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In this work, we study the imprint of an individual primordial cosmic string within a Hubble patch on the
inflationary power spectrum. A straight cosmic string induces two distinct contributions to the curvature
perturbations power spectrum. The first type of correction respects the translation invariance while
violating isotropy. This generates quadrupolar statistical anisotropy in cosmic microwave background
maps, which is constrained by the Planck data. The second contribution breaks both homogeneity and
isotropy, generating a dipolar power asymmetry in the variance of temperature fluctuations with its
amplitude falling on small scales. We show that the strongest constraint on the tension of primordial cosmic
strings is obtained from the quadrupolar anisotropy and argue that the mass scale of the underlying theory
responsible for the formation of the string cannot be much higher than the grand unified theory scale. The
predictions for the diagonal and off-diagonal components of the cosmic microwave background angular
power spectrum induced by the string are presented.
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I. INTRODUCTION

The precise measurements of anisotropies on cosmic
microwave background (CMB) temperature fluctuations
and its polarization maps [1–3] have provided strong
support for inflation as the leading theory for early
Universe and generating the initial perturbations. The basic
predictions of inflation that the CMB perturbations are
nearly scale invariant, nearly adiabatic, and nearly Gaussian
are in good agreement with these observations.
There are indications of anomalies on CMB maps as

reported in the Planck results [1,3] and also in earlier
observations, such as the dipole asymmetry and the power
suppressions on large scales. There are two different views
as to how interpret these anomalies. One attitude is that
these anomalies are not statistically significant and may be
due to a lack of precise data, unknown systematics, or even
methods of data analysis. This is mainly motivated by the
fact that these anomalies are observed on low-l regions of
CMBmaps in which the effects of cosmic variance are non-
negligible. It is possible that these anomalies are artifacts of
poor statistics on large scales. In this view, no single
anomaly is significant enough to challenge the simple
concordance model of early Universe. It is argued that if a
theoretical model can address more than one anomaly at the
same time then these anomalies and the theory behind their
generation become significant. The other attitude is that
these anomalies may be genuine and may hint to nontrivial
inflationary dynamics. If so, understanding these anomalies
may open new windows to the physics of the primordial
Universe. This is particularly important if the anomalies
persist in current and future observations. In addition, if

some theoretical models can address not only anomalies in
CMB temperature maps but also provide independent
predictions for CMB polarization maps and primordial
tensor perturbations, then it is worth studying these
scenarios.
In particular, the Planck data indicate the existence of a

hemispherical power asymmetry in CMB maps [4,5],
which was observed earlier in WMAP data, too [6–8].
Fitting the temperature anisotropy with a dipole modulation
[9] in the form

ΔTðn̂Þ ¼ ΔTðn̂Þð1þ Adn̂ · p̂Þ; ð1Þ

the Planck data found the dipole amplitude Ad ≃ 0.06 with
the preferred direction p̂ toward the southern hemisphere
with respect to the Galactic plane. One interesting feature
of the dipole asymmetry is that the amplitude of the dipole
shows strong scale dependence such that it falls off rapidly
on smaller scales, say for l ≥ 100. The effects of dipole
asymmetry in CMB data and large-scale structure have
been further investigated in Refs. [10–21].
With these discussions in mind, there has been signifi-

cant interest in addressing the nature of the dipole asym-
metry in recent years. One interesting proposal for the
mechanism of dipolar asymmetry is the idea of long mode
modulations [22]. In this picture, it is assumed that there
exists a mode kL that is much longer than the Hubble
radius during inflation. This long mode generates the
power asymmetry by modulating the background infla-
tionary parameters such as the inflaton field or its velocity
or by modulating the surface of the end of inflation.
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Unfortunately, this proposal does not work in simple
models of inflation such as in single field scenarios.
Based on the non-Gaussianity consistency condition
[23], it is shown in Ref. [24], see also Ref. [25], that in
models of inflation in which there is only one source for
curvature perturbations the amplitude of dipole modulation
is controlled by the amplitude of local-type non-
Gaussianity fNL. Consequently, in these models with small
(almost zero) fNL, dipole asymmetry with large enough
amplitudes cannot be generated. For this idea to work, one
has to consider models beyond simple slow-roll scenarios
such as the curvaton model, isocurvature perturbations, etc.
For a list of various theoretical works based on long mode
modulation and related ideas to generate dipole asymmetry,
see Ref. [26].
Alternatively, the idea of using primordial defects during

inflation to generate power asymmetry has been employed
in Refs. [27,28]. In Ref. [27], it is assumed that there exists
a domain wall during inflation that causes the asymmetry. It
is shown that a large dipole with nontrivial scale depend-
ence can be generated while the amplitudes of higher
multipoles are suppressed as required from the Planck data.
This idea was extended in Ref. [28] to the case of a
primordial massive defect, such as a monopole or black
hole, during inflation to generate power asymmetry. The
presence of a massive defect breaks the translational
invariance maximally while keeping the rotation invariance
intact. The structure of power asymmetry is somewhat
nontrivial as one also generates inhomogeneities in the
primordial power spectra.
Another anomaly that has captured significant interest in

recent years is the quadrupolar statistical anisotropy. Unlike
the hemispherical (dipolar) asymmetry defined in Eq. (1),
the quadrupolar statistical anisotropy represents anisotropy
at individual points. Specifically, if one divides the CMB
sphere in two opposite hemispheres, then both hemispheres
are statistically the same while points on the same or
opposite hemisphere can have different power. The quad-
rupolar statistical anisotropy in the curvature perturbation
power spectrum PR is usually parametrized in Fourier
space k via [29,30]

