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In this work the influence of the chiral anomaly effect on the evolution of magnetohydrodynamic
turbulence was studied. We argue that before the electroweak symmetry breaking and for temperatures high
enough such that the electron mass can be ignored, the description of a charged plasma in general needs to
take into account the interplay between turbulence and the anomaly effects. It was demonstrated that this
generalization can have important consequences on the evolution of turbulence, leading to the creation of
maximally-helical fields from initially nonhelical ones. Therefore, chiral effects can strongly support
turbulent inverse cascade, and lead to a slower decrease of the magnetic field with time, and also to a faster
growth of the correlation length, when compared to the evolution predicted by the standard magneto-
hydrodynamics description. Using the weak anomaly approximation, and treating the anomaly contri-
butions to magnetic energy and helicity as a small perturbation, we derive the specific solutions for the
inverse cascade regime that demonstrate how chiral effects support the inverse cascade.
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I. INTRODUCTION

The phenomenon of turbulence has been confirmed in
almost all astrophysical systems, such as solar wind,
accretion disks, galaxy clusters, interstellar medium and
intracluster medium [1–4]. Since astrophysical scales are
typically much larger than dissipative scales, these systems
are all characterized by high values of Reynolds numbers,
Re ¼ Lv=ν (with the characteristic length scale L, character-
istic velocity v and a kinematic viscosity ν), which is a
necessary condition for the establishment of turbulence.
Therefore, in general, if the matter of the universe is in a state
of movement, turbulence will tend to develop. Since most of
the visible matter in the universe is in the state of plasma,
characterized by a high conductivity and permeated by
magnetic fields, this turbulence will be described by the
set of magnetohydrodynamic (MHD) equations, consisting
of Maxwell, Navier-Stokes and continuity equation.
It is generally accepted that magnetic fields are present on

all scales of the observable universe [5–7] and it seems thus
natural to assume that they were also present in the early
universe. Indeed, a large class of models trying to explain the
observed magnetic fields assumes that they have a cosmo-
logical origin [8–11]. It also seems plausible to characterize
the early universe by a nonvanishing velocity field, coming
from potential first-order phase transitions [12–16] or
density perturbations [17]. It then follows that MHD
turbulence could be an important phenomenon not only
in astrophysical, but also in the cosmological context. In
accord with this reasoning, numerous studies have shown the

role that MHD turbulence can have on the evolution of
cosmological magnetic fields and the growth of their
correlation length [18–21]. For temperatures higher than
the temperature of the electroweak transition, the electro-
weak symmetry is restored and the description of turbulence
should come from considering hypermagnetic (BY) and
hyperelectric (EY) fields. Hyperfields introduce the chiral
coupling to fermions, coming from the Chern-Simons
anomaly in the field Lagrangian. This chiral coupling is
related to the change in the fermion number before the
electroweak symmetry breaking, given by

∂μjμ ∼
g02

2π2
BY ·EY; ð1Þ

where g0 ¼ e=cosθW , with θW being the Weinberg angle. In
the case of charged carriers this gives raise to the effective
current which should be added to the standard Maxwell
equations. Above the electroweak transition, turbulence
therefore needs to be properly studied in the context of
modified MHD equations, where this effective contribution
and its evolution equation are also considered. Unlike the
standard MHD equations, this description leads to the
coupling between velocity, hyperfields and the particle
content of the theory. This framework can thus be important
not only for a better understanding of the evolution of
magnetic fields in the early universe, but also from the
perspective of various baryogenesis models. Baryogenesis
and leptogenesis in the context of modified MHD equations
around the electroweak transition were extensively
studied, but all of these contributions ignored the potential
role of turbulence [22–27].
For temperatures below the electroweak symmetry break-

ing, where hyperfields are replaced by the ordinary electric
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and magnetic fields, the chiral coupling will not lead to a
change in the fermion number, but—if the lepton mass can
be ignored—the anomaly leads to a change in the difference
between left and right lepton number densities. It was
therefore argued that the usual system of MHD equations
should be extended to take into account the effect of the
chiral anomaly for high enough temperatures [28–34]. The
presence of a chiral asymmetry will lead to an effective
electrical current that will also appear in the MHD equations:

j5 ¼ −
e2

2π2
μ5B; ð2Þ

whereB stands for the magnetic field and μ5 ≡ ðμL − μRÞ=2
is the difference between chemical potentials associated with
the left- and right- chiral electrons, respectively.
Chiral transport phenomena associated with chiral

anomaly were recently studied theoretically and experi-
mentally in heavy ion collisions [35,36]. This effect was
also explored in the early universe, for temperatures higher
than 10 MeV [37] and around the electroweak transition
[38]. In the astrophysical context, the suggestion that it may
potentially act as a cause of magnetic field enhancement in
magnetars [39–41], neutron stars [42,43] and even in quark
stars [44] has been studied, as well as the role it might have
in neutrino energy transport in core-collapse supernovae
[45]. Some of these objects such as core collapse super-
novae, reach high temperatures which makes studies of the
chiral magnetic effect in such objects and in the early
Universe technically similar. In [46] the formalism was
extended to the case of spatially dependent μ5, and in [47] it
was demonstrated that these inhomogeneities do not
prevent the anomaly-driven inverse cascade. Again, in
all the approaches it was assumed that there are no velocity
fields and therefore no turbulence occurring, although even
some simple estimates seem to show that it could play a
potentially important role both in the early universe [17,38]
and in neutron stars [43]. Velocity contributions to the
MHD equations together with the chiral anomaly and the
chiral vortical effect, in the framework of the early universe,
were studied in [48]. However the velocity distribution of
Ref. [48] was assumed a priori to be given by a standard
Kolmogorov spectrum, in general important advection term
∇ × ðv ×BÞ was neglected, and the equation guiding the
fluid dynamics was not solved. Recently, scaling laws—
based on the scaling symmetries of the chiral MHD
equations—were proposed in Ref. [49], but a proper
understanding of the chiral MHD turbulence requires
further work in the direction of obtaining concrete ana-
lytical and numerical solutions. Motivated by the above
arguments, our aim will be to analytically investigate the
general interplay between the chiral anomaly and MHD
turbulence. We will address this important issue by solving
the modified MHD equations in specific limits and discuss
the general properties of the obtained solutions.

