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We explore the sensitivity of weak-lensing observables to the expansion history of the Universe and to
the growth of cosmic structures, as well as the relative contribution of both effects to constraining
cosmological parameters. We utilize ray-tracing dark-matter-only N-body simulations and validate our
technique by comparing our results for the convergence power spectrum with analytic results from past
studies. We then extend our analysis to non-Gaussian observables which cannot be easily treated
analytically. We study the convergence (equilateral) bispectrum and two topological observables, lensing
peaks and Minkowski functionals, focusing on their sensitivity to the matter density Ωm and the dark
energy equation of state w. We find that a cancellation between the geometry and growth effects is a
common feature for all observables and exists at the map level. It weakens the overall sensitivity by factors
of up to 3 and 1.5 for w and Ωm, respectively, with the bispectrum worst affected. However, combining
geometry and growth information alleviates the degeneracy between Ωm and w from either effect alone. As
a result, the magnitudes of marginalized errors remain similar to those obtained from growth-only effects,
but with the correlation between the two parameters switching sign. These results shed light on the origin of
the cosmology sensitivity of non-Gaussian statistics and should be useful in optimizing combinations of
observables.
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I. INTRODUCTION

A cosmological model with a nearly scale-invariant
primordial fluctuation spectrum, cold dark matter
(CDM), and dark energy (DE) matches well a wide range
of observations, from the Universe’s expansion measured
by standard candles [1,2] and standard rulers [3] to its
primordial chemical composition [4,5], its structure for-
mation, and the properties of the cosmic microwave
background (CMB) [6]. While nonbaryonic DM and DE
make up most of the present-day energy density of the
Universe [7], the nature of both dark components remains
unclear.
Cosmic shear is the weak gravitational lensing of back-

ground sources by large-scale structure [8,9]. It probes the
matter density field through the gravitational potential
fluctuations and is also sensitive to the expansion history
of the Universe through the distances between the observer,
the lensed source, and lensing structures. While lensing is
usually characterized by a measurement of the shear
through the shapes of background galaxies, convergence
(magnification) statistics can be inferred from these mea-
surements and are considered here for ease of computation.
The polyspectra of the convergence field are equal to the
E-modes of the shear field.

Ongoing and upcoming surveys, such as the Dark
Energy Survey (DES [10]), the Large Synoptic Survey
Telescope (LSST [11]), the Euclid mission [12] and the
Wide Field Infrared Survey Telescope (WFIRST [13]),
include weak lensing in their scientific program as part of
their effort to test the concordance model with unprec-
edented precision and shed light on the nature of DM and
DE. To realize this potential, we need observables that
extract all the cosmological information from the data, as
well as models capable of predicting them with high
accuracy.
Second-order statistics do not fully capture non-

Gaussianities in the lensing signal from nonlinear gravita-
tional collapse on small scales. Numerous alternative
observables have been proposed to extract this extra
information, from higher-order correlation functions
[14,15] and moments [16] to topological features like local
maxima (peaks) [17] and Minkowski functionals [18].
In this work, our goal is to clarify the sensitivity of such

observables to the expansion history of the Universe
(“geometry”) and to the evolution of primordial inhomo-
geneities into cosmic structures (“growth”). The analogous
question has been addressed for the convergence (κ) power
spectrum [19]. The geometry vs growth decomposition of
the power spectrum has improved our understanding of
constraints on DE from weak lensing [20], provided an
alternative cosmological probe independent of the growth*jzorrilla@astro.columbia.edu
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of structures [21,22] has been used to strongly constrain
deviations from general relativity [23] and has allowed a
consistency test of the standard cosmological model [24].
Our work extends previous studies to observables

beyond the power spectrum. In particular, we analyze
the equilateral bispectrum and two simple but promising
topological observables: lensing peaks and Minkowski
functionals. We restrict our analysis to two parameters
that can influence lensing observables significantly through
both geometry and growth: the total matter density (Ωm)
and the DE equation of state as parametrized with a
constant ratio of its pressure to its energy density (w).
Future work should include a full cosmological parameter
set. We disentangle the two contributions by measuring
observables over a collection of mock κ maps built from
ray-tracing N-body simulations.
The paper is organized as follows: In Sec. II, we describe

the suite of simulations we used and our method to separate
the effects of geometry and growth on the observables. In
Sec. III, we show the sensitivity of each observable to both
Ωm and w, discussing the separate contributions from
geometry and growth, and in Sec. IV we show how they
impact parameter inference. We then discuss our results in
Sec. V and summarize our conclusions in Sec. VI.

II. DISENTANGLING GEOMETRY
FROM GROWTH IN SIMULATIONS

We measured lensing observables on mock κ maps
generated for nine flat ΛCDM cosmologies. We considered
only DE models with a constant ratio of pressure to energy
density (w). Apart from w, we also varied Ωm, with a
fiducial model corresponding to fΩm; wg ¼ f0.26;−1.0g
and the remaining eight cosmologies each differing from it
in just one parameter (see Table I). For all models, we fixed
the amplitude of perturbations at σ8 ¼ 0.8, the Hubble
constant to h ¼ 0.72, the spectral index to ns ¼ 0.96, and
the effective number of relativistic degrees of freedom
to Neff ¼ 3.04.