PRðkÞ ¼ Pð0Þ
R ðkÞð1þ g�ðm̂ · k̂Þ2Þ; ð2Þ

in which Pð0Þ
R ðkÞ is the dominant isotropic power spectrum,

m̂ represents the preferred (anisotropic) direction in the
sky, and g� is the amplitude of quadrupolar anisotropy.
Constraints from Planck data [1,3,31] imply jg�j≲ 10−2.
The best known mechanism to generate quadrupolar

statistical anisotropy is the scenario of anisotropic inflation
based on the dynamics of a Uð1Þ gauge field during
inflation; see, for example, Refs. [32–38]. In this mecha-
nism, a background electric field is turned on during
inflation so the background geometry is in the form of a

Bianchi I metric. If one couples the gauge field with the
inflaton field appropriately, then one can reach the attractor
regime in which the electric field energy density reaches a
subleading but a constant fraction of the total energy
density. This can lead to a small amount of quadrupole
anisotropy.
Mathematically speaking, the quadrupolar statistical

anisotropy given in Eq. (2) is defined in Fourier space,
while the hemispherical asymmetry in Eq. (1) is defined in
real space. To prevent confusion, we refer to the former as
the statistical anisotropy, while the latter is called the power
asymmetry or dipolar asymmetry.
In this work, we extend the motivation of Refs. [27,28] to

the case of cosmic strings during inflation. To be specific,
we consider the effects of an individual straight string in a
Hubble patch during inflation. Our goal is to calculate the
corrections in the curvature power spectrum and to look for
the amplitude, shape, and scale dependence of the induced
anisotropy and asymmetry. The imprints of primordial
defects during inflation for various motivations have been
studied in Refs. [39–44]. In particular, in Ref. [40], the
correction to the curvature perturbation power spectrum
induced by a cosmic string during inflation was obtained.
In this work, we build and extend on the results of Ref. [40]
to obtain the imprints of a cosmic string during inflation.
Before closing this section, we comment that, indepen-

dent of the observational significance of anisotropy and
asymmetry, the idea of looking for the imprints of defects
during inflation is well motivated. Indeed, the formation of
defects is a generic feature of symmetry breaking, which is
expected to happen at various scales in the history of early
Universe [45]. In particular, the idea of strings in the early
Universe is interesting. In models of inflation constructed
from string theory, such as in brane inflation, cosmic strings
are copiously generated at the end or during inflation when
the brane and antibrane in a brane-antibrane pair annihilate
each other [46–51]. These are either fundamental strings
(F strings) or D1 branes (D strings), which have different
charges and couplings. They can combine to form junctions
of ðp; qÞ strings that can have nontrivial implications for
lensing and evolution of the networks of cosmic super-
strings; for a review, see Ref. [52].

II. CURVATURE PERTURBATIONS
POWER SPECTRUM

In this section, we present our setup of a cosmic string
during inflation. The motivations and logic are similar to
Refs. [27,28]. It is assumed that inflation is driven by a
scalar field, the inflaton field ϕ, which is slowly rolling on
its nearly flat potential VðϕÞ. Therefore, the dominant
source of energy density is given by the potential V. The
string is assumed to be a subdominant source of energy, and
its effects can be treated perturbatively compared to those
of the inflaton field. We consider the idealized situation in
which the string’s length is much larger than the Hubble
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radius during inflation so for practical purposes it is treated
as a string with infinite length. We assume that all wiggles
along the length of strings are wiped out so the string can be
parametrized by its tension μ. As usual, the relevant
dimensionless parameter in the studies of cosmic string
is the parameter Gμ, which measures the tension of the
string in units of the Newton constant G. For our pertur-
bative approach to be consistent and the contribution of
string to energy density in a given Hubble radius H−1 to be
subdominant compared to the inflaton potential, we require
that ðμH−1ÞH3 ≪ V, which is equivalent to Gμ ≪ 1. In
addition, we work in the limit at which the thickness of
string is negligible so it can be treated as a line of
distribution of energy with the tension μ.
If we consider the physical assumption that the string is

formed because of a Uð1Þ symmetry breaking during
inflation, then the thickness of the string is related to the
energy scale of symmetry breaking, which is of the order
1=

ffiffiffi
μ

p
. Therefore, assuming the thickness of the string to be

much smaller than the Hubble radius during inflation, we
require 1=

ffiffiffi
μ

p ≪ H−1, which in turn translates into Gμ ≫
ðH=MPÞ2 in which MP ¼ 1=8πG is the reduced Planck
mass. Combining both conditions, we require ðH=MPÞ2 ≪
Gμ ≪ 1. For typical models of inflation, we expect
H=MP ≲ 10−5 so the above condition can be easily
satisfied for Gμ ≲ 10−2.
The upper bound on the tension of the string is Gμ ≲

10−7 if a network of cosmic strings is assumed to generate
parts of temperature anisotropies in CMB maps; for
some recent works on this direction, see, for example,
Refs. [53–56]. However, this bound does not apply to our
case, since we do not consider a network of strings to
generate perturbations on CMB after inflation. In our
picture, we have one string in a Hubble horizon during
inflation. In addition, to not complicate the thermal history
of Universe after inflation, we assume that the string decays
to relativistic particles during reheating so all its energy
goes to radiation after inflation. In general, the latter
assumption may not be necessary, so it may be relaxed
if one is interested in the presence of a string after inflation.
We are interested in corrections to the curvature pertur-

bation power spectrum induced by the string. Following the
logic of Refs. [27,28], the dominant contribution in
comoving curvature perturbations R is given by the
inflaton field via

