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We revisit the cosmological and astrophysical constraints on the fraction of the dark matter in primordial
black holes (PBHs) with an extended mass function. We consider a variety of mass functions, all of which
are described by three parameters: a characteristic mass and width and a dark matter fraction. Various
observations then impose constraints on the dark matter fraction as a function of the first two parameters.
We show how these constraints relate to those for a monochromatic mass function, demonstrating that they
usually become more stringent in the extended case than the monochromatic one. Considering only the
well-established bounds, and neglecting the ones that depend on additional astrophysical assumptions, we
find that there are three mass windows, around 5 × 10−16M⊙, 2 × 10−14M⊙ and 25–100M⊙, where PBHs
can constitute all the dark matter. However, if one includes all the bounds, PBHs can only constitute of
order 10% of the dark matter.
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I. INTRODUCTION

Besides its gravitational interaction, little is known about
the nature of dark matter (DM) except that it is dynamically
“cold.” Although the cold dark matter is usually assumed to
be some form of elementary particle [1,2], there is still no
evidence for this and PBHs which are too large to have
evaporated by now are a possible alternative [3]. Because
they form when the baryons only comprise a small fraction
of the total cosmological density [4–6], they are exempt
from the big bang nucleosynthesis limits on the baryonic
density [7]. Being much more massive than elementary
particles, they could also have a greater variety of obser-
vational consequences. Indeed the PBH scenario is already
severely constrained by cosmological and astrophysical
observations [8,9].
The recent detection of gravitational waves from

merging black holes with mass Oð10ÞM⊙ by LIGO
[10,11] has revived interest in the possibility of PBH
DM [12–15]. Although the PBH coalescence rate depends
on very uncertain astrophysical parameters, explaining the
observed event rate would require the PBHs to contain at
least a substantial fraction of the DM.
This has led to a reassessment of the existing PBH

bounds in two directions. First, it has been argued that the
existing constraints on PBHs with monochromatic mass
functions can be relaxed by invoking extended mass
functions [16,17], the latter arising naturally if the PBHs
are created from inflationary fluctuations [16–27] or some
form of cosmological phase transition [28–31]. However,

there is still no rigorous treatment of how to apply the PBH
bounds for an extended mass function and different
analyses have led to different conclusions. For example,
the authors of Ref. [9] concluded that intermediate mass
PBHs could provide the DM, whereas those of Refs. [32]
and [33] reached the opposite conclusion. Second, there
have been revisions to the constraints themselves, with
some previous bounds being weakened (e.g., those asso-
ciated with accretion [34–37]) and some new bounds
being added. Indeed, the constraints are being constantly
revised and the recent review of Ref. [9] already needs to be
updated.
Currently there is no comprehensive study which

combines these two approaches. In this paper, we fill
this gap by presenting a general method for analyzing
the latest PBH constraints over the broad mass range
10−18–104M⊙ and applying them to an extended PBH
mass function.
It should be stressed that PBHs could play an important

cosmological role even if they have much less than the
DM density. For example, they could be useful in explain-
ing rapid structure formation at small cosmological scales,
provide seeds for supermassive black holes or galaxies and
explain other unsolved astrophysical and cosmological
puzzles [38,39]. This underlines the importance of knowing
how the PBH density is distributed between different
masses.

II. CONSTRAINTS ON MONOCHROMATIC
PBH MASS FUNCTION

The main constraints on a PBH population derive
from PBH evaporations, various gravitational lensing
experiments, neutron star capture, numerous dynamical
effects, and PBH accretion. The form of these constraints
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for a monochromatic PBH mass function is indicated in the
upper left panel of Fig. 1, together with relevant references.
It must be stressed that these constraints depend on various
cosmological and astrophysical assumptions, as well as
unknown black hole physics. We therefore list these
uncertainties explicitly.
The constraints on PBH evaporation via Hawking

radiation [50] depend on the observed extragalactic photon
flux intensity, I ∝ E−1−ϵ, where E is the photon energy and
ϵ parametrizes the spectral tilt [9]. There is some uncer-
tainty in this parameter, so we present our results for the
two extreme cases: ϵ ¼ 0.4 (solid purple line) [51] and
ϵ ¼ 0.1 (dotted purple line) [52].

