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Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale
structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting
from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively
along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform
catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative
displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to
one-loop order, including the higher-order infrared resummation piece. We test the method using dark
matter simulations in real space. At redshift z ¼ 0, we find that after eight iterations the reconstructed
density is more than 95% correlated with the initial density at k ≤ 0.35 hMpc−1. The reconstruction also
reduces the power in the difference between reconstructed and initial fields by more than 2 orders of
magnitude at k ≤ 0.2 hMpc−1, and it extends the range of scales where the full broadband shape of the
power spectrum matches linear theory by a factor of 2–3. As a specific application, we consider
measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the
degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the
BAO signal-to-noise ratio by a factor of 2.7 at z ¼ 0 and by a factor of 2.5 at z ¼ 0.6, improving standard
BAO reconstruction by 70% at z ¼ 0 and 30% at z ¼ 0.6, and matching the optimal BAO signal and signal-
to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is
the most important aspect.
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I. INTRODUCTION

Studies of large scale structure (LSS) and the cosmic
microwave background (CMB) have played a very impor-
tant role in establishing the standard model of cosmology.
Successful CMB experiments over the past few decades
have managed to extract almost all of the available
information in the primary anisotropies, and thus the
importance of LSS studies is expected to increase in the
future. Because of the sheer number of independent modes
that can be measured in our observable Universe, in
principle three-dimensional maps of the late Universe
contain a vast amount of statistical information about the
initial conditions for structure formation as well as cos-
mological parameters. This is especially true if one can
extract information from small spatial scales.
The fluctuations we observe on small scales in the late

Universe have been heavily processed by their dynamical
evolution progressively scrambling the cosmological infor-
mation to the extent that sufficiently small scales are
usually excluded from cosmological analysis. The problem
is made even worse by the fact that many of the remaining
open questions in cosmology such as measuring the masses
of neutrinos or constraining the Gaussianity of the initial
seeds require measuring very small effects.
Thus there is great motivation for and a long history of

trying to undo the cosmological evolution in a process

usually called reconstruction. The hope is to unscramble
the cosmological information that might still be present in
higher order moments of the data and recover the initial
conditions directly which can then be described using a
power spectrum and perhaps a few low-order statistics.
These techniques have been used most successfully in the
context of baryonic acoustic oscillation (BAO) measure-
ments. The BAO feature in the correlation function acts like
a standard ruler whose physical size is calibrated by CMB
measurements, so that measuring its angular extent on the
sky as a function of redshift measures the expansion history
of the Universe. However, the BAO feature is degraded
(i.e., it gets broader) as a result of nonlinear evolution. The
process of reconstruction sharpens back the peak, increas-
ing the signal-to-noise ratio.
The operational procedure of reconstruction methods is

usually motivated by analytical models that connect the
linear initial density with the observed nonlinear density in
the perturbative regime. In the past few years a lot of work
has been put into trying to find improved models; for
example, a recent discussion of Lagrangian-space models
can be found in [1–12]. Here we are motivated by develop-
ments connected with the effective field theory (EFT)
approach to large-scale structure [13–16] and ask whether
these theoretical modeling advances can be used to develop
an improved reconstruction method. This is the goal of our
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paper, where we will focus on a Lagrangian EFT model
developed in [12].
Related to the motivation for standard reconstruction

[17], the key motivation for our method is that the dominant
nonlinear terms that reduce the correlation of the nonlinear
density with initial conditions and degrade the BAO scale
are nonlinear shift terms (rather than intrinsic nonlinearities
like nonlinear growth or tidal terms). These shift terms can
be reduced if we have a good estimate of the nonlinear
displacement field from initial Lagrangian to final Eulerian
coordinates. Motivated by [12], we estimate the nonlinear
displacement field by iteratively moving particles back
along estimated Zeldovich displacements. The resulting
cumulative displacement field significantly improves the
single-step Zeldovich displacement used in standard
reconstruction. This is the most important aspect of our
method. We refine the method further by adding second
order corrections when estimating the linear density from
the nonlinear displacement field, but this is less important
for most applications. For simplicity we will only consider
the idealized toy model of dark matter in real space in this
paper. In future work we plan to extend the method to halos
in redshift space, accounting also for realistic shot noise
and survey selection functions.
The subject of reconstruction was pioneered in

Refs. [18,19], where the initial positions of eight Local
Group galaxies were estimated by minimizing the action of
trial orbits assuming negligible initial peculiar velocities,
and in Ref. [20], where the assumption of irrotational
Lagrangian velocities and the Zeldovich approximation
[21] were used to estimate the linear velocity potential and
linear mass density from observed radial peculiar veloc-
ities. In a different approach called Gaussianization, the
nonlinear density was transformed in a rank-preserving
way such that its one-point probability distribution function
becomes Gaussian [22]. In a method more similar to most
current methods, including ours, the Zeldovich approxi-
mation was used to describe the time evolution of the
velocity potential that can be integrated back in time
without generating vorticity [23]. Mass conservation can
be imposed using the continuity equation [24], and an
iterative higher-order scheme related to this was proposed
in Ref. [25]. In the path interchange Zeldovich approxi-
mation method [26] the least action principle was applied
assuming trajectories are straight lines, which can be
combined with the Gaussianization method [27], or gen-
eralized beyond straight trajectories [28,29]. More recently,
this was generalized to more realistic dynamics, finding
that different methods perform similarly for velocity
reconstruction if applied to realistic mock catalogs [30].
In another generalization known as Monge-Ampere-
Kantorovich reconstruction, an optimal mass assignment
problem is solved [31–35].
A related method now referred to as standard

reconstruction [17] first computes the Zeldovich

displacement from the filtered nonlinear density (corre-
sponding to the first step of the iterative procedure of our
method), and then moves the clustered and a random
catalog by that displacement to estimate the linear density
from the density difference of the two displaced catalogs
(this procedure removes the nonlinear shift terms that
otherwise degrade the BAO scale; also see [36,37]). That
method was successfully applied to real galaxy survey data
from SDSS BOSS [38–43] and WiggleZ [44], improving
BAO measurements typically by a factor of ∼2. Similar
improvements are expected for future galaxy redshift
surveys including, for example, DESI [45], Euclid [46],
and LSST [47].
A conceptually different approach to reconstruction is to

sample the initial condition density, propagate it forward
using an N-body or 2LPT code, compare against observa-
tions, resample modes that did not fare well, etc., which
becomes computationally feasible using Hamiltonian sam-
pling techniques [48,49]. Another method to reconstruct
the initial density from the observed density using the
Hamiltonian Markov chain Monte Carlo technique was
presented in [50,51]. While these methods fix the initial
linear power spectrum and cosmology to constrain the
initial modes, a converse approach [52] is to marginalize
over the modes and constrain the initial power spectrum
and cosmology using optimization techniques.
Following the success of the standard reconstruction

method [17] for improving measurements of the acoustic
peak, a series of related reconstruction procedures were
proposed recently to achieve further improvements or
enable broader applications beyond BAO measurements
[37,53–58]. These methods have a common structure: First,
they estimate the displacement field from initial to final
positions, and second, they estimate the linear density from
that displacement. However, the concrete procedure for
these two stages differs for the various proposed methods as
summarized in Table I. The practical application of
standard reconstruction to real galaxy survey data and
improved implementations are discussed, for example, in
[38,59–61]. In our method described below, we will modify
both the first and second stages based on a concrete
analytical model for structure formation.
An earlier similar attempt to improve the displacement

field using iterative Zeldovich displacements and higher-
order corrections [53] found only negligible improvements
over standard reconstruction. We attribute the main reason
for this to the fact that the filtering smoothing scale was
kept fixed in the iterative procedure, so that only shifts on
very large scales were mitigated. Among other changes and
differences in theoretical motivations, we improve that
method by progressively reducing the smoothing scale with
each iteration step (also see Appendix B).
Recently, a related reconstruction method was proposed

in a series of papers by Zhu et al. [57,58]. This method is
also based on improved estimates of the nonlinear
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displacement between initial Lagrangian and final Eulerian
coordinates, finding substantial improvements over stan-
dard reconstruction in terms of the cross-correlation with
the linear density [57,58], Fisher information [62], BAO
[63], as well as when applying it to halos [64]. In that
approach, the displacement is estimated by writing the
deformation of the observed density grid to an initially
uniform grid under the continuity equation as a differential
equation that is then solved numerically using a multigrid
moving mesh algorithm. Where comparisons are possible,
this method seems to perform very similarly to ours.
Despite differences in the theoretical motivation and opera-
tional procedure for constructing the displacement field and
for inferring the linear density from that displacement, the
similarity in final performance is likely related to the fact
that both methods rely on significantly improved displace-
ment fields compared to standard reconstruction. We
believe both approaches shall be useful in the future to
improve BAO measurements and realize other applications
of reconstruction.
Our paper is structured as follows. We start in Sec. II with

the theoretical motivation for the particular reconstruction
algorithm that we propose. Section III describes the imple-
mentation of the algorithm and the numerical setup and
simulations. In Sec. IV we assess the performance of the
reconstruction based on the one-point probability dis-
tribution function (pdf) of the reconstructed density, its
cross-correlation with the linear initial conditions, the
BAO signature in the power spectrum, and the full shape
of the power spectrum. We conclude in Sec. V. Appendix A
discusses transfer functions that are needed when including
second-order corrections to the reconstruction. In
Appendix B we describe a simple extension of standard
reconstruction that performs worse than the method
described in the main text, but still much better than standard
reconstruction. Appendix C describes our procedure to fit the
BAO signature in the power spectrum. Appendix D and
Appendix E discuss results at higher redshift, the choice of

reconstruction parameters, and simulation convergence tests.
Appendix F provides a perturbative analysis motivating the
reconstruction algorithm further.

II. THEORETICAL MOTIVATION

Perturbation theory has been successful in modeling the
large-scale statistical properties of the evolved LSS given
the initial conditions. In the past few years the application
of EFT ideas has allowed additional improvements on
scales larger than the nonlinear scale. Regardless of these
improvements, perturbation theory breaks down on small
scales once shell crossing has occurred. In addition, we also
expect reconstruction algorithms to break in the same
regime as it is not possible to uniquely infer the initial
density field from the final density once shells have
crossed. One could think of a shell of matter of some
radius; given just the density one cannot know if the shell is
collapsing for the first time or moving back out.
Equivalently one could imagine finding a solution for
the displacement of a uniform set of particles that after
being displaced lead to an observed density field. Given
any such solution, one can easily find another one by
swapping particles around. Thus if perturbation theory
and any reconstruction algorithm are expected to fail
on the same scales, it seems relevant to try to use our
better understanding of perturbation theory to improve
reconstruction, as an algorithm based on perturbation
theory might do as well as one possibly can do. We will
take the first steps along this direction in this paper.
In particular, although BAO reconstruction has been very

successful, we know it does not recover all the information
that is there in the linear field. Thus, if we manage to
improve the reconstruction algorithm, we might expect (or
hope) that for sufficiently good data there might be some
room for improvement in BAO related measurements.
There is also the hope that reconstruction might be useful
for studying other questions.

TABLE I. Overview of some recently proposed BAO reconstruction techniques that estimate first a displacement field from initial to
final conditions, and then use that to infer the linear density. The methods in the bottom three rows are new to this paper, and a crucial
ingredient separating them from other methods is that the smoothing scale is progressively reduced with the number of iteration steps to
access smaller scales. The list is by no means complete; see main text for more methods.