A. Simulating weak-lensing maps

A set of mock convergence maps was generated by ray-
tracing through the outputs of dark-matter-only N-body
simulations, following the multiple lens plane algorithm

implemented in LENSTOOLS. We used full ray-tracing to
avoid any potential bias in the convergence descriptors
under study. While it has been shown that the Born
approximation is accurate for the galaxy lensing power
spectrum [25] and bispectrum [26], it can introduce
significant biases for higher-order moments [27], and its
effects on topological descriptors are yet unclear. We give a
brief outline of our simulation pipeline here and refer
readers for a detailed description to Ref. [28].
The observer’s past light cone is discretized in a set of

lens planes separated by a constant comoving distance of
80h−1 Mpc. For each cosmology, we evolved the matter
density field in a single box of side 240h−1 Mpc, which can
cover a field of view of 3.5 × 3.5 deg2 up to a redshift
z ≈ 3. The N-body simulations were run using GADGET2

[29] with the same initial conditions. Each box contains
5123 particles, yielding a mass resolution of≈1010 M⊙. All
simulation volumes were randomly shifted and rotated to
generate 1024 different κ maps for each cosmology. This is
justified by previous work [30], which has shown that a
single N-body simulation can be recycled to generate as
many as ≈104 statistically independent realizations of the
projected 2D convergence field.
Bundles of 1024 × 1024 uniformly distributed rays were

traced back to the lensed galaxies’ redshift, and the
convergence was reconstructed from the accumulated
deflection of the rays by the discrete lens planes. For
simplicity, we assumed all source galaxies are uniformly
distributed at a single redshift, chosen to be either zs ¼ 1
or zs ¼ 2.
We included the effect of galaxy shape noise, assuming it

is uncorrelated with the lensing signal and its probability
distribution function (PDF) is a Gaussian with zero mean.
The variance of the shape noise depends on the rms
intrinsic ellipticity noise (σϵ), the source galaxy surface
density (ngal), and the pixel size (θp), as [31]

σ2p ¼ σ2ϵ
2ngalθp

: ð1Þ

For this work we considered an intrinsic ellipticity noise
of σϵ ¼ 0.4 and a galaxy density of ngal ¼ 25 arcmin−1,
similar to the expectation for LSST but conservative
compared to the galaxy densities expected in deeper
surveys, such as Euclid and WFIRST. We generated a
single set of 1024 noise-only maps and added them to the
noiseless κ maps ray-traced from the N-body simulations.
We smoothed the noiseless κ and shape noise maps with the
same 2D Gaussian kernel,

WðθÞ ¼ 1

2πθ2S
exp

�
−

θ2

2θ2S

�
; ð2Þ

with θ being the angular distance to each pixel, and a
characteristic width θS ¼ 1 arcmin. In this analysis, we did

TABLE I. Parameters of the eight models explored around the
fiducial model (Ωm ¼ 0.26, w ¼ −1.0). All models are spatially
flat with ΩΛ ¼ 1 − Ωm and consider a constant equation-of-state
parameter w for DE.

Ωm w Ωm w

0.20 −1.0 0.26 −0.5
0.23 −1.0 0.26 −0.8
0.29 −1.0 0.26 −1.2
0.32 −1.0 0.26 −1.5
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not combine different smoothing scales. The smoothing
suppresses power on small scales corresponding to spheri-
cal multipoles on the sky l ⪆ 12000, which corresponds to
the scale at which we are still not limited by the finite
resolution of our simulations (see Fig. 1). We do not show
results beyond l ¼ 10000, and the topological features,
measured on the smoothed maps, do not contain informa-
tion from smaller scales.

B. Isolating the effect of geometry vs growth

Galaxy shape distortions by gravitational lensing result
from the convolution of the lens properties and the
distances between source galaxies, lenses, and the observer.
Both effects depend on cosmology—the former through the
evolution of mass inhomogeneities, and the latter through
the expansion history of the Universe. To account for these
effects separately in our simulations, we evolved the matter
density field according to a cosmological model, but during
the ray-tracing, we allowed distances to correspond to a
different cosmology.
In our implementation of the multiplane algorithm, lens

planes are located at the same comoving distances from the
observer for all models, and we disentangle growth and
geometry by modifying the lens planes’ properties.
The lensing potential for a lens at a comoving distance of

χi, given a set of cosmological parameters p, is determined
by its mass surface density,