As it is well known, turbulence remains to be on of the last
unsolved problems of classical physics [50,51]. Due to its
highly nonlinear nature, the Navier-Stokes equation cannot
in general be solved analytically to analyze the properties of
turbulence. These difficulties become even stronger in the
case of MHD turbulence—leading to still unsolved issues
regarding the relationship between magnetic field and
velocity field, the role of helicity, proper scaling and time
dependence of the quantities of interest, as well as many
other open questions [52,53]. Even the advanced numerical
simulations trying to model MHD turbulence are confronted
with difficult challenges and unsolved issues [54]. When
considering the modification of MHD turbulence by the
chiral anomaly effect, which makes the problem even more
mathematically difficult, it is not possible to address the issue
of chiral MHD turbulence in a simple manner. Therefore,
while trying to make the first steps towards a general
analytical understanding of chiral MHD turbulence, we will
need to consider this problem in specific regimes, and also
use a qualitative reasoning similar to the one typically used
in the study of ordinary MHD turbulence.
This work is organized in the following manner: in

Sec. II the MHD equations in the presence of the chiral
anomaly are reviewed and introduced; in Sec. III the
behavior of the magnetic helicity is studied; in Sec. IV
we specify regimes for the velocity field and chiral anomaly
and obtain solutions to the evolution of fields in the
presence of a chiral asymmetry.

II. MODIFIED MHD EQUATIONS

Above the electroweak transition, for high enough
temperatures where the chirality flipping processes can
be ignored, one can define the chemical potential μR,
associated with the approximately conserved number of
right-handed electrons, nR. For lower temperatures, but still
higher than the electroweak scale, one can then perturba-
tively add the rate of chirality flipping processes to the
equations. The number of right-handed electrons is never
exactly conserved due to the already mentioned Abelian
anomaly. Taking these contributions into account we can
write its change in time as [23]1

dnR
dt

¼ g02

8π2
dhY

dt
− ΓsnR; ð3Þ

where hY ¼ V−1 R AY ·BYd3r, is the hyperhelicity density,
AY is the vector potential of the hypermagnetic field, and Γs
is the chirality flipping rate before the electroweak
symmetry is broken. In the standard model this leads to
a chemical potential for right-handed electrons of the
following form [23]

1Note that different sign conventions have been used in the
literature for this relation, but this will be of no interest here, since
it does not affect our subsequent analysis.
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dμR
dt

¼ 1

T2

g02

8π2
783

88

dhY

dt
− ΓsμR: ð4Þ

On the other hand, if the temperature is lower than the
electroweak scale—but high enough such that electron
mass can be neglected—one can approximately neglect the
difference between the helicity and chirality operators and
introduce the density of left/right chiral electrons and
respective chemical potentials, μL=R. These temperature
conditions are also satisfied in the case of the core of a
proto-neutron star. In this way, the effect of the chiral
anomaly leads to the time change of the chiral chemical
potential given by [28]

dμ5
dt

¼ 1

T2

3e2

4π2
dh
dt

− Γbμ5; ð5Þ

where Γb is the rate comprising the chirality flipping
processes of the system in question below the electroweak
scale, h ¼ V−1 R A · Bd3r is the magnetic helicity density,
and A is the vector potential. If one considers the change of
energy associated with this anomaly induced chirality flow,
it can in fact be shown that it corresponds to the effective
electrical current (2). In this work wewill assume that fields
are slowly varying so that chemical potentials can be
treated as space-independent quantities. This approxima-
tion was used in almost all theoretical studies of the chiral
magnetic effect, although it is not so straightforward to see
how well it describes the systems of interest and how
significant could the effect of chiral chemical potential
inhomogeneities actually be. It seems that the only way to
discuss this issue is to compare the solutions of numerical
simulations related to a space-dependent chiral potential to
the ones obtained with the assumption of a space inde-
pendent chemical potential. This was done in Refs. [47,55]
and both studies concluded that inhomogeneities of the
chiral asymmetry have a negligible role for the primordial
plasma. Moreover, it was demonstrated in [47] that the
inverse cascade proceeds practically in the same way as in
the chirally homogeneous model. This assumption can
therefore be taken as justified, especially since our main
concern in this work is the interplay between the anomaly
induced and MHD inverse cascade.
Since the evolution equations have mathematically the

same form, apart from different coefficients and flipping
rates, we introduce the following notation to keep the
discussion general and independent of a specific system

c1 ¼
g02

π2σ
; c2 ¼

e2

4π2σ

c3 ¼
g02

8π2
783

88
; c4 ¼

3e2

4π2
; ð6Þ

where σ is the conductivity that characterizes the system of
interest. Taking into account the contribution of anomaly

induced effective currents to the MHD equations in the
resistive approximation [56], we can write the modified
MHD equations in Lorentz-Heaviside units, where we have
also used Ohm’s law, as

∇ ×B ¼ σðE − 2c1;2μR;5Bþ v ×BÞ; ð7Þ

∂B
∂t ¼ −∇ × E; ð8Þ

ρ

�∂v
∂t þ ðv · ∇Þv − ν∇2v

�

¼ −∇pþ ½σE × Bþ ðv ×BÞ ×B�; ð9Þ

∂ρ
∂t þ∇ðρ · vÞ ¼ 0; ð10Þ

dμR;5
dt

¼ 1

T2
c3;4

dh
dt

− ΓfμR;5 þ Πsr; ð11Þ

where ρ is the matter density, Γf is the total chirality
flipping rate, and we have also added a possible source
term, Πsr, to take into account possible processes which
generate a chiral asymmetry μR;5 in a given system. We
note that, for instance, in the core of a neutron star it
follows Πsr ¼ Γfμ

b
R;5, where μbR;5 is the equilibrium value

of the chiral potential of the background medium in the
absence of magnetic helicity [43]. E and B denote from
hereon both hyper and ordinary electric and magnetic
fields, respectively.
This approximation of the MHD equations assumes high