Reconstruction algorithm Stage I: Estimate displacement Stage II: Estimate linear density

Standard reconstruction [17] Zeldovich χ̂ ZA ¼ ik
k2 WδNL δ̂0 ¼ δd½χ̂ZA� − δs½χ̂ZA�

Iterative standard rec [53] Iterative Zeldovich with fixed W δ̂0 ¼ δd½χ̂ZA� − δs½χ̂ZA�
Improved standard rec [37] Zeldovich and iterative Newton-Raphson δ̂0 ¼ δ̂χ ¼ ∇ · χ̂
Standard rec with pixels [54,55] Zeldovich χ̂ ZA ¼ ik

k2 WδNL Move pixels instead of galaxies
Eulerian growth-shift rec [56] Zeldovich χ̂ ZA ¼ ik

k2 WδNL δ̂0 ¼ δNL − χ̂ZA · ∇δ − δ2

Nonlinear isobaric rec [57,58] Solve PDE with multigrid algorithm δ̂0 ¼ δ̂χ ¼ ∇ · χ̂
New Oð1Þ rec Iteratively solve TðkÞFZ½∇ · χ � ¼ WδNL for χ δ̂0 ¼ δ̂χ ¼ ∇ · χ̂
New Oð2Þ rec Iteratively solve TðkÞFZ½∇ · χ � ¼ WδNL for χ δ̂0 ¼ t1ðkÞδ̂χ þ t2ðkÞ

R
p κ2δ̂χðpÞδ̂χðk − pÞ

Extended std rec [Appendix B] Iteratively solve TðkÞFZ½∇ · χ � ¼ WδNL for χ δ̂0 ¼ δd½χ̂ � − δs½χ̂ �
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Let us start by being more precise about our theoretical
expectations:

(i) Perturbation theory only works on large scales, so
we should try to use only the large scale nonlinear
density as an input to the reconstruction algorithm.

(ii) In perturbation theory there are two sources of
nonlinearities: shift terms and true changes to the
small scale dynamics, for example, corrections to the
growth rates. These terms are of different sizes. We
see this directly when we compare one-loop correc-
tions to the displacement and density fields (the
displacement is a Lagrangian quantity that is not
corrected by the shift terms). The scale at which the
one-loop correction to the displacement power is
equal to linear displacement power is much smaller
(at higher k) than that for which the one-loop
corrections to the density power are equal to the
linear density power (e.g., [11,12]). This shows that
the biggest effect in the broadband error of linear
theory is from shift terms, which affect the density
but not the displacement. We discuss this more
quantitatively in Appendix F.

(iii) If we are interested in the BAO feature, we also
know that it is the shift terms that damp the
oscillations (broaden the peaks) [17,65].

(iv) We also know that the correlation function
around the BAO scale computed in the Zeldovich
approximation is almost the same as the fully non-
linear one. It is very difficult to spot the additional
corrections from the other one-loop terms (i.e., the
one-loop IR-resummed correlation function is diffi-
cult to tell apart from Zeldovich). Thus we expect
that undoing Zeldovich is almost all that is
necessary.

(v) If one assumes just one stream, there is a unique way
to invert Zeldovich. But once shell crossing has
occurred, no unique solution exists, and the problem
is no longer invertible. So on small scales the
displacement inferred by making the density uni-
form (inverting Zeldovich) cannot be related to the
initial conditions in a simple form. Finding the
correct displacement might not even be possible
with simulations rather than perturbation theory. At
best one can rely on a prior to rank the probability of
different solutions.

These considerations suggest estimating the perturbative
part of the density field by filtering the nonlinear density
field, then inverting the relation between displacement and
density to obtain the displacement that would transform a
uniform density to the filtered nonlinear density, and then
estimate the linear density from that displacement.
To see this more quantitatively, we can start from the

Lagrangian model built in [12]

δNL ¼ TðkÞδZ½δχ � þ δerror ≡ δPT þ δerror; ð1Þ

where

δχðkÞ ¼ a1ðkÞδ0ðkÞ þ a2ðkÞ
Z

d3p1
ð2πÞ3

3

14

×

�
1 −

ðp1 · p2Þ2
p1 · p1p2 · p2

�
δ0ðp1Þδ0ðp2Þ þ � � � : ð2Þ

Here δNL is the nonlinear final density and δ0 is the linear
initial density. a1ðkÞ, a2ðkÞ, and TðkÞ are transfer functions
that depend only on the modulus of the Fourier wave
vector. δZ½δχ � is the density obtained by moving a uniform
set of particles by a displacement χ whose divergence is
δχ ≡ ∇ · χ . This model contains all the terms relevant for a
one-loop calculation. In principle one should add a cubic
term but up to one loop only the part that correlates with the
linear density enters. Thus the cubic term is included in the
a1 transfer function. In the EFTapproach one has to include
counterterms, which at this order are described by the so-
called speed of sound and related terms. These contribu-
tions are absorbed in a1 and T. Finally, since we are
working in Lagrangian space, all shift terms are included to
all orders. Thus this scheme already does the so-called
infrared (IR) resummation.
One should think of χ as the nonlinear displacement

from initial Lagrangian coordinates to late-time Eulerian
coordinates, which can be modeled perturbatively in the
initial (linear) density field δ0 as in Eq. (2), with
k ¼ p1 þ p2. The error density δerror accounts for the
difference between the perturbatively based prediction
and the simulation results. Its power spectrum was pre-
sented in [12]. That paper showed that not much is gained
by going to higher order in perturbation theory for δχ.
Even with the quadratic based prediction for δχ, the
cross-correlation coefficient between the perturbative and
nonlinear fields drops to 0.5 only at k ≈ 0.5 hMpc−1 at
redshift z ¼ 0.
Assuming the model of Eqs. (1) and (2) is the correct

connection between linear density δ0 and nonlinear density
δNL, how can we estimate δ0 from the observed δNL?
Equation (1) suggests that we first want to estimate the
perturbative part of the density, δPT , from the nonlinear
density field. If all fields were Gaussian, that would involve
a simple Wiener filter. We will follow the same procedure
here and estimate δPT by filtering the nonlinear density
field,

δ̂PTðkÞ ¼ WðkÞδNLðkÞ; ð3Þ

where W is a filter which we choose to be a Gaussian for
simplicity. Then we estimate the divergence δχ of the
Lagrangian-to-Eulerian displacement by demanding

TðkÞδZ½δ̂χ � ¼ δ̂PT ¼ WδNL: ð4Þ
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This is a nonlinear equation for δ̂χ, which we will solve
iteratively. The solution is an estimate χ̂ of the Lagrangian-
to-Eulerian displacement and represents the first stage of
the reconstruction. In a second stage, we estimate the linear
density δ̂0 corresponding to that displacement χ̂ . If χ̂
contained only linear displacements, the linear density
would simply be given by its divergence. If χ̂ also contains
nonlinear displacements, we can model the relation
between nonlinear displacement and linear density using
Eq. (2) and invert that to estimate the linear density from the
nonlinear displacement using

δ̂0ðkÞ ¼ t1ðkÞδ̂χðkÞ þ t2ðkÞ
Z

d3p1
ð2πÞ3

×

�
1 −

ðp1 · p2Þ2
p1 · p1p2 · p2

�
δ̂χðp1Þδ̂χðp2Þ; ð5Þ

with transfer functions t1 and t2 calibrated using cross-
correlations in simulations as described in Appendix A.
We still need to specify how we solve Eq. (4) for the

Lagrangian-to-Eulerian displacement χ , or its divergence
δχ . One could solve this equation perturbatively; we will
present the relevant formulas in Appendix F. Here we will
think of χ as a “migration”map that shows where each final
dark matter particle originated. We can hope to estimate this
because dark matter particles (a) do not migrate very far
over the history of the Universe (typically a few comoving
Mpc), (b) they preferentially travel along potential gra-
dients that can be estimated, and (c) they originate from a
nearly uniform initial distribution because the clustering
power spectrum is small at early times. This suggests that
one compile the migration map χ iteratively by estimating
potential gradients from the observed late-time catalog of
galaxies or matter overdensities, moving them back along
those gradients, computing potential gradients again from
the new catalog, moving them further back, and so on. The
density of the displaced particles decreases from step to
step, until it converges to a set of nearly uniformly
distributed particles that will not be moved further because
potential gradients nearly vanish. The total displacement
from the late-time nonlinear catalog to the nearly uniform
catalog is our estimate of the migration map or Lagrangian-
to-Eulerian displacement χ .
An alternative motivation for this iterative procedure to

solve Eq. (4) follows from the Eulerian continuity equation

δ0 þ ∇ · ½ð1þ δÞv� ¼ 0: ð6Þ

This can be written as a convective derivative

D
Dτ

lnð1þ δÞ ¼ −∇ · v ¼ −∇ ·
dχ
dτ

¼ −
d
dτ

∇ · χ : ð7Þ

We can solve this equation iteratively in small time steps,
where in each step

∇ · χ ¼ − lnð1þ δRÞ ≈ −δR: ð8Þ

Here δR is the nonlinear density filtered with a progres-
sively smaller smoothing scale R that ensures δR ≲ 1 for
each step.
Note that the solution of Eq. (4) is not unique after shell

crossing. So we should not be too concerned with the
specific scheme we use to solve the equation. Different
choices will result in solutions that differ on small scales
where they cannot be trusted.

III. NUMERICAL SETUP

Having motivated and described our reconstruction
algorithm in the last section, we next describe a concrete
numerical implementation of that algorithm and the
numerical setup that we will use in Sec. IV to assess the
performance of the reconstruction.

A. New reconstruction algorithm

1. Procedure

As described above, our reconstruction algorithm con-
sists of two stages. In the first stage, we compute a
displacement field χ using an iterative scheme. This is
an approximation of the true displacement between initial
and final conditions. In the second stage, that displacement
is used to estimate the linear density. In detail, we imple-
ment the new reconstruction using the following recipe.
Stage I: Iteratively solve for displacement field χ
(1) Iteratively displace objects as follows:

(a) From the catalog, compute the fractional over-
density, δðxÞ ¼ ρðxÞ=ρ̄ − 1, on a regular grid
using cloud-in-cell.

(b) Apply Gaussian smoothing with kernel
WR ¼ e−ðkRÞ2=2, with smoothing scale

R ¼ maxðϵn−1R Rinit; RminÞ ð9Þ

in the nth iteration step, and truncate small-scale
modes by setting δðkÞ ¼ 0 if k > kmax.
(c) Compute the Zeldovich displacement sðkÞ ¼

−ϵs ik
k2 δðkÞ on the grid.

(d) For every object in the catalog, interpolate the
displacement sðxÞ from the regular grid to the
object’s position, move the object by that dis-
placement, and update the object’s position in
the catalog.

(2) For every object in the catalog, compute its total
displacement χ ðq̂endÞ ¼ q̂end − xstart, where xstart is
the observed starting position before the first iter-
ation step, and q̂end is the end position of the object
after iteratively displacing it (xstart is the observed
Eulerian position and q̂end is the estimated associated
Lagrangian position).
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(3) Paint1 the displacement χ ðq̂endÞ, defined at the
estimated Lagrangian positions q̂end, to a regular
grid, and truncate small-scale modes by setting
χ ðkÞ ¼ 0 if k > kmax.

Stage II: Given χ , estimate linear initial density
(i) Oð1Þ reconstruction: Compute δ̂½1�0 ¼ δχ ¼ ∇ · χ .
(ii) Oð2Þ reconstruction: Using the transfer functions

and definitions in Appendix A, compute

δ̂½2�0 ðkÞ ¼ t1ðkÞδχðkÞ þ t2ðkÞδ½2�χ ðkÞ: ð10Þ

We apply this procedure to dark matter (DM) particles in
simulations in real space, leaving important extensions
such as galaxy bias and redshift space distortions for
future work.

2. Implementation

The algorithm involves only simple operations such
as moving objects by a displacement field or computing
the divergence of the displacement, which are the same
basic operations also used by standard reconstruction.
Implementing our method is therefore not more difficult
than standard reconstruction [17]. The computational cost is
rather modest, only a few times higher than that of standard
reconstruction if running with our default of eight iteration
steps.We have implemented the reconstruction algorithm in
a simple PYTHON code. With this, reconstructing initial
conditions from a catalog of 85 × 106 particles using a 5123

grid takes only 3 CPU hours, which is negligible compared
to other computations that are required to analyze LSS data.
The low computational cost and simple operational structure
allow the algorithm to be applied to large catalogs, requiring
only minimial modifications of codes that already imple-
ment the standard reconstruction of [17].
For application to real data from galaxy redshift surveys,

the algorithm would have to be adopted to deal, for
example, with the survey selection function including
possible gaps in the data, finite shot noise, and redshift
space distortions. While we do not address these issues
here, we note that [38,44] developed approaches to apply
standard reconstruction to real data, and those should in
principle also be applicable to our method. For example,
the Zeldovich displacement in each iteration step could be
computed by numerically solving the differential equation
relating the displacement field and the density in configu-
ration space rather than working on a grid and solving the
equation in Fourier space.

