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We provide a compact and unified treatment of power spectrum observables for the effective field theory
(EFT) of inflation with the complete set of operators that lead to second-order equations of motion in metric
perturbations in both space and time derivatives, including Horndeski and Gleyzes-Langlois-Piazza-
Vernizzi theories. We relate the EFT operators in ADM form to the four additional free functions of time
in the scalar and tensor equations. Using the generalized slow-roll formalism, we show that each power
spectrum can be described by an integral over a single source that is a function of its respective sound
horizon. With this correspondence, existing model independent constraints on the source function can
be simply reinterpreted in the more general inflationary context. By expanding these sources around an
optimized freeze-out epoch, we also provide characterizations of these spectra in terms of five slow-roll
hierarchies whose leading-order forms are compact and accurate as long as EFT coefficients vary only on
time scales greater than an e-fold. We also clarify the relationship between the unitary gauge observables
employed in the EFT and the comoving gauge observables of the postinflationary universe.
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I. INTRODUCTION

The effective field theory (EFT) of inflation [1,2]
provides a general framework for understanding the
observables associated with single-field inflation. Here a
scalar field provides a clock that breaks temporal but
preserves spatial diffeomorphism invariance. Motivated
by its extension to dark energy models, subsequent work
[3–6] extended the EFT to treat derivative operators that
were not explicitly considered in [2] but arise in Horndeski
[7–12], Gleyzes-Langlois-Piazza-Vernizzi (GLPV) [13,14]
and Horava-Lifshitz [15–17] theories.
In these more general cases, the time variation of a

multitude of EFT coefficients leads to a much richer range
of possibilities for the scalar and tensor power spectra,
especially beyond leading order in slow roll. In this paper,
we undertake a unified and self-contained treatment of the
general relationship between the EFT Lagrangian and the
power spectra observables. We focus on the EFT of
operators that leads to equations of motion (EOM) for
metric perturbations during inflation that are second order
in both time and space and hence include the Horndeski and
GLPV classes. Higher order but degenerate Lagrangians
that nonetheless propagate only one extra scalar degree of
freedom [18–22] satisfying degeneracy conditions [18,23–
26] and/or containing higher order spatial operators [27,28]
are not considered here but our formalism can be straight-
forwardly extended.
In Sec. II, we provide a compact, self-contained and

unified treatment for the quadratic Lagrangian of the EFT
of inflation and its consequences for scalar, vector and
tensor metric perturbations. Its relationship and advantages

compared to related works [3–5] are explored in
Appendix A. In Sec. III, we show that the scalar and
tensor power spectra can be described in the generalized
slow-roll (GSR) formalism [29–32] as integrals over source
functions given by the EFT coefficients as long as fluctua-
tions from scale invariance remain small. Existing model
independent constraints on these source functions [33,34]
can then be simply interpreted in the general EFT,
Horndeski or GLPV contexts. If the EFT coefficients vary
on the e-fold time scale or larger, these integrals can be
expanded in multiple hierarchies of slow-roll parameters. In
Sec. IV, by optimizing the evaluation of these parameters,
we obtain a relatively compact but accurate description
of the amplitude, tilt and running of the tilt for the
scalar and tensor power spectra in the EFT of inflation
in unitary gauge. In Appendix B, we establish the relation-
ship between the unitary gauge and comoving gauge
curvature fluctuations which differ in the presence of
EFT derivative operators. We conclude in Sec. V.
Throughout the paper, we use the ð−þþþÞ metric

signature and set Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1.

II. EFT OF INFLATION

We introduce a new notational scheme that unifies and
streamlines the derivation of the quadratic action of the
scalar and tensor degrees of freedom for the EFT of
inflation using its ADM form. For the restricted class we
consider, which includes Horndeski and GLPV theories,
the resulting EOMs for metric perturbations are second
order in both space and time derivatives. Their forms are
parametrized by four free functions of time in addition to
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the Hubble parameter whose evolution determines the
slow-roll expansion below. The relationship between this
scheme and previous treatments in the literature [3–5] is
given in Appendix A.

A. Lagrangian

We begin with the 3þ 1 ADM decomposition of the
metric into the lapse N, shift Ni, and spatial metric hij,

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ: ð1Þ

Using a unit vector nμ ¼ −Nt;μ ¼ ð−N; 0; 0; 0Þ orthogonal
to constant t surfaces, we define the acceleration aμ ≡
nνnν;μ and the extrinsic curvature Kμν ¼ nν;μ þ nμaν.
Semicolons on indices here and throughout denote covar-
iant derivatives with respect to gμν.
In the EFT approach, we consider a general action which

preserves unbroken spatial diffeomorphisms but explicitly
breaks temporal diffeomorphisms [2,35]. Specifically, we
construct the action out of the geometric quantities of the
ADM decomposition [5]

S ¼
Z

d4xN
ffiffiffi
h

p
LðN;Ki

j; Ri
j; tÞ; ð2Þ

where we have used
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
h

p
with h as the determi-

nant of hij. Purely spatial indices are raised and lowered by
hij. Here Rij is the three-dimensional Ricci tensor and its
trace R ¼ Ri

i. Since hij ≠ δij, for notational convenience
we denote throughout

ðTi…jÞ2 ≡ δii
0
…δjj

0
Ti…jTi0…j0 ≠ Ti…jTi…j ð3Þ

for any spatial tensor Ti…j.
The Lagrangian (2) encompasses a wide class of theo-

ries. For example, the Einstein-Hilbert action is given by
the Gauss-Codazzi relation up to a total derivative as

L ¼
ð4ÞR
2

¼ 1

2
ðKi

jKj
i − K2 þ RÞ; ð4Þ

where K ≡ Ki
i and ð4ÞR is the four-dimensional Ricci

scalar. More generally it includes models with an extra
scalar degree of freedom by representing them in unitary
gauge where the scalar is carried by the metric. The
constant t surfaces are chosen to have spatially uniform
scalar field ϕ ¼ ϕðtÞ and kinetic term X ≡ gμν∂μϕ∂νϕ ¼
− _ϕ2=N2. For example a minimally coupled canonical
scalar field in the potential VðϕÞ has