conductivity, as well as the global neutrality of plasma, i.e.
∇ · J ¼ 0 and ∇ ·E ¼ 0, and the displacement current is
neglected. These equations will have the same form on
curved spacetime, which is of interest in the cosmological
context, as long as time is replaced by conformal time and
all the physical quantities are scaled with the conformal
factor [57,58]. In this work we will concentrate on the case
of the incompressible fluid, where the continuity equation
reduces to the condition ∇ · v ¼ 0. This condition will be
physically satisfied if the ratio between the fluid velocity
and the speed of sound in the fluid is much smaller than
unity, and we will moreover assume that the bulk flow
velocity is nonrelativistic. This in fact needs to be the case
for velocity fields associated to magnetic fields of realistic
cosmological strengths, such that they do not come into
contradiction with the established course of primordial
nucleosynthesis and microwave background fluctuations.
For instance, as discussed in Refs. [59–61], cosmological
magnetic fields act as a source of cosmic microwave
background (CMB) and create characteristic anisotropy
patterns, thus leading to constraints on their magnitude in
order to be consistent with the CMB observations [62].
Additionally, magnetic fields present at the time of pri-
mordial nucleosynthesis can influence the formation of
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light nuclei, for example by enhancing the rate of the
expansion of the Universe [63–65], which again bounds
their possible values to the ones consistent with highly
non-relativistic bulk velocities. For the case of the early
Universe it can easily be shown that the incompressible
MHD fluid is a good approximation [66]. As it is well
known, fluids can be treated as incompressible if there
are no pressure variations which would cause a change
in density. For the sake of an estimate, taking the fields
frozen in the expanding Universe, the ratio between
magnetic pressure and fluid radiation pressure is typically
B2=8ðπpÞ ≈ 10−7. Since radiation pressure is homo-
geneous and isotropic, and magnetic pressure is negligible
with respect to it, pressure variations in the fluid can be
neglected, B2=8ðπpÞ ≪ 1, and the early Universe plasma
can be treated as an incompressible fluid to a very good
approximation.
One can easily see that if there are no initial chiral

asymmetry and magnetic helicity present, then the system
described by the Eqs. (7)–(11) will just evolve according to
the standard decaying MHD turbulence description. On the
other hand, if the fields are initially helical with initially
vanishing chiral asymmetry, a finite μ5 will in general be
generated (and vice versa) [38], which implies that the
evolution for later times will be different from the standard
MHD description.
Apart from the already mentioned kinetic Reynolds

number, Re, it is also useful to define the magnetic
Reynolds number ReB ≡ 4πLvσ. A turbulent MHD regime
typically corresponds to Re ≫ 1 and ReB ≫ 1.
The analysis of Eqs. (7)–(11) is mathematically

simpler decomposing the (hyper)fields into Fourier
components

Bðr; tÞ ¼
Z

d3k
ð2πÞ3 e

ik·rBðk; tÞ: ð12Þ

Focusing our attention on the evolution of statistically
homogeneous and isotropic magnetic fields we obtain the
condition [67]

hBiðk; tÞBjðq; tÞi ¼
ð2πÞ3
2

δðkþ qÞ
× ½ðδij − k̂ik̂jÞSðk; tÞ þ iϵijkk̂kAðk; tÞ�;

ð13Þ

where k̂i is the unit vector of k, and Sðk; tÞ and Aðk; tÞ
denote the symmetric and antisymmetric parts of the
correlator, respectively. Using (13) we can write the
magnetic energy density, ρm and helicity density, h, in
the volume V as

ρm ¼ 1

2V

Z
d3rhB2ðr; tÞi ¼

Z
d ln kρkðtÞ; ð14Þ

h ¼ 1

V

Z
d3rhAðr; tÞ · Bðr; tÞi ¼

Z
d ln khkðtÞ; ð15Þ

where we have introduced the spectral magnetic
energy and helicity ρkðtÞ ¼ k3Sðk; tÞ=ð2πÞ2 and hkðtÞ ¼
k2Aðk; tÞ=2π2, respectively. The maximal value for helicity
density is achieved if all the magnetic energy is stored
in one circularly polarized mode [48], and thus ρkðtÞ ¼
ðk=2ÞhkðtÞ. This configuration of magnetic field is called
maximally helical.
As usual, the fluid part of turbulence is characterized

by the kinetic energy, ρK ¼ ð1=2VÞ R d3rρv2. The relative
importance of kinetic over magnetic effects in turbulence
will be measured by the ratio between the respective energy
densities, Γ ¼ ρK=ρm, which will in general be a function
of time. Turbulence will develop on scales between the
dissipation scale, where the Reynolds number becomes
small and turbulence stops due to dissipation processes, and
the scale of the largest magnetic eddies. The latter is
modeled by the magnetic correlation length

ξm ¼
R
k−1ρkd ln k

ρm
; ð16Þ

and the kinetic correlation length can be defined in a similar
fashion. Nonlinear turbulent phenomena are dominant in
the inertial interval—the interval between the scales where
injection and dissipation effects become relevant.
In order to study the evolution of magnetic energy

and helicity in different regimes, let us write the evolution
of the magnetic field, described by (7) and (8), in Fourier
space

∂tBk ¼ −
k2

σ
Bk − 2c1;2μ5ðik ×BkÞ

þ i

ð2πÞ3=2 k ×
Z

d3qðvk−q × BqÞ; ð17Þ

where Bk ≡Bðk; tÞ and vk−q ≡ vðk − q; tÞ. From here on
we denote the integral term containing the velocity field as

Ik ¼ i

ð2πÞ3=2
Z

d3qðvk−q ×BqÞ ð18Þ

The time evolution of the power spectra ρk and hk
defined in (19) and (20) can then be derived from the
magnetic field evolution by multiplying (17) and its
the complex conjugate by B�

k and Bk, respectively.
Analogously, the evolution of (15) is obtained by multi-
plying (17) by the vector potential complex conjugate.
This leads to the following expressions for the spectral
evolution

∂tρk ¼ −
2k2

σ
ρk − c1;2μ5k2hk þ I1ðkÞ; ð19Þ

PAVLOVIĆ, LEITE, and SIGL PHYSICAL REVIEW D 96, 023504 (2017)

023504-4



∂thk ¼ −
2k2

σ
hk − 4c1;2μ5ρk þ I2ðkÞ; ð20Þ

where I1ðkÞ ¼ k½ðk × IkÞ · Bk
� þ ðk × Ik�Þ · Bk� and

I2ðkÞ ¼ k½ð−iÞIk ·Bk
� þAk · ðk × Ik�Þ�.