3. Parameters

Our reconstruction algorithm has several parameters.
Throughout the paper we use the following default param-
eters unless explicitly stated otherwise. We start the
iteration with the smoothing scale Rinit ¼ 10 h−1Mpc.
We then run Nsteps ¼ 8 iteration steps and halve the
smoothing scale from one step to the next, ϵR ¼ 0.5,
until we reach the minimum smoothing scale
Rmin ¼ 1.01L=Ngrid. In each iteration step we displace
particles by the full Zeldovich displacement, ϵs ¼ 1. To
represent fields on a regular grid, we choose Ngrid ¼ 512

and truncate modes with k > kmax ¼ 2π=L × Ngrid=2.
We discuss these choices in Appendix E 1, noting that

results are quite robust as long as the smoothing scale is
progressively reduced from step to step, ϵR ∼ 0.5, and the
initial smoothing scale is chosen relatively large,
Rinit ≳ 5 h−1Mpc, to ensure WRδ≲ 1.
The Oð2Þ reconstruction requires two transfer functions

t1ðkÞ and t2ðkÞ that are smooth functions of the wave vector
modulus k. We calibrate them using simulations as
described in Appendix A. The Oð1Þ reconstruction, in
contrast, is just given by δχ ¼ ∇ · χ and does not involve
any transfer function.
For the case of dark matter in real space considered in

this paper the reconstruction does not assume any cosmo-
logical model. This may change if the method is extended
to biased tracers in redshift space.

B. Standard reconstruction

To compare methods, we also run the standard
reconstruction method of [17] on all our simulations. We
implement this by making the following changes to the
above recipe: Modify the first stage to run only one
iteration step with ϵs ¼ 1 and R ¼ 10 h−1Mpc; define
~χ ðxstartÞ ¼ q̂end − xstart as a function of the Eulerian starting
position before displacing any objects; paint this ~χ to a
regular grid; generate a uniform catalog with particles on
that regular grid and displace them by ~χ ; call the density of
that shifted uniform catalog δs; also compute the density of
the particles at q̂end after they were displaced, and call the
corresponding density δd; and then δ̂std0 ¼ δd − δs is the
reconstructed density.
A simple extension of this standard method is to use

more than one iteration step for the displacement χ , similar
to [53]. We discuss this in Appendix B.

C. Simulations

We use simulations produced with the FastPM particle-
mesh code [66]. They closely resemble full N-body
simulations at a much lower computational cost. To
study how far into the nonlinear regime reconstruction
works, we run a small-volume simulation with box size
L ¼ 500 h−1Mpc and 120 time steps linearly spaced
between a ¼ 0.01 and a ¼ 1. To study the BAO signature

1At every grid point, we average the displacement χ ðq̂endÞ over
all nearby objects using the cloud-in-cell distance weight. If a grid
cell is empty, which can happen if the grid is finer than the typical
particle separation, we fill χ with a random neighbor cell until all
cells are filled. This avoids a broadband power deficit that would
result from wrongly setting χ ¼ 0 in empty cells, but it does not
affect the correlation coefficient or BAO much.
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that is only measurable on relatively large scales,
k≲ 0.5 hMpc−1, we use ten large-volume simulations from
Ding et al. [67] with L ¼ 1380 h−1Mpc and 40 time steps
linearly spaced between a ¼ 0.1 and a ¼ 1. Each of the ten
realizations was evolved from initial conditions with and
without the BAO signature in the initial power spectrum to
allow for cosmic variance cancellation when studying the
BAO [56,63,67,68]. The “nowiggle” power spectrum with-
out the BAO signature was matched to the broadband shape
of the “wiggle” power spectrum with the BAO signature,
using the method described in the appendix of Ref. [69].
The simulations evolve 20483 particles by computing
forces on a 40963 particle-mesh grid. We take snapshots
at redshift z ¼ 0.6, which is slightly higher than the peak
redshift of the SDSS BOSS CMASS galaxy sample (e.g.,
[43]), and today at redshift z ¼ 0. To speed up computa-
tions, we select a 1% subsample that contains roughly
85 × 106 DM particles. To study the BAO, we subsample
the same particles in wiggle and nowiggle simulations by
keeping every particle whose particle ID is divisible by 101
(a prime number that avoids undesired regularities in the
selection).
The simulations assume a flat ΛCDM cosmology

with Ωm ¼ 0.3075, Ωch2 ¼ 0.1188, Ωbh2 ¼ 0.0223,
h ¼ 0.6774, and σ8 ¼ 0.8159 based on [70]. The fiducial
BAO scale, given by the radius of the sound horizon at the
drag epoch when photons decoupled from baryons, eval-
uates to rfidBAO ≈ 147.5 Mpc ¼ 99.9 h−1Mpc, assuming the
approximation of Eq. (16) in [71] for simplicity.

IV. RESULTS

We first check the basic functionality of the iterative
procedure in the first reconstruction stage that progressively
displaces the DM particles along their potential gradients
until a nearly uniform set of particles is obtained. The upper
panel of Fig. 1 shows the power spectrum of the displaced
catalog after 1,2,4,8, and 16 steps. As expected, the power
decreases from step to step. After eight steps the large-scale
power is reduced by a factor of108 at z ¼ 0. Usingmore than
eight steps does not reduce the large-scale power much
further, so that our default choice is to stop after eight
iteration steps. On smaller scales, the power of the displaced
catalog is still reduced, but by a much smaller factor, for
example, a factor of ∼100 at k ¼ 1 hMpc−1. In this regime,
the displacement obtained from the iterative procedure is not
unique because of shell crossing as discussed in Sec. II
above. The lower panel of Fig. 1 shows how the power of the
cumulative displacement χ progressively increases with
more iterative steps as the power of the displaced catalog
decreases. On large scales, the power of the displacement
divergence approaches that of the linear field, but it misses
power on small scales where shell crossing happens. This
shows that the basic concepts motivating the reconstruction
algorithm in Sec. II work in the simulations.

To evaluate the numerical performance of our method
in more detail we consider several metrics in the next
sections, including density slices and histograms, the cross-
correlation coefficient with the initial conditions, the BAO
signature in the power spectrum, and the full broadband
shape of the power spectrum.

A. Qualitative behavior of the reconstructed
density

Figure 2 compares the reconstructed density with the
initial conditions in two-dimensional slices through our
L ¼ 500 h−1Mpc simulation. The reconstruction success-
fully recovers the spatial structure of the initial conditions
on large scales and in regions with low to moderate
overdensities. On small scales and in regions with high
late-time overdensity, however, the reconstruction is less
successful at recovering the correct initial conditions
because of shell crossing as discussed above.
Besides spatial structure, we can also consider the one-

point pdf or histogram of the smoothed mass density as
shown in Fig. 3. By construction, the linear initial con-
ditions have a Gaussian pdf centered at δ ¼ 0. Under
nonlinear gravitational evolution the density turns into a
rather non-Gaussian field with a skewed one-point pdf
(see [72] for a review). Figure 3 demonstrates that
reconstruction transforms that nonlinear density back to
a field with a one-point pdf that is much closer to a
Gaussian again. In other words, our reconstruction
Gaussianizes the mass density and moves cosmological
information from the skewness and other higher-order
moments back to the variance of the density, similar to
findings in [56,73,74].

FIG. 1. The power spectrum of the displaced catalog in the first
stage of the reconstruction decreases with the number of iteration
steps n (upper panel). At the same time, the power of the
cumulative displacement χ increases and approaches the linear
power spectrum (lower panel). All power spectra are measured
from a L ¼ 500 h−1Mpc simulation at z ¼ 0.
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B. Correlation with the linear initial conditions

The two-dimensional (2D) slices and one-point
histograms of the mass density are useful qualitative
measures, indicating that the reconstruction algorithm
can at least partially recover the initial conditions. To
check this more quantitatively and rigorously we turn to
Fourier space.
Figure 4 shows the cross-correlation coefficient rðkÞ

between the reconstructed density and the linear initial
conditions as a function of Fourier wave number kmeasured
from our L ¼ 500 h−1Mpc simulation at z ¼ 0. Using our
first-order method, the reconstructed density is more than
95% correlated with the initial conditions on scales
k ≤ 0.31 hMpc−1. Using our second-order method, this
is the case on scales k ≤ 0.35 hMpc−1. For comparison, the
wave number where the correlation with the initial

conditions drops below 95% is k ¼ 0.18 hMpc−1 for
standard reconstruction, and k ¼ 0.07 hMpc−1 for the
nonlinear density without reconstruction, in the same
simulation. Based on this correlation coefficient with the
linear density, our reconstruction thus improves the k range
by a factor of 2 over standard reconstruction, and by a factor
of 5 compared to performing no reconstruction. At redshift
z ¼ 0.6 the improvement factors are similar; see Fig. 13 in
Appendix D.
Related to this, the lower panel of Fig. 4 shows the

fractional error of the reconstructed density phases. This
is represented by the power spectrum of the difference
between reconstructed density and true linear density,
in units of the linear power spectrum. This fractional
nonlinear error power can be shown to reduce to one
minus the squared correlation with the initial conditions

FIG. 2. Two-dimensional slices of the fractional dark matter overdensity δ ¼ ρ=ρ̄ − 1 smoothed with a R ¼ 2 h−1Mpc Gaussian. Left:
Linear initial density linearly scaled to redshift z ¼ 0.6, showing how the Universe would look if it underwent only linear evolution up to
z ¼ 0.6 and all Fourier modes were Gaussian and linear. Middle: Simulated nonlinear dark matter density at z ¼ 0.6. Right:
Reconstructed density δχ ¼ ∇ · χ, using the default settings described in Sec. III A 3.

FIG. 3. Reconstruction makes the density more Gaussian, transferring cosmological information from skewness and higher-order
moments to the variance. From left to right, the panels show histograms of the linear initial condition density linearly scaled to z ¼ 0.6,
the nonlinear DM density at z ¼ 0.6, the first-order reconstructed density ∇ · χ that involves no transfer functions, and the second-order

reconstructed density δ̂½2�0 ½χ � that involves two transfer functions t1 and t2 calibrated to simulations. All densities are smoothed with a
R ¼ 2 h−1Mpc Gaussian filter.
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[12].2 Figure 4 demonstrates that our reconstruction sig-
nificantly reduces this nonlinear error and improves the
correlation with the initial conditions on all scales,
outperforming the standard method. For our second-
order method, the nonlinear error power relative to the
linear power is 1 − r2 ≃ ð10−6; 10−4; 10−3; 10−2Þ at k ¼
ð0.02; 0.06; 0.1; 0.2Þ hMpc−1 at z ¼ 0. At higher redshift,
z ¼ 0.6, the nonlinear error at the same scales is slightly
smaller, so that 1 − r2 ≃ ð10−6; 10−4; 10−3; 10−2Þ at

k ¼ ð0.02; 0.1; 0.15; 0.3Þ hMpc−1 as shown in Fig. 13 in
Appendix D. At both redshifts the nonlinear error is very
small, so that for most practical purposes we can regard the
reconstructed and initial densities as identical on large
scales.
At some point, reconstruction should be limited by the

stochastic displacement term identified in [11], because it
prohibits a deterministic mapping between initial and
final conditions, at least using perturbation theory. This
would imply that one cannot improve over 1 − r2 ≃
ð5 × 10−5; 5 × 10−4; 10−2Þ at k ¼ ð0.06; 0.1; 0.2Þ hMpc−1

at z ¼ 0, as shown in Fig. 22 of [11]. Our second-order
reconstruction reaches that limit within a factor of about 2.
We therefore expect that other reconstruction methods
could improve over our method by at most a factor of 2
on large scales.
As motivated in the Introduction, using our method to

recover initial conditions over a wide range of scales can
substantially improve many of the science goals of galaxy
surveys by increasing the number of linear Fourier modes
amenable to cosmological analysis. An important caveat is,
however, that our numerical setup is rather idealized
because we work with DM particles and ignore galaxy
biasing and redshift space distortions. Both effects will
certainly degrade the performance of reconstruction in
practical applications. We plan to study this in future work.
As described in Sec. III, we use the eight-step displace-

ment χ ð8Þ for our new reconstruction, but the one-step
displacement χ ð1Þ for the standard reconstruction, because
this is what has been used in the literature so far. Figure 12
in Appendix E explores how the performance depends on
the number of steps used to construct the displacement field
χ . We see only a little benefit in using more than eight
iteration steps, indicating that the algorithm has converged
after eight steps. Extending the standard reconstruction by
applying it to the eight-step displacement χ ð8Þ improves
over using χ ð1Þ on most scales, but it still performs worse
than our second-order reconstruction (see Appendix B for
discussion).
For the correlation coefficient shown in Fig. 4, the first

order reconstruction does not depend on transfer functions
because any rescaling by a function of k would not affect
the correlation coefficient. In contrast, the second order
correction does require transfer functions that were cali-
brated to simulations as described in Appendix A. Just as in
the case of forward modeling in [11], the shape of the
transfer functions can probably be understood using the
EFT approach, but we leave this for future work.