The cosmic microwave background (CMB) anisotropy
constraints on PBH accretion are subject to uncertainties in
the accretion process and its effect on the thermal history
of the Universe at early times. To account for this, we show
the bounds for both collisional ionization (solid dark blue
line) and photoionization (dotted dark blue line) [36].
Recently, another sort of accretion limit has been obtained
in the mass range from a few to 107M⊙ on the grounds that
PBH accretion from the interstellar medium should result
in a significant population of x-ray sources [53]. Indeed,
several earlier papers have considered such a limit [54,55].
However, all these limits are very dependent on the
accretion scenario and are therefore not shown.

FIG. 1. Upper left panel: Constraints from different observations on the fraction of PBH DM, fPBH ≡ ΩPBH=ΩDM, as a function of the
PBH mass Mc, assuming a monochromatic mass function. The purple region on the left is excluded by evaporations [8], the red region
by femtolensing of gamma-ray bursts (FL) [40], the brown region by neutron star capture (NS) for different values of the dark matter
density in the cores of globular clusters [41], the green region by white dwarf explosions (WD) [42], and the blue, violet, yellow and
purple regions by the microlensing results from Subaru (HSC) [43], Kepler (K) [44], EROS [45] and MACHO (M) [46], respectively.
The dark blue, orange, red and green regions on the right are excluded by Planck data [36], survival of stars in Segue I (Seg I) [47] and
Eridanus II (Eri II) [48], and the distribution of wide binaries (WB) [49], respectively. The black dashed and solid lines show,
respectively, the combined constraint with and without the constraints depicted by the colored dashed lines. Other panels: Same as the
upper left panel but for a lognormal PBH mass function with σ ¼ 2 (upper right) and for a power-law PBH mass function with γ ¼ −1
(lower left) and γ ¼ 1 (lower right).
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Lensing is the only phenomenon which has been claimed
to provide positive evidence for PBHs. For example, the
results of the MACHO project—searching for microlensing
of stars in the Magellanic clouds—originally suggested
halo DM in the form of 0.5 M⊙ objects [56] and these
could plausibly be PBHs formed at the quark-hadron phase
transition at 10−5 s. However, the DM fraction was later
reduced to 20% [57]. The interpretation of the MACHO
results—and also the EROS and OGLE results—is very
sensitive to the properties of the Milky Way halo. In
particular, it has been argued that the recent low-mass
Galactic halo models would relax the constraints and allow
the halo to consist entirely of solar mass PBHs [58]. Where
only a constraint is claimed, rather than a positive detection,
it is important to specify the associated confidence level
(C.L.). For all lensing constraints shown in Fig. 1, we use
the 95% C.L. constraint given in Refs. [43–46].
There is also positive evidence for microlensing

from quasar observations, which indicate that 20% of
the total mass is in compact objects in the mass range
0.05 − 0.45M⊙ [59]. This is compatible with the expected
characteristics of the stellar component and the observa-
tions may also exclude a significant population of PBHs
outside this mass range. However, this constraint is not
used in our analysis because it is difficult to express the
result of Ref. [59] as a quantitative upper bound on the PBH
mass fraction. This result may also conflict with the recent
claim that long-term radio variability in the light curves
of active galactic nuclei (AGN) arises from gravitational
millilensing of features in AGN jets [60]. This claim could
imply that the DM is either individual black holes of mass
103–106M⊙ or clusters of this mass comprising smaller
black holes.
In the latter context, relaxing of lensing constraints

would apply if the PBHs were spatially clustered into
subhalos. As stressed in Ref. [14], this is expected if PBHs
are part of a larger-scale overdense region. However, this
effect depends on details of small-scale structure formation
which are not fully understood, so we simply adopt the
results presented in the current literature.
Observations of neutron stars limit the PBH abundance

and indeed it has been claimed that this excludes PBH DM
over a wide range of masses. However, these limits are
dependent on the DM density in the cores of globular
clusters, which is very uncertain. Following Ref. [41], the
neutron star capture constraint is presented for three values
of this density (dashed and dot-dashed brown lines).
It must be stressed that the constraints in Fig. 1 have

varying degrees of certainty and they all come with caveats.
For some, the observations are well understood (e.g., the
CMB and gravitational lensing data) but there are uncer-
tainties in the black hole physics. For others, the observa-
tions themselves are not fully understood or depend upon
additional astrophysical assumptions. To address the asso-
ciated uncertainties in a systematic way, we split the

constraints into two classes. The first class (shown in
Fig. 1 as solid lines) are relatively robust, while the second
class (shown as dashed lines) are somewhat less firm and
depend upon astrophysical parameters. In particular, this
applies to most of the dynamical and accretion constraints
(e.g., those associated with dwarf galaxies, wide binaries,
and neutron stars). However, we stress that this division is
not completely clear-cut. In the following, we present our
results for the two classes of constraints both separately and
together.