R ¼ −
H
_ϕ
δϕ; ð3Þ

in which δϕ is the quantum fluctuation associated with the
inflaton field. There are two types of contributions from the
string, which, in principle, one has to take into account.
First, the definition of curvature perturbation R in the
presence of a string is modified so there will be an

additional term in R beyond the leading term given in
Eq. (3). Second, the string modifies the background
geometry. As is well known, the geometry around a straight
string is locally flat, while it modifies the geometry globally
causing a deficit angle at the order Gμ around string [57].
As argued in Refs. [27,28], the first contributions in the
curvature power spectrum are at the order Gμ

ffiffiffiffiffiffi
ϵH

p
in which

ϵH is the slow-roll parameter ϵH ≡ − _H=H2. Intuitively
speaking, the first contribution comes from the gravita-
tional backreactions of the string on inflaton dynamics,
which necessarily has both of the small parameters Gμ andffiffiffiffiffiffi
ϵH

p
. However, the second contribution is the direct

contribution of the string into background geometry, which
is at the order Gμ as we calculate below. Therefore, in the
slow-roll limit where ϵH ≪ 1, the leading correction is
from the second contribution, i.e., the direct contribution of
the string to the geometry. This in turn induces a correction
to the Hamiltonian, and its effects on the curvature
perturbation power spectrum can be calculated using the
perturbative in-in formalism [23,58].
With these discussions in mind, now we proceed to study

the effects of cosmic strings on the background geometry.
As mentioned before, in a flat background, the geometry
around the string is locally flat, while a deficit angle is
induced around string. In an inflationary background with a
near de Sitter (dS) background, one expects the above
picture to hold and the string only to induce a deficit angle
without changing the local geometry. Specifically, assum-
ing the infinite string is extended along the z direction, the
vacuum solution of the string in a dS background in polar
coordinates ðρ;ϕ; zÞ has been obtained to be [59]

ds2 ¼−dt2þaðtÞ2ðdρ2þð1−4GμÞ2ρ2dϕ2þdz2Þ; ð4Þ

in which aðtÞ ¼ expðHtÞ is the scale factor in the dS
background. To leading order in the slow-roll correction,
we have neglected the variation of H, which results in
subleading corrections to our analysis, i.e., at the order
Gμ

ffiffiffiffiffiffi
ϵH

p
or higher. Note that the metric above is written

nonperturbatively to all orders inGμ. However, we are only
interested in corrections to leading order in Gμ, so we shall
expand the above metric to first order in Gμ. Also note that
the above metric satisfies the intuition that the string does
not change the local metric of spacetime and only induces a
deficit angle equal to 8πGμ.
It is more convenient to work with the Cartesian

coordinate system in which the above metric is transformed
into

ds2 ¼ −dt2 þ aðtÞ2
�
dx2 −

ϵ

ρ2
ðx2dy2

þ y2dx2 − 2xydxdyÞ
�
; ð5Þ
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in which ρ2 ¼ x2 þ y2 and we have defined the small
dimensionless parameter ϵ via

ϵ ¼ 8Gμ: ð6Þ

We need to calculate the interaction Hamiltonian. For
this purpose, we write down the action of inflaton field in
the presence of a cosmic string. In our treatment, the
inflaton field feels the presence of a string via a deformation
of the background geometry induced by a cosmic string as
given in Eq. (5). Note that in the limit in which we neglect
the gravitational backreaction of the string on the inflaton
field we can treat the scalar field as a nearly massless scalar
field with the amplitude of quantum fluctuations H=2π.
The rollings of the inflaton and its mass induces corrections
at the order ϵ

ffiffiffiffiffiffi
ϵH

p
to the anisotropic power spectrum, which

we neglect as mentioned before.
The action of a (nearly) massless inflaton field in the

presence of the cosmic string encoded in the geometry (5) is
given by

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μδϕ∂νδϕ; ð7Þ

in which δϕ represents the quantum fluctuations of the
inflaton field. Calculating the inverse metric gμν and the
determinant

ffiffiffiffiffiffi−gp
to leading order in ϵ, we have

ffiffiffiffiffiffi
−g

p ¼ a3
�
1 −

ϵ

2

�
þOðϵ2Þ; ð8Þ

and

δgxx ¼ ϵ
y2

a2ρ2
; δgyy ¼ ϵ

x2

a2ρ2
;

δgxy ¼ δgyx ¼ −ϵ
xy
a2ρ2

: ð9Þ

Since the interaction terms in the Lagrangian contain
solely space derivatives, the Hamiltonian densityHI simply
equals the Lagrangian density −LI. Plugging back the
above results into the action, the leading-order interaction
Hamiltonian is obtained to be

HI ¼
ϵaðtÞ
2

Z
d3x

ðx∂yδϕ − y∂xδϕÞ2
ðx2 þ y2Þ : ð10Þ

Because we are interested in the curvature perturbation
power spectrum in Fourier space, we calculate HI in
Fourier space, yielding

HI ¼ −
aðtÞϵ
2ð2πÞ6

Z
d3xd3kd3q

δϕkδϕq

x2 þ y2

× ðykx − xkyÞðyqx − xqyÞeiðkþqÞ:x; ð11Þ

in which δϕk is the amplitude of δϕ fluctuations in Fourier
space. From the above expressions for HI, we see that the
system enjoys the remnant translation and rotation sym-
metries around the z direction, the orientation of the string.
Now, using the standard in-in formalism [23,58], the

corrections in two-point correlations of the inflaton field
induced by a cosmic string at leading order in ϵ are obtained
to be

ΔhδϕkðteÞδϕqðteÞi¼ i
Z

te

0

dt0h½HIðt0Þ;δϕkδϕq�i

¼−2Im
Z

te

0

dt0hHIðt0ÞδϕkðteÞδϕqðteÞi;

ð12Þ

in which te indicates the time of the end of inflation.
Going to conformal time dη ¼ dt=aðtÞ, we obtain