C. Baryonic acoustic oscillations

Measurements of the BAO scale from the galaxy power
spectrum are a prime example for the application of
reconstruction, because it reverses or avoids large-scale
shifts that would otherwise wash out the BAO wiggles in

FIG. 4. Top: Correlation coefficient with the linear initial
conditions, rðkÞ≡ hδδ0i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihδδihδ0δ0i
p

, as a function of wave
number k. Bottom: Power in the difference between initial and
reconstructed fields in units of the power spectrum of the initial
field. This is given by one minus the squared correlation
coefficient with the initial conditions, 1 − r2ðkÞ. In the shaded
regions the correlation with the initial conditions is better than
95%. Reconstruction improves the correlation with the initial
conditions substantially. The curves are computed from a L ¼
500 h−1Mpc simulation at redshift z ¼ 0.

2Focusing on the density phase correlation, we have implicitly
assumed here that the reconstructed density is rescaled by
TFðkÞ≡ hδ̂0δ0i=hδ0δ0i as in Eq. (4.6) in [12]. We will discuss
the density amplitude later in Sec. IV E and Appendix A.
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the observed galaxy power spectrum, degrading the meas-
urement [17,36,65]. As mentioned above, the standard
reconstruction technique has been successfully applied to
several redshift surveys, improving the precision of the
measured BAO scale typically by a factor of ∼2 [38–44],
with similar improvements expected for future surveys. It is
therefore exciting to see if our method can improve BAO
measurements further. To answer this, we use ten large-
volume simulations with L ¼ 1380 h−1Mpc that were
produced by Ding et al. [67] as described in Sec. III C.
Figure 5 shows the fractional BAO signal in the

simulations. Our method restores the BAO signal of the
linear density perfectly, reversing the nonlinear damping.
This is not surprising given that the BAO signal is only
visible at k < 0.5 hMpc−1, where the reconstructed density
is more than 90% correlated with the linear density as we

already found in Fig. 4. Standard reconstruction (green line
in Fig. 5) also reduces the nonlinear damping, but it does
not recover the full linear BAO wiggles at k≳ 0.2 hMpc−1.
To see if the signal-to-noise ratio of the BAO scale

estimated from the power spectrum is also improved by
reconstruction, we need to characterize the noise of the
estimated BAO scale. This would be straightforward if we
knew the covariance between power spectrum bins after
reconstruction, but that is difficult to compute reliably. We
therefore choose a simpler Monte Carlo approach and
estimate the BAO uncertainty from the scatter of the best-fit
BAO scale among the ten simulations. This provides a
conservative estimate for the uncertainty of the best-fit
BAO scale (see Appendix C, where we also describe our
fitting procedure).
Figure 6 compares the best-fit BAO scales estimated

from linear initial conditions, nonlinear late-time den-
sity, and reconstructed density in each of the ten simu-
lations, by fitting the BAO scale to the power spectrum
at k ≤ kmax ¼ 0.6 hMpc−1. This shows that our
reconstruction recovers the linear BAO scale with high
precision and on a realization-by-realization basis.
To estimate if the estimated BAO scale is systematically

biased relative to the true BAO scale, we compute the
expectation value of the best-fit BAO scale; see Table II.
Within the uncertainty of our ten simulations, we do not
find evidence for any systematic BAO bias after any of the
reconstruction methods that we tested. The reconstructions
thus eliminate the systematic nonlinear BAO bias of ∼0.3%
at z ¼ 0 that is generated by shifts of particles that were
separated by the pristine BAO scale in the initial conditions
[17,65] and that would be present when measuring the
BAO scale from the nonlinear power spectrum without
reconstruction. This is consistent with previous findings
[36,37,53,75–78].
To estimate the statistical 1σ uncertainty corresponding

to measuring the BAO scale from the power spectrum in a
2.6 h−3Gpc3 volume, we compute the root-mean-square

FIG. 5. Fractional BAO signal in the power spectrum, given
by the fractional difference of simulations initialized with
and without BAO wiggles, hðP̂wiggle − P̂nowiggleÞi=hP̂nowigglei.
Reconstruction sharpens the BAO wiggles so that they agree
with those in the linear initial conditions. The power spectra are
averaged over ten large-volume simulations at z ¼ 0, using the
same random seed for each wiggle and nowiggle simulation to
cancel most of the cosmic variance [56,63,67,68].

FIG. 6. Fractional bias of the best-fit BAO scale relative to the fiducial BAO scale in ten 2.6 h−3Gpc3 simulations at z ¼ 0. In each
simulation, the BAO scale is estimated by fitting a model to the measured power spectrum at k ≤ 0.6 hMpc−1 as described in
Appendix C. The lower subpanels show histograms of the best-fit BAO scale (grey), and corresponding Gaussian pdfs (solid black)
based on sample mean and sample standard deviation of the best-fit BAO scale. The realizations are sorted according to their initial
linear BAO scale.
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(rms) scatter of the best-fit BAO scale between the ten
simulations; see Table III and Fig. 7.
The uncertainty of the BAO scale from the nonlinear

power spectrum is increased by a factor of 2.8 at z ¼ 0 and
by a factor of 2.6 at z ¼ 0.6 relative to the uncertainty from
the linear power spectrum. This is again caused by shifts of
particles that were separated by the BAO scale in the early
Universe. By reducing those shifts, standard reconstruction
[17] reduces the statistical BAO uncertainty by a factor of
1.6 at z ¼ 0 and by a factor of 1.9 at z ¼ 0.6 relative to
performing no reconstruction. Standard reconstruction thus
reduces the nonlinear degradation of the BAO signature,
but it does not reverse it entirely. In contrast, our iterative
second-order reconstruction reduces the BAO uncertainty
by a factor of 2.7 at z ¼ 0 and by a factor of 2.5 at z ¼ 0.6
relative to performing no reconstruction; i.e., the nonlinear

degradation is fully reversed within the uncertainty
of our estimates. Relative to the standard reconstruction,
the improvement from our method ranges from 70% at
z ¼ 0 to 30% at z ¼ 0.6.
At both redshifts, z ¼ 0.6 and z ¼ 0, the statistical BAO

uncertainty after the iterative second order reconstruction
matches that of the linear initial conditions ð≃0.24%Þ, so
that our reconstruction cannot be further improved for
measuring BAO in an observed volume of 2.6 h−3Gpc3.
We will return to this point in the next section. Again, an
important caveat is that practical issues like galaxy bias,
shot noise, and redshift space distortions are expected to
degrade the reconstruction performance in practice.

D. Impact of residual nonlinear shifts on BAO

The measured properties of the best-fit BAO scale in the
last section have a non-negligible uncertainty because they
were obtained from a somewhat small number of only ten
realizations. To provide a more stringent test, we cancel the
linear cosmic variance contribution to the BAO uncertainty
by measuring the difference of the best-fit BAO scale
between initial and reconstructed density in each individual
realization.
To motivate this procedure further, it is useful to split the

statistical uncertainty of the measured BAO scale into a
linear cosmic variance contribution σlin that would be
present even if we were given the linear density (due to
the finite observed volume and finite width of the linear
acoustic peak) and an additional nonlinear noise term σNL
determined by the rms of nonlinear shifts broadening the
acoustic peak,

TABLE II. Systematic bias of the BAO scale estimated from the
best-fit BAO scale from the power spectrum of ten large-volume
simulations at z ¼ 0. The BAO scale from the nonlinear density is
biased high by 0.3%. Reconstruction eliminates that bias
[36,37,53,75–78]. The residual biases after reconstruction are
small and likely consistent with zero because the estimates are
derived from only ten simulations. The left column shows the
sample mean of the best-fit BAO scale relative to the fiducial
theoretical value, hr̂BAOi − rfidBAO; the right column is relative to
the initial condition of each simulation, hr̂BAO − r̂linBAOi, canceling
cosmic variance.

Mean BAO scale

Field vs Lin. theory vs Lin. realization

Initial conditions þ0.05 Mpc [þ0.03%] þ0.00 Mpc [�0.00%]
Final conditions þ0.49 Mpc [þ0.33%] þ0.44 Mpc [þ0.30%]
Standard rec þ0.02 Mpc [þ0.01%] −0.03 Mpc [−0.02%]
New Oð1Þ rec þ0.05 Mpc [þ0.03%] �0.00 Mpc [�0.00%]
New Oð2Þ rec þ0.06 Mpc [þ0.04%] þ0.02 Mpc [þ0.01%]

TABLE III. Left column: Root-mean-square scatter of the best-
fit BAO scale between ten 2.6 h−3Gpc3 simulations at z ¼ 0.
This is a Monte Carlo estimate for the expected statistical 1σ
uncertainty when measuring the BAO scale from the power
spectrum in a single 2.6 h−3Gpc3 volume. Right column: Rms
scatter of the BAO scale relative to that in the initial conditions of
each simulation, r̂BAO − r̂linBAO, which is sourced by nonlinear
shift terms as discussed in Sec. IV D. All numbers are somewhat
uncertain because they were estimated from the scatter of only ten
simulations.

Rms scatter of BAO scale

Field vs Lin. theory vs Lin. realization

Initial conds. 0.35 Mpc [0.24%] 0 Mpc [0%]
Final conds. 0.99 Mpc [0.66%] 1.20 Mpc [0.81%]
Standard rec 0.63 Mpc [0.42%] 0.55 Mpc [0.37%]
New Oð1Þ rec 0.44 Mpc [0.29%] 0.13 Mpc [0.08%]
New Oð2Þ rec 0.37 Mpc [0.25%] 0.08 Mpc [0.05%]

FIG. 7. Fractional BAO error bar as a function of the maximum
wave number used for fitting the BAO scale. The error bar is a
Monte Carlo estimate obtained from ten simulations at z ¼ 0with
V ¼ 2.6 h−3Gpc3 each: We fit the BAO scale to the ratio of
wiggle and nowiggle power spectra in each of the ten simulations,
and then compute the scatter of the best-fit BAO scale across the
ten simulations. The iterative Oð2Þ reconstruction matches the
linear initial conditions perfectly.
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σ2survey ¼
Vsim

Vsurvey
ðσ2lin þ σ2NLÞ: ð11Þ

We included a prefactor to indicate the expected volume
scaling. Reconstruction reduces σNL by reducing nonlinear
shifts. At some point the residual shift terms are small
enough that their broadening does not matter compared to
the intrinsic width of the acoustic peak in the linear density.
Once we reach that threshold, reconstruction cannot im-
prove BAO measurements any further [17]. In other words,
the BAO signal-to-noise ratio can never be better than if we
observed the linear density in the same volume.
After our reconstruction, we cannot distinguish the total

BAO uncertainty from the linear uncertainty; i.e., the
nonlinear noise term σNL is reduced so much that it is
not detectable in our simulations. Our reconstruction thus
reduces the rms of nonlinear shifts well below the threshold
corresponding to the intrinsic width of the linear acous-
tic peak.
To see how well different reconstruction methods sup-

press the nonlinear shift noise σNL we cancel the linear
cosmic variance noise term by subtracting the linear BAO
scale of the initial conditions of each simulation, as
illustrated in Fig. 8. This again shows that our
reconstruction recovers the correct BAO scale of the initial
conditions realization by realization, in a much better way
than standard reconstruction. An estimate for the ratio of
nonlinear noise relative to the BAO signal, σNL=rBAO, is
shown in Fig. 9 (also see right column of Table III for
reference). This demonstrates that the nonlinear noise
caused by nonlinear shift terms is substantially reduced
by reconstruction. Relative to the nonlinear density, stan-
dard reconstruction reduces the nonlinear noise by a factor
of 2.2, our first-order method reduces it by a factor of 9, and
our second-order method by a factor of 15. We obtain
similar factors at redshift z ¼ 0.6.
Our reconstruction method thus reduces the rms

dispersion of nonlinear shifts much more effectively than

standard reconstruction. However, as alluded to above,
most of that improvement is not relevant in practice because
the acoustic peak of the linear density has some intrinsic
width so that reducing the rms of the nonlinear shifts below
that width does not help to improve the BAO signal-to-
noise ratio further. Our reconstruction reduces the nonlinear
shifts well below that threshold, easily obtaining the BAO
signal-to-noise ratio of the linear density.
The fact that our reconstruction works so much better

than it needs to makes us optimistic that it can also restore

FIG. 8. Same as Fig. 6, but for each simulation we estimate the BAO scale in the linear initial conditions and subtract it off. This
cancels the cosmic variance caused by linear finite-volume fluctuations of the initial conditions, allowing for a more accurate
comparison of methods. The remaining scatter between simulations corresponds to the BAO uncertainty caused by nonlinear shift terms
(see text for discussion). Our reconstruction reduces this substantially and recovers the linear BAO scale in each individual simulation
with high precision.