III. CONSTRAINTS ON EXTENDED
PBH MASS FUNCTION

If the PBHs span an extended range of masses, the mass
function is usually written as dn=dM, where dn is the
number density of PBHs in the mass range ðM;M þ dMÞ.
For our purposes it is more convenient to introduce the
function

ψðMÞ ∝ M
dn
dM

; ð1Þ

normalized so that the fraction of the DM in PBHs is

fPBH ≡ΩPBH

ΩDM
¼

Z
dMψðMÞ; ð2Þ

where ΩPBH and ΩDM ≈ 0.25 are the PBH and DM
densities in units of the critical density. The lower cutoff
in the mass integral necessarily exceeds M� ≈ 4 × 1014 g,
the mass of the PBHs evaporating at the present epoch [8].
Note that ψðMÞ is the distribution function for logM and
has units ½mass�−1.
In this paper we consider three types of mass function.
(1) A lognormal mass function of the form

ψðMÞ ¼ fPBHffiffiffiffiffiffi
2π

p
σM

exp

�
−
log2ðM=McÞ

2σ2

�
; ð3Þ

whereMc is the mass at which the functionMψðMÞ
peaks and σ is the width of the spectrum. This
was first suggested in Ref. [61] and is often a good
approximation if the PBHs result from a smooth
symmetric peak in the inflationary power spectrum.
This was demonstrated numerically in Ref. [32] and
analytically in Ref. [27] for the case in which the
slow-roll approximation holds. It is therefore rep-
resentative of a large class of extended mass func-
tions. Note that the lognormal mass function used in
Refs. [32,33,62] omitted the M−1 term in Eq. (3). In
this case, the position of the peak of MψðMÞ is no
longer Mc but eσ

2

Mc. The form (3) is more useful
for our purposes because MψðMÞ relates to the DM
fraction in PBHs of mass M.

PRIMORDIAL BLACK HOLE CONSTRAINTS FOR … PHYSICAL REVIEW D 96, 023514 (2017)

023514-3



(2) A power-law mass function of the form

ψðMÞ ∝ Mγ−1 ðMmin < M < MmaxÞ: ð4Þ

For γ ≠ 0, either the lower or upper cutoff can be
neglected if Mmin ≪ Mmax, so this scenario is
effectively described by two parameters. Only in
the γ ¼ 0 case are both cutoffs necessary. For
example, a mass function of this form arises natu-
rally if the PBHs form from scale-invariant density
fluctuations or from the collapse of cosmic strings.
In both cases, γ ¼ −2w=ð1þ wÞ, where w specifies
the equation of state, p ¼ wρ, when the PBHs form
[6]. In a noninflationary universe, w ∈ ð−1=3; 1Þ
and so the natural range of the mass function
exponent is γ ∈ ð−1; 1Þ. Equation (4) is not
applicable for w ∈ ð−1;−1=3Þ, corresponding to
γ ∈ ð1;∞Þ, because PBHs do not form during
inflation but only after it as a result of inflation-
generated density fluctuations. Special consideration
is also required in the w ¼ 0 (matter-dominated)
case [63,64], because then both cutoffs in Eq. (4) can
be relevant and this is discussed elsewhere [65]. In
the following analysis we will consider both positive
and negative values for γ but not zero.

(3) A critical collapse mass function [66–69],

ψðMÞ ∝ M2.85 expð−ðM=MfÞ2.85Þ; ð5Þ
which may apply generically if the PBHs form from
density fluctuations with a δ-function power spec-
trum. In this case, the mass spectrum extends down
to arbitrarily low masses but there is an exponential
upper cutoff at a mass scale Mf which corresponds
roughly to the horizon mass at the collapse epoch. If
the density fluctuations are themselves extended, as
expected in the inflationary scenario, then Eq. (5)
must be modified [9]. Indeed, the lognormal dis-
tribution may then be appropriate. So although the
mass function (5) is described by a single parameter,
two may be required in the more realistic critical
collapse situation.