ΔhδϕkðteÞδϕqðteÞi ¼ 2ϵð2πÞδðkzþqzÞ

×
Z

ηe

−∞
dη0a2ðη0Þhðk⊥;q⊥ÞImðδϕkðη0Þ

× δϕqðη0Þδϕ�
kðηeÞδϕ�

qðηeÞÞ; ð13Þ

in which k⊥ represents the projection of k on the xy plane,
which is perpendicular to the orientation of the string, and
we have defined the function hðk⊥;q⊥Þ via

hðk⊥;q⊥Þ≡
Z

d2x
expðiðkþ qÞ⊥:x⊥Þ

x2 þ y2

× ½x2qyky þ y2qxkx − xyðqxky þ qykxÞ�:
ð14Þ

One can easily check that hðk⊥;q⊥Þ ¼ hðq⊥;k⊥Þ. Also
note that the delta function δðkz þ qzÞ in Eq. (13) is a
manifestation of translation invariance along the string.
Using the form for the wave function of inflaton field

δϕk ¼
Hffiffiffiffiffiffiffi
2k3

p ð1 − ikηÞ expðikηÞ

and taking ηe → 0, the right-hand side of Eq. (13) sim-
plifies to

2ϵð2πÞδðkz þ qzÞhðk⊥;q⊥Þ
Z

0

−∞

dη0

H2η02

�
H2

2k3q3

�
2

× Im½ð1 − ikη0Þð1 − iqη0ÞeiðkþqÞη0 �: ð15Þ

Now, using the relations
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Im
Z

0

−∞ð1−iϵÞ
dη0eiðkþqÞη0 ¼ −1

kþ q
ð16Þ

and

Im
Z

0

−∞ð1−iϵÞ
dη0

�
1

η02
−
iðkþ qÞ

η0

�
eiðkþqÞη0 ¼ −ðkþ qÞ;

ð17Þ

the integral over η0 in Eq. (13) is calculated yielding

ΔhδϕkðteÞδϕqðteÞi

¼ ϵπH2

k3q3
δðkz þ qzÞ

�
kq

kþ q
− ðkþ qÞ

�

×

�X
i≠j

kjqjFiiðk⊥ þ q⊥Þ − kiqjFijðk⊥ þ q⊥Þ
�
; ð18Þ

in which we have defined

Fijðk⊥Þ≡
Z

d2x expðik⊥:x⊥Þ
xixj

x2 þ y2
;

i; j ∈ f1; 2g: ð19Þ

With some effort, one can check that [40]

Fijðk⊥Þ ¼ 2π2δijδ
2ðk⊥Þ þ

4π

k21 þ k22

�
δij
2
−

kikj
k21 þ k22

�
:

ð20Þ

Plugging the above form of Fijðk⊥Þ in Eq. (18), and
noting that the curvature perturbationR is related to δϕ via
R ¼ −Hδϕ= _ϕ, the curvature perturbations two-point cor-
relation function in the presence of a cosmic string is
obtained to be [40]

hRkðteÞRqðteÞi ¼
�
H2

_ϕ

�
2
�ð2πÞ3

k3
δ3ðkþ qÞ

− ϵπ

�
k2 þ q2 þ kq
k3q3ðkþ qÞ

�
δðkz þ qzÞ

×

�
2π2k⊥ · q⊥δ2ðk⊥ þ q⊥Þ

−
4π

ðk⊥ þ q⊥Þ2
�
k⊥ · q⊥

2

−
k⊥ · ðk⊥ þ q⊥Þq⊥ · ðk⊥ þ q⊥Þ

ðk⊥ þ q⊥Þ2
���

:

ð21Þ

For comparison, we have also added the leading isotropic
and homogenous contribution from the inflaton field itself
as given by the first term in Eq. (21), while the corrections
from the string are given by the last three terms.
The structure of the symmetries of the two-point

correlation function is somewhat nontrivial. The full
SOð3Þ rotation is broken to the subset of two-dimensional
rotation in the xy plane. One can easily see that all three
terms from the corrections of string, the last line in
Eq. (21), are invariant under rotation only around the
string. As for the translation invariance, only the first term
out of these three contributions retains the full three-
dimensional translation invariance because it has the
three-dimensional Dirac delta function δ3ðkþ qÞ. The
last two corrections from the string break the translation
invariance in the plane perpendicular to string as they have
only δðkz þ qzÞ. Since the string loses the full rotation and
translation invariances, its corrections to the curvature
perturbation power spectrum are a mixture of anisotropies
and inhomogeneities. Therefore, the asymmetries gener-
ated by a cosmic string are more complicated than the
simple dipole asymmetry modeled by Eq. (1) and cannot
be captured just by the dipole amplitude Ad.

III. QUADRUPOLE ANISOTROPY

As we discussed above, the corrections to the power
spectrum induced by cosmic strings have two distinct
contributions. In particular, we see that the first term in the
last line of Eq. (21) has the structure of a quadrupolar
anisotropy as introduced in Eq. (2), in which the aniso-
tropic (preferred) direction is the orientation of the cosmic
string. As can be seen, the contribution of quadrupolar
anisotropy is quite different than the contribution of the
last two terms in Eq. (21), which mostly mimic a dipolar
asymmetry. As we discussed before, the quadrupolar
statistical anisotropy is associated with anisotropy at
each point on the CMB map, while each CMB hemi-
sphere has statistically the same power as the opposite
hemisphere.
To calculate the amplitude of the quadrupolar anisotropy

g�, we compare the quadrupole term in the power spectrum

with the isotropic power spectrum Pð0Þ
R given by the first

term in Eq. (21), obtaining

g� ¼ −
3ϵ

8
: ð22Þ

The minus sign above is from the fact that sin2 θ ¼
1 − cos2 θ.
This is an interesting prediction. We see that a cosmic

string induces a quadrupole anisotropy in CMB maps that
can be tested directly by cosmological observations. In
particular, constraints from Planck observations [1,3,31]
implies jg�j≲ 10−2, yielding ϵ≲ 10−2. Therefore, the scale
of symmetry breaking responsible for the formation of
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strings during inflation cannot be much higher than the
grand unified theory (GUT) scale. For example, if we
assume that cosmic strings in the early Universe are in the
form of a D or F string from string theory, then the mass
scale of string theory cannot be much higher than the GUT
scale. In addition, we see that the sign of g� is negative in
our setup. Curiously, the sign of g� is also negative in all
known models of anisotropic inflation [38].