L ¼
ð4ÞR
2

− X − VðϕÞ ¼
ð4ÞR
2

þ
_ϕ2ðtÞ
2N2

− VðϕðtÞÞ: ð5Þ

Thus the dependence on ϕ and X of the Lagrangian is
subsumed into the explicit time dependence and lapse
dependence of (2). More generally by restoring temporal
diffeomorphisms with the Stückelberg trick or equiva-
lently transforming out of unitary gauge, (2) represents the
scalar and tensor degrees of freedom in Horndeski and
GLPV theories (see Sec. II E). However, the Lagrangian
(2) does not cover the spatially covariant gravity [27,28]
as we do not allow extra spatial derivatives. Further, it
does not include degenerate higher order scalar-tensor
theories (DHOST) [18–22] as their Lagrangians depend
on _N. We leave the EFT description of these classes as
future work.
To derive the quadratic action, we perturb the metric

around a spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) background

N̄ ¼ 1; N̄i ¼ 0; h̄ij ¼ a2δij: ð6Þ

The extrinsic and intrinsic curvatures of the background are
given by

K̄i
j ¼ Hδij; R̄i

j ¼ 0; ð7Þ

where H ≡ d ln a=dt. Terms that are quadratic in
the metric fluctuations are at most quadratic in pertur-
bations to the ADM variables and so it is useful to
define the Taylor coefficients evaluated on the back-
ground “b,”

Ljb ¼ C;

∂L
∂Yi

j

����
b
¼ CYδji;

∂2L
∂Yi

j∂Zk
l

����
b
¼ CYZδjiδlk þ

~CYZ
2

ðδilδjk þ δikδ
jlÞ;

ð8Þ

where Y; Z ∈ fN;K; Rg and the index structure is
determined by the symmetry of the background. For
notational simplicity we treat scalars and traces with the
same notation; thus implicitly N ¼ Ni

i and ~CNZ ¼ 0. Up
to quadratic order

L¼Cþ
X
Y

CYδYþ
1

2

X
Y;Z

ðCYZδYδZþ ~CYZδYi
jδZj

iÞ: ð9Þ

Note that the C’s are functions of time only as they are
evaluated on the background but are in general free
functions in the EFT. In a specific model they take on
definite forms, e.g. for the Lagrangian (5) of the
canonical scalar field
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C ¼ −3H2 þ
_ϕ2

2
− V; CN ¼ − _ϕ2;

CK ¼ −2H; CR ¼ 1

2
;

~CKK ¼ −CKK ¼ 1; CNN ¼ 3 _ϕ2; ð10Þ

with other C functions being 0. We provide more
nontrivial examples in Sec. II E.
With these definitions we can directly evaluate the

quadratic action of scalar, vector and tensor metric pertur-
bations. This means that δKi

j and δRi
j must be, in

principle, expanded to second order in metric fluctuations.
Since Ki

j is the most complicated in terms of metric
fluctuations, it is advantageous to eliminate the linear term
in δK ¼ K − 3H and hence the need to expand it to second
order in the metric. Since K ¼ nμ;μ, we can integrate by
parts expressions of the form

Z
d4x

ffiffiffiffiffiffi
−g

p
FðtÞK ¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p
nμF;μ

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p _F
N

ð11Þ

ignoring boundary terms. Therefore, the Lagrangian (9) can
be rewritten as1

L ¼ C −
_CK
N

− 3HCK þ CNδN þ CRδR

þ 1

2

X
Y;Z

ðCYZδYδZ þ ~CYZδYi
jδZj

iÞ: ð12Þ

Since metric fluctuations also appear in the volume
element, the quadratic action follows from keeping terms
in the quadratic terms in the expansion of L ¼ N

ffiffiffi
h

p
L,

L ¼ N
ffiffiffi
h

p
ðC − 3HCKÞ −

ffiffiffi
h

p
_CK þ N

ffiffiffi
h

p
ðCNδN þ CRδRÞ

þ a3

2

X
Y;Z

ðCYZδYδZ þ ~CYZδYi
jδZj

iÞ; ð13Þ

where we have dropped terms that are manifestly higher
order. The quadratic action can be more explicitly written
by employing the background EOM,

C − 3HCK þ CN ¼ 0;

C − 3HCK − _CK ¼ 0; ð14Þ

which come from the first order variation with respect to
the ADM variables that are allowed by the symmetries of
the background, N and

ffiffiffi
h

p ¼ a3. The background equa-
tions imply CN ¼ − _CK for the EFTof inflation where there
are no other matter species (but not for the EFT of dark
energy [3]). Note that the term linear in δR is a total
spatial derivative term on the background that does not
produce an extra background EOM. For example in the
canonical scalar case (10), the background equations (14)
are given by

3H2 ¼
_ϕ2

2
þ V;

3H2 þ 2 _H ¼ −
_ϕ2

2
þ V; ð15Þ

as expected. Employing the background EOM in the
Lagrangian (13), we obtain a relatively compact and
transparent form for the quadratic action

a−3L2 ¼ CNðδNÞ2 þ CR

��
δN þ δ

ffiffiffi
h

p

a3

�
δ1Rþ δ2R

�

þ 1

2

X
Y;Z

ðCYZδYδZ þ ~CYZδYi
jδZj

iÞ: ð16Þ

Note that δR ¼ δ1Rþ δ2Rþ � � � where the terms denote
the contributions that are first and second order in the
underlying scalar, vector and tensor metric perturbations
that we consider next.

B. Tensor perturbation

First, we consider the tensor perturbation in the ADM
metric

N ¼ 1; Ni ¼ 0; hij ¼ a2ðδij þ γijÞ; ð17Þ

where the spatial metric fluctuation is transverse traceless,
δijγij ¼ δij∂iγjk ¼ 0. The ADM curvature perturbations
then become

δKi
j ¼

1

2
_γij;

δ1Ri
j ¼ 0;

δ2R ¼ 1

a2
δii

0
δjj

0
δkk

0
�
γij∂k∂k0γi0j0 þ

3

4
∂kγij∂k0γi0j0

−
1

2
∂kγij∂j0γi0k0

�

∼ −
1

4a2
ð∂kγijÞ2; ð18Þ

where we used integration by parts in the last equality
which holds even in the presence of a prefactor depending

1In [3–5], δKi
jδRj

i is also integrated by parts and the 1=N term
is expanded to second order but these steps make the derivation
more cumbersome; see Appendix A and the canceling N

ffiffiffi
h

p
factor in (13).