To compare with the lognormal case, we describe the
mass function in the last two cases by the mean and
variance of the logM distribution:

logMc≡ hlogMiψ ; σ2≡ hlog2Miψ − hlogMi2ψ ; ð6Þ

where hXiψ ≡ f−1PBH
R
dMψðMÞXðMÞ. For a power-law

distribution these are

Mc ¼ Mcute
−1
γ; σ ¼ 1

jγj ; ð7Þ

where Mcut stands for maxðMmin;M�Þ if γ < 0 or Mmax
if γ > 0. For the critical-collapse distribution (5), the

exponential cutoff is very sharp, so the mass function is
well approximated by a power-law distribution with γ ¼
3.85 and Mmax ≈Mf. In this case Eq. (7) gives σ ¼ 0.26,
so the mass function is relatively narrow and even the
monochromatic form provides a good fit. Since critical
collapse should be a fairly generic feature of PBH for-
mation, σ ¼ 0.26 will usually provide a lower limit to the
width of the mass function. However, critical collapse may
not be relevant in all cases such as, for example, in the
cosmic string or matter-dominated (w ¼ 0) scenarios.
It must be stressed that two parameters should always

suffice to describe the PBH mass function locally (i.e.,
close to a peak) since this just corresponds to the first two
terms in a Taylor expansion. However, in principle the mass
function could be more complicated than this. For example,
depending on the form of the inflaton potential, it could
have several distinct peaks. Indeed, with a sufficiently
contrived form, these peaks could be tuned to exactly match
all the constraint windows.
The existing constraints on the allowed fraction of PBH

DM are commonly presented assuming a monochromatic
mass function (presented in the upper left panel of Fig. 1).
In the following we introduce a simple method for general-
izing these results to arbitrary mass functions. For this
purpose, consider an astrophysical observable A½ψðMÞ�
depending on the PBH abundance (e.g., the number of
microlensing events of given duration in a given time
interval). It can generally be expanded as

A½ψðMÞ� ¼ A0 þ
Z

dMψðMÞK1ðMÞ

þ
Z

dM1dM2ψðM1ÞψðM2ÞK2ðM1;M2Þ

þ � � � ; ð8Þ

where A0 is the background contribution and the functions
Kj depend on the details of the underlying physics and
the nature of the observation. If PBHs of different mass
contribute independently to the observable, only the first
two terms in Eq. (8) need to be considered. Explicit
expressions are given for the lensing and disruption of
stars in Ref. [32], for evaporation in Ref. [9], and for
neutron star capture and accretion in Ref. [33]. In this case,
if a measurement puts an upper bound on the observable,

A½ψðMÞ� ≤ Aexp; ð9Þ

then for a monochromatic mass function withM ¼ Mc and

ψmonðMÞ≡ fPBHðMcÞδðM −McÞ; ð10Þ

this translates to
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fPBHðMcÞ ≤
Aexp − A0

K1ðMcÞ
≡ fmaxðMcÞ: ð11Þ

The function fmaxðMÞ corresponds to the maximum obser-
vationally allowed fraction of DM in PBHs for a mono-
chromatic mass distribution. Combining Eqs. (8)–(11) then
yields

Z
dM

ψðMÞ
fmaxðMÞ ≤ 1: ð12Þ

Once fmax is known, it is possible to apply Eq. (12) for an
arbitrary mass function ψðMÞ to obtain the constraints
equivalent to those for a monochromatic mass function.
In detail, the procedure is as follows. We first integrate

Eq. (12) over the mass range (M1, M2) for which the
constraint applies, assuming a particular function
ψðM; fPBH;Mc; σÞ. Once we have specified M1 and M2,
this constrains fPBH as a function ofMc and σ. (In all cases
except lensing, we take the integral limits to be the values of
M for which fmax ¼ 100.) The last three panels in Fig. 1 are
then derived by assuming σ ¼ 2 for the lognormal mass
function (upper right panel) and γ ¼ �1 for the power-law
mass function (lower panels).
The procedure must be implemented separately for

each observable. As shown in the Appendix, different
constraints can be combined by using the relation