FIG. 9. Nonlinear BAO noise contribution σNL sourced by
nonlinear shift terms that wash out the acoustic peak. The plot
shows an estimate of this nonlinear noise divided by the BAO
signal, as a function of the maximum wave number used to fit for
the BAO scale in the power spectrum. To cancel the linear noise
contribution, the linear BAO scale of each simulation is sub-
stracted from the measured late-time BAO scale as in Fig. 8; the
rms scatter of that difference between simulations is given by
nonlinear terms that are not present in the initial conditions. By
construction, the linear density has zero nonlinear noise and is
therefore not shown. Reconstruction reduces the nonlinear noise
due to nonlinear shifts significantly. See Sec. IV D for discussion.
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the linear acoustic peak in more realistic scenarios that
account for galaxy bias, redshift space distortions, or higher
shot noise. The efficient suppression of nonlinear shift
terms also explains the excellent correlation of the recon-
structed density with the linear density. This is useful for
applications beyond BAO measurements, for example, to
extract cosmological information from the broadband
power spectrum as we will discuss in the next section,
or information about the statistics of primordial fluctuations
from higher-order statistics of the reconstructed density.
In summary, the above results show that our iterative

reconstruction method is very powerful at reconstructing
the BAO scale, and substantially improves over the
standard reconstruction method. The reconstructed BAO
scale is so close to the true BAO scale of the initial
conditions that the two cannot be told apart within cosmic
variance of current and near-future survey volumes, at least
according to our idealized simulations.

E. Full shape of the reconstructed power spectrum

Having discussed the correlation of the reconstructed
density with the initial conditions and the BAO signature in
the power spectrum, we can also ask how well our
reconstruction method recovers the full broadband power
spectrum of the initial conditions. This is shown in Fig. 10,

where the measured power spectrum after reconstruction is
divided by the linear initial power spectrum linearly scaled
to the redshift z ¼ 0 of the simulation.
The original nonlinear power spectrum agrees with the

linear power spectrum within 5% at k ≤ 0.11 hMpc−1 in
our simulations at redshift z ¼ 0. Our first-order
reconstruction without transfer functions improves this
slightly, so that reconstructed and linear power agree within
5% at k ≤ 0.16 hMpc−1. The second-order method gives a
larger improvement, agreeing with the linear power within
5% at k ≤ 0.28 hMpc−1. At higher redshift, z ¼ 0.6, the
power spectra agree with the linear one down to smaller
scales, with 5% agreement at k ≤ 0.15 hMpc−1 for the
nonlinear density, k ≤ 0.33 hMpc−1 for first-order
reconstruction, and k ≤ 0.43 hMpc−1 for second-order
reconstruction (see Fig. 14 in Appendix D).
In our idealized simulations, our reconstruction method

thus extends the k range where linear theory is valid by a
factor of 2 to 3. In principle, the reconstruction could thus
enable cosmological analyses to include the power spec-
trum on moderately nonlinear scales, 0.15 hMpc−1 ≲ k≲
0.4 hMpc−1 at z≃ 0–0.6, where linear theory would not be
valid without reconstruction. Since the precision of many
cosmological constraints scales steeply with the number of
Fourier modes included in the analysis, this could sub-
stantially improve cosmology constraints from present and
future galaxy surveys. For this to be possible in practice,
however, one would have to address several complications,
in particular, nonlinear halo bias and redshift space dis-
tortions that affect the broadband shape of the power
spectrum.
On small scales, k≳ 0.3 hMpc−1 at redshift z ¼ 0, the

reconstruction suffers from a deficit in power relative to the
linear density. Qualitatively, this is not surprising because
the reconstructed displacement field does not contain
contributions from modes that underwent shell crossing,
so that particles that ended up in halos are moved back
farther than in the true Universe, leading to a suppression of
power on small scales (see Fig. 2). This is the same reason
for why the power spectrum in the Zeldovich approxima-
tion misses small-scale power: Particles free-stream
through halos rather than undergoing nonlinear collapse
to form halos, which washes out small-scale clustering
power that is present in the true Universe.
More quantitatively, we show in Appendix F that

reconstruction fully removes nonlinear shift terms, while
it only partially removes nonlinear growth and tidal terms.
While we attempt to mitigate the latter nonlinearities at
second order by using the second-order reconstruction
scheme, we have not attempted to remove nonshift non-
linearities at third order or higher. The residual nonlinear-
ities likely suppress the power spectrum on small scales.
We therefore expect the reconstructed power spectrum to
agree with the linear power spectrum only on large scales,
with a suppression relative to linear on smaller scales as

FIG. 10. Power spectra in our L ¼ 500 h−1Mpc simulation at
z ¼ 0, divided by the linear initial power spectrum linearly scaled
to z ¼ 0. Compared to the nonlinear density without
reconstruction (thick solid line), reconstruction significantly
improves the agreement with the linear power spectrum on
intermediate scales. Our first-order reconstruction, ∇ · χ , has
no transfer functions, while the second-order method uses
transfer functions discussed in Appendix A. The spectra are
raw spectra without mitigating cloud in cell (CIC) kernel or shot
noise, both of which matter at k≳ 1 hMpc−1. The high-k upturn
of the first-order reconstruction happens because our initial
density has zero shot noise but the late-time density has a small
shot noise, n̄−1 ¼ 1.47 h−3Mpc3. This can be avoided by
multiplying with t̄1ðkÞ given in Eq. (A6), which acts like a
Wiener filter (thin solid line).
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seen in Fig. 10. On smaller scales we would have to add
corrections to the linear power spectrum to match the
reconstructed power spectrum, in particular, 1–3 and k2Plin
counterterms. These can be computed perturbatively, and
one might hope that these corrections are easier to model
than the fully nonlinear power spectrum, for example,
because the corrections contain no BAO wiggles, but we
leave this for future work. Instead we account for the small-
scale mismatch of linear and reconstructed power spectra
using transfer functions t1ðkÞ and t2ðkÞ calibrated to the
simulations as described in Appendix A.
The fact that the reconstruction misses small-scale

broadband power relative to linear is not necessarily a
problem. All that is needed to estimate cosmological
parameters is a theoretical model predicting the recon-
structed power spectrum as a function of cosmological
parameters. Such a model could be developed using, e.g.,
the Zeldovich approximation or higher-order Lagrangian
perturbation theory (LPT) models. In Appendix F we
provide a starting point for this, and we plan to compare
this against the reconstructed density in simulations in
future work (noting that 1–3 terms and a k2Plin term should
also be added as mentioned above). For standard
reconstruction several models have already been developed
to describe the reconstructed power spectrum
[36,56,74,76,77,79,80], and it would be interesting to
extend these to our method. To answer the question of
how much cosmological information can be obtained
from the full broadband shape of the reconstructed
power spectrum, one additionally needs to determine
the covariance between power spectrum bins after
reconstruction [62].
As a slightly technical remark, we note that it is

important to fill empty χ cells with random neighbor grid
cells as described in Sec. III A to avoid a large-scale bias of
the power spectrum that would be caused by setting χ to
zero in empty cells (which would effectively violate mass
conservation). This is mainly important for the full-shape
power spectrum and does not affect the correlation coef-
ficient with initial conditions or BAO much.

V. CONCLUSIONS

We have presented a new method to reconstruct the
initial conditions in a given volume based on recent
theoretical progress relating the linear initial density with
the final nonlinear large-scale structure density [12]. We
first filter the density to suppress highly nonlinear scales
where perturbation theory is not valid. We then estimate the
displacement field that relates the uniform initial density in
Lagrangian space to the filtered nonlinear density in
Eulerian space by iteratively moving particles back with
Zeldovich displacements. In this iterative procedure, we
progressively reduce the smoothing scale to capture pro-
gressively smaller scales while keeping δ≲ 1. We then
estimate the linear initial density as the divergence of the

cumulative Zeldovich displacement. This estimate can be
improved further by adding a second-order correction.
In dark matter simulations, we find that after eight

iteration steps the reconstructed density is more than
95% correlated with the linear initial density of the
simulation for scales k ≤ 0.35 hMpc−1 at redshift z ¼ 0,
and for k ≤ 0.53 hMpc−1 at z ¼ 0.6. The power in the error
between initial and reconstructed fields in units of the
power spectrum of the initial field, given by one minus the
squared correlation coefficient between initial and recon-
structed fields, is very small, approximately 1 − r2 ¼
ð10−6; 10−4; 10−2Þ at k ¼ ð0.02; 0.06; 0.2Þ hMpc−1 at red-
shift z ¼ 0. Our method therefore serves as an excellent
estimator for the linear density.
As a concrete application, we have demonstrated that the

method improves the standard reconstruction method [17]
to restore the initial linear-theory BAO signature from the
final nonlinear density contrast of the Universe. Compared
to performing no reconstruction, our method improves the
BAO signal-to-noise ratio by a factor of 2.7 at redshift
z ¼ 0 and by a factor of 2.5 at z ¼ 0.6, matching the
optimal BAO signal-to-noise ratio of the linear density in
our simulated volume for both redshifts. This improves
over standard reconstruction [17] by 70% at z ¼ 0 and 30%
at z ¼ 0.6, using the same idealized simulations.
This demonstrates that our method reduces large-scale

flows to a level where their effect on the width of the BAO
peak is much smaller than the intrinsic width of the linear
BAO peak imprinted at recombination [65]; i.e., the
iterative reconstruction works much better than it needs
to for BAO measurements. We confirmed this by showing
that the reconstructed BAO scale agrees with that of the
linear initial conditions in each of our simulated realiza-
tions even if cosmic variance is canceled, at least under the
idealized assumptions of our simulations. Given this overly
good performance in idealized situations, the iterative
reconstruction might still recover the optimal linear BAO
signal-to-noise ratio in more realistic situations. This
should make our method interesting for future galaxy
surveys such as DESI [45], Euclid [46], and LSST [47]
that measure the BAO scale to map the expansion history of
the Universe. Similar to other reconstruction methods, the
improvement is larger toward lower redshifts where non-
linearities degrade the BAO signature more.
As a more general application, we have shown that the

reconstruction also improves the agreement of the full
broadband shape of the power spectrum with the linear
power spectrum on moderately nonlinear scales. The
reconstructed and linear power spectra agree within 5%
for k≲ 0.16 hMpc−1 at z ¼ 0 and k≲ 0.3 hMpc−1 at z ¼
0.6 if we use our first-order reconstruction method without
any transfer functions. This improves to k≃ 0.3 hMpc−1 at
z ¼ 0 and k≃ 0.4 hMpc−1 at z ¼ 0.6 if we use second-
order reconstruction that involves transfer functions cali-
brated to simulations. This improves the k range where

SCHMITTFULL, BALDAUF, and ZALDARRIAGA PHYSICAL REVIEW D 96, 023505 (2017)