GENERALIZED SLOW ROLL IN THE UNIFIED … PHYSICAL REVIEW D 96, 023502 (2017)

023502-3



on t and recall the notation (3) for the contraction of a
squared tensor. The quadratic Lagrangian (16) becomes

L2 ¼ a3
� ~CKK

8
_γ2ij −

CR
4a2

ð∂kγijÞ2
�
: ð19Þ

We can further simplify the Lagrangian in terms of the
amplitude of the two gravitational wave polarization states
of wave number k,

L2 ¼
X
λ¼þ;×

a3bt
4c2t

�
_γ2λ −

c2t k2

a2
γ2λ

�
; ð20Þ

where

bt ¼ 2CR; c2t ¼
2CR
~CKK

: ð21Þ

For example for a gravitational wave traveling in the z
direction,

γijðt; zÞ ¼ γþðtÞeikzðδixδjx − δiyδjyÞ
þ γ×ðtÞeikzðδixδjy þ δjxδiyÞ: ð22Þ

Evidently, ct plays the role of the sound speed for tensor
perturbations. We have written the normalization factor
as bt rather than using ~CKK so as to parallel our treatment
of scalars below. Note that bt ¼ ct ¼ 1 for the canonical
case (10) and so their time dependence in the EFT of
inflation leads to new slow-roll hierarchies.

C. Vector perturbation

We can use gauge freedom to remove the vector
perturbation to the three-dimensional metric hij leaving
the ADM metric

N ¼ 1; Ni ¼ vi; hij ¼ a2δij; ð23Þ

with δij∂ivj ¼ 0. Imposing this gauge fixing at the action
level does not lose any independent EOM [36]. Since

δKij ¼ −
1

2
ð∂ivj þ ∂jviÞ; ð24Þ

the quadratic Lagrangian is given by

L2 ¼
~CKK
8a

ð∂ivj þ ∂jviÞ2: ð25Þ

Vector perturbations are nondynamical and with no source
in the matter sector can consistently be set to 0.

D. Scalar perturbations

For the scalar perturbations, the assumption of unitary
gauge in the EFT Lagrangian (2) fixes the temporal gauge
freedom. To fully remove the gauge freedom, and allow the
gauge to be fixed at the action level [36], we take the ADM
metric to be given by

N ¼ 1þ δN; Ni ¼ ∂iψ ; hij ¼ a2e2ζδij: ð26Þ

We discuss its relationship to alternate gauges, especially
the comoving gauge, in Appendix B.
The ADM volume and curvature perturbations are then

δ
ffiffiffi
h

p
¼ 3a3ζ;

δKi
j ¼ ð_ζ −HδNÞδij −

1

a2
δik∂k∂jψ ;

δK ¼ 3ð_ζ −HδNÞ − ∂2ψ

a2
;

δ1Ri
j ¼ −

1

a2
ðδij∂2ζ þ δik∂k∂jζÞ;

δ2R ¼ −
2

a2
½ð∂ζÞ2 − 4ζ∂2ζ� ∼ −

10

a2
ð∂ζÞ2; ð27Þ

where the notation (3) implies ∂2 ¼ δij∂i∂j and ð∂ζÞ2 ¼
δij∂iζ∂jζ. Note that through integration by parts

δKi
jδKj

i ∼ 3ð_ζ −HδNÞ2 − 2ð_ζ −HδNÞ ∂
2ψ

a2
þ
�∂2ψ

a2

�
2

;

δKi
jδ1Rj

i ∼ −4ð_ζ −HδNÞ ∂
2ζ

a2
þ 2

∂2ψ

a2
∂2ζ

a2
;

δ1Ri
jδ1Rj

i ∼ 6

�∂2ζ

a2

�
2

: ð28Þ

The quadratic Lagrangian (16) thus reads

L2 ¼ a3
��

1

2
CNN þ CN

�
δN2 þ

�
CNK

�
3ð_ζ −HδNÞ − ∂2ψ

a2

�
− 4ðCNR þ CRÞ

∂2ζ

a2

	
δN þ 2CR

ð∂ζÞ2
a2

þ 3

2
ð3CKK þ ~CKKÞð_ζ −HδNÞ2 − ð3CKK þ ~CKKÞð_ζ −HδNÞ ∂

2ψ

a2
þ 1

2
ðCKK þ ~CKKÞ

�∂2ψ

a2

�
2

− 4ð3CKR þ ~CKRÞð_ζ −HδNÞ ∂
2ζ

a2
þ 2ð2CKR þ ~CKRÞ

∂2ψ

a2
∂2ζ

a2
þ ð8CRR þ 3~CRRÞ

�∂2ζ

a2

�
2
�
: ð29Þ
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In the analysis below, we restrict our consideration to theories with no more than second-order spatial derivatives in the
EOM of perturbations which include the Horndeski and GLPV classes. In this case the Lagrangian satisfies the following
conditions [3]:

~CKK ¼ −CKK; ~CKR ¼ −2CKR; ~CRR ¼ −
8

3
CRR: ð30Þ

Under this set of assumptions (30), the scalar quadratic Lagrangian becomes

L2 ¼ a3
��

1

2
CNN þ CN

�
δN2 þ

�
CNK

�
3ð_ζ −HδNÞ − ∂2ψ

a2

�
− 4ðCNR þ CRÞ

∂2ζ

a2

	
δN þ 2CR

ð∂ζÞ2
a2

þ 3CKKð_ζ −HδNÞ2 − 2CKKð_ζ −HδNÞ ∂
2ψ

a2
− 4CKRð_ζ −HδNÞ ∂

2ζ

a2

�
: ð31Þ

Furthermore the Hamiltonian and momentum constraints render the lapse and shift to be nondynamical as usual. Indeed the
EOM for ψ and δN are given by

δN ¼ 2CKK
2HCKK − CNK

_ζ;

∂2ψ

a2
¼ −

1

2HCKK − CNK

�
ðCNN þ 2CNÞδN − 3ð2HCKK − CNKÞð_ζ −HδNÞ þ 4ðHCKR − CNR − CRÞ

∂2ζ

a2

�
: ð32Þ

We therefore also assume

2HCKK − CNK ≠ 0: ð33Þ

Given that this condition involves H, it is a property of the
background solution and cannot be imposed directly on a
scalar field Lagrangian in contrast to (30). As shown in
Appendix B, violation of (33) is associated with unitary
gauge being ill defined [see (B16)], which indicates that
constant field slices are no longer spacelike Cauchy
surfaces. We thus assume the condition (33) is satisfied
for the following analysis.
Eliminating the lapse and shift brings the quadratic