Σiðx; y;pÞ ¼
3H2

0Δ
2c2

χi
aðχi;pÞ

δΩmðx; y; zðχi;pÞ;pÞ; ð3Þ

where ðx; yÞ are angular positions on the lens plane, Δ is
the plane’s thickness (80h−1 Mpc), χ the comoving dis-
tance, a the scale factor, and δΩm the product of the density
contrast and the matter density parameter. The sensitivity
of an observable to cosmology refers to the change in
that observable for a set of parameters p relative to the same
observable for a fiducial model p0.
The effect of geometry can be estimated by evolving the

perturbations according top0 and evaluating themat redshift
zðχi;pÞ, keeping the geometrical prefactor χ=a equal to the
value that corresponds to the cosmological model p.
Conversely, the effect of the growth of structures can be
captured by keeping the geometrical prefactor equal to its
value in the fiducial model and evaluating the density
perturbations at zðχi;p0Þ after evolving them according top.

ΣGeometry
i ðx; y;p;p0Þ

¼ 3H2
0Δ

2c2
χi

aðχi;pÞ
δΩmðx; y; zðχi;pÞ;p0Þ; ð4Þ

ΣGrowth
i ðx; y;p;p0Þ

¼ 3H2
0Δ

2c2
χi

aðχi;p0Þ
δΩmðx; y; zðχi;p0Þ;pÞ: ð5Þ

This approach does not require running separate N-body
simulations to generate growth-only and geometry-only
convergence maps, but it involves saving additional
GADGET2 snapshots, since fixed comoving distances cor-
respond to different scale factors for different cosmologies.
For each model p, additional snapshots at redshifts
zðχi;p0Þ are needed. For the fiducial cosmology, we saved
additional snapshots at redshifts zkðχi;pkÞ for each pk
model considered.

III. SENSITIVITY TO Ωm AND w

The percentage deviation of an observable relative to its
value in the fiducial model measures its sensitivity to
changes in cosmology. For galaxy lensing, we are inter-
ested in observables measured over κ maps that include
shape noise. We focus on the behavior of four observables:
the power spectrum, which has already been studied
analytically and will serve as a test of our simulation-
based approach; the equilateral bispectrum, which should
be zero for a Gaussian random field; and two topological
features that have been used to probe non-Gaussianities:
lensing peaks and Minkowski functionals. We measured
the sensitivities from the full ray-traced N-body simula-
tions, as well as from simulations that only capture the
changes due to either the expansion history or the structure
growth in a given cosmology.

FIG. 1. Comparison between the power spectra measured for
selected models, as labeled, over noiseless, unsmoothed κ maps
(thick lines) and analytic predictions using a fitting formula [32]
for the matter power spectrum (thin lines). Percent differences
between measured and predicted power spectra are depicted in
the lower panel. Shaded areas represent �1 standard deviation
around the average, scaled to a 1000 deg2 survey, and in the
lower panel only the standard deviation for the fiducial model is
plotted for reference.

GEOMETRY AND GROWTH CONTRIBUTIONS TO COSMIC … PHYSICAL REVIEW D 96, 023513 (2017)

023513-3



A. Power spectrum

The convergence power spectrum is the Fourier transform
of the two-point correlation function of κðx; yÞ and is one of
the most popular weak-lensing observables. For a flat
cosmology, with lensed sources at a fixed redshift, and using
the Limber and flat-sky approximations, the power spectrum
can be expressed as a line-of-sight integral of the matter
power spectrum, weighted by a geometrical kernel [33]

PkðlÞ ¼
9

4

�
H0

c

�
4

Ω2
m

Z
χs

0

dχ
a2ðχÞ

�
1−

χ

χs

�
2

Pδ

�
l
χ
;χ

�
; ð6Þ

where χ is the comoving distance and χs is the comoving
distance to the lensed galaxies. Geometry affects the power

spectrum through χ and the scale factor a. Growth enters the
above expression through the matter power spectrum, Pδ

(including nonlinear effects), and the Ω2
m outside of the

integral. For our analytic calculations, we used the NICAEA

implementation of the convergence power spectrumwith the
prescription from Ref. [32] for the matter power spectrum.
We determined the percentage deviation of the power

spectrum relative to the fiducial cosmology over 1024
noiseless, unsmoothed κ maps for each nonfiducial cos-
mology and compared the results with analytic predictions.
These results, shown in the upper panels of Fig. 2, match
the analytic predictions within the statistical uncertainties,
and are also in good agreement with the findings of
Ref. [19]. The sensitivity is only weakly dependent on
the multipole.