023505-14



linear theory is valid by a factor of 2–3 relative to
performing no reconstruction. If a similar improvement
can be obtained for real data, this could have a substantial
impact on cosmological constraints from galaxy power
spectra because the statistical uncertainty of the power
spectrum drops rapidly with increasing wave number.
Additional gains may be possible by modeling the shape
of the reconstructed power spectrum perturbatively or by
improving the reconstruction method further, but we leave
this for future work.
We demonstrated that modeling the relation between the

nonlinear displacement and linear density to second order
and inverting it improves the correlation of the reconstruction
and the initial conditions substantially on large scales. For the
BAO application, however, most of the improvement com-
pared to previous methods is due to the improved iterative
displacement field constructed in the first stage of the
method. Indeed, for BAO measurements one could also
use a simple extension of the standard reconstruction method
by displacing clustered and random catalogs by the improved
iterative displacement as discussed in Appendix B.
In this paper, we have only studied the idealized toy

model of dark matter in real space, ignoring important
practical issues related to halo biasing, shot noise, redshift
space distortions, and survey selection function. These
effects are expected to degrade the effectiveness of any
reconstruction method because they add stochasticity and
are difficult to model. We plan to study the quantitative
impact of these effects on the reconstruction performance in
future work.
Related to this, it is not entirely clear how to adopt our

method to deal with real data that can have gaps and other
complications. We note, however, that the method involves
only simple operations such as estimating Zeldovich
displacements from the density and moving objects, and
these are the same operations as for standard reconstruction
[17]. To apply our method to real data one could therefore
try to follow the same approaches that were used to apply
standard reconstruction to real data [38,44]. Using our
default of eight iteration steps, our method is only a few
times slower than standard reconstruction, which should be
acceptable given the potential gains.
A method similar to ours has recently been proposed by

Zhu et al. [57,58] and was studied further in [62–64],
finding results similar to ours where comparisons are
possible. Their method differs from ours in mainly two
aspects: (1) The displacement between initial and final
conditions is estimated using a multigrid algorithm to
smoothly deform coordinates (or solve the corresponding
differential equation in small time steps), whereas we
iteratively displace particles by their Zeldovich displace-
ment. (2) To estimate the linear density from the displace-
ment, both methods first compute the divergence of the
displacement, but we also add a second-order correction
that improves the correlation with initial conditions. The

similar performance of the methods is likely due to the fact
that the displacement field obtained by both methods
improves the one-step Zeldovich displacement used by
standard reconstruction, and in the regime where shell
crossing is relevant, the details of the method to find the
displacement likely do not matter much because the
solution is not unique in that regime. Both reconstruction
methods do not assume a cosmological model. They shall
both be useful in the future because they likely enable
similar gains but with different systematics because of the
different operations involved.
We have demonstrated that a simple iterative

reconstruction method improves significantly over the
standard method in idealized simulations. If similar
improvements can be achieved in more realistic scenarios
including noise, halo biasing, and redshift space distor-
tions, this could improve BAO measurements and increase
the number of power spectrum Fourier modes amenable for
cosmological analysis for future galaxy surveys like DESI
[45], Euclid [46], and LSST [47]. This could significantly
improve the scientific return of these surveys, including
high-precision probes of the expansion history of the
Universe, dark energy, neutrino mass, and the statistics
of the primordial fluctuations.
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APPENDIX A: TRANSFER FUNCTIONS

To obtain the transfer functions needed for the second-
order reconstruction, we write the reconstructed density as

3https://github.com/bccp/nbodykit.
4https://github.com/rainwoodman/fastpm.

ITERATIVE INITIAL CONDITION RECONSTRUCTION PHYSICAL REVIEW D 96, 023505 (2017)

023505-15

https://github.com/bccp/nbodykit
https://github.com/bccp/nbodykit
https://github.com/rainwoodman/fastpm
https://github.com/rainwoodman/fastpm


δ̂0 ¼ t1ðkÞδχðkÞ þ t2ðkÞδ½2�χ ðkÞ; ðA1Þ

where δχ ¼ ∇ · χ and

δ½2�χ ðkÞ ¼
Z
p1

κ2ðp1; p2Þt̄1ðp1Þδχðp1Þt̄1ðp2Þδχðp2Þ; ðA2Þ

where p2 ¼ k − p1, t̄1 is a filter to be specified later, and κ2
is defined in Eq. (E20) below. We choose the transfer
functions t1 and t2 in Eq. (A1) to minimize the difference
hðδ̂0 − δ0Þ2i with the linear density in simulations. This
gives

t1ðkÞ ¼
1

1 − r212

 
hδ0δχi
hδχδχi

−
hδ0δ½2�χ i
hδ½2�χ δ½2�χ i

hδχδ½2�χ i
hδχδχi

!
ðA3Þ

and

t2ðkÞ ¼
1

1 − r212

 
hδ0δ½2�χ i
hδ½2�χ δ½2�χ i

−
hδ0δχi
hδχδχi

hδ½2�χ δχi
hδ½2�χ δ½2�χ i

!
; ðA4Þ

where we assumed t̄1 to be fixed, and we used the
correlation coefficient of the first and second order con-
tribution,

r212ðkÞ ¼
hδχδ½2�χ i2

hδχδχihδ½2�χ δ½2�χ i
: ðA5Þ

To specify the transfer function t̄1 inside the second order
contribution in Eq. (A2) we minimize hðt̄1δχ − δ0Þ2i, i.e.,
the error in absence of a second order contribution. This
gives

t̄1ðkÞ ¼
hδ0δχi
hδχδχi

; ðA6Þ

Indeed, we have t̄1 ¼ t1 if hδχδ½2�χ i were to vanish. On large
scales δχ agrees with δ0 so that t̄1 ¼ 1. On smaller scales δχ
differs from δ0 so that t̄1 approaches zero, which down-
weights small-scale modes in Eq. (A2). Using t̄1, we
can rewrite t2 in a form reminiscent of Gram-Schmidt
orthogonalization,

t2ðkÞ ¼
1

1 − r212

hðδ0 − t̄1δχÞ; δ½2�χ i
hδ½2�χ δ½2�χ i

: ðA7Þ

In the above equations, the shorthand notation hδ0δχi≡
Pδ0;δχ ðkÞ refers to the cross spectrum between δ0 and δχ as a
function of wave number k, and analogously for other
fields. All transfer functions depend only on the modulus k
of wave vectors and can therefore be calibrated from
simulations.

To calibrate the transfer functions, we measure the auto
and cross spectra of δ0, δχ , and δ½2�χ from the simulations,
compute the transfer functions, and average over realiza-
tions where more than one realization is available. The
result is shown in Fig. 11.
At low k, the transfer functions approach their theoretical

low-k limits given by

lim
k→0

t1ðkÞ ¼ lim
k→0

t̄1ðkÞ ¼ 1 ðA8Þ

and

lim
k→0

t2ðkÞ ¼ −
3

14
: ðA9Þ

FIG. 11. Upper panel: Transfer functions measured from power
spectra of ten large-volume simulations with L ¼ 1380 h−1Mpc,
with displacement field from eight iteration steps and minimum
smoothing scale Rmin ¼ 1.01L=Ngrid ¼ 2.7 h−1Mpc. Lower
panel: Same but for a single smaller simulation with
L ¼ 500 h−1Mpc, and Rmin ¼ 1.01L=Ngrid ¼ 0.98 h−1Mpc.
The transfer functions are computed from cross spectra
with the initial conditions of the simulations as described in
Appendix A. The spectra are raw spectra measured on 5123 grids
without correcting for shot noise or CIC effects that are relevant at
high k. Dashed lines show theoretical low-k limits. The transfer
functions could be modeled analytically but we did not attempt
this here.
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These limits follow by using the expansion (E24) of δχ in
δ0, modeling all spectra at leading order in Plin, and using
the large-scale limit given in Eq. (E32). At higher k, the
transfer functions deviate from that limit, but they are still
rather smooth functions of k. It should therefore be possible
to either model them analytically or continue the practice of
calibrating them against simulations. Ultimately, the trans-
fer functions should also include halo bias and redshift
space distortions.

APPENDIX B: EXTENDED STANDARD
RECONSTRUCTION

In this appendix we discuss a simple extension of the
standard reconstruction method of [17] that could be used
as an alternative to the reconstruction method discussed in
the main text. We regard the method in the main text as
superior on theoretical grounds because the conversion
from nonlinear displacement to linear density is better
motivated, but the alternative method discussed here could
in principle be useful for practical purposes (for example, it
might be easier to deal with the survey selection function).

1. Method

We first apply the iterative procedure described in
Sec. III A to find the displacement field χ ð8Þ with eight
iteration steps, which improves the Zeldovich displacement
used in standard reconstruction. This is the same as the first
stage of the method described in the main text. We can now
ask how well we can do if we apply the second stage of
standard reconstruction to the improved displacement field.
Following Sec. III B, we thus displace the clustered catalog
and a uniform catalog by χ ð8Þ defined in Eulerian coor-
dinates x and then take the density difference. This second
stage differs from the method in the main text, where we
take the divergence of χ ð8Þ defined in approximate

Lagrangian coordinates q̂ with an optional second order
correction; also see Table I.
This extension of the standard method based on an

iterative displacement field is very similar to the iterative
standard reconstruction of Ref. [53], where no improve-
ment over standard reconstruction was found. However, an
important difference is that the smoothing scale used to
compute the iterative Zeldovich displacements was held
fixed in Ref. [53], whereas we progressively decrease the
smoothing scale from step to step to access progressively
smaller scales. We believe that this is the main difference
compared to the implementation in [53], but there may be
additional differences. As shown in the lowest row in
Table VI, we also find little improvement from iterations if
we keep the smoothing scale fixed, consistent with the
findings of [53], but, as we discuss next, we find substantial
improvements when reducing the smoothing scale from
step to step, ϵR < 1.

2. Performance and discussion

The right panel of Fig. 12 shows that after applying the
extended standard reconstruction described above, the
large-scale density is very correlated with the linear initial
conditions. The achieved correlation is similar to the Oð1Þ
reconstruction discussed in the main text and shown in the
left panel of Fig. 12, but worse than theOð2Þ reconstruction
shown in the middle panel of Fig. 12.
This demonstrates that the second order scheme of

Eq. (5) is more successful at converting a given nonlinear
displacement field to the linear density than just taking the
divergence of that displacement or displacing clustered and
random catalogs and taking their density difference. This is
expected given that the second order scheme inverts the
model of Eq. (2) which has been validated against simu-
lations [12].
For measuring the BAO scale, reconstruction does not

need to work perfectly as discussed in [17] and Sec. IV D.

FIG. 12. Power of the error of the reconstructed density relative to the linear density, represented by one minus the squared correlation
coefficient with the linear initial conditions. In the grey shaded area, the reconstructed density is more than 95% correlated with the
linear density. Brighter colors represent a better displacement field χ obtained by running more iteration steps (1, 2, 4, 8, or 16). The
curves are from our L ¼ 500 h−1Mpc simulation at z ¼ 0.
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Indeed, Tables IV and V show that the extended standard
reconstruction works sufficiently well that it fully recovers
the linear BAO signal-to-noise ratio, improving signifi-
cantly over the standard one-step reconstruction. For BAO
measurements, the Oð1Þ and Oð2Þ methods from the main

text and the extended standard method discussed in this
appendix thus all perform equally well, improving the
standard method based on a one-step displacement.
This result shows that the main improvement compared

to the standard one-step method of [17] comes from the
improved iterative displacement field. To obtain this, it is
crucial to progressively reduce the smoothing scale in
the iterations to access smaller and smaller scales with
each iteration step (see Table VI). Once this improved
displacement field is obtained in the first stage of
reconstruction, it does not matter for BAO measurements
how the displacement is converted to an estimate for the
linear density in the second stage. For BAO measurements
from real data one should therefore choose the second
stage based on practical considerations and characteristics
of the given data set. For applications beyond BAO
measurements, the second order reconstruction in the
main text should be used instead because it achieves
the highest correlation with the initial conditions and best
broadband power spectrum shape.

APPENDIX C: FITTING BAO FROM
THE POWER SPECTRUM

We employ the following procedure to estimate the BAO
scale from the power spectra measured in our simulations
before and after reconstruction. In each realization, we
compute the fractional BAO signal of the power spectrum,
d̂ðkÞ ¼ P̂wiggleðkÞ=hP̂nowiggleðkÞi − 1. Here, P̂wiggle is the
power spectrum measured in a simulation realization with
BAO wiggles; P̂nowiggle is the same but in a simulation
initialized with no BAO wiggles; and h·i represents the
average over our ten realizations. We then fit that data in
each realization with a simple theoretical model that

TABLE IV. Systematic bias of the best-fit BAO scale at z ¼ 0
as in Table II but for the extended standard reconstruction (Ext std
rec) method of Appendix B and for the scaled Oð1Þ
reconstruction given by t1ðkÞδχðkÞ, where δχ ¼ ∇ · χ ð8Þ, and t1
is from Appendix A. There is no evidence for a systematic BAO
bias for any of the methods.

