild MG model, one needs to go to really small scales
(R≲ 5h−1 Mpc) to look for a prominent signal. At such
small scales, deep into the nonlinear regime, the modeling
of galaxy clustering becomes very complicated due to
various degeneracies connected with baryonic effects and
nonlinear galaxy bias [39,107–109].

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the gravitational instability
mechanism of the GR and two nDGP models as our chosen

FIG. 11. Fractional differences from the GR taken at z ¼ 0 for three halo samples: hni ¼ 1.4 × 10−3 h3=Mpc3 (centralsþ satellites),
hni ¼ 9 × 10−4 h3=Mpc3 and hni ¼ 1 × 10−4 h3=Mpc3 (rows of panels from top to bottom) of the first three reduced cumulants S3, S4
and S5 (columns of panels from left to right). Shaded regions illustrate the total error budget (cosmic varianceþ shot noise for each halo
sample) on the ratios. The data for S5 and hni ¼ 1 × 10−4 h3 Mpc3 is not shown due to large scatter and noise.
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test-case examples of MG with the Vainshtein screening
mechanism. To follow the gravitational evolution into the
nonlinear regime we have conducted and analyzed a
series of N-body simulations implementing WMAP9 cos-
mogony and the nonlinear dynamics of GR and nDGP with
Ωrc ¼ 0.0124 and 0.438. Specifically, we have focused on
using both low and high-order clustering statistics to
study the matter density field and halo clustering
across the cosmic epochs (from z¼1 to z¼0) and scales
(from 1 to 100h−1 Mpc). For the haloes we have considered
a few different populations characterized by a different
spatial abundances (from hni¼1.9×10−3h3=Mpc3 to
1×10−4h3=Mpc3). Thus, in the spirit of the abundance
matching,we havemade a first attempt towardsmodeling of
observables that can be easier associated with the different
observational samples of many galaxy surveys. Here we
provide a list of our findings constructed to emphasize the
most important ones:

(i) For all considered models and density field statistics
we have found that the maximal relative difference
from the GR case is always attained at z ¼ 0 and is
generally a monotonic function of time.

(ii) The investigation of one dimensional pðδþ 1Þ
functions has revealed that the PDFs of all models
take maximums at the same averaged density values,
but are characterized by different shapes of low
and high density tails. The most prominent was the
increased MG PDF width (reflected in measured
later larger variance). We also noticed a significantly
larger asymmetry (especially for the smallest
smoothing scale R ¼ 0.5h−1 Mpc). In all cases
and for all epochs the 1-point density statistics
indicated that the nDGP matter density fields are
characterized by enhancements at both lower and
higher density tails.

(iii) Both the matter density field variance and the power
spectrum fostered consistent picture. Here, the non-
GR models are characterized by a nearly constant
and scale-independent enhancement factors of 4
and 20% for our mild and strong nDGP models
respectively.

(iv) We found a remarkable agreement of the PT-based
estimators for the variance and the skewness with
our N-body results. The absolute amplitudes are in
percent-level agreement down to 10ð15Þh−1 Mpc for
the variance (skewness). At the same time the
relative deviations from GR retained the accuracy
even down to smaller scales of ∼5h−1 Mpc.

(v) The high-order moments of the matter field, ξ̄2 − ξ̄9
were only mildly affected by the MG dynamics.
However, the corresponding hierarchical amplitudes
S3 − S8 are marked with significant deviations from
the GR case at small scales R≲ 10h−1 Mpc for the
z ¼ 0. At higher redshifts the differences are typi-
cally sizeable smaller. The main feature is that nDGP

models are characterized by smaller amplitudes Sn
with respect to the GR fiducial case at small scales,
while they converge to the GR values at larger
separations (i.e. R≳ 10h−1 Mpc). This reflect the
fact that at larger scales the matter power spectrum
[PðkÞ] and variance [σ2ðRÞ] are enhanced by a
constant factor, but the nDGPgravity does not change
their shape.