Lagrangian of the remaining variable ζ to

L2 ¼ a3
�
A_ζ _ζ

_ζ2 − 2A_ζζ

_ζ∂2ζ

a2
þAζζ

ð∂ζÞ2
a2

�
; ð34Þ

where

A_ζ _ζ ¼
CKK½2CKKðCNN þ 2CNÞ − 3C2NK�

ð2HCKK − CNKÞ2
;

A_ζζ ¼
4CKKðCR þ CNRÞ − 2CKRCNK

2HCKK − CNK
;

Aζζ ¼ 2CR: ð35Þ

Using integration by parts, the quadratic action in Fourier
space is given by

S2 ¼
Z

d4x
a3bsϵH
c2s

�
_ζ2 −

c2sk2

a2
ζ2
�
; ð36Þ

where ϵH ¼ − _H=H2,

bs ≡ −
1

ϵH
ðAζζ −HA_ζζ − _A_ζζÞ;

c2s ≡ −A−1
_ζ _ζ
ðAζζ −HA_ζζ − _A_ζζÞ: ð37Þ

Note that the relation

bs ¼
A_ζ _ζ

ϵH
c2s ð38Þ

holds by definition. Evidently, cs plays the role of the sound
speed for scalar perturbations. For the canonical case (10),
bs ¼ cs ¼ 1. In the notation of [4], the term in the prefactor
of the quadratic action is used directly, Qs ¼ A_ζ _ζ. We
choose to separate these contributions to highlight devia-
tions from the canonical case and their role in the slow-roll
expansion.

E. Noncanonical examples

In the canonical case (10), bs ¼ cs ¼ bt ¼ ct ¼ 1, and
so the only slow-roll function upon which to develop a
slow-roll hierarchy during inflation is the Hubble parameter
H itself. More generally each of these functions is endowed
with a slow-roll hierarchy of its own as we see below.
Although we are mainly interested in a model independent
description of inflationary observables, it is useful first to
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consider examples of model classes that provide nontrivial
values for these four free functions.
For a PðX;ϕÞ model where recall X ¼ − _ϕ2=N2,

L ¼
ð4ÞR
2

þ PðX;ϕÞ; ð39Þ

and we have

C ¼ −3H2 þ P; CN ¼ −2XP;X; CK ¼ −2H;

CR ¼ 1

2
; ~CKK ¼ −CKK ¼ 1;

CNN ¼ 4X2P;XX þ 6XP;X; ð40Þ

with other functions being 0, which implies

A_ζ _ζ ¼
CNN þ 2CN

2H2
; A_ζζ ¼ H−1; Aζζ ¼ 1; ð41Þ

and

c2s ¼
2H2

CNN þ 2CN

dH−1

dt
¼ 2H2

CNN þ 2CN
ϵH: ð42Þ

We can further simplify the sound speed for PðX;ϕÞ by
noting that the background equations (14) imply CN ¼
−2ϵHH2,

c2s ¼
P;X

2XP;XX þ P;X
; ð43Þ

which is the expected result. Furthermore, from (38) we
obtain bs ¼ 1 and since PðX;ϕÞ does not contain K or R
dependence bt ¼ ct ¼ 1.

In order to change bs, bt and ct we need more
complicated couplings in the EFT Lagrangian involving
K and R. A simple example is

L ¼
ð4ÞR
2

þ f3
K
N2

; ð44Þ

where f3 ¼ const. In this case the nonvanishing coeffi-
cients are

C ¼ −3H2 þ 3f3H; CN ¼ −6f3H;

CK ¼ −2H þ f3; CR ¼ 1

2
; ~CKK ¼ −CKK ¼ 1;

CNN ¼ 18f3H; CNK ¼ −2f3: ð45Þ

Because of the nonvanishing CNK term, bs ≠ 1 in addition
to cs ≠ 1, whereas bt ¼ ct ¼ 1.
The tensor structure can be changed by altering the

intrinsic curvature terms, for example

L ¼
ð4ÞR
2

þ f4
R
N2

; ð46Þ

with f4 ¼ const, where the nonvanishing coefficients are

C ¼ −3H2; CK ¼ −2H; CR ¼ 1

2
þ f4;

~CKK ¼ −CKK ¼ 1; CNR ¼ −2f4: ð47Þ

Here the change in CR allows bt ≠ 1 and ct ≠ 1 in addition
to bs ≠ 1 and cs ≠ 1 due to CNR (see [37,38] for a similar
model motivated by asymmetric scalings in time and space
in a higher dimensional theory).
These more complicated cases are members of scalar-

tensor theories from the GLPV class [13]

L ¼ G2 þ G3□ϕþ G4
ð4ÞR − 2G4;X½ð□ϕÞ2 − ϕ;μνϕ;μν� þ F4ϵ

μνρ
σϵ

~μ ~ν ~ρ σϕ;μϕ; ~μϕ;ν~νϕ;ρ~ρ þ G5
ð4ÞGμνϕ;μν

þ 1

3
G5;X½ð□ϕÞ3 − 3□ϕϕ;μνϕ

;μν þ 2ϕ;μνϕ
;μσϕ;ν

;σ� þ F5ϵ
μνρσϵ ~μ ~ν ~ρ ~σϕ;μϕ; ~μϕ;ν~νϕ;ρ~ρϕ;σ ~σ; ð48Þ

where the Gi and Fi are general functions of ϕ; X and ϵμνρσ is the totally antisymmetric tensor. In ADM form this class has
the Lagrangian

L ¼ A2ðt; NÞ þ A3ðt; NÞK þ A4ðt; NÞðK2 − Ki
jKj

iÞ þ B4ðt; NÞRþ A5ðt; NÞðK3 − 3KKi
jKj

i þ 2Ki
jKj

kKk
iÞ

þ B5ðt; NÞ
�
Ki

jRj
i −

1

2
KR

�
; ð49Þ

where [13]
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A2 ¼ G2 −
ffiffiffiffiffiffiffi
−X

p Z
dX

G3;ϕ

2
ffiffiffiffiffiffiffi
−X

p ;

A3 ¼ −
Z

dX
ffiffiffiffiffiffiffi
−X

p
G3;X − 2

ffiffiffiffiffiffiffi
−X

p
G4;ϕ;

A4 ¼ −G4 þ 2XG4;X þ X
2
G5;ϕ − X2F4;

A5 ¼ −
1

3
ð−XÞ3=2G5;X þ ð−XÞ5=2F5;

B4 ¼ G4 þ
ffiffiffiffiffiffiffi
−X

p Z
dX

G5;ϕ

4
ffiffiffiffiffiffiffi
−X

p ;

B5 ¼ −
Z

dX
ffiffiffiffiffiffiffi
−X

p
G5;X: ð50Þ

We can see that the canonical and PðX;ϕÞ models are
represented by G2 or A2 and the models of (44) and (46)
can be described by the A3 and A4, B4 or equivalently the
G3 and G4, F4 functions respectively. It is also now clear
that the EFT Lagrangian (2) can represent the whole GLPV
class along with its Horndeski subset where F4 ¼ F5 ¼ 0.