IV. VARIANCE OF CURVATURE
PERTURBATIONS

Since the last two terms in Eq. (21) are not fully
homogeneous, we expect them to induce an effective
power asymmetry in CMB maps. The structure of these
terms is too complicated to be used directly in an analytical
study. A useful and practical tool is to look for the variance
of curvature perturbations in real space hRðxÞ2i. This
provides insight about the magnitude and the form of power
asymmetry generated by a cosmic string in temperature
fluctuations. Following the analysis of Ref. [10], the Planck
team has used the variance of temperature fluctuations
[which is linearly related toRðxÞ] as one of the measures of
dipole asymmetry [5]. With this motivation in mind, we
calculate hRðxÞ2i for our setup.
The correction in variance induced by the cosmic string

is given by

ΔhRðxÞ2i ¼ 1

ð2πÞ6
Z Z

d3kd3qeiðkþqÞ·xΔhRkRqi: ð23Þ

The first correction from a string in Eq. (21) is fully
translation invariant, so, as expected, it does not generate

any position dependence in the variance; it only modifies
the leading isotropic variance. Denoting its contribution to
variance by ΔhRðxÞ2ihom, we obtain

ΔhRðxÞ2ihom¼−
3ϵ

16

�
H
_ϕ

�
2
Z

∞

−∞
dkz

Z
∞

0

dk⊥
k3⊥

ðk2⊥þk2zÞ5=2

¼−ϵ
Z

d lnkPR
ð0Þ; ð24Þ

where PR
ð0Þ ¼ ðH2=2π _ϕÞ2 is the isotropic power

spectrum.
As expected, this has the same structure as the leading

homogeneous variance. The constraint from the quadrupole
anisotropy ϵ ≪ 1 guarantees that the corrections in iso-
tropic and homogeneous variance induced from the first
correction of the cosmic string are subleading compared to
the contribution from an inflaton field. The interesting
feature is that this contribution from strings has an opposite
sign compared to the contribution from the inflaton. This
may be good news to address the shortage of power on low
l as observed in Planck data. However, a careful data
analysis must be performed to see whether the string can
address the shortage of power on large scales while not
changing the power on smaller scales and at the same time
satisfying the constraints from the quadrupole statistical
anisotropy.
The remaining two terms in Eq. (21) violate the

translation invariance in the xy plane and contribute non-
trivially to the variance. Denoting these contributions by
ΔhRðxÞ2iasym., we have

ΔhRðxÞ2iasym ¼−ϵ
�
H2

_ϕ

�
2
Z

d2k⊥d2q⊥dkz
ð2πÞ6 eiðk⊥þq⊥Þ:x⊥ 4π

ðk⊥þq⊥Þ2
�
k2þq2þ kq
k3q3ðkþqÞ

�				
qz¼−kz

×

�
1

2
k⊥:q⊥−

1

ðk⊥þq⊥Þ2
k⊥:ðk⊥þq⊥Þq⊥:ðk⊥þq⊥Þ

�
; ð25Þ

in which the delta function δðkz þ qzÞ has been used to remove the integration over qz. This also means that inside the
integral we have k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ k2z

p
.

Fortunately, the integral over kz can be taken analytically where

Z
∞

−∞

k2⊥þq2⊥þ2k2zþðk2⊥þk2zÞ1=2ðq2⊥þk2zÞ1=2
ðk2⊥þk2zÞ3=2ðq2⊥þk2zÞ3=2½ðk2⊥þk2zÞ1=2þðq2⊥þk2zÞ1=2�

dkz¼
2

k2⊥q2⊥
: ð26Þ

Plugging this in Eq. (25) yields

ΔhRðxÞ2iasym¼−8πϵ
�
H2

_ϕ

�
2
Z

d2k⊥d2q⊥
ð2πÞ6

eiðk⊥þq⊥Þ:x⊥

ðk⊥þq⊥Þ2k2⊥q2⊥

�
1

2
k⊥:q⊥−

1

ðk⊥þq⊥Þ2
k⊥:ðk⊥þq⊥Þq⊥:ðk⊥þq⊥Þ

�
: ð27Þ
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The above expression for variance looks too complicated
to be handled analytically. However, useful information can
be obtained by looking at its asymptotic behaviors. It is
easy to see that the integral above has no UV divergence as
the integrand oscillates rapidly, yielding finite UV con-
tributions. As for the IR behavior, we note that the integral
is independent of scale in the sense that if we rescale all
momenta and the measures by the factor jx⊥j then the
integral and the measure remain independent of scale while
all scale dependence appears at the lower cutoff of the
integral; i.e., it appears at the IR cutoff of the integral.
Using this insight, we rescale all momenta by jx⊥j, writing
the asymmetric variance as

ΔhRðxÞ2iasym¼−8πϵ
�
H2

_ϕ

�
2
Z
jk⊥;q⊥j>ρ

L

d2k⊥d2q⊥
ð2πÞ6k2⊥q2⊥

×eiðk⊥þq⊥Þ:x̂⊥ 1

ðk⊥þq⊥Þ2
�
1

2
k⊥:q⊥

−
1

ðk⊥þq⊥Þ2
k⊥:ðk⊥þq⊥Þq⊥:ðk⊥þq⊥Þ

�
:

ð28Þ

Here, ρ≡ x⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the perpendicular distance

from the point x on the CMB sphere to the string, and L
represents the IR comoving cutoff of the setup, the size of an
imaginary box that is bigger than the observable Universe.