(vi) In the 2PCF the relative deviations from the GR
were observed to be much stronger for the DM case
than in the halo sample. With the deviations in the
matter clustering stretched out to even large scales
∼10h−1 Mpc. This was not found to be the case for
the halo 2PCF, where the significant differences
were contained only to the smallest pair separa-
tions R≲ 10h−1 Mpc.

(vii) The non-GR signal was much stronger in higher-
order halo clustering statistics. Reduced moments
are characterized by departures from GR-fiducial
values up to much larger scales (R≳ 50h−1 Mpc)
than in the case of DM clustering. A side remark
would be that the halo exclusion effect was marked
prominently in higher Sn’s for the centrals-only
sample.

(viii) Qualitatively we have found that the skewness offers
a good chance constrain only strong nDGP models
(like our nDGPb) and only for our halo sample with
the highest spatial density. On the other hand, our
study has pinpointed the reduced kurtosis as an
excellent candidate for a very promising cosmologi-
cal MG probe. Here the nDGPb signal is prominent
on all nearly scales and for all halo samples. The
model with large cross-over scale nDGPa is also
harboring strong signal, alas contained to only small
scales of R≲ 3h−1 Mpc. In general, we were able to
identify the non-GR signal with a good statistical
significance, varying from 3 to 8σ for a given model.

(ix) Lastly, we have observed even stronger relative
signal in S5, however this was accompanied by a
much larger sampling noise effectively reducing the
statistical significance of it. We advertise however,
that with a better and larger-volume sample it might
become feasible to extract MG signal from S5 with a
large statistical significance.

In the literature we find abundant studies pointing toward
a very similar picture as fostered by our analysis. In general,
we see a trend in dark matter clustering properties in models
exhibiting a non-negligible fifth force on intergalactic
scales, and this is shared among models despite a specific
screeningmechanism they employ. Namely, we observe that
the fifth force acting on DM in MG theories enhances the
gravitational instability process. This is reflected in a more
efficient transfer of matter from underdense to overdense
regions, which results in cosmically depressed regions,
like cosmic voids, to be characterized by lower densities
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(see e.g. [51,110,111]). Due to mass conservation the
average density remains the same as in the GR case, hence
the first affected clustering characteristic is of the second
order, thus the variance of the density field.We saw that both
in the configuration space variance as well as in the power
spectrum. The gravitational instability also naturally leads to
more complicated shape deviations of the density field
distribution function. This is reflected in growing amplitude
of the asymmetry rank—the skewness, or tails squashing as
measured by the kurtosis. To understand why the fifth-force
dynamics, while enhancing the density variancewith respect
to the fiducial GR case, actually leads to lower skewness and
kurtosis (and higher-order cumulants as well), we need to
recall that there is an intrinsic asymmetry imprinted in the
density field described by the density contrast δ. While on
the positive side of the distribution the density can grow to
arbitrarily large values, reaching presently for example
orders of ∼106 in the very centers of cluster sized DM
haloes, on the negative size there is a fundamental barrier of
δ ¼ −1, which reflect the limiting case of a zero density in an
absolutely empty region of space. Thus in MG scenarios,
and in the nDGP in particular, more empty voids lead to
reduced asymmetry of the PDF thanks to the enhanced δ < 0
tail of the distribution. One could argue that in general the
more emptier voids are compensated by increased density
inside haloes and filaments. But since the latter are occupy-
ingmuch smaller fraction of the Universe, the overall effects
of voids prevails in the higher-order cumulants.
The DM density field is not accessible to observations,

but one is able to measure the distribution of the total
matter by using weak lensing techniques. It has been already
proven that weak lensing statistics such as the lensing
convergence κ and its power spectrum Cκκ are useful
cosmological probes. Our results for the matter density
moments indicate that thenon-GRsignaturewe found should
also be present in weak lensing statistics [112,113].
However, it would be very hard to assess the feasibility of
the weak lensing statistics as probe of nDGP-kind of MG.
This is because, as our studies have found, most of the MG
induced effects are confined to relatively small scales
R≲ 10h−1 Mpc. There, the baroynic effects related to
energetic processes of galaxy formation are a source of a
major influence on the total matter distribution [107,109]. A
separate dedicated study, involving self-consistent hydrody-
namical simulations with galaxy formation physics are
needed to test the robustness and usability using the
distortions of matter clustering as a MG probe.
The second part of the analysis presented in this work