XN
j¼1

�Z
dM

ψðMÞ
fmax;jðMÞ

�
2

≤ 1; ð13Þ

where fmax;jðMÞ correspond to the different bounds for a
monochromatic mass function, as defined by Eq. (11).
Most of the constraints shown in Fig. 1 rely on a single
observable. For lensing this is the number of lensing events
[40,43,45,46], for neutron star capture it is the age of
neutron stars [41], and for white dwarfs and wide binaries it
is their abundance [42,49].
However, some monochromatic constraints reported

in the literature contain contributions from multiple
observables. For example, consider the Planck constraint
of Ref. [36]. Earlier analyses calculated the optical depth
from the CMB data and used that to constrain the
PBH abundance [34,35]. In this case, there is only one
observable—the optical depth—and Eq. (12) is applicable.
However, the constraint from CMB anisotropies calculated
in Ref. [36] combines experimental data at various multi-
pole moments by performing a χ2 analysis for fPBH using
the CMB data. It is shown in the Appendix that using
the combined bound fmax;CMBðMÞ in Eq. (12), instead of
considering the contributions from different multipoles
separately, will result in a more stringent constraint.
However, since the mass dependence of the PBH contri-
bution is expected to be roughly proportional for different
multipoles [36], the error should be small compared to the

theoretical uncertainties (shown in Fig. 1) associated with
PBH accretion physics. To accurately estimate the size of
this error, one should repeat the analysis of Ref. [36] for
each mass function separately, which is beyond the scope
of this work.
The important qualitative point is that the form of Fig. 1

in the nonmonochromatic case is itself dependent on the
PBH mass function. One cannot just compare a predicted
extended mass function with the monochromatic form of
the constraints, as some authors have done. In displaying
the constraints, one also needs to select values of the
parameters which describe the mass function. In both the
lognormal and power-law cases, we have taken these to be
σ andMc. For the critical collapse model, there is only one
parameter (Mf) but this model is practically indistinguish-
able from the monochromatic one because only a small
fraction of the PBH density is associated with the low-mass
tail. So this case is not shown explicitly.
We now discuss some caveats that have to be kept in

mind when applying Eq. (12). The mass function evolves in
time if the PBHs merge or if new black holes are created.
This can have an important impact on the constraints. For
example, if mergers between recombination and the present
are significant, the accretion constraints will be relaxed,
since the mass function at recombination would have
peaked at a lower mass than today. A period of merging
after recombination is not implausible, as this would be
induced by the small-scale density fluctuations which are
likely to accompany PBH production [4,5].
We next discuss the effect of the higher-order terms in

Eq. (8) since these can induce errors in Eq. (12). These
terms become relevant if the contribution of a black hole
population with a given mass is influenced by the presence
of another black hole population with a different mass. For
example, the nondetection of a stochastic gravitational
wave background from PBH binaries may constrain the
PBH abundance in the near future [70]. This constraint
depends on the K2 term in Eq. (8) and it may also depend
on K3 if the formation of PBH binaries depends on three-
body effects [71].
In some cases, it is possible to remove the higher-order

terms by introducing an “effective” mass function. For
example, compact gravitationally bound systems (such as
binaries) may behave as single objects in the context of
lensing. Consider an idealized scenario in which the
observable depends purely on the total mass of the object,
so that KnðM1;M2;…;MnÞ ¼ KnðM1 þM2 þ � � � þMnÞ,
but is otherwise independent of the composition, so that
Kn ∝ K1. If we additionally assume that the mass function
within these compact bound systems follows the overall
mass function, we obtain

A½ψðMÞ� ≈ A0 þ
Z

dMK1ðMÞψ effðMÞ: ð14Þ
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Here the effective mass function is given by

ψ effðMÞ ¼
X
n

αnψnðMÞ; ð15Þ

where αn relates to the fraction of n-body bound objects,

ψnðMÞ≡
Z Yn

i¼1

dMiψðMiÞδðM − ΣMiÞ; ð16Þ

and the effective mass function ψ eff has to satisfy the
normalization condition fPBH ≤ 1. The constraints for the
general and monochromatic mass functions are still related
by Eq. (12) but likely overestimate the allowed PBH mass
since ψ effðMÞ is always shifted towards higher masses. In
principle, all the constraints discussed below and shown in

our figures relate to the effective mass functions, which can
be different for different constraints.
It is also possible that the mass function is position

dependent. This is expected in dwarf galaxies because mass
segregation causes lighter PBHs to migrate outwards, with
the heavier ones occupying the central region. This will
introduce corrections for constraints arising from the
evolution of stars in the Galaxy [47,48]. Again, it might
be possible to invoke an effective mass function ψ eff that
only accounts for the heavier PBHs. However, an estimate
of this effect requires detailed numerical simulations which
are beyond the scope of this work.