III. INVERSE CASCADE AND
THE ROLE OF HELICITY

Magnetic helicity, which measures the global topology
of field lines by describing their linking and twisting, is an
important quantity for the analysis of different MHD flow
structures, and it is known to be conserved in ideal MHD,
i.e., when σ → ∞. Conservation of helicity can also be
shown in the chiral case. Starting from the definition of
helicity density, as in (15), one has _h¼ð1=VÞ∂t

R
d3rA ·B,

and with (7) and (8), it follows

dh
dt

¼ −
2

V

Z
d3r

�
1

σ
ð∇ × BÞ ·Bþ 2c1;2μ5;RjBj2

�
: ð21Þ

Using for the current J ¼ ∇ ×B and introducing the
effective chiral current JR;5 ¼ 2σc1;2μR;5B, Eq. (21) can
be put in a form that resembles the corresponding equation
for standard MHD: _h ¼ −2=ðVσÞ R d3rðJþ JR;5Þ · B. This
means that in the limit σ → ∞, there can be no change of μ5
due to the chiral anomaly, even if one has an initially
present chiral asymmetry.
Similarly, using once more Eqs. (7) and (8), and applying

the Stokes theorem, we obtain that the change of magnetic
flux, Φ ¼ R

S B · dS, is given by

dΦ
dt

¼ −
1

σ

I
l
J · dl − 2c1;2μR;5

I
l
B · dl: ð22Þ

Therefore, in the case of ideal chiral MHD, the magnetic
flux will also be conserved, while in the case of finite
conductivity, the flux changes—corresponding to cutting
and reconnecting field lines (that are no longer frozen in the
plasma)—will be enhanced by the chiral anomaly.
Apart from the well known hydrodynamical direct

cascade—energy transfer from large to small scales—
MHD turbulence can also undergo an inverse cascade.
This energy transport of a conserved quantity from small
to large scales represents an important process of self-
organization of turbulent structures (effectively measured
by the correlation length), therefore leading to the develop-
ment of order from initial chaotic conditions [68]. Helicity
is known to play an important role in the establishment of
inverse cascades. Since, for high conductivities, helicity is a
quasiconserved quantity, short-scale modes cannot be
significantly washed out, and their magnetic helicity gets
transferred to large scale modes. But whether the presence
of helicity is a necessary condition for the development of
inverse cascade is still not completely resolved. While

some previous analytical [21,69] and numerical [70,71]
analysis concluded that there is no inverse cascade for
nonhelical fields, some recent findings [72,73] seem to
show that inverse cascades may be possible even if the
fields are nonhelical. It was also argued that nonhelical
inverse cascades can exist due to scaling symmetries of the
MHD equations [20]. One of the difficulties with this issue
is that in principle it may be hard to distinguish between
inverse cascade and resistive damping (discussed by Son in
Ref. [21]) especially since helicity is not an exactly
conserved quantity for finite conductivities. In any case,
it seems obvious that the presence or absence of helicity
will have an important impact on the evolution of MHD
turbulence since it will strongly support an inverse
cascade—even if it is not a necessary condition for it. It
is essentially at this point that the chiral anomaly effect can
lead to important changes in the turbulent MHD evolution,
due to its property of creating helical magnetic fields from
nonhelical ones.
We give here a general analytical discussion on the

influence of the anomaly on MHD turbulence in the
following manner. Let us initially, starting from a
time t0, consider only the nonhelical MHD turbulence.
According to the analytical results in Ref. [74], which
seem to be consistent with the result of numerical simu-
lations in Refs. [72,73], in this regime we consider that
the magnetic energy density scales like

ρkðtÞ ¼
ffiffiffiffi
t0
t

r
kρk

�
k

ffiffiffiffi
t
t0

r
; t0

�
; ð23Þ

such that the total magnetic energy density, ρm, scales
like ρm ∼ 1=t. This scaling can also be introduced using
simple analytical arguments, as done in Ref. [52]. Using
(16), we see that the correlation length then grows as
ξm ∼

ffiffi
t

p
. If now, at some later time ti, a finite μ5 is created

due to some particle processes, it will then, according to
(20), lead to a change in helicity. After some short time
interval, Δt≡ t − ti there will be a finite helicity created
according to

hk ¼ −4c1;2
Z

t

ti

μ5ðtÞ
ffiffiffiffi
t0
τ

r
kρk

�
k

ffiffiffiffi
τ

t0

r
; t0

�
dτ þ

Z
t

ti

I2dτ:

ð24Þ

Concentrating now on the case where Γ < 1, so that
the second integral can be neglected, we assume that
μ5ðtÞ is a smooth function and can therefore be written
as μ5ðtÞ ¼

P
ncnt

n on a small time interval Δt. Here
the values of the expansion coefficients, cn are determined
by the concrete form of the flipping and source terms
entering in (11), which is different for different systems
of interest. The total anomaly induced helicity density is
given by
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hinðtÞ ¼
Z

hkd ln k

¼ −4c1;2t0
X
n

cn
ðtn − tni Þ

n

Z
∞

0

ρkðx; t0Þdx; ð25Þ

so that the time evolution of the induced helicity, hðtÞ ∼ tn,
is determined by the evolution of μ5ðtÞ.
On the other hand, in the special case of μ5 ¼ const one