Mean BAO scale

Field vs Lin. theory vs Lin. realization

Ext std rec þ0.02 Mpc [þ0.01%] −0.03 Mpc [−0.02%]
Scaled Oð1Þ rec þ0.06 Mpc [þ0.04%] þ0.01 Mpc [þ0.01%]

TABLE V. Rms scatter of the best-fit BAO scale at z ¼ 0 as in
Table III but for the extended standard reconstruction method of
Appendix B and for the scaled Oð1Þ reconstruction given by
t1ðkÞδχðkÞ. The left column shows that in both cases the BAO
uncertainty is consistent with that of the BAO scale in the initial
conditions (0.24%) within the uncertainty of the ten simulations.
The right column represents the nonlinear noise contribution
due to residual shift terms after reconstruction as discussed in
Sec. IV D. For BAO, the methods are thus comparable to the
method described in the main text.

Rms scatter of BAO scale

Field vs Lin. theory vs Lin. realization

Ext std rec 0.31 Mpc [0.21%] 0.18 Mpc [0.12%]
Scaled Oð1Þ rec 0.4 Mpc [0.27%] 0.11 Mpc [0.07%]

TABLE VI. Performance of the second-order reconstruction for some choices of the initial smoothing scale R,
the reduction factor ϵR, and the displacement amplitude ϵs (all other parameters are set to their default values
described in Sec. III A 3). The table shows one minus the squared correlation coefficient between reconstructed and
linear density, 1 − r2ðδ0; δrecÞ, after 2, 8, and 16 iteration steps, at k ¼ 0.1 hMpc−1 and k ¼ 0.6 hMpc−1, in our
L ¼ 500 hMpc−1 simulation at z ¼ 0.6. Lower numbers correspond to better reconstruction. Going from 2 to 8
steps improves performance substantially, while more than 8 steps yields diminishing returns. After 8 or 16 steps, all
reconstruction algorithms with smoothing reduction factor ϵR ¼ 0.5 perform similarly well. [Note that the results of
the table were obtained using suboptimal transfer functions, which is why results for ðR; ϵR; ϵsÞ ¼ ð10; 0.5; 1Þ differ
slightly from Fig. 13; the overall trends should not depend on this though.]

2 Steps 8 Steps 16 Steps

R ϵR ϵs k ¼ 0.1 k ¼ 0.6 k ¼ 0.1 k ¼ 0.6 k ¼ 0.1 k ¼ 0.6

5 0.5 0.5 5.9 × 10−3 0.97 4.4 × 10−4 0.19 3.0 × 10−4 0.17
10 0.5 0.5 6.5 × 10−3 0.9 4.1 × 10−4 0.19 2.7 × 10−4 0.17
10 0.5 1 6.1 × 10−3 0.94 4.0 × 10−4 0.19 2.9 × 10−4 0.18
20 0.5 1 1.9 × 10−2 0.94 4.1 × 10−4 0.2 2.9 × 10−4 0.18
1 1 0.33 2.2 × 10−2 0.86 3.0 × 10−3 0.33 3.4 × 10−3 0.31
10 1 0.5 8.4 × 10−3 0.92 4.2 × 10−3 0.92 4.0 × 10−3 0.92
10 1 1 8.6 × 10−3 0.93 4.2 × 10−3 0.93 4.1 × 10−3 0.93
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multiplies the BAO scale by a factor α and suppresses the
BAO wiggles using a damping factor Σ,

mðkÞ ¼ e−ðkΣÞ2=2½Oðk=αÞ − 1�: ðC1Þ

Here OðkÞ ¼ Plin
wiggleðkÞ=Plin

nowiggleðkÞ is the ratio of the
theoretical linear wiggle and nowiggle power spectra that
were used to initialize the simulations. We fit for α and Σ by
minimizing the chi-squared

P
k½d̂ðkÞ −mðkÞ�2=σ2ðkÞ at

0 < k ≤ kfitmax ¼ 0.6 hMpc−1 for every realization.5 This
gives the best-fit BAO scale in each realization,
r̂BAO ¼ α̂rfidBAO, as shown in Fig. 6. We estimate the
uncertainty of the measured BAO scale by computing
the scatter of the best-fit BAO scale between the realiza-
tions. This Monte Carlo method to estimate the BAO
uncertainty should provide a robust estimate of the true
uncertainty because it quantifies how much the BAO scale
estimated from our particular fitting procedure varies
among different realizations of the Universe.
When fitting for the BAO scale, we assume a Gaussian

diagonal covariance covðd̂ðkÞ; d̂ðk0ÞÞ ¼ δkk0σ
2ðkÞ with

σ2ðkÞ ¼ 2

NmodesðkÞ
� ½P̂wiggleðkÞ�2
hP̂nowiggleðkÞi2

�
ðC2Þ

estimated from the simulations. This should be regarded
just as a particular weight in the fitting process to up-weight
the power spectrum on small scales where there are more
modes. If the assumed Gaussian covariance is wrong, the
estimator for the BAO scale is suboptimal because it
employs a suboptimal weight. In that case, the uncertainty
estimated from the scatter of the best-fit BAO scale between
realizations overestimates the uncertainty compared to a
more optimal estimator or fitting procedure based on
the correct covariance. As a consequence, our estimated
BAO uncertainty is a conservative estimate of the true
uncertainty.

APPENDIX D: RESULTS AT REDSHIFT z= 0.6

Figures 13 and 14 show reconstruction results at red-
shift z ¼ 0.6 as opposed to the redshift z ¼ 0 that was
used in the main text. The densities before and after
reconstruction match the linear density better at this
higher redshift than at lower redshift, which is as expected
because nonlinearities are smaller at higher redshift for
any given scale.

APPENDIX E: PARAMETERS AND
CONVERGENCE TESTS

In this appendix we discuss some choices we made for
the reconstruction parameters, and some basic convergence
tests of our simulations.

1. Reconstruction parameters

Our reconstruction algorithm has several parameters as
described in Sec. III A 3. Table VI shows results for
different parameter choices. This demonstrates that the
final performance of the method is relatively insensitive to
the detailed parameter values. Some qualitative choices are

FIG. 13. Same as Fig. 4 but at redshift z ¼ 0.6. The new
reconstruction is more than 95% correlated with the initial
conditions at k ≤ 0.48 hMpc−1, or at k ≤ 0.53 hMpc−1 if second
order corrections are included in the method. For comparison, the
wave number where the correlation with initial conditions drops
below 95% is k ¼ 0.21 hMpc−1 for standard reconstruction,
and k ¼ 0.09 hMpc−1 for the nonlinear density without
reconstruction in our setup.

FIG. 14. Same as Fig. 10 but at redshift z ¼ 0.6.

5We allow Σ to vary between 0 and 20 h−1Mpc, and α between
0.9 and 1.1. This is conservative given that α should deviate
by less than 1% from unity in any realization of the large-
volume simulations. Best-fit values are consistent when fitting
with scipy.optimize.minimize’s Nelder-Mead, Powell, or TNC
algorithms.
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important though: It is important to start with a relatively
large smoothing scale, Rinit ≳ 5 h−1Mpc, so that the
smoothed overdensity is less than unity for most grid
points and the Zeldovich approximation is applicable. The
smoothing scale should also decrease from one iteration to
the next, ϵR < 1, to reconstruct progressively smaller scales
in the iteration. However, since reconstruction likely
becomes inefficient on very small scales where shell
crossing dominates, we stop decreasing the smoothing
scale at Rmin. A reasonable choice may be Rmin∼
1 h−1Mpc. We work with Rmin ¼ 1.01L=Ngrid throughout,
which gives Rmin ¼ 0.99 h−1Mpc for our small-volume
simulation and Rmin ¼ 2.7 h−1Mpc for our large-volume
simulations.
For the other parameters, we can use simple heuristics.

The number of iteration steps for the displacement χ can be
determined by monitoring the final quantity of interest and
stopping the iteration once that quantity stops changing
significantly. Figure 12 demonstrates that fewer than ten
iteration steps should be sufficient to achieve convergence
for most applications. The size of the regular grid should be
chosen such that the smallest length scale of interest is still
resolved by the grid. We work with N3

grid ¼ 5123 grid

points throughout the postprocessing of the simulations,
corresponding to a grid resolution of Δx ¼ 0.98 h−1Mpc
for the L ¼ 500 h−1Mpc simulations, and Δx ¼
2.7 h−1Mpc for the L ¼ 1380 h−1Mpc simulations that
we use for studying the BAO scale. To reduce potential
aliasing effects, we truncate small-scale modes with
k > kmax ¼ 2π=L × Ngrid=2.
The optional displacement factor ϵs can be set to less

than unity to avoid potential overshooting when displacing
objects, for example, if the overdensity is large and the
Zeldovich displacement may not be appropriate. However,
if the initial smoothing scale is chosen sufficiently large, for
example, Rinit ≳ 5 h−1Mpc at z ¼ 0.6, the overdensity
tends to be less than unity and full displacements with
ϵs ¼ 1 seem to work well.

2. Convergence of simulations

As a basic check for convergence of the FastPM simu-
lations, we ran a simulation with 40 time steps linearly
spaced between a ¼ 0.1 and a ¼ 1, and a second more
accurate simulation with 120 time steps linearly spaced
between a ¼ 0.01 and a ¼ 1. Both simulations used 20483

particles, box size L ¼ 500 h−1Mpc, and we apply
reconstruction to a 1% dark matter subsample at
z ¼ 0.6. The correlation coefficient of the reconstructed
density with the initial conditions differs by less than 1%
between these two simulations, for all reconstruction
methods considered in this paper, and for any number of
iterations steps used in the reconstruction procedure. This
indicates that the simulations have converged in the sense

that the final result is robust against changes of starting time
and number of time steps used to run the simulations.

APPENDIX F: MODELING THE NEW
RECONSTRUCTION METHOD

Given a prescription for reconstruction, we can try to
model the statistics of the reconstructed density, similar to
previous efforts [36,56,74,76,77,79,80] modeling the den-
sity after the standard reconstruction of [17].

1. Undoing shift terms

From the mapping between Lagrangian and Eulerian
space x ¼ qþ ψ and mass conservation

ρ̄d3q ¼ ρ̄ð1þ δÞd3x; ðE1Þ

we have that 1þ δ ¼ 1=Jq, where Jq is the determinant of
the Jacobian matrix

Aij ≡ ∂xi
∂qj ¼ δKij þ ψ i;j; ðE2Þ

where δKij is the Kronecker delta (not to be confused with
density contrast). Spatial indices are always raised and
lowered using δKij and its inverse. When convenient we will
use a comma to denote spatial derivatives. We can obtain
the final density directly from Jq which we have solved
explicitly in terms of q. Using (E1)

δðxÞ ¼
�

1

JqðqÞ
− 1

�
x¼qþψ

: ðE3Þ

This expression should be used perturbatively expanding
up to a given order in the displacement field.
Jq depends only on displacement gradients ψ i;j while

there are nonlinear shift terms from the mapping from q to
x ¼ qþ ψ that depend on the displacement ψ i itself. These
two sets of terms can have different sizes. The shift terms
can be large and should be resummed at the BAO scale if
one wants to get a good estimate of the correlation function
[16,79]; even a linear long-wavelength component of the
displacement can move particles over a large enough
distance that truncating a perturbative expansion of the
form fðqþ ψÞ ¼ fðqÞ þ ψ · ∇f þ � � � would lead to large
errors. The goal of reconstruction is to undo the shift terms
so that the nonlinearities arising from these shift terms are
minimized.