IV. RESULTS AND DISCUSSION

Our main results are presented in Fig. 2, where we show
constraints on the maximum allowed fraction of PBH DM,

FIG. 2. Upper panels: Combined observational constraints onMc and σ for a lognormal PBH mass function. The color coding shows
the maximum allowed fraction of PBH DM. In the white region log10fmax < −3, while the solid, dashed, dot-dashed, and dotted
contours correspond to fmax ¼ 1, fmax ¼ 0.5, fmax ¼ 0.2, and fmax ¼ 0.1, respectively. In the left panel only the constraints depicted by
the solid lines in Fig. 1 are included, whereas the right panel includes all the constraints. Lower panels: Same as the upper left panel but
for a power-law mass function with γ < 0 (left) and γ > 0 (right).
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fmax, in the (Mc, σ) plane for lognormal and power-law
PBH mass functions. In the upper right panel all the
constraints shown in Fig. 1 are considered, using the most
restrictive forms for the evaporation, accretion, and neutron
star constraints, as depicted by the dotted lines. In the other
panels only the constraints corresponding to the solid lines
are taken into account. We have combined the constraints
using Eq. (13). The black lines in Fig. 1 correspond to
constant σ slices in Fig. 2. The regions where 10%, 20%,
50%, and 100% of DM can consist of PBHs are indicated in
Fig. 2 by the dotted, dot-dashed, dashed, and solid lines,
respectively, while less than 0.1% of the DM can be in
PBHs in the white region.
The shape of the constraints in Fig. 2 makes it clear that

the allowed mass range for fixed fPBH decreases with
increasing the width σ, thus ruling out the possibility of
evading the constraints by simply extending the mass
function. Moreover, Fig. 2 gives an upper bound σ ≲ 1 if
all dark matter is in the form of PBHs. This implies jγj≳ 1,
which effectively rules out PBH DM from the collapse of
cosmic strings or scale-invariant density fluctuations.
Our results agree with the conclusions of

Refs. [32,33,62]. However, Refs. [32,62] focused on
PBHs in the solar to intermediate mass range, considering
microlensing and dynamical constraints from Eridanus II.
The authors of Ref. [33] performed a more comprehensive
analysis, covering the mass range 10−18 – 104M⊙, but their
study did not include the recent constraint from Subaru
Hyper Suprime-Cam [43] and they calculated the Planck
constraint as in Ref. [35], resulting in a more stringent
constraint than the one from Ref. [36] used in this work.
Also, they used the potential SKA pulsar timing constraints
[72], even though these are not yet realized. Some of the
difference between our figures and those in Refs. [32,33,62]
results from the difference in the definition of Mc.

The same conclusion can be drawn if one compares
the constraints presented in the upper left and right panels
of Fig. 1. In the latter case, we show the corresponding
ðfPBH;McÞ constraints for extended mass functions with
fixed width. The effect of the extension is to “smooth” the
constraints. Although the most restrictive constraints for
the PBH fraction are weakened, it can be seen that the
regions allowing a relatively large PBH fraction are
reduced. So the constraints become wider, as indicated
in Fig. 1. We conclude that previous claims in the literature
that wide mass functions allow one to avoid PBH bounds
are premature and not supported by our more rigorous
computations.
The shape of the colored regions of Fig. 2 can be

understood as follows. The lognormal mass function is
symmetric in the logM scale, while the power-law one with
γ < 0 has a high-mass tail and that with γ > 0 is skewed
towards low masses. Since the evaporation constraint [9] is
much stronger than the accretion one [8], the low-mass tail
excludes wider mass functions, whereas γ < 0 allows them.
There are three regions in the upper left panel of Fig. 2

where all the DM can consist of PBHs. Two of them are at
very low mass, just above the evaporation limit, and the
third is in the mass window relevant for the LIGO black
hole coalescence events. However, this neglects the
dynamical constraints, shown by the dashed lines in
Fig. 1. As explained above, this might be justified for
astrophysical reasons.
To clarify what role different constraints play in the

regions of interest, we present these regions in detail in
Fig. 3 for ΩPBH ¼ ΩDM. The masses 25–100M⊙ satisfy the
microlensing and accretion constraints but conflict with
dynamical constrains from ultra-faint dwarfs and wide
binaries. At the lower-mass end, there is a narrow window
around 3 × 10−16M⊙ if we assume a conservative