FIG. 2. Sensitivity of the power spectrum to Ωm and w for noiseless (upper panels) and noisy (lower panels) convergence. Estimates
including only geometry effects are shown in red, those including only growth effects in blue, and those including both effects in black.
In the upper panels, analytic predictions are displayed with thin lines, for comparison. Source galaxies are at zs ¼ 1.0 in all cases.
Shaded areas represent a �1 standard deviation around the measured averages, scaled to a survey sky coverage of 1000 deg2, and only
selected models are displayed for clarity.
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The sensitivity to Ωm is dominated by growth, with a
≈25% change that is what would be expected from the
≈12% change in Ωm [Ω2

m outside the integral in Eq. (6)].
Geometry acts in the opposite direction, reducing the
overall sensitivity by ≈20%. The sensitivity to w is
dominated by geometry. While we expected this sensitivity
to be smaller than that to Ωm due to the integrating effect,
the partial cancellation between growth and geometry is
even more severe. It reduces the sensitivity further (≈50%)
to a level of ≈5% for a 20% change in the parameter. The
smaller sensitivity should propagate into tighter constraints
on Ωm than on w from weak-lensing data.
The origin of the partial cancellation is explained in

detail in Ref. [19], but we reproduce the argument here for
convenience. Making w more negative, from the fiducial
w ¼ −1.0 to −1.2, yields a higher DE density in the past.
The comoving distance to the source galaxies’ redshift
becomes larger, and so does the cumulative effect of small
deflections experienced by light rays. As a result, the effect
due to geometry is an increase of the lensing signal. Since
we fix the amplitude of the perturbations at the present time
(σ8) in our simulations, a higher DE density in the past
means there are fewer structures to deflect the light rays in
the past, and the growth contribution to the lensing signal is
smaller compared to a model with constant dark matter
density.
Galaxy shape noise introduces a scale dependence to the

relative sensitivity, as clearly seen in the lower panels of
Fig. 2. At small scales, white noise dominates the power
spectrum and suppresses its sensitivity to cosmological
parameters. Galaxy shape noise then limits the information

that can be extracted from the convergence power spectrum
at small scales.

B. Equilateral bispectrum

The natural extension to the two-point correlation
function is the three-point correlation function, or its
Fourier transform, the bispectrum. A nonzero bispectrum
is a clear non-Gaussian signal and has been detected in
shear data [34,35]. The analog of Eq. (6) links the
convergence bispectrum to the bispectrum of the under-
lying matter density field through a Limber integration [33]

Bkðl1; l2; l3Þ ¼
27

8

�
H0

c

�
6

Ω3
m

Z
χs

0

dχ
ðχaðχÞÞ3

�
1 −

χ

χs

�
3

× δDðl1 þ l2 þ l3ÞBδ

�
l1
χ
;
l2
χ
;
l3
χ
; χ

�
; ð7Þ

where δD is a Dirac delta. When the lengths of the triangle
defined by the three points on which the correlation
function are measured are the same, the result is the
equilateral bispectrum (Blll). In an exercise analogous to
the one done for the power spectrum, we measure Blll for
our mock noiseless convergence maps and show their
relative sensitivity to the cosmological parameters in Fig. 3.
While noisier, the parameter sensitivity has a behavior

very similar to the case of the power spectrum, in terms of
its weak dependence on the angular scale l, order of
magnitude, and split between geometry and growth. The
most noticeable difference is that the cancellation between
both effects is almost perfect for w, resulting in a statistic

FIG. 3. Sensitivity of the equilateral bispectrum of the noiseless convergence field to Ωm and w. Both panels show the percentage
deviation in each model from the fiducial bispectrum. For clarity, only two models are depicted per panel, with the source galaxies at
zs ¼ 1. As in Fig. 2, black lines show the net sensitivity, red lines the sensitivity due only to differences in geometry, and blue lines the
sensitivity due only to differences in growth. Shaded areas represent �1 standard deviation around the measured averages, scaled to a
1000 deg2 survey.
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that is almost insensitive to that parameter. The results for
the lensed galaxies at zs ¼ 2 are similar, and show the same
cancellation for w. The addition of shape noise results in an
even noisier measurement (see Sec. IV) with error bars
three to four times larger than the ones displayed in Fig. 3
for the noiseless case. There is no average sensitivity
suppression at small scales, because the shape noise is
Gaussian.

C. Lensing peaks

Peaks, defined as local maxima on smoothed κ maps,
probe high-density regions, where non-Gaussianities of the
convergence should be enhanced. Also, they are computa-
tionally inexpensive to measure, making them an attractive
observable to combine with others for cosmological infer-
ence. Indeed, their distribution as a function of their height,
or peak function, has been forecast to improve constraints
obtained using only second-order statistics by a factor of 2
to 3 [36,37]. Similar improvements have now been found in
recent lensing survey data [38–40].
We extracted peak catalogues from our mock conver-

gence maps and computed the percentage deviation of the
peak height function relative to the fiducial model. The
results for the noisy case are shown in Fig. 4. We again
observe some similarities between the sensitivity of the
peak height functions and that of the power spectrum. The
Ωm sensitivity is dominated by growth, while geometry
dominates the sensitivity to w. There is also a partial
cancellation between the two effects, and the cancellation is
stronger for w, yielding a reduced net sensitivity compared
to Ωm, by a factor of ≈2.