III. INTEGRAL SOLUTIONS FOR
EFT POWER SPECTRA

In this section, we give the scalar and tensor power
spectra that result from their respective quadratic actions
(36) and (20). We leave bs, cs, bt, ct, H as free functions of
time in the EFT so as to keep our discussion model
independent. We show that for small but not necessarily
slowly varying deviations from scale invariance each power
spectrum is given by a temporal integral over a single
source function formed out of a combination of these
quantities.

A. Scalar perturbation

Let us reexpress the curvature perturbation in the
general quadratic action for scalar perturbations (36) by
defining the canonically normalized scalar u ¼ zζ and
z¼a

ffiffiffiffiffiffiffiffiffiffiffiffi
2bsϵH

p
=cs. We then obtain the standard Mukhanov-

Sasaki equation for noncanonical inflation

d2u
dη2

þ
�
c2sk2 −

1

z
d2z
dη2

�
u ¼ 0; ð51Þ

where η is the (positive, decreasing) conformal time to the
end of inflation η ¼ R tend

t dt=a. First, note that above the
sound horizon x ¼ kss ≪ 1, where

ss ≡
Z

csdη ¼
Z

aend

a

da
a

cs
aH

; ð52Þ

the mode function u leaves the oscillatory regime and
enters into a regime where

u
z
≈ c1 þ c2

Z
dη
z2

; ð53Þ

or

ζ ≈ c1 þ c2

Z
dt

c2s
a3bsϵH

; ð54Þ

where c1 and c2 are constants.
Usually we expect that the second mode is decaying on

superhorizon scales and if so (53) implies that the curvature
perturbation ζ ¼ const above the sound horizon. However,
this is not necessarily the case, even within the canonical
inflation case if the potential is exactly constant, dubbed
ultraslow-roll inflation [39]. In ultraslow-roll inflation bs ¼
cs ¼ 1 and ϵH ∝ a−6, which leads to the second mode of
(54) growing. In this case, the consistency relation between
the power spectrum and bispectrum is violated as is the
separate universe condition upon which it is based [40].
More generally, so-called constant-roll condition ϕ̈ ¼ βH _ϕ
leads to ϵH ∝ a2β. Therefore, if canonical inflation
approaches a de Sitter expansion with β < −3=2, the
curvature perturbation possesses the growing mode on
superhorizon scales [41–43]. In the more general
Horndeski and GLPV classes, there are other ways in
which the curvature perturbation can grow outside the
sound horizon involving bs [see [44] for the constant-roll
model in fðRÞ gravity] but we hereafter restrict our
consideration to cases where it does not.
We can then solve (51) in a generalized slow-roll

expansion by rewriting it as

d2y
dx2

þ
�
1 −

2

x2

�
y ¼ f00 − 3f0

f
y
x2

ð55Þ

with

y≡ ffiffiffiffiffiffiffiffiffi
2csk

p
u; f ≡ 2πz

ffiffiffiffiffi
cs

p
ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2

bsϵHcs
H2

r
aHss
cs

:

ð56Þ

Here and below 0 ¼ d=d ln x but note that x ¼ kss and so
for a given mode, the corresponding epoch during inflation
differs between scalars and tensors due to their different
sound speeds.
If the curvature perturbation is frozen outside of the

sound horizon, its power spectrum reaches a well-defined
limit

Δ2
ζ ¼ lim

x→0

k3

2π2
jζj2 ¼ lim

x→0

���� xyf
����
2

; ð57Þ

which is a natural generalization of Eq. (22) in [31]. We
comment on the relationship between the unitary gauge
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curvature power spectrum and the comoving gauge curva-
ture power spectrum that is usually taken to be the initial
conditions for predicting scalar observables in Appendix B.
Equation (56) is exact in linear theory but not given in

closed form. However if the right-hand side of (55) is a
small source of mode function excitations from the Bunch-
Davies vacuum form

y0 ¼
�
1þ i

x

�
eix ð58Þ

then the mode function can be solved perturbatively. Note
that to the lowest order in the excitations and if f and the
functions on which it depends are nearly constant

Δ2
ζ ≈

1

f2
≈

H2

8π2bsϵHcs
; ð59Þ

which is the result given in [4]. We separate these two
pieces into the approximation below and relax the assump-
tions on the constancy of the source.

B. Tensor perturbations

The same considerations apply to tensor modes governed
by (20) with the canonically normalized field u ¼ zγþ;×,

z≡ a
ct

ffiffiffiffi
bt
2

r
;

x≡ kst ¼ k
Z

dt
ct
a
;

y≡ ffiffiffiffiffiffiffiffiffi
2ctk

p
u;

f ≡ 2πz
ffiffiffiffi
ct

p
st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2

btct
H2

r
aHst
ct

; ð60Þ

which brings the EOM and the Bunch-Davies vacuum to
the standard form (55) and (58) and generalizes [30,32].
Above their sound horizon kst ≪ 1, solutions take the

same form as given by (53) or

γþ;× ≈ c1 þ c2

Z
dt

c2t
a3bt

: ð61Þ

For canonical inflation bt ¼ ct ¼ 1 and so the second term
always decays with the expansion. In principle, in the
Horndeski and GLPV theories it is possible to have tensors
grow outside their sound horizon while the scalars are
frozen.
Assuming that the second mode decays above the sound

horizon, we reach a well-defined limit for the tensor power
spectrum sufficiently after sound horizon crossing

Δ2
γ ¼ lim

x→0

k3

2π2
jγþ;×j2 ¼ lim

x→0

���� xyf
����
2

: ð62Þ

To the lowest order in slow roll

Δ2
γ ≈

1

f2
≈

H2

2π2btct
; ð63Þ

which again recovers the standard result. We now general-
ize these tensor and scalar results for the case where the
slow-roll functions H; bt; ct; bs; cs vary with time.