gets a logarithmical scaling with time

hstain ¼ −4Kc1;2t0 log
�
t
ti

�Z
∞

0

ρkðx; t0Þdx: ð26Þ

The helicity density growth will approximately follow
hin∼ tn or hstain ∼ logðt=tiÞ as long as the term in Eqs. (20)
and (19) containing hk remains much smaller than the term
containing the energy density. This signifies the conclusion
that the creation of helicity in a initially nonhelical
turbulent plasma due to the chiral anomaly effect is a
transitory phenomenon. This is again in accord with
considering the induction of helicity on a small time
interval Δt. When the induced helicity reaches a level
where the first term on the r.h.s. of (20) becomes compa-
rable to the second term proportional to the magnetic
energy term, the above approximation can no longer be
applied and one needs to consider the full set of coupled
differential equations for energy end helicity density. In that
regime, even a qualitative understanding of the interrela-
tionship between MHD turbulence and the chiral anomaly
effect is not so simple, since on the one hand chiral anomaly
also leads to inverse cascade [37,38], but on the other hand
MHD inverse cascade is supported by the conservation of
helicity, while the anomaly effect is based on the change of
helicity, as discussed above. It therefore seems natural that
a system will tend to approach the state where one of the
effects—either MHD turbulence or the chiral anomaly—
dominates and determines the main features of its dynam-
ics, while the other one has a minor role, which can be
treated as a correction.
We can first concentrate on the case where anomaly

effects remain so small that the only significant contribu-
tion from the chiral anomaly is the afore discussed creation
of helicity, after which helical magnetic fields follow
essentially the same evolution as in standard MHD. We
expect this to happen in systems characterized by high
conductivities, suppressing the change of total helicity, and
when the chirality flipping rates are strong compared to the
source term for μ5. Wewill here generalize the usual scaling
arguments, used in the study of MHD and discussed in
standard textbooks [52], to the anomalous case. As dis-
cussed in [52] such arguments, although approximate in
nature, lead to a satisfactory matching with the results of
advanced numerical simulations—so it is justified to apply
them to the chiral MHD case. In this regime we have the
approximated scaling

ρmξm ∼
hin
2

≈ const ð27Þ

coming from the fact that helicity—determined by corre-
lation length and magnetic energy according to (16)—will
be approximately conserved during the developed turbu-
lence leading to inverse cascade. Using a Kolmogorov-like
reasoning, i.e., assuming a constant energy transfer rate
proportional to the eddy-turnover rate in the inertial
interval, where the dissipation effects can be neglected,
we can write

dρtot
dt

∼ −ρtot
ρ1=2K

ξm
; ð28Þ

where ρtot ¼ ρm þ ρK. This can be further expressed as

d
dt

½ρmð1þ ΓÞ� ∼ −
ρ5=2m Γ1=2ð1þ ΓÞ

hin
: ð29Þ

Numerical simulations typically show that the ratio
between kinetic and magnetic energy asymptotically
approaches a constant value in the case of standard
MHD turbulence [71]. It is clear that this will remain so
in the regimewhere the anomaly effects are small compared
to the standard turbulent MHD background. Using this fact,
Γ can be treated as independent of time, and then from (29)
it follows that the resulting scaling will be ρm ∼ t−2=3.
Therefore, even the presence of a weak chiral anomaly
effect in initially nonhelical MHD turbulence will tend to
change the time evolution of the magnetic energy from
ρm ∼ 1=t to ρm ∼ t−2=3. This comes as a result of the
anomaly induced helicity according to (24), which then
plays the role of a (quasi-)conserved quantity, leading to a
slower decrease of the magnetic energy, to a faster growth
of the correlation length and additionally supports the
inverse cascade. If one would use the scaling solution
proposed in [58], a causal tail at large scales, l ¼ 5,
corresponds to ρm ∝ t−10=7 and ξm ∝ t2=7, then the dif-
ference induced by the chiral anomaly effect would be
even larger.
At later times in the system’s evolution, this initial

anomaly induced helicity, hin will then lead to the reali-
zation of maximally helical fields—since magnetic fields
with initial fractional helicity become maximally helical
due to standard MHD turbulence [75,76]. We thus conclude
that the chiral MHD turbulence, when anomaly effects are
small compared to the velocity and magnetic field terms,
will tend to create maximally helical fields from nonhelical
fields.
When this maximally helical state is reached, then using

(16), we have ρξm ≈ h=2 ≈ const, which implies ξm ∼ t2=3.
This represents a growth of organized turbulent structures
faster than the already discussed scaling associated
with (23).
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Turning to the other regime, where chiral anomaly
effects cannot be neglected after the helicity was induced,
we assume that all violation to helicity conservation comes
from the time change of the anomalous chemical potential:
_h ∼ κT _μ5, where κT ¼ T2=c3;4. Such is the case when the
chirality flipping and source rates are either both small or
compensate each other. When this is not the case, we can
use the same logic that will be presented, but taking the
complete Eq. (11). It is still possible to define a magnetic
integral scale, as in (27), at a given instance in time, but this
scale will be time dependent. For simplicity, we will here
consider only the cases where the variation of the temper-
ature can be neglected, but this treatment can be easily
extended. It now follows

d
dt

½ρmð1þ ΓÞ� ∼ −
ρ5=2m Γ1=2ð1þ ΓÞ

κTμ5
: ð30Þ

Considering again that Γ approaches a constant value,
μ5ðtÞ ¼

P
ncnt

n, we obtain

ρm ∼
�Z

dt
kT
P

ncnt
n

�
−2=3

: ð31Þ

Focusing on the special case where Γf andΠsr are such that
μ5 can be approximated by a power-law solution, μ5 ¼ Ktn,
which is of practical interest in several contexts, we obtain
ρm ∼ t2ðn−1Þ=3. If the maximally helical regime is reached,
then ξm ≈ κTμ5=ð2ρBÞ ≈ tðnþ2Þ=3. We can therefore clearly
see that, in this regime, the evolution of the chiral
asymmetry is governing the overall evolution of the
magnetic field and correlation length. It also directly
follows that for a sufficiently fast growth of μ5, with
n > 1, the total magnetic energy will grow in time. In this
case, the system transforms the energy stored in the chiral
asymmetry chemical potential into magnetic field to such
an extent that it completely changes the dynamics of MHD
turbulence. As previously discussed in Ref. [48], when the
advection term in the MHD equations is discarded, μ5 will
have an attractor solution with n ¼ −1=2. Taking this
specific value, we get ξm ∼ t1=2. For this regime, we have
hence independently confirmed the scaling laws recently
proposed in [49], which were there derived using symmetry
arguments.
In the case where chirality flipping and source rates are