For high peaks, the sign of the parameter sensitivity is
the same as for the power spectrum, but the sign reverses
for low peaks, whose abundance is anticorrelated with
those of high peaks. High peaks are ≈2 to 3 times more
sensitive than low peaks, but there are fewer of them to help
discern between models (see Sec. V). Shape noise modifies
the peak function by introducing new peaks, eliminating
some, and spreading the height of those that survive from
the noiseless maps. As a result, it reduces the sensitivity by
a factor of ≈2, especially for the noise-dominated low
peaks, and moves the turnover point, where the parameter
sensitivity changes sign, from S=N ≈ 1 for noiseless κ to
S=N ≈ 2.5 (S=N is the height of the peaks expressed in
units of σnoise).
For noisy κ and lensed galaxies at zs ¼ 2, the turnover

point moves to even higher κ, from S=N ≈ 2.5 to ≈3, and
the relative sensitivity of low peaks increases by a factor
of ≈2, while the sensitivity of high peaks remains the
same.

D. Minkowski functionals

Minkowski functionals (MFs) on 2D fields are topo-
logical measures on isocontours [41]. They capture stat-
istical information of all orders and have been shown to
constrain cosmology, improving errors computed exclu-
sively from the power spectrum, in theoretical studies [42]
and also when applied to observations [43,44].
The three MFs on a 2D map measure the area (V0), the

boundary length (V1), and the Euler characteristic (V2) of
the set of points where the value of the function exceeds a
pre-specified threshold (κth):

FIG. 4. Sensitivity of peak counts to Ωm and w on noisy convergence maps. Both panels show the percentage difference between the
peak counts in a given cosmology and in the fiducial model. Peak height is expressed in units of κ and in units of σnoise, S=N . For clarity,
only two models are depicted per panel, with source galaxies at zs ¼ 1. The color scheme is the same as in Figs. 2 and 3. Shaded areas
represent �1 standard deviation around the measured averages, scaled to a 1000 deg2 survey.
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V0ðκthÞ ¼
1

A

Z
ΣðκthÞ

da; ð8Þ

V1ðκthÞ ¼
1

4A

Z
∂ΣðκthÞ

dl; ð9Þ

V2ðκthÞ ¼
1

2πA

Z
∂ΣðκthÞ

κdl; ð10Þ

where A is the total area of the map, ΣðκthÞ is the set of
points on the convergence map for which κ ≥ κth, and
∂ΣðκthÞ denotes a line integral along the curve where
κ ¼ κth. We refer the reader to Ref. [42] for a detailed
description of our measurement procedure, and we repro-
duce in Fig. 5 the percentage difference between the MFs
for a given cosmology and the fiducial model as a function
of the threshold.
The sensitivity of all three functionals at high threshold

levels is similar to that of peak counts. This is expected,
since at high κth values, the set of points κ ≥ κth increas-
ingly coincides with the set of lensing peaks. At lower
thresholds, the sensitivity of the MF is weaker, but different

for each functional, suggesting that combining them should
yield tighter parameter constraints.

IV. IMPACT ON PARAMETER INFERENCE

Parameter constraints are determined not just by the
sensitivity of observables, but also by their (co)variances.
To assess the impact of geometry and growth on inference,
we estimated the confidence levels on the parameters
ðΩm; wÞ in two ways. First, we quantified how different
each model is from the fiducial, using Δχ2,

Δχ2 ¼
X
i;j

ðμi − μfidi ÞC−1
ij ðμj − μfidj Þ; ð11Þ

where μi is the average of an observable over the set of
convergence maps for a cosmology (for instance, the
binned power spectrum), μfidi is the average for the fiducial
cosmology, and C−1

ij is the precision matrix. For each
observable we used 20 bins, spaced either logarithmically
in l or linearly in κ. We did not try to optimize the number
of bins or their thresholds, since our purpose was to

FIG. 5. Percentage difference of the three MFs measured on noisy κ maps, compared to the value in the fiducial model, when changing
Ωm and w. Left/center/right panels show the results for V0=V1=V2, for noisy κ and source galaxies at zs ¼ 1. The color scheme, labeled
in the legends, is the same as in Figs. 2–4. Shaded areas represent �1 standard deviation around the measured averages, scaled to a
1000 deg2 survey.
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understand the effect of geometry and growth on the
parameter uncertainties, not to obtain accurate or optimal
estimates for a specific survey.
We computed the precision matrix in the fiducial model,

to be consistent with our calculated Fisher matrices (see
below), and we corrected for its bias following Ref. [45].
The bias correction is very small, ≈2%, because the number
of realizations used to estimate the covariance matrix
(Nr ¼ 1024) is large compared to the dimensionality of
the data vector (Nb ¼ 20). We scaled the results by the
same factor as the error bars in the figures, so their
magnitude corresponds to what would be expected for a
1000 deg2 survey, even though in the non-Gaussian regime
errors may scale logarithmically rather than as the square
root of the field of view [46].
The Δχ2 values are listed in Table II and are overall

consistent with the conclusions from the sensitivity plots in
Sec. III. The significance at which models with different
w’s can be distinguished is lower than for Ωm, due to
projection effects and the worse cancellation between
geometry and growth. Geometry has stronger constraining
power in w, and growth does in Ωm, and in general the net
significance is closer to that of growth than that of

geometry. The observable with the lowest Δχ2 is the
equilateral bispectrum, especially for w, for which the
cancellation between geometry and growth is particularly
severe.
Even though it can strictly be used only for Gaussian-

distributed data, we computed the Fisher matrix [47] for all
the observables in this study, with the expectation that it
provides a second-order approximation to the true param-
eter likelihood near its maximum:

Fαβ ¼
1

2
Tr½C−1C;αC−1C;β þ C−1Mαβ�;

Mαβ ¼ μ;αμ
T
;β þ μ;βμ

T
;α: ð12Þ

Here Fαβ is one element of the Fisher matrix, Tr stands for
the trace of the matrix within brackets, the covariance is
evaluated at the fiducial model, and a comma denotes the
partial derivative X;α ≡ ∂

∂αX. The marginalized error on a

parameter is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

p
and is reported in

Table III. We have found the finite-difference derivatives
of the covariance to be sensitive to the numeric scheme
used to estimate them, especially for the bispectrum. In the

TABLE II. Δχ2 for different cosmological models computed for the power spectrum and three non-Gaussian observables (equilateral
bispectrum, peak counts, and Minkowski functionals) over noisy κ maps with source galaxies at either z ¼ 1 or z ¼ 2.

Dependence on Ωm Dependence on w

0.200 0.230 0.290 0.320 −0.500 −0.800 −1.200 −1.500

z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2

Power spectrum
Total 541 1550 148 421 174 444 718 1770 71 288 18 45 22 18 109 109
Geometry-only 92 670 18 142 14 101 48 375 525 2442 92 379 102 271 532 1569
Growth-only 839 3033 242 861 305 1110 1371 5083 528 3050 45 252 23 132 96 557

Equilateral bispectrum
Total 14 38 3 13 8 8 25 41 4 5 2 3 3 4 3 5
Geometry-only 5 9 2 5 2 4 2 10 14 47 4 12 7 8 19 40
Growth-only 18 56 6 16 12 20 40 113 39 181 4 13 3 8 9 28

Peak counts
Total 772 1120 190 266 199 232 768 825 211 399 39 48 38 26 164 93
Geometry-only 99 336 26 76 23 70 65 223 776 1934 127 253 110 178 603 837
Growth-only 1213 2431 317 588 361 542 1445 2071 321 931 40 114 20 83 117 373

Minkowski functional V0

Total 915 1153 231 272 212 265 859 976 413 828 64 90 52 56 268 194
Geometry-only 111 455 28 107 30 81 86 281 931 2305 150 282 126 229 711 1071
Growth-only 1464 2684 386 650 404 651 1663 2634 385 1189 38 121 26 75 116 337

Minkowski functional V1

Total 984 1506 245 339 229 353 901 1229 321 516 52 53 41 33 205 112
Geometry-only 118 422 27 117 29 73 88 271 996 2595 161 285 130 214 696 1075
Growth-only 1564 3313 400 799 423 753 1691 3043 635 2068 61 199 34 119 158 543

Minkowski functional V2

Total 1016 1862 255 438 253 446 997 1647 313 486 56 51 39 34 203 109
Geometry-only 128 602 30 141 31 101 95 375 1030 3206 173 392 145 292 764 1412
Growth-only 1613 4068 420 1000 460 997 1910 4031 736 2832 68 280 39 157 164 712
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case of the power spectrum and peak counts, it has been
shown that this does not significantly change the parameter
constraints [48,49]. For these reasons, we have not included
the cosmology dependence of the covariance in our Fisher
matrix calculations. The derivatives of the average observ-
ables were estimated using five-point finite differences with
Lagrangian polynomials.
We show the 68% confidence level contours in Fig. 6.

The figures show that marginalized errors on w are larger
than those for Ωm by a factor of ≈15, and that geometry has
less constraining power than growth. The confidence
regions decrease when the sources are farther away,
although the marginalized errors do not always do so.
This is due to changes in the degeneracies (i.e., the axes and
tilt angles of the error ellipses). For example, the 68%
contour from Minkowski functionals for geometry only
becomes more elongated, and its tilt is increased towards
the w axis, yielding a larger marginalized error on w for
zs ¼ 2 than for zs ¼ 1.
For all observables, errors on Ωm and w are positively

correlated, when either geometry or growth is considered in
isolation. For example, the geometry effect of a higher
matter density is smaller comoving distances, which can

also be achieved with a less negative value for w. The effect
on growth of a lower DE density in the past would be a
smaller suppression of gravitational collapse and a stronger
gravitational field for the collapsing perturbations. The
correspondingly stronger lensing signal is similar to what
would be achieved with higher matter density. For the net
effect, the change of the dominant effect for Ωm and w
reverses the degeneracy direction, yielding anticorrelated
errors on the parameters.