C. Generalized slow roll

For both scalar and tensor perturbations, the respective
power spectra Δ2 can be evaluated by solving the evolution
equation (55) out to x ≪ 1 with the boundary condition
(58) at x → ∞. Beyond the leading-order slow-roll approx-
imations, these solutions can be characterized by an
expansion in the observationally small deviations from
scale invariance. One can implement this expansion sys-
tematically with the Green function technique by regarding
the f term as a source of mode function excitations away
from y0.
The exact, but formal, solution to (55) is given by [29]

yðxÞ ¼ y0ðxÞ −
Z

∞

x

dw
w2

f00 − 3f0

f
yðwÞIm½y�0ðwÞy0ðxÞ�:

ð64Þ

If the deviations of y from y0 are small, then we can replace
y → y0 on the right-hand side and iteratively improve the
solution. The first order iteration yields [45]

lnΔ2 ≈ −
Z

∞

0

dx
x
W0ðxÞGðln xÞ; ð65Þ

where W is a window function that determines the freeze-
out of the excitations

W ≡ 3 sin 2x
2x3

−
3 cos 2x

x2
−
3 sin 2x
2x

; ð66Þ

from the source function

G≡ −2 ln f þ 2

3
ðln fÞ0: ð67Þ

SinceWð0Þ ¼ 1, if f ¼ const then Δ2 ¼ 1=f2 as expected.
Note that the five free functionsH; cs; bs; ct; bt are encoded
into the two source functions for the power spectrum
observables, Gζðln xÞ for the curvature perturbation and
Gγðln xÞ for the two tensor polarization states.
The GSR integral formula (65) thus generalizes the slow-

roll approximation by only assuming the excitations are
small in amplitude rather than additionally assuming that
their sources are constant or slowly varying. We can take
the amplitude to be of order Oð1=NÞ, where the e-folds
are measured to the end of inflation. This assumption is
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consistent with fluctuations on the scales observable in the
CMB and large scale structure where N ∼ 60. The sources,
on the other hand, can vary on a shorter e-folding scaleΔN.
In the rest of this work, we consider the case where
1≲ ΔN ≤ N. We see that in this case, one can Taylor
expand the source in the integral. This creates a hierarchy of
terms separated by 1=ΔN rather than 1=N as is assumed in
the ordinary slow-roll approximation. For rapid variation
ΔN < 1, the opposite approximation applies since the
source is more rapidly varying than the window function
[46–48]. For ΔN ∼ 1, numerical integration of (65) is
generally required. Using our formulation, model indepen-
dent constraints from the cosmic microwave background
(CMB) on the time variation of the scalar source function
using principal components can be simply reinterpreted in
the EFT, Horndeski or GLPV context without requiring
reanalysis of the data [33,34].

IV. OPTIMIZED SLOW-ROLL HIERARCHY
FOR THE EFT

For the case in which all of the temporal variations in the
source functions for the scalar and tensor power spectra
occur on the e-folding scale or longer ΔN > 1, the GSR
integral expression (65) can be analytically approximated
from the Taylor expansion of the sources around the freeze-
out epoch forming a hierarchy of slow-roll parameters. The
separation in amplitude between terms in this hierarchy is
1=ΔN and so potentially requires a large number of terms
for accuracy. By optimizing this epoch, one can make a low
order expansion as accurate as the next higher order [49].
This is especially advantageous in the EFT case where at
each order there are a multitude of slow-roll parameters
associated with the five fundamental functions of
time H; bs; cs; bt; ct.

A. Optimized slow roll

In this section, we review the optimized slow-roll (OSR)
approach developed systematically by [49] based on earlier
work in [29]. If the temporal variations are sufficiently long,
the power spectrum can be approximated locally as a Taylor
series around some fiducial kwhich freezes out around some
epoch xf. Given the integral formula (65), we can relate this
series to the Taylor series of the source function G around
ln x ¼ ln xf. We can evaluate the integral formula (65) term
by term in the expansion to obtain

lnΔ2 ≈Gðln xfÞ þ
X∞
p¼1

qpðln xfÞGðpÞðln xfÞ;

d lnΔ2

d ln k
≈ −G0ðln xfÞ −

X∞
p¼1

qpðln xfÞGðpþ1Þðln xfÞ;

α ≈G00ðln xfÞ þ
X∞
p¼1

qpðln xfÞGðpþ2Þðln xfÞ; ð68Þ

where we have used the fact that

dGðpÞðln xÞ
d ln k

¼ −Gðpþ1Þðln xÞ: ð69Þ

The coefficients qpðln xfÞ are given by

q1ðln xfÞ ¼ ln x1 − ln xf;

ln x1 ≡ 7

3
− ln 2 − γE; ð70Þ

and

qpðln xfÞ ¼
Xp
n¼0

cp−n
n!

qn1ðln xfÞ;

cp ¼ 1

p!
lim
z→0

dp

dzp

�
e−zð

7
3
−γEÞ cos

�
πz
2

�
3Γð2þ zÞ

ð1 − zÞð3 − zÞ
�
:

ð71Þ
Here, γE is the Euler-Mascheroni constant. Specifically,

c0 ¼ 1; c1 ¼ 0; c2 ¼ 4−3π
72

; c3 ¼ 55
81
− ζð3Þ

3
;…. Note that the

coefficients qpðln xfÞ are the same for scalar and tensor
perturbations, and do not depend on the inflationary model,
while they do depend on the choice of the evaluation epoch
xf. For simplicity, we refer to the first terms of the right-hand
sides of (68) as the leading-order terms. We follow the usual
conventions in defining the scalar and tensor tilts as

ns − 1≡ d lnΔ2
ζ

d ln k
; nt ≡ d lnΔ2

γ

d ln k
: ð72Þ

For observationally viable models with ΔN > 1, the
scalar tilt ns − 1 ¼ Oð1=NÞ∼ few percent. On the other
hand, for the running of the tilt to be observable in the near
future αs ¼ Oð1 − nsÞ and so these models violate the
usual assumption that ΔN ∼ N. We therefore continue to
assume G0 ¼ Oð1=NÞ but take Gðpþ1Þ=GðpÞ ∼Oð1=ΔNÞ
where we allow ΔN ≤ N. In other words we assume that
the function G is composed of features of width ΔN on top
of a much larger smooth component that is responsible for
driving the remaining N ∼ 60 e-folds of inflation.
For moderate widths, the above expansions rapidly