neither small nor compensate each other, one in general
needs to consider their contribution to the change of
helicity of a given system. Then the scaling of magnetic
energy with time will be given by the solutions of the
following equation, determined by the specific form of Γf
and Πsr

dρm
dt

∼ −
ρ5=2m

kT
P

cntn −
R ðΠsr − Γf

P
ncnt

nÞdt : ð32Þ

Finally, we discuss the case where initially helical MHD
turbulence reached inverse cascade regime with μ5 ¼ 0 and
then, at time ti, a finite chiral asymmetry is generated due to
the particle processes. We will argue that chiral turbulence
will then in general tend to develop to either anomaly
dominated or turbulence dominated regime. In the inverse
cascade regime h ≈ const and therefore dμR;5=dt ¼
−ΓfμR;5 þ Πsr. In the case of Πsr < ΓfμR;5 asymmetry
will be washed out fast and the system will evolve
according to the standard MHD picture. On the other
hand, when Πsr > ΓfμR;5 the chiral asymmetry chemical
potential will grow until it becomes significant enough that
helicity can no longer be treated as constant and system
exits turbulent inverse cascade regime. So, depending on
the relative strength of source and flipping term, turbulence
will tend to support or wash out the anomaly, as a result of
helicity conservation in the inverse cascade regime.

IV. WEAK ANOMALY REGIME

In the last section we have considered the regime of
chiral MHD turbulence with no initial helicity, as well as
the weak and strong anomaly regimes, in general—based
on qualitative arguments. We next turn to the weak anomaly
regime of the chiral MHD turbulence in more detail,
i.e., when j2c1;2μR;5Bj ≪ jv ×Bþ Ej, with the aim of
obtaining concrete solutions for the evolution of magnetic
fields. As discussed earlier, the nonlinear nature of
the Navier-Stokes equation, together with the coupling
between velocity and magnetic field, makes even the
general analytical study of the nonchiral MHD equations
to still remain as an unsolved issue, and numerical
simulations to be a highly nontrivial task. Is is therefore
reasonable that the first step towards an understanding of
the chiral MHD turbulence should be the consideration of
simplified regimes, such as the described weak anomaly
regime. It is then possible to use the already known
properties of standard MHD turbulence and observe the
modifications induced by the chiral anomaly effect. The
weak anomaly regime is also of physical interest in at least
some important cases, for instance around the electroweak
transition where the chiral effects are expected to be small
with respect to the standard MHD background [38]. We
expect that the overall dynamics will in this regime be
determined by the usual MHD terms (i.e. μR;5 ¼ 0 case),
and that anomaly effects will have the role of a correction to
these results. It is reasonable to assume that in this case the
time scale will also be determined by purely MHD
considerations. Namely, one can introduce typical time
scales: Alfvén time scale, τA ¼ l∥=vA, eddy time scale, τs¼
l⊥=vl and anomaly growth time scale, τg ¼ 1=Γg. Here
Γg¼ c1;2μ5k5=4 [38], with k5¼ c1;2σμR;5, vA ¼ B=

ffiffiffi
ρ

p
, and

l∥ and l⊥ are the length intervals in the parallel and
perpendicular directions to the magnetic field. Thus, in
this regime it follows τg ≫ τA ∼ τs where the last equality
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between the Alfvén time scale and eddy time scale comes
as a result of the critical balance condition in the Goldreich-
Sridhar model of standard MHD turbulence [77]. We can
then treat the anomaly contribution to magnetic energy and
helicity as a small perturbation to the standard background
MHD solutions, which we label as ρbg and hbg. We then
have ρB ¼ ρbg þ ρμ, h¼hbgþhμ. We now add this per-
turbation to the Eqs. (19)–(20) around ρB ¼ ρbg and μ5 ¼ 0
and ignore all the terms higher than the first order in
perturbation. Thus, to zeroth order one obtains:

∂tρ
bg
k ¼ −

2k2

σ
ρbgk þ I1ðkÞ; ð33Þ

∂th
bg
k ¼ −

2k2

σ
hbgk þ I2ðkÞ; ð34Þ

and to first order:

∂tρ
μ
k ¼ −

2k2

σ
ρμk − c1;2μ5k2h

bg
k ; ð35Þ

∂th
μ
k ¼ −

2k2

σ
hμk − 4c1;2μ5ρ

bg
k ; ð36Þ

where we assumed that the coupling between the chiral
asymmetry, μ5, and velocity can be neglected. This will for
instance be the case for systems where Γ < 1, such that
velocity contributions to the perturbation equation can be
neglected. Henceforward we focus on this regime. Both
equations above, for ρμk and hμk, have a general analytical
solution, namely

ρμk ¼
R
e
2k2
σ tfðtÞdt
e
2k2
σ t

þ const ð37Þ

and

hμk ¼
R
e
2k2
σ tgðtÞdt
e
2k2
σ t

þ const; ð38Þ

where fðtÞ ¼ −c1;2μ5k2h
bg
k and gðtÞ ¼ −4c1;2μ5ρ

bg
k .

In order to proceed we need some analytical model for
the background solutions, that is, for the standard MHD
turbulence. We will therefore follow the approach proposed
in Refs. [69,76]. Since we are interested in the evolution of
turbulence in the inertial interval, far enough from the
dissipation scale, we can neglect the dissipation term ν∇2v
in Eq. (9). Moreover, following the approach of Ref. [78]
and Ref. [69], we assume that the Navier-Stokes equa-
tion (9) can be quasilinearized neglecting the term ðv · ∇Þv,
which is justified as long as the ratio between the
fluctuating and average part of the velocity is much smaller
than Γ. This is also the case for systems where the velocity
is small, Γ < 1, such that the magnetic effects dominate
over the kinetic effects. In general, the exact values of
the characteristic velocity and field scales are not well