V. DISCUSSION

The agreement between the sensitivity to Ωm and w of
the power spectra measured on the mock κ maps and the
analytic prediction, as well as the relative contribution of
geometry and growth, validates our approach based on
modified simulations.
The cancellation between geometry and growth, which

further suppresses the sensitivity of WL to cosmological
parameters, highlights why it is important to combine
different redshift bins (tomography) to constrain DE with
better precision (e.g., Ref. [50]). The suppression of the
power spectrum sensitivity at small scales by galaxy shape

TABLE III. Marginalized errors onΩm and w, orientation of the Fisher ellipse (measured as the angle between its major axis and the w
axis), and figure of merit (FOM, defined as π=A, with A being the area of the error ellipse). The errors correspond to a 68% confidence
level, scaled to a 1000 deg2 survey. All calculations were done on noisy κ maps with source galaxies at either z ¼ 1 or z ¼ 2.

ΔΩm × 103 Δw × 103 θ [deg] FOM

z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2 z ¼ 1 z ¼ 2

Power spectrum
Total 14.2 4.9 269.2 127.1 −2.9 −2.0 1034 3609
Geometry-only 40.7 34.4 106.6 138.3 20.3 13.9 802 1714
Growth-only 15.2 11.6 298.8 181.5 2.9 3.6 1211 3776

Equilateral bispectrum
Total 22.3 17.0 347.2 258.4 −0.6 1.2 131 241
Geometry-only 49.4 38.2 161.1 152.9 5.9 10.2 132 239
Growth-only 34.7 34.6 396.7 326.5 4.3 5.7 142 272

Peak counts
Total 8.9 7.3 135.9 135.9 −3.5 −2.8 2247 2538
Geometry-only 32.9 32.9 98.3 128.5 17.9 14.2 1087 1447
Growth-only 9.4 9.8 219.2 158.3 2.4 3.5 1844 3287

Minkowski functional V0

Total 7.6 5.1 99.8 66.4 −4.0 −3.6 3259 5387
Geometry-only 29.4 36.5 89.3 146.6 17.6 13.9 1311 1425
Growth-only 4.8 4.5 115.2 79.3 2.1 3.0 3780 7018

Minkowski functional V1

Total 6.1 3.2 91.0 63.9 −3.3 −1.8 3697 6355
Geometry-only 38.0 36.6 111.6 152.5 18.4 13.4 1042 1384
Growth-only 5.1 5.6 104.1 84.1 2.5 3.6 4277 7229

Minkowski functional V2

Total 6.5 3.1 101.2 69.9 −3.3 −1.8 3436 6579
Geometry-only 36.7 40.4 106.5 159.0 18.7 14.2 1130 1489
Growth-only 5.5 6.8 109.8 99.2 2.6 3.8 4181 6962
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noise highlights the importance of including other observ-
ables when analyzing weak lensing data, even if non-
Gaussianities are small.
The sensitivity of the equilateral bispectrum follows a

similar pattern to that of the power spectrum, but their
measurement is considerably noisier, which translates into
a less significant Δχ2 for a given model. The addition of
shape noise does not affect the mean sensitivity on small
scales more than on large scales, which is reasonable given
the Gaussian noise model used (it does contribute to the
statistical error).
We also measured the folded bispectrum, and the results

are in line with those from the equilateral shape. We expect
the same for all other configurations of the bispectrum,
because the percentage change of the power spectrum and
bispectrum does not depend on the multipole, and the
cancellation between geometry and growth is a feature
present at map level (see below).
The sensitivity of lensing peaks also has qualitative

similarities to that of the power spectrum, but it is highly
dependent on the height of the peaks. In order to assess how
much of their sensitivity is a direct result of differences in
the power spectrum, we computed it from Gaussian random
fields (GRFs) built with the same power spectra as the κ
maps generated through ray-tracing. The result of this
exercise is shown in Fig. 7. We have found that the
sensitivity of low peaks is reduced by a factor of ≈2,
and the sensitivity of the high peaks increases (although

FIG. 6. 68% Fisher error ellipses in the (Ωm; w) plane inferred from the power spectrum (Pl), equilateral bispectrum (Blll), lensing
peaks, and Minkowski functionals (MFs). The upper/lower panels show the contours for source galaxies at zs ¼ 1=zs ¼ 2. Each
observable was characterized by a data vector of length 20, and the ellipses were computed neglecting the cosmology dependence of the
covariance matrix. All contours are scaled to a 1000 deg2 survey.