FIG. 3. Observational constraints onMc and σ for a lognormal PBH mass function, assuming 100% PBH DM. The left panel presents
a zoom into the high-mass region relevant for the LIGO events, while the right panel presents a zoom into the low-mass region. The color
coding is the same as in Fig. 1.
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bound from evaporations and another window around
2 × 10−14M⊙ if the dynamical constraints associated with
neutron stars and white dwarfs are neglected. Both masses
are in the asteroid range. If all the constraints are taken into
account, the maximally allowed fraction of PBH DM is
19% in the high-mass window and 44% and 18% in the two
low-mass windows, respectively. Note that whether the DM
can be in PBHs in the asteroid window is sensitive to the
form of the PBH evaporation limit and this depends on the
precise form of the extragalactic γ-ray background.

V. CONCLUSIONS

We have studied the constraints on PBH DM with an
extended mass function, presented a general method for
extracting these constraints from those for monochromatic
PBH mass functions, and discussed possible caveats
associated with their interpretation. Our computations have
covered the broad mass range 10−18–104M⊙ and showed
that extended mass functions do not generally alleviate
the already existing constraints on the PBH DM fraction,
because the allowed fraction decreases with increasing
the width of the mass function. We have identified three
mass windows where an appreciable fraction of DM can
still consist of PBHs: 5 × 10−16M⊙, 2 × 10−14 M⊙, and
25–100M⊙. If all the constraints discussed in the literature
are taken at face value and treated on an equal footing, then
at most Oð10%Þ of DM can be in PBHs. However, if some
of the dynamical constraints can be circumvented, then
100% PBH DM might be allowed in these windows. Even
Oð10%Þ DM in the Oð10ÞM⊙ window might suffice to
explain the LIGO events.
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APPENDIX: COMBINED CONSTRAINTS

In this Appendix we describe how different constraints
can be combined. Consider N independent observables
AjðfPBHÞ with observed expectation values μj and varian-
ces σ2j . The χ2 for these observables is

χ2ðfPBHÞ ¼
XN
j¼1

ðAjðfPBHÞ − μjÞ2
σ2j

: ðA1Þ

We assume that the observables AjðfPBHÞ are linear in the
mass function, so that only the first two terms in Eq. (8) are
relevant, and that the mean values coincide with fPBH ¼ 0,
which implies μj ¼ A0;j. Since ψ ∝ fPBH, the nσ constraint
on fPBH is then

n2 ≥ χ2 − χ2min ¼
XN
j¼1

�Z
dMψðMÞK1;jðMÞ

σj

�
2

; ðA2Þ

where χmin is the minimum of χ. As in Eq. (11), the kernel
K1;j can be extracted from the constraint for a monochro-
matic mass function if N ¼ 1. This corresponds to

fPBHðMÞ ≤ nσj
K1;jðMÞ≡ fmax;jðMÞ: ðA3Þ

It follows that Eq. (A2) can be recast as

XN
j¼1

�Z
dM

ψðMÞ
fmax;jðMÞ

�
2

≤ 1: ðA4Þ

Note that the upper bound in Eq. (9) is Aexp;j ¼ A0;j þ nσj,
where nσj is the confidence level of the bound.
Consider then the combined constraint for a mono-

chromatic mass function, which from Eq. (A4) can be
expressed as

fmaxðMÞ ¼
�XN

j¼1

fmax;jðMÞ−2
�

−1=2
: ðA5Þ

Using this in Eq. (12) will always lead to an overestimation
of the actual constraint given by Eq. (A4) because the
triangle inequality implies

XN
j¼1

�Z
dM

ψðMÞ
fmax;jðMÞ

�
2

≤
�Z

dM
ψðMÞ

fmaxðMÞ
�

2

: ðA6Þ

For a more precise estimate, the contribution of each
observable has to be included separately for any constraint
derived from multiple observables. However, if the con-
straints fmax;jðMÞ are proportional to each other, Eqs. (A4)
and (12) are equivalent, so no error is made.
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