With some effort, one can take the integral over k2 and q2
in Eq. (28), obtaining

ΔhRðxÞ2iasym ¼ −
π3ϵ

ð2πÞ6
�
H2

_ϕ

�
2
Z

dk1dq1
eiðk1þq1Þρ

ðk1 þ q1Þ2
× ðsgnðk1 þ q1Þ þ sgnðk1ÞÞðsgnðq1Þ
þ sgnð2k1 þ q1ÞÞ

¼ −π3ϵ
ð2πÞ6

�
H2

_ϕ

�
2
Z

dkdq1
eikρ

k2
ðsgnðkÞ

þ sgnðk − q1ÞÞðsgnðq1Þ þ sgnð2k − q1ÞÞ:
ð29Þ

Taking the integral and being careful on sign functions give
the following result for the asymmetric variance:

ΔhRðxÞ2iasym ¼ −
π3ϵ

ð2πÞ6
�
H2

_ϕ

�
2

× 4ð−2π3Þ

× Re

�Z
ρ=L

dk
k
expðikÞ

�

¼ −
ϵ

8π3

�
H2

_ϕ

�
2

lnðρ=LÞ

¼ −
ϵ

2π
Pð0Þ

R lnðρ=LÞ: ð30Þ

FIG. 1. (a) The original coordinate system in which the string is orientated along the ẑ direction where we have calculated the
corrections in the power spectrum. (b) The new coordinate in which we perform numerical analysis for variance. The direction of dipole
asymmetry is toward the −ẑ direction. In Galactic coordinates, we have ẑ ¼ ðl; bÞ ¼ ð44°; 22°Þ and x̂ ¼ ð44°;−68°Þ.
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V. NUMERICAL RESULTS AND COMPARISON
WITH OBSERVATIONS

Having obtained the analytical estimate for the variance
of curvature perturbation in Eq. (30), in this section, we
look for the constraints on the model parameters by
comparing our analytical result for the variance with the
Planck data.

A. Variance of the TT map

In performing the variance analysis and comparing it
with the data, it is better to change the coordinate to a
convenient one for the CMB observer. So, instead of the
configuration given in the left-hand side of Fig. 1, we use
the coordinate presented in the right-hand side of that
figure, in which the orientation of the string is measured by
ψ , the angle with respect to a fixed x̂ direction in the sky. In
the new coordinate system, the anisotropic correction to the
variance of the curvature perturbation from Eq. (30) (after
removing the constant isotropic piece) is given by

Varðθ;ϕjϵ; κ;ψÞ ¼ −
ϵ

4π
lnð1þ κ2sin2θsin2ðϕ − ψÞ

þ κ2cos2θ þ 2κ cos θÞ; ð31Þ

in which we have defined κ ≡ r=ρ0, where ρ0 is the
distance between the string and the center of the CMB
sphere and r is the comoving radius of the CMB sphere as
shown in Fig. 1. In Fig. 2, we have plotted the curves of
constant variance on the CMB sphere. These curves are
obtained by intersecting the hypersurfaces of constant ρ
with the CMB sphere. To compare (31) with the map of
CMB variance, we compute the alm multipoles associated
with it:

alm ≡
Z

dΩY�
lmðθ;ϕÞVarðθ;ϕÞ: ð32Þ

In Ref. [10], the authors have constructed a map of
variance out of the TT map of the Planck data. They have
obtained the best-fit values for the direction of the variance
asymmetry as well as the multipole moments of the
variance map. In their analysis, they have assumed the
SOð2Þ symmetry for the map of the variance of temperature
fluctuations. However, in our model, by locating an infinite
cosmic string near our Hubble patch during inflation, we

FIG. 2. The curves of equal variance on the CMB sphere induced by the cosmic string, left: κ ¼ 0.5, right: κ ¼ 2. These curves are
obtained by the intersection of hypersurfaces ρ ¼ constant with the CMB sphere. The string is extended along the vertical direction, and
the surfaces of constant ρ are centered around the string.

FIG. 3. Angular power spectrum of the variance as a function of
κ for dipole, quadrupole, and octupole with the normalization
ϵ ¼ 1.
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have spontaneously broken all rotational symmetries as
well as the two-dimensional translational group on the
plane perpendicular to the string.
Looking at Fig. 2, we realize that if κ < 1, corresponding

to the configuration in which the string lies outside of the
CMB sphere, the contours of constant variance are not far
from a set of parallel circles. On the other hand, we know
that the map of CMB variance (like the one used in
Ref. [10]) is very smooth as it has been averaged over
few degrees circles. This suggests that, given a variance
map, one can hardly distinguish between a string and a wall
(an SO(2) symmetric configuration, like what is studied in

Ref. [27]), located somewhere outside of the CMB sphere.
So, in what follows, to decrease the numerical cost of
finding the best-fit parameters, we assume that in our model
the direction ẑ is the same as the direction of dipole
asymmetry found in Ref. [10]. Later, we search for the best-
fit value of ψ . Of course, by imposing this assumption, we
implicitly exclude the possibility κ ≫ 1 (configurations in
which the string is close to the center of CMB). But this
should not be a bad assumption because, roughly speaking,
such configurations predict a nearly equal value of variance
over the two opposite hemispheres, while the data prefer
different values of variance on two opposite hemispheres.

FIG. 4. Left: NILC masked variance map; right: SMICA masked variance map. They are masked by their individual masks and rotated
such that the vertical direction lies in the direction of dipole variance asymmetry, namely, ðl; bÞ ¼ ð224;−22Þ in Galactic coordinates.