FIG. 7. Sensitivity of lensing peak counts toΩm, derived from a
set of Gaussian random fields with the same power spectra as
those measured on noisy convergence maps from large-scale
structure. Shaded areas represent one-standard-deviation errors in
a 1000 deg2 survey. Compare with the left panel of Fig. 4.
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there are fewer high peaks in the GRFs). Overall, the Ωm
sensitivity of the counts cannot be fully explained by the
power spectrum.
To better understand the origin of the dependence of the

peak counts’ sensitivity to peak height, we look at the 3D
dark matter halo counts. It is natural to compare these
quantities, since high peaks have long been known to be
strongly correlated with individual high-mass DM halos
hosting galaxy clusters [51–53]. The average number of
halos of a given mass to a fixed redshift per solid angle can
be expressed as an integral of the product of the volume
element (geometry) and the halo mass function (growth):

dn
dlnMdΩ

ðMÞ ¼
Z

zs

0

dz
dV

dzdΩ
ðzÞ dn

dlnM
ðz;MÞ: ð13Þ

We have computed the contribution from each effect as a
function of halo mass and displayed the results in Fig. 8.
The sensitivity for halo masses above ≈1012h−1 M⊙ tracks
that of high peaks, but this is not the case for low peaks/
lower-mass halos. This is in agreement with previous
studies that showed a link between high peaks and single
high-mass halos, while finding that lower peaks are
associated instead with constellations of four to eight
low-mass halos at a range of redshifts [54]; a similar
peak-halo correlation has been seen in recent CFHTLens
data [55]. High peaks then seem to measure, like halos, a
combination of growth and the volume element.
The sensitivity of the low peak counts does not track that

of halo counts; but these peaks are important for cosmol-
ogy. When normalized by the standard deviation for the
fiducial model, the difference in peak counts from the
fiducial model has a maximum in the low-significance

region (see Fig. 9). Low peaks have also been found to
contribute to cosmological parameter constraints more than
high peaks, which is in agreement with previous studies
[49,54], including an analysis of peak counts in the
CFHTLenS data [38].
The sensitivity of the Minkowski functionals, as well as

its decomposition into geometry and growth effects, quali-
tatively traces that of lensing peaks, especially at high κ
levels.
Finally, the fact that we observe a partial cancellation

between geometry and growth, especially when changing

FIG. 8. Sensitivity of DM halo abundance toΩm (left panel) and w (right panel). The percentage difference in the total number of halos
per unit solid angle to z ¼ 1 between a model and the fiducial cosmology, as a function of the halo mass. The net effect (black) is
decomposed into its geometry (red) and growth (blue) components.

FIG. 9. Difference in number of peaks from the fiducial
cosmology, normalized by the standard deviation in the fiducial
model, for a 1000 deg2 survey.
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w, in all the statistics and topological descriptors analyzed,
suggests that this property is present already at the map
level. In order to investigate whether this is the case, we
have examined the difference maps between each model
and the fiducial, including either the geometry or growth
effect alone. These maps are shown in Fig. 10 for the
model with w ¼ −1.2. The modified angular positions
of structures in the maps built including each effect,
due to different ray deflections, prevent us from directly

demonstrating a cancellation of the lensing signal by
adding these maps together. Nevertheless, the geometric
and growth-induced distortions in the two panels of Fig. 10
clearly show the same structures at roughly the same
locations, but with the sign of their Δκ values reversed.
We conclude that the geometry vs growth cancellation
indeed is a property at the map level, and we therefore
expect it to affect any observable, including those not
analyzed here.

VI. CONCLUSIONS

We have validated the use of N-body simulations and
ray-tracing to separately study the effects of geometry and
growth on weak-lensing observables. This allows us to
extend past analyses to non-Gaussian statistics and topo-
logical features that do not admit a simple analytic
treatment.
Our analysis confirms that the sensitivity of non-

Gaussian observables to cosmology shares some character-
istics with that of the power spectrum. They suffer a partial
cancellation between geometry and growth on top of the
loss of sensitivity due to integrating (projection) effects.
This cancellation is more severe for w, reducing even
further the sensitivity of WL to that parameter compared
to Ωm.
Galaxy shape noise dominates the power spectrum at

high multipoles, reinforcing the case to use alternative
observables to analyze weak lensing data on small scales.
The bispectrum has higher statistical noise, but shape noise
does not suppress its average sensitivity at high multipoles
as it does for the power spectrum. The lensing peaks’
sensitivity is highly dependent on the peak height, with
high peaks tracking the behavior of dark matter halo
counts, but low peaks having an important influence on
parameter constraints. The sensitivity of Minkowski func-
tionals is similar to that of peak counts, which is not
surprising at high κ levels. The similarities between
statistics, such as the cancellation of geometry and growth
effects, arises from the fact that this property is present at
map level.
The partial cancellation, together with projection effects,

yields weak constrains for w, and underscores the need to
combine information from different redshifts to tighten
constrains on DE. Marginalized errors on Ωm and w are
similar to those calculated from growth-only effects. This
suggests that combining WL data with probes that strongly
constrain the expansion history through geometry, such as
BAOmeasurements, may be especially beneficial to tighten
constraints.
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