2. Density of particles shifted by χ

Given a displacement field χ , let us make a coordinate
transformation from the final Eulerian coordinates x to new
coordinates q̂ defined by
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x ¼ q̂þ χ ðq̂Þ: ðE4Þ

If the displacement χ were to coincide with the true
Lagrangian-to-Eulerian displacement ψ, then the q̂ coor-
dinates would equal the true Lagrangian q coordinates. In
that case the density of particles in q̂ space would be
uniform. If χ is an approximate estimate of the true
displacement ψ, then q̂ are estimated approximate Lagran-
gian coordinates, and the density of particles in q̂ space is
approximately uniform (the level to which they are uniform
is shown in the upper panel of Fig. 1 that is based on
progressively better χ ).
Similar to above, we can use mass conservation to relate

the density of particles in q̂ and x spaces,

ð1þ δq̂Þd3q̂ ¼ ð1þ δÞd3x; ðE5Þ

so that

ð1þ δq̂Þ ¼ ½1þ δðxðq̂ÞÞ�Jq̂ðq̂Þ; ðE6Þ

where Jq̂ is the determinant of the Jacobian matrix

Bij ≡ ∂xi
∂q̂j ¼ δKij þ χi;j: ðE7Þ

We can now compute the Fourier transform of the
density field in Fourier space ΔðkÞ,

ΔðkÞ≡
Z

d3q̂½1þ δq̂ðq̂Þ�eik·q̂

¼
Z

d3q̂½1þ δðxðq̂ÞÞ�Jq̂ðq̂Þeik·q̂

¼
Z

d3x½1þ δðxÞ�eik·ðx−χ Þ

¼
Z

d3qeik·½qþψðqÞ−χ �; ðE8Þ

where in the last two expressions χ should be thought of as
a function of x and q, respectively, through the relation

q̂þ χ ¼ x ¼ qþ ψðqÞ: ðE9Þ

Ideally the density in Lagrangian space would be uniform,
and thus ΔðkÞ would be zero for nonzero k. The density is
slightly nonuniform if the estimated and true Lagrangian
coordinates differ, q̂ ≠ q, which is the case if the estimated
and true displacements differ, χ ≠ ψ.
Given χ one can construct the density in q̂ space and

measure ΔðkÞ directly from the data. The goal of this
appendix is to compute the statistics of ΔðkÞ. One should
keep in mind that χ will also be computed from the data
itself; it will be a function of δ. In the EFT one has a
perturbative expansion for ψ and δ.

3. Displacement field

We can obtain an expression for χ if we demand that the
density field computed using the Zeldovich approximation
starting with the displacement χ equaled the filtered version
of the density. The Zeldovich approximation has all the
nonlinearities from the displacements but no dynamical
interaction between the different modes. We are basically
trying to solve for the nonlinear displacement; of course,
once one is inside the nonlinear regime, this is not really
possible. That is to say we will find a displacement field
that produces the final density from a uniform distribution
but this is not unique as we can always exchange particles
after we are done in any given solution and create a new
solution. Thus what we get on nonlinear scales is a bit
random.
If we equated the Zeldovich density to the filtered one,

we would obtain

ik · χ ðkÞ þ
X∞
n¼2

Z
p1;…;pn−1

FZðp1;…; pnÞ

× ½ip1 · χ ðp1Þ� � � � ½ipn · χ ðpnÞ� ¼ WðkÞδðkÞ; ðE10Þ

where k ¼ p1 þ � � � þ pn and FZ are the kernels of the
Zeldovich approximation,

FZðp1;…; pnÞ ¼
1

n!
k · p1
p2
1

� � � k · pn
p2
n

: ðE11Þ

We then solve the equation perturbatively to obtain

δχ ≡ ik · χ ðkÞ ¼ WðkÞδðkÞ − 1

2

k · p1
p2
1

k · p2
p2
2

×Wðp1Þδðp1ÞWðp2Þδðp2Þ þ � � � : ðE12Þ

In general we have

δχ ¼
X∞
n¼1

F−1
Z ðp1;…; pnÞWðp1Þδðp1Þ � � �WðpnÞδðpnÞ:

ðE13Þ

The perturbative version of the solution has

F−1
Z ðp1Þ ¼ 1;

F−1
Z ðp1; p2Þ ¼ −FZðp1; p2Þ;

F−1
Z ðp1; p2; p3Þ ¼ −FZðp1; p2; p3Þ

þ 2½FZðp1; p2ÞFZðp1 þ p2; p3Þ�sym;
ðE14Þ

where ½� � ��sym stands for symmetrized in the momenta. In
standard reconstruction one is just using the linear version
of this equation,
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δχ ≈Wδ: ðE15Þ

4. Flavors of reconstruction

In standard reconstruction a uniform field in x space is
generated which is then shifted with the same displacement
χ . Let us call this field ΔS,

ΔSðkÞ≡
Z

d3q̂ð1þ δq̂ðq̂ÞÞeik·q̂

¼
Z

d3q̂Jq̂ðq̂Þeik·q̂

¼
Z

d3xeik·ðx−χ Þ; ðE16Þ

where we have used the same expressions used to compute
ΔðkÞ but in this case the overdensity in x space is zero. In
the standard reconstruction algorithm, one estimates δ0 as

δ̂S0ðkÞ ¼ ΔðkÞ − ΔSðkÞ

¼
Z

d3q̂δðxðq̂ÞÞJq̂ðq̂Þeik·q̂: ðE17Þ

If one has iteratively or perturbatively found a displace-
ment field that recovers the density, one can perhaps
directly use that field as the estimate of the linear density
field. This is what we do in this paper,

δ̂N0 ðkÞ ¼ δχðkÞ: ðE18Þ

We could also divide byWðkÞ to undo the filtering so as to
recover the linear density field at lowest order.
We compare with standard reconstruction in the main

text as well as in Appendix B. Of course, our new estimate
of the initial density makes sense only if one has solved for
δχðkÞ iteratively; otherwise at linear order one has done
nothing.

5. Perturbative results

In this section we will write down the expression for the
reconstructed field in perturbation theory. We will first
assume that the nonlinear density can be expressed as

δðkÞ ¼
X∞
n¼1

Fðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ: ðE19Þ

We will need the first few kernels

Fðp1Þ¼1;

Fðp1;p2Þ¼ l2ðp1;p2ÞþFZðp1;p2Þ;
Fðp1;p2;p3Þ¼ l3ðp1;p2;p3Þþ2½l2ðp1;p2ÞFZðp1þp2;p3Þ�sym

þFZðp1;p2;p3Þ;

κ2ðp1;p2Þ¼1−
ðp1 ·p2Þ2

p1 ·p1p2 ·p2
; ðE20Þ

l2ðp1;p2Þ ¼
3

14
κ2ðp1;p2Þ;

κ3ðp1;p2;p3Þ ¼
ðp1 · ðp2 ×p3ÞÞ2
p1 · p1p2 · p2p3 · p3

;

l3ðp1;p2;p3Þ ¼
1

6

�
−
1

3
κ3ðp1;p2;p3Þ

þ 5

21
½κ2ðp1;p2Þκ2ðp1þ p2;p3Þ�sym

�
:

ðE21Þ

We will use these expressions to obtain a formula for the
reconstructed fields in terms of the initial condition δ0,

δ̂S0ðkÞ ¼
X∞
n¼1

FSðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ;

δ̂N0 ðkÞ ¼
X∞
n¼1

FNðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ: ðE22Þ

In standard reconstruction

δ̂S0ðq̂Þ ¼ δðxðq̂ÞÞJðq̂Þ≡ ~δðq̂ÞJðq̂Þ: ðE23Þ

We can define

δχðkÞ ¼
X∞
n¼1

Fχðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ;

~δðkÞ ¼
X∞
n¼1

~Fðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ;

JðkÞ ¼
X∞
n¼1

FJðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ; ðE24Þ

in terms of which we find

FSðp1Þ ¼ ~Fðp1Þ;
FSðp1; p2Þ ¼ ~Fðp1; p2Þ þ ½ ~Fðp1Þ ~FJðp2Þ�sym;

FSðp1; p2; p3Þ ¼ ~Fðp1; p2; p3Þ þ ½ ~Fðp1; p2Þ ~FJðp3Þ
þ ~Fðp1Þ ~FJðp2; p3Þ�sym: ðE25Þ

The solution for ~δ reads
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~Fðp1Þ ¼ 1;

~Fðp1;p2Þ ¼Fðp1;p2Þ− ½uðp1;p2Þ ~Fðp1ÞFχðp2Þ�sym;
~Fðp1;p2;p3Þ ¼Fðp1;p2;p3Þ− ½uðp1þ p2;p3Þ

× ~Fðp1;p2ÞFχðp3Þ�sym− ½uðp3;p1þ p2Þ

× ~Fðp3ÞFχðp1;p2Þ�symþ 1

2
½uðp1;p2Þuðp1;p3Þ

×Fðp1ÞFχðp2ÞFχðp3Þ�sym;
uðp1;p2Þ≡ p1 · p2

p2 · p2
: ðE26Þ

For J (which we only need to second order) we have

FJðp1Þ ¼ −Fχðp1Þ;

FJðp1; p2Þ ¼ −Fχðp1; p2Þ þ
1

2
κðp1; p2ÞFχðp1ÞFχðp2Þ:

ðE27Þ

Finally for δχ we have

Fχðp1Þ ¼ Wðp1Þ;
Fχðp1; p2Þ ¼ Wðp1 þ p2ÞFðp1; p2Þ

− ½FZðp1; p2ÞFχðp1ÞFχðp2Þ�;
Fχðp1; p2; p3Þ ¼ Wðp1 þ p2 þ p3ÞFðp1; p2; p3Þ

− ½2FZðp1 þ p2; p3Þ ~Fχðp1; p2ÞFχðp3Þ�sym
− FZðp1; p2; p3ÞFχðp1ÞFχðp2ÞFχðp3Þ:

ðE28Þ

The easiest way to get these formulas is to simply equate

δZ½δχ � ¼
X∞
n¼1

FZðp1;…; pnÞδχðp1Þ � � � δχðpnÞ ¼ Wδ

¼ W
X∞
n¼1

Fðp1;…; pnÞδ0ðp1Þ � � � δ0ðpnÞ ðE29Þ

and solve for δχ.
One can easily use the above formulas to infer some

properties of the reconstructed field. For example, we can
look at the quadratic kernels,

FSðp1; p2Þ ¼ l2ðp1; p2Þ þ FZðp1; p2Þ

−
�ðp1 þ p2Þ · p2

p2 · p2
Wðp2Þ

�
sym

;

Fχðp1; p2Þ=Wðp1 þ p2Þ ¼ l2ðp1; p2Þ þ FZðp1; p2Þ

×

�
1 −

Wðp1ÞWðp2Þ
Wðp1 þ p2Þ

�
: ðE30Þ

It is easy to show that in the regime whenW ≈ 1 all the shift
terms are canceled from both formulas; in fact,

FSðp1; p2Þ ≈ −
2

7
κ2ðp1; p2Þ;

Fχðp1; p2Þ=Wðp1 þ p2Þ ≈
3

14
κ2ðp1; p2Þ: ðE31Þ

Indeed this is true for the higher order kernels as well; the
shift term are canceled when W → 1. Furthermore in the
limit in which p1; p2 ≫ k both kernels have a nice UV
limit; they scale as ðk=pÞ2. In fact, in this limit

FSðp1;p2Þ≈
3k2

14p2

�
1−

10

3
μ2þ 10

3
WðpÞ

þ 14

3
μ2WðpÞ− 7

3
μ2pW0ðpÞ

�
;

Fχðp1;p2Þ=Wðp1þ p2Þ≈
3k2

14p2

�
1−

10

3
μ2þ 10

3
μ2WðpÞ

�
;

ðE32Þ

with μ ¼ p · k=pk. Thus the kernels have the correct UV
limit regardless of the window. This is again still true for the
higher order kernels. In fact, both reconstruction formulas
look very much the same; they only differ in terms
proportional to the gravitational interaction. From the fact
that the second stage of the new and standard reconstruc-
tions differ only slightly in perturbation theory, we expect
that for a given displacement, the second stage of the new
and standard reconstruction should perform similarly.
Therefore it makes sense that the extended standard
reconstruction in Appendix B, which is using the eight-
step displacement field χ ð8Þ, performs roughly as well as the
new Oð1Þ reconstruction based on the same displacement
field (see Fig. 12). The key improvement from the new
reconstruction comes from having a better displacement
field (the second order correction and the reduced coef-
ficients of the growth and tidal term play a much
smaller role).
One could improve the reconstruction by removing the

quadratic and cubic pieces. At one loop the cubic piece
could be incorporated in a transfer function on the linear
field. Thus one could estimate the initial density using

δ̂0 ¼ t1ðkÞδχðkÞ þ t2ðkÞκ2ðp1; p2Þt1ðp1Þ
× δχðp1Þt1ðp2Þδχðp2Þ; ðE33Þ

and choose t1 and t2 to minimize the difference with δ0 in
simulations as described in Appendix A. We tested this
approach in the main text.
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