FIG. 5. The three-parameter Fisher analysis with the best values ðϵ; κ;ψÞ ¼ ð0.265; 0.917; 2.518Þ.
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Before going to search for the best fit of the direction of
the string, namely, the angle ψ , we can calculate a tentative
measure of variance asymmetry. As we explained above,
for κ < 1, the approximate SO(2) symmetry is recovered,
so for these values of κ, we can average over ψ, or similarly
we can sum over m. This would result in an averaged
angular power spectrum,

Cl ≡ 1

2lþ 1

X
m

jalmj2: ð33Þ

This is the quantity computed in Ref. [10] for both
simulations and the real data. In Fig. 3, we have plotted
Cl for the dipole, quadrupole, and octupole as a function of
κ. We can immediately compare our predictions with the
data reported in Ref. [10]. The data prefer a small C2 and
C3, while allowing for C1 as large as ∼0.01. By considering
only Fig. 3, there is no trouble in attaining such values for
Cl. However, we must keep in mind not to rely on the
values of κ > 1 predicted here since, for such values of κ, ψ
cannot be averaged over.

To perform a likelihood analysis and especially for
taking the effects of ψ into account, we have rotated the
Planck map of the variance of fluctuations such that the
direction of the reported dipole asymmetry (in spherical
coordinates) is along the −ẑ direction; see Figs. 1 and 4.
Now, by means of a likelihood analysis and comparing alm
with the data, one can find the best-fit values for ϵ, κ, and ψ .
For this purpose, we used all CMB component separation
algorithms, namely, Commander ruler, NILC, SMICA, and SEVEM

maps of Planck DR-2 intensity maps and the corresponding
masks for each component [60]. We extracted the variance
map out of these maps by calculating the variance of the TT
fluctuations over 6° circles on the CMB sphere and applied
the corresponding masks for each map. Afterward, we used
those disks that had more than 90% unmasked pixels to
construct a variance map and ignored other disks. Finally,
we computed alm for all of our variance maps and tried to
maximize the likelihood function over the paramet-
ric space.
According to the comparison between simulation and

data performed in Ref. [10], except for l ¼ 1, the higher

FIG. 6. Some elements of the first (homogenous) and second (inhomogeneous) parts of the power spectrum, Eq. (21), for the angular
power spectrummatrix,Cðl;mÞðl0;m0Þ, evaluated for the best-fit values found by variance analysis in Fig. V. Top left: the diagonal part of the
first contribution with the sum over m. Top right: the diagonal part of the second contribution evaluated for different m. Since the
computational cost of calculating this part is very high, we did not sum over allm. Lower left: the l2 ¼ l1 þ 2 elements of the second part
of the angular power, evaluated for differentm. Lower right: the l2 ¼ l1 þ 2 element (the only nonzero off-diagonal element) of the first
contribution for different m.
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multipoles of the anisotropy variance are consistent with
zero and are not significant. Hence, in searching for the
best-fit values of our model’s parameters, we only look at
l < 4 multipoles. The best-fit values extracted out of this
procedure are ðϵ; κ;ψÞ ¼ ð0.265; 0.917; 2.518Þ; see Fig. 5.
Taking higher ls into account gives us a bad fit to the lower
ls, so we consider only l < 4 multipoles.
There are two important points to mention. First, we see

that this best-fit value, ϵ ¼ 0.265, obtained from the dipolar
asymmetry is an order of magnitude weaker than the
constraint ϵ≲ 10−2 obtained from the quadrupolar
anisotropy. Second, the best-fit value κ ¼ 0.917 corre-
sponds to the configuration in which the string is very
close to the CMB sphere. In a realistic situation, it requires
fine-tuning, so one expects κ to be somewhat different
than unity.

B. Angular spectrum of TT map

Here, we perform the analysis of the CMB angular two-
point function.
Computing the angular two-point function of the TT map

with the primordial curvature power spectrum, Eq. (21), is
straightforward. The details of the formulas are reported in
the Appendix. It is useful to decompose the primordial
spectrum into two parts as represented in Eq. (A2). The first
part does not violate the translational invariance and as
mentioned before is simply a quadrupole term, while the
second part breaks the translational invariance. These two
parts have different contributions to the angular power
spectrum; hence, in the following, we compute and plot
each contribution separately.
The results shown in Fig. 6 are plotted for the best-fit

values found in Fig. V, namely, ðϵ; κÞ ¼ ð0.265; 0.917Þ.
The second contribution, which violates translation invari-
ance, decays rapidly for large l s. As a result, the first
contribution which is homogeneous dominates over the
nonhomogeneous part for l > 3 in diagonal elements. We
also observe that the l2 ¼ l1 part of the second contribu-
tion is much bigger than its off-diagonal l2 ¼ l1 þ 2
elements. Computing the second contribution is numeri-
cally too expensive, so we have calculated only its low
multipole elements.1

VI. DISCUSSIONS

In this work, we have looked for the imprints of a
primordial cosmic string during inflation in generating

statistical anisotropy and power asymmetry. The question
of looking for the effects of cosmic strings in the early
Universe is very well motivated. Cosmic strings can be
generated from aUð1Þ symmetry breaking during inflation.
Alternatively, they can be the F and D strings of superstring
theory. Either way, constraining the tension of cosmic
string directly constrains the mass scale of the correspond-
ing underlying theories responsible for their formation.
The contribution of a cosmic string to the curvature

power spectrum has two distinct parts. The first part is
homogenous and has the form of a quadrupolar statistical
anisotropy. Comparing with the Planck constraints on the
amplitude of quadrupolar anisotropy, we obtain the upper
bound Gμ≲ 10−2 so the energy scale of the underlying
theories generating cosmic string cannot be significantly
higher than the GUT scale. The second contribution of a
cosmic string to the curvature power spectrum breaks the
translation invariance in the plane perpendicular to string.
This contributes to asymmetry in the variance of curvature
perturbations. The resulting constraint on the tension of
cosmic string Gμ ∼ 10−1 is about an order of magnitude
weaker than the constraint from the quadrupolar anisotropy.
By comparison, we comment that the bound on the