known—especially in the early universe—and estimates
are strongly dependent on the concrete models. In any case,
it is reasonable to expect that this regime will be reached in
different cosmological and astrophysical contexts. The next
assumption is that the Lorentz force per volume, FL ¼
J × B, is the responsible mechanism for turbulence to
occur and we therefore take ∂tv ≈ FL on large scales. We
stress that this approximation should be considered as valid
only in the weak anomaly regime and when the fields are
not strongly helical. In the strong anomaly regime, where
the chiral anomaly effect strongly influences the evolution
of magnetic fields, the characteristic time scale should not
be determined by the fluid-response time—based on a
purely MHD reasoning—but on the anomaly growth time
scale. Moreover, maximally helical modes make no con-
tribution to the Lorentz force and therefore the second order
and viscous term in the Navier-Stokes equation will then
become dominant, making this approximation invalid.
Using the fluid-response time per unit density ζL [79],
we simplify the velocity field to v ≈ ζLFL. Based on the
scaling properties of the induction equation [69], the drag
time can be taken as ζL ≈ Γð0Þ½τeddyð0Þ þ γt�, where
τeddyð0Þ is the initial eddy turnover time associated with
a specific scale l, τeddy ¼ l=v and γ is a constant. We
concentrate on the case of magnetic fields with fractional
helicity, i.e., where the initial helicity is a fraction of
maximal helicity, and therefore we have hbgk ð0Þ ¼
ϵρbgk ð0Þ=ð2kÞ, with 0 ≤ ϵ ≤ 1. We model the background
magnetic field using an appropriate ansatz that describes
the inverse cascade evolution of magnetic energy and
helicity [69]

ρbgk ðtÞ ¼ ρbgk ð0Þe−2k2l2diss ½coshð2klαÞ þ ϵ sinhð2klαÞ�; ð39Þ

hbgk ðtÞ ¼ hbgk ð0Þe−2k2l2diss ½sinhð2klαÞ þ ϵ coshð2klαÞ�; ð40Þ

where we introduced ηeff ¼ ðσÞ−1 þ 4ρbgζL=3, αB ¼
− _hbgσζL=3, l2diss ¼

R
τ
0 dτηeff and lα ¼

R
τ
0 dταB. Note that

our background solution for the weak anomaly regime
exhibits an inverse cascade for nonvanishing helicity, as
expected. Namely, as confirmed by numerous MHD
simulations [80,81], helical magnetic fields show the
evolution of magnetic spectral modes towards larger scales
with time (visible in Fig. 1). In contrast, the solutions
considered in Ref. [82] lead only to resistive decay, with no
energy transfer from small to larger scales, and therefore do
not describe the effect of inverse cascade.
As pointed out in Ref. [69], the evolution of this

background helical field will undergo two different
regimes: first, a resistive damping, in which modes of
larger wave numbers decay faster, and thereupon an inverse
cascade. In the following we focus on the influence of
chiral effects in the latter, due to it being more physically
significant.
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The chiral anomaly can have different impacts on the
field evolution depending on the evolution of the chiral
chemical potential. We consider three limiting cases that
illustrate it, namely: when the chirality flipping rates reach
an equilibrium with the rate of the source of asymmetry,
ΓfμR;5 ≈ Πsr; when chirality flips dominate, ΓfμR;5 ≫ Πsr;
and when the source rate dominates over chirality
flips ΓfμR;5 ≪ Πsr.
Starting from (39) and (40) in these different regimes,

shown in Fig. 1 as dashed curves, we present the solutions
obtained when adding to it the anomaly induced magnetic
energy and helicity, (37) and (38), shown in Fig. 1 as solid
curves. All quantities are given in dimensionless units by
being scaled to the initial eddy turnover time τeddyð0Þ≡ τ0,
making our analysis suitable to any particular system. We
have chosen an inverse cascade magnetic energy back-
ground spectrum, as described in Sec. III, an initially
vanishing anomalous helicity hμkð0Þ ¼ 0. We take Γð0Þ ¼
0.1, γ ¼ 0.1 and ϵ ¼ 7 × 10−3, computed through (25). In
order for ρbgk and ρμk to be more easily compared we took
different initial asymmetry values μ5ð0Þ.
We observe in Fig. 1 that, since we treat the chiral

asymmetry as a perturbation, the fiducial background
magnetic energy remains relatively dominant in the regimes
where chirality flips are comparable or dominant with
respect to an anomaly source. The initial μ05 ¼ −103τ−10 was
chosen consistent with this assumption and in order to
display its influence on the total magnetic field. The
contribution from the anomaly develops into a significant
magnetic energy ρμk only for timescales t > 10τ0 for all
studied regimes. After ρμk gets established, μ5 causes the
system to convert the energy stored in the chiral asymmetry
to the magnetic field. In the first case, the change of μ5 in
time is negligible in the inverse cascade regime. This is
characteristic of different stages that occur in various
systems that evolve according to chiral MHD, for example
around the electroweak phase transition and in the initial
stage of evolution of μ5 in the core of a neutron star (see,
e.g., Refs. [38,43]). In the second case, we take the
ΓfðtÞ ¼ ðG2

Fme=3tÞ2τ−10 , where GF is the Fermi coupling
and me is the electron mass, which represents the reaction
rate given by the weak interaction, dominant, for instance,
shortly after the electroweak crossover [38]. When there is
no active source term, this energy is solely drawn from the
initial μ5. We expect that in systems where chirality flips
have a stronger time dependence than in the example taken,
ρμk would decay faster and no significant traces of the
impact of the anomaly would be left. In both cases, the total
magnetic energy is dominated by the background contri-
bution. On the other hand, when a constant source term,
which in Fig. 1 was taken as Πsr ¼ 10−2τ−10 , is present and
chirality flips absent, μ5 will tend to grow in time in the
inverse cascade regime. This can be the case when chirality
flips are negligible compared to the source of the anomaly,