yields however a much more optimistic picture. Our studies
of the higher-order halo clustering statistics have shown
that there is a very appealing opportunity to use the reduced
cumulants as cosmological probes of non-GR models and
simultaneously consistency checks for GR. Here, espe-
cially the reduced kurtosis appears as the most promising
statistics. Since, we have not attempted any realistic galaxy

modeling beyond some simple abundance matching
approach, we should caution that there are still a number
of potential systematics effects related to both galaxy
formation and survey selection that can potentially weaken
the MG signal we have found. However, the fact that the
strong signal was present in all three halo samples we
considered, is an optimistic indicator that the MG signature
persists over a range of halo masses. Thus, we can expect
that it should be also present in galaxy samples constructed
using various selection criteria.
Another source of potential worry consists of a notion

that the clustering statistics that are measured from spectro-
scopic galaxy surveys concerns the position of galaxies in
the redshift space. In the present study we have only
focused on position space clustering neglecting the effects
of halo peculiar velocities. In MG theories we can expect in
general that the fifth force is affecting the comic velocity
field much stronger than the density alone [49,50], this may
lead to a signal degeneracy at scales where the both
clustering and halo velocities are strongly affected. Thus,
redshift space distortions contrary to classical approach,
where they are a source of rich cosmological information,
in the case of the reduced cumulants are a source of another
systematic. Withal, it has been shown that in the case of the
hierarchical amplitudes, the redshift space distortion
appears to affect the variance and the higher-order moments
to a similar degree, and since these two quantities appears
in the denominator and numerator of Sn formula respec-
tively, the overall redshift space effect is suppressed [114].
Thus, one can hope that the signal we have identified in this
work would persists also in the redshifts space cumulants of
galaxy clustering.
Therefore, we strongly advocate here the urgent need for

good quality galaxy mock catalogs for MG theories that
would allow us to test for the robustness of MG signal in
galaxy Sn’s. Once survey-specific galaxy mock catalogs for
MG models are successfully created, one can test the effect
of all various systematics effects related to survey geometry
and selection and relate their magnitude to the expected
non-GR signal amplitude.
A quick investigation of the signal to noise of the Sn’s

amplitudes estimated from the current and past surveys like
SDSS/BOSS [115], 2dF [116,117] or VIPERES [118]
suggests that the statistical and systematical uncertainties
contribute to the skewness and kurtosis error budget at the
level of from ∼20% to even 100%. Such errors are still
bigger or at best comparable with the amplitude of the
deviations from GR that we have identified in our analysis.
However, improved theoretical modeling based on new-
class high-quality galaxy mock catalogs combined with
even more powerful data from incoming stage III and IV
experiments should allow us to measure the reduced
cumulants with enough precision.
Assuming the level of the control over systematic errors

for the 2-point clustering to be of the same magnitude as the

REVEALING MODIFIED GRAVITY SIGNALS IN MATTER … PHYSICAL REVIEW D 96, 023515 (2017)

023515-17



statistical errors contribution (∼1%) yields Δξ22=ξ22 ∼ 2%
and Δξ3=ξ3 ∼ 3%. Provided that this accuracy will hold
also for nonlinear scales of galaxy clustering (i.e.
≲10 h−1Mpc) we can expect that the future surveys
covering volumes of ∼ð10 Gpc=hÞ3 should allow to esti-
mate the skewness and kurtosis with ΔS3=S3 ∼ 5% and
ΔS4=S4 ∼ 10% respectively. Thus, the incoming data from
the grand-scale programs like Euclid, DESI and LSSTwill
allow for an independent and robust test of GR and non-GR
models on intergalactic scales.
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