tension of cosmic strings in a network formed in a
symmetry breaking after inflation is much stronger,
Gμ ≲ 10−7. This bound is obtained by assuming that the
network of cosmic strings generates a fraction of temper-
ature anisotropies in CMB maps, say less than 10% of the
total power spectrum; see, for example, Refs. [53–56].
However, in our picture, the assumption is that the
primordial string evaporates during reheating so it does
not contribute actively to the temperature anisotropy in the
subsequent evolution of the Universe. In addition, a net-
work of cosmic strings formed after inflation generates a
featureless plateau in the CMB angular power spectrum
predominantly on high l. But, as we have seen, the
primordial string in our picture generates power asymmetry
and quadrupolar anisotropy on low-l regions. Therefore,
the contributions of a network of strings formed after
inflation and the primordial strings during inflation on the
CMB power spectrum are quite distinct. Therefore, our
results can only constrain the scale of symmetry breaking
responsible for the formation of strings during inflation.
We have calculated the contribution of the two above-

mentioned terms in the CMB angular power spectrum.
Because isotropy and homogeneity are broken, we will
have off-diagonal contributions in the angular power
spectrum. The contribution of the inhomogeneous part
rapidly falls off with l for both diagonal and off-diagonal
parts. A dedicated data analysis is required to investigate
the full effects of strings on CMB temperature and
polarization maps.
In our analysis, we have considered the simple picture of

an infinite straight string in a Hubble patch. In a realistic
situation, one may encounter a network of cosmic strings

1We have to keep in mind that the theoretical value for the
angular power spectrum depends on the coordinate we choose,
due to the lack of rotational symmetry. Consequently, one cannot
directly compare the diagonal Cll0mm0 terms found here with the
actual Cl plots of Planck’s data. Nevertheless, what we plot here
should give a rough picture of what Cl would look like if we were
to rotate our TT map in order to match the coordinate in Planck’s
map and if we were to average properly over m and m0.
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during inflation. So, an interesting question is what the
imprints of a network of cosmic strings with a mix of loops
and long strings on the inflationary power spectrum would
be. During inflation, the strings are diluted quickly, so if
one waits for few e-folds, then our picture of a long straight
string is justified. However, during the short transient
regime when the strings are being diluted, the imprints
of a network of cosmic strings in the inflationary power
spectrum would be much more complicated than our
results. It may be an interesting question to look for the
transient effects of a network of cosmic strings during the
early stage of inflation and to see whether a network of
cosmic strings can address the anomalies on CMB maps.
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APPENDIX: ANGULAR POWER SPECTRUM

The relation between the primordial curvature perturba-
tions and angular fluctuations of the CMB is given by

alm ¼ 4πil
Z

d3k
ð2πÞ3ΔlðkÞRkYlmðk̂Þ; ðA1Þ

where Rk is the curvature perturbations of a particular
mode.
As discussed in the main text, the corrections from

cosmic strings in the power spectrum, given in Eq. (21),
have two distinct parts:

ΔhRkR�
qi ¼ F 1ðkÞδ3ðk − qÞ þ F 2ðk⊥;q⊥Þδðkz − qzÞ:

ðA2Þ

The term F 1 violates the isotropy but not the homogeneity,
while F 2 violates both isotropy and homogeneity. These
functions are given by the following formulas:

F 1ðkÞ ¼ 12π5ϵPð0Þ
R

sin2θ
k3

F 2ðk⊥;q⊥Þ ¼ −ð2πÞ4ϵPð0Þ
R

expðiðk1 − q1ÞρÞ
k3q3

×

�
k2 þ q2 þ kq

kþ q

�
1

ðk⊥ − q⊥Þ2

×

�
1

2
k⊥:q⊥ −

1

ðk⊥ − q⊥Þ2

× k⊥:ðk⊥ − q⊥Þq⊥:ðk⊥ − q⊥Þ
�
: ðA3Þ

The matrix elements of the TT anisotropies are2

CTT
ðl;mÞðl0m0Þ ¼ halma�l0m0 i

¼ ð4πÞ2il−l0
Z

d3kd3q
ð2πÞ6 ΔlðkÞΔl0 ðqÞ

× Ylmðk̂ÞY�
l0m0 ðq̂ÞhRkR�

qi: ðA4Þ

We separate the matrix elements due to different terms in
Eq. (A2). The first piece contributes as

CI
ðl;mÞðl0m0Þ ¼ ð4πÞ2il−l0

Z
d3k
ð2πÞ6ΔlðkÞΔl0 ðkÞF 1ðkÞ

× Ylmðk̂ÞY�
l0m0 ðk̂Þ: ðA5Þ

Hereafter, the following convention for spherical harmonics
functions is being used:

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞ expðimϕÞ:

ðA6Þ

Correspondingly, Eq. (A5) simplifies to

CI
ðl;mÞðl0m0Þ ¼ δmm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ ðl −mÞ!

ðlþmÞ!

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þ ðl

0 −mÞ!
ðl0 þmÞ!

s
ð4πÞil−l0

×
Z

k2dk sin θdθ
ð2πÞ5 ΔlðkÞΔl0 ðkÞ

× F 1ðk; θÞPm
l ðcos θÞPm�

l0 ðcos θÞ: ðA7Þ

As for the second term, we have

CII
ðl;mÞðl0m0Þ ¼ ð4πÞ2il−l0

Z
k2dkdϕ sin θdθ

ð2πÞ6
×QdQdϕ0ΔlðkÞΔl0 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ k2cos2θ

p
Þ

× Ylmðcos θ;ϕÞY�
l0m0

�
k cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ k2cos2θ
p ;ϕ0

�

× F 2ðk⊥;q⊥Þ: ðA8Þ

These expressions are used in our analysis to calculate the
angular power spectrum in generating Fig. 6.

2Note that alm depends on the coordinates system we work
with as shown in Fig. 1.
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