FIG. 1. Total magnetic energy density spectrum (solid) and
background magnetic energy density spectrum (dashed) at differ-
ent times, computed from (37) and (11), and (39), respectively,
with μ05 ¼ −103τ−10 and ϵ ¼ 7 × 10−3. Upper panel: For
Γfμ5 ¼ Πsr; Central panel: For Γf ∝ t−2τ−10 and Πsr ¼ 0. Lower
panel: For Γf ¼ 0 and Πsr ¼ const.
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which can for instance be caused by reactions such as
electron capture. After enough time has passed for ρμk to

become comparable with ρbgk , the anomalous magnetic
energy is going to be dominant, as the lower panel shows,
and, therefore, the system exits the weak anomaly regime
where the presented treatment is valid.
The most dramatic example of the influence of the chiral

anomaly in MHD in the weak anomaly regime is the case
of no initial helicity in the background magnetic field.
Then, Eq. (38) will give the total helicity at early times,
which will enter into (39) and (40), and modify the global
evolution of magnetic fields. On the other hand, if the
anomaly effects on turbulence are not taken into account,
then the initially nonhelical field will remain nonhelical and
its evolution described by (39) and (40) will lead just to a
resistive damping and not to an inverse cascade. This
difference in evolution related to the anomaly effect is
shown in Fig. 2.
We have thus shown that even in the weak anomaly

regime the chiral anomaly effect can have a very important
influence on the development of MHD turbulence in two
special cases. If there is a source term in the system, such
that Πsr > Γfμ5, the evolution of the chiral chemical
potential will start to dominate the evolution of turbulence,
leading to a fast growth of magnetic energy and then exiting
off the weak anomaly regime, as depicted in Fig. 1. Further
analysis of the strong anomaly regime would require a
completely new analytical framework for its description,
preferably combined with advanced MHD numerical sim-
ulations, and we leave this analysis for the further work. On
the other hand, even in the weak anomaly regime the chiral

anomaly effect can lead to the establishment of an inverse
cascade in the case that it did not exist initially. If the fields
are initially nonhelical and μ5 ¼ 0, then the solutions of
(39) and (40) will lead only to resistive damping, with no
energy transport from smaller to larger scales, as depicted
in Fig 2. In the chiral anomaly MHD case, the induced
helicity will play the role of an approximately conserved
quantity and support the development of the inverse
cascade.
In further studies of MHD turbulence at high temper-

atures, characteristic for the electroweak scale, it would
also be interesting to consider the anomalous influence
on the kinetic helicity and the related chiral vortical effect
[83–86]. Here we focused our discussion on the issue of
magnetic helicity in the chiral MHD regime, since it
influences the existence of inverse cascades—which was
of central interest in our work. Moreover, while the chiral
anomaly effect is proportional to μ5, the vortical effect is
proportional to the square of the anomalous potential [87].
Since in realistic cosmological scenarios μ5=T ≪ 1 the
anomaly effect will typically be dominant compared to the
vortical effect.

V. CONCLUSION

Previous studies of the chiral anomaly effect, as well as
hypermagnetic fields characterized by the anomalous
coupling, have mostly ignored the role of turbulence.
Apart from the interesting interplay between velocity,
(hyper)magnetic fields and the particle content of the
theory, we have discussed how the anomalous modified
MHD equations in the turbulent regime can lead to a
significantly different time evolution of magnetic fields. We
have thus showed in this work that for high enough
temperatures—characteristic, for example, in the early
Universe and in protoneutron stars—a full description of
the considered systems should be given by the chiral MHD
turbulence. Focusing on the case of an incompressible fluid
in the resistive approximation, we analyzed the equations
for magnetic and velocity field evolution, taking into
account the chiral current contributions. With special
interest, we considered how chiral modifications influence
the establishment of an inverse cascade. Creating max-
imally-helical magnetic fields from initially nonhelical
configurations, chiral effects can strongly support an
inverse cascade. When anomaly effects are small compared
to the standard MHD terms, this manifests as a slower
decrease of the magnetic field with time, ρm ∼ t−2=3, and as
a faster growth of the correlation length, ξm ∼ t2=3, when
compared to the evolution of initially non-helical fields
predicted by the standard MHD description (i.e. μ5 ¼ 0).
We then focused on the regime where anomaly effects
cannot be neglected after helicity was induced. Analyzing
the evolution of magnetic energy and correlation length in
the inertial interval, using a Kolmogorov-like reasoning,
we obtained their scaling with time. If μ5 ∼ tn we have

FIG. 2. Total magnetic energy density spectrum for an initially
vanishing helicity. Dashed lines, computed from (39) in the
absence of μ5, showing resistive damping of modes in time. Solid
lines in the presence of μ05 ¼ −103τ−10 for Γfμ5 ¼ Πsr, which
induces a finite helicity, showing an inverse cascade in time.
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ρm ∼ t2ðn−1Þ=3 and ξm ∼ tðnþ2Þ=3. Taking the special case of
an attractor solution, n ¼ −1=2, we independently confirm
the scalings recently proposed in [49].
We then considered the weak anomaly regime in more

detail. Assuming that the overall dynamics is determined
basically by the standard MHD, we treat the anomaly
contribution to magnetic energy and helicity as a small
perturbation to the standard MHD background. Ignoring all
the terms higher than the first order in perturbation, we
obtained general analytical solutions for the anomaly
induced helicity and magnetic energy. Using the analytical
approximation for the background fields as previously
proposed in the literature [69], we obtained specific
solutions for the weak anomaly chiral MHD turbulence
in the inverse cascade regime. The obtained solutions
demonstrate how chiral effects support the inverse cascade
and the growth of the correlation length in this regime. The
details of such an evolution significantly depend on the
scaling of the chiral asymmetry potential, μ5, with time—
which is determined by the relationship between source and
chirality-flipping terms. In the case of μ5 growing with time,
the induced magnetic energy and helicity also grow until the
assumption of the weak anomaly regime is no longer valid.
Thus, the creation of a small amount of magnetic helicity,
even if it corresponds to a very small change in energy, can
lead nevertheless to a considerable change in the evolution of
the magnetic field power spectrum due to inverse cascades.

In this sense, the final field strength at large scales
most interesting phenomenologically can be dramatically
stronger, although energetically the chiral effect can con-
sistently be treated as a perturbation, as we did in this work.
The chiral MHD turbulence description leads to important
differences in the evolution of magnetic fields and chiral
asymmetry, with respect to both standard MHD turbulence
and the anomaly studies where turbulence effects are
ignored. The enhanced growth of the correlation length
and the suppressed decay of magnetic energy that come as a
result of the interplay between turbulence and anomaly
effects could thus have important consequences for different
systems. Therefore, the chiral MHD turbulence description
could be relevant for our understanding of different open
questions, such as the evolution of cosmic magnetic fields,
the baryon asymmetry of the Universe and the creation of
magnetic fields in magnetars.
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