converge. Indeed, since

lim
p→∞

qp
qp−1

¼ −
1

2
; ð73Þ

the convergence criterion is given by

lim
p→∞

����G
ðpþ1Þ

GðpÞ

���� < 2: ð74Þ

For ΔN < 1=2, one needs to evaluate GSR integral for-
mula (65) on a case by case basis [48].
ProvidedΔN ≳ 1, we can truncate the series at some finite

order to obtain approximate results. The leading-order
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approximation of the standard slow-roll approach corre-
sponds to evaluating the expansion (68) at the sound horizon
exit, i.e. ln xf ¼ 0, and truncating it at the leading order,

lnΔ2 ≈ Gð0Þ;
d lnΔ2

d ln k
≈ −G0ð0Þ;

α ≈ G00ð0Þ: ð75Þ
Since the next-leading-order p ¼ 1 term has the
coefficient q1ð0Þ¼1.06 for ln xf ¼ 0, the correction for
the leading-order slow-roll approximation (75) is suppressed
by 1.06=ΔN compared to the leading-order contribution.
For ΔN ∼ N ∼ 60, the correction is sufficiently suppressed
and hence the leading-order approximation works well.
However, if ΔN ∼ a few, the correction is not highly
suppressed.
To improve the truncation for moderately varying G,

we can optimize the evaluation epoch xf [49]. For the
leading-order OSR approximation, we choose the evalu-
ation epoch as ln xf ¼ ln x1, which is a solution of
q1ðln x1Þ ¼ 0, so that the next-leading-order p ¼ 1 correc-
tion identically vanishes. This yields

lnΔ2 ≈Gðln x1Þ;
d lnΔ2

d ln k
≈ −G0ðln x1Þ;

α ≈G00ðln x1Þ: ð76Þ
While these expressions are as simple as the leading-
order slow-roll approximation (75), the change in the
evaluation epoch ln xf ¼ ln x1 provides a large improve-
ment in accuracy when ΔN≪N. Since lnx1≈1.06,
this corresponds to evaluating the sources approximately
∼1 e-fold before the sound horizon exit. The correction
to the truncation comes from the next-to-next-leading-
order p ¼ 2, for which the coefficient is given by
q2ðln x1Þ ¼ c2 ≈ −0.36. Hence, compared to the leading-
order term, the correction is suppressed by 0.36=ΔN2. For
instance, for ΔN ∼ 3, the correction for the standard slow
roll (75) is given by 1.06=ΔN ∼ 0.35 whereas for OSR
(76), it is 0.36=ΔN2 ∼ 0.04.
The same logic applies to a general pth order OSR

truncation [49]. In this case we choose the evaluation
epoch as ln xf ¼ ln xpþ1, which is a solution of
qpþ1ðln xpþ1Þ ¼ 0, so that the next-order pþ 1 correction
identically vanishes. The optimized evaluation then allows
us to use the same expression of the formula as the
pth order truncation of the standard slow roll, but with
the accuracy of a (pþ 1)th order truncation. We focus on
the leading-order OSR expansion (76) in the following.

B. EFT slow-roll parameters

Now let us relate the Taylor expansions of the G source
functions for the scalars and tensors to those of the

underlying EFT functions H; bs; cs; bt; ct all considered
as functions of e-folds N. We follow the Hubble slow-
roll parameter convention in the literature and define
ϵH ¼ − d lnH

dN with the higher order derivatives given by
the hierarchy

δ1≡1

2

dlnϵH
dN

−ϵH; δpþ1≡dδp
dN

þδpðδ1−pϵHÞ: ð77Þ

For the scalar and tensor sound speeds, we define

σi;1 ≡ d ln ci
dN

; σi;pþ1 ≡ dσi;p
dN

; ð78Þ

and likewise for the normalization factor bi,

ξi;1 ≡ d ln bi
dN

; ξi;pþ1 ≡ dξi;p
dN

; ð79Þ

where i ¼ s, t and p ≥ 1.
For each function there is a hierarchy of derivative

parameters that match the GðpÞ expansion. As discussed
in the previous section, we assume G0 ¼ Oð1=NÞ and
Gðpþ1Þ=GðpÞ ∼Oð1=ΔNÞ, which then sets the expectations
for the EFT slow-roll parameters. Hence we assume

fG0; ϵH; δ1; σi;1; ξi;1g ¼ O
�
1

N

�
;

fGðpþ1Þ; δpþ1; σi;pþ1; ξi;pþ1g ¼ O
�

1

NΔNp

�
: ð80Þ

Note that H is special in that both it and its derivative ϵH
appear in the leading-order scalar power spectrum Δ2

ζ ;
therefore both ϵH and δ1 appear in its derivative and so
are Oð1=NÞ.
We can now establish the direct relationship between

GðpÞ and the EFT slow-roll parameters.We of course always
keep the leading-order expressions assuming (80). For
generality and to be able to also describe α to leading order
in the normal case where ΔN ∼ N we first expand expres-
sions up to Oð1=N2Þ, i.e. we keep Oð1=NΔNpÞ terms but
still dropOð1=N2ΔNpÞ terms. This also implies that the first
order iteration in the GSR approximation of (65) suffices for
Oð1=N2Þ expressions in n and α but not Δ2.
Since G is taken to be a function of e-folds of the sound

horizon rather than the scale factor, we also expand the
conversion

dN
d ln si

¼ −
aHsi
ci

; ð81Þ

around N as

aHsi
ci

≈ 1þ ϵH þ σi1 þ σi2 þ 2ϵHσi1 þ ϵHð3ϵH þ 2δ1Þ:

ð82Þ
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Therefore, using (56) for the scalars,

G ≈ ln

�
H2

8π2bsϵHcs

�
−
10

3
ϵH −

2

3
δ1 −

7

3
σs1 −

1

3
ξs1 −

8

3
σs2

−
23

3
ϵ2H −

18

3
δ1ϵH −

11

3
ϵHσs1 −

1

3
ϵHξs1 −

2

3
δ1σs1 þ

2

3
σ2s1 −

1

3
σs1ξs1;

G0 ≈ 4ϵH þ 2δ1 þ σs1 þ ξs1 þ
2

3
δ2 þ

7

3
σs2 þ

1

3
ξs2

þ 32

3
ϵ2H þ 28

3
δ1ϵH −

2

3
δ21 þ 5ϵHσs1 þ 2δ1σs1 þ σ2s1 þ ϵHξs1 þ σs1ξs1;

G00 ≈ −2δ2 − σs2 − ξs2 −
2

3
δ3 −

7

3
σs3 −

1

3
ξs3

− 8ϵ2H − 10ϵHδ1 þ 2δ21;

GðpÞ ≈ ð−1Þpþ1

�
2δp þ σs;p þ ξs;p þ

2

3
δpþ1 þ

7

3
σs;pþ1 þ

1

3
ξs;pþ1

�
; ðp ≥ 3Þ; ð83Þ

and (60) for the tensors,

G ≈ ln

�
H2

2π2btct

�
−
8

3
ϵH −

7

3
σt1 −

1

3
ξt1 −

8

3
σt2

− 7ϵ2H −
16

3
δt1ϵH − 3ϵHσt1 −

1

3
ϵHξt1 þ

2

3
σ2t1 −

1

3
ξt1σt1;

G0 ≈ 2ϵH þ σt1 þ ξt1 þ
7

3
σt2 þ

1

3
ξt2

þ 22

3
ϵ2H þ 16

3
δ1ϵH þ 3ϵHσt1 þ σ2t1 þ ϵHξt1 þ σt1ξt1;

G00 ≈ −σt2 − ξt2 −
7

3
σt3 −

1

3
ξt3

− 4ϵ2H − 4ϵHδ1;

GðpÞ ≈ ð−1Þpþ1

�
σt;p þ ξt;p þ

7

3
σt;pþ1 þ

1

3
ξt;pþ1

�
; ðp ≥ 3Þ; ð84Þ

which recovers the result in [49] for ci ¼ bi ¼ 1 since σi;p ¼ ξi;p ¼ 0.
With these expressions we can explicitly give the parameters of the power spectrum to leading order in the optimized

slow-roll approximation as

lnΔ2
ζ ≈ ln

�
H2

8π2bscsϵH

�
−
10

3
ϵH −

2

3
δ1 −

7

3
σs1 −

1

3
ξs1jx¼x1 ;

ns − 1 ≈ −4ϵH − 2δ1 − σs1 − ξs1 −
2

3
δ2 −

7

3
σs2 −

1

3
ξs2jx¼x1 ;

αs ≈ −2δ2 − σs2 − ξs2 −
2

3
δ3 −

7

3
σs3 −

1

3
ξs3 − 8ϵ2H − 10ϵHδ1 þ 2δ21jx¼x1 ; ð85Þ

for scalars, and

lnΔ2
γ ≈ ln

�
H2

2π2btct

�
−
8

3
ϵH −

7

3
σt1 −

1

3
ξt1jx¼x1 ;

nt ≈ −2ϵH − σt1 − ξt1 −
7

3
σt2 −

1

3
ξt2jx¼x1 ;

αt ≈ −σt2 − ξt2 −
7

3
σt3 −

1

3
ξt3 − 4ϵ2H − 4ϵHδ1jx¼x1 ; ð86Þ
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for tensors. Here, the right-hand sides are evaluated at the
optimized point ln x ¼ ln x1 ≈ 1.06 and we have kept
Oð1=N2Þ terms only for the running of the tilt parameters
since they are leading order if ΔN ≈ N. Unlike the PðX;ϕÞ
inflation case, it is possible to have nT > 0 without having
ϵH < 0 or growing H. This would require negative con-
tributions from σt1; ξt1; σt2; ξt2 that compensate −2ϵH.
Finally note that there is a subtlety that must be kept

in mind when comparing the scalar and tensor spectra.
Although both the scalar and the tensor parameters are
evaluated at x ¼ x1, they represent different epochs
during inflation, ssðNsÞ ¼ x1=k and stðNtÞ ¼ x1=k where
Ns ≠ Nt if the sound speeds differ. Thus when combining
these relations to form the tensor-to-scalar ratio at a fixed k,
we must evaluate the common slow-roll parameters at
different epochs. Likewise the consistency relation

r≡ 4Δ2
γ

Δ2
ζ

≈ 16ϵH
bscs
btct

≈ −
8bscs
btct

nt ð87Þ

only applies when bs, cs, bt, ct are exactly constant even at
leading order [see Eq. (4.43) in [12] for Horndeski theory].
More generally, one would use (85) evaluated at kss ¼ x1
and (86) evaluated at kst ¼ x1 which does not provide
a strict consistency relationship between the r and nT
observables.
To summarize, the expressions (85) and (86) apply to any

inflationary model that has the quadratic actions (36) and
(20) with the standard dispersion relation, so long as the
scalar and tensor perturbations freeze out after crossing
their respective sound horizons and the sources Gζ and Gγ

are moderately slowly varying with ΔN > 1. Given a
specific Lagrangian, one could check the above conditions,
and then calculate H; bs; cs; bt; ct and their slow-roll
parameters to obtain power spectra. The correction to
the truncation is suppressed by 0.36=ΔN2 in contrast with
1=ΔN suppression for the standard slow-roll leading-order
approximation.

V. CONCLUSION

We have unified and streamlined the calculation of
scalar and tensor power spectra observables in the EFT
of inflation using its ADM form. The subset that describes
theories that have only second-order spatial derivatives in
the EOM for their perturbations leads to a quadratic action
for scalar perturbation (36) and tensor perturbation (20)
with normal dispersion relations. This class includes
Horndeski and GLPV theories as well as their canonical
and PðX;ϕÞ subsets. The evolution of the scalar and tensor
perturbations is characterized by four free functions of time
bs, cs, bt, ct in addition to the usual background expansion
rate H. The information in these functions can be further
condensed into two sources for the scalar and tensor power
spectra Gζ and Gγ that are functions of the two respective
sound horizons.

We give the criteria under which scalar and tensor
perturbations freeze out after crossing their respective
sound horizon and under which the unitary and comoving
gauge coincide in the scalar curvature in Appendix B. In
this case, we utilize the generalized slow-roll approach to
obtain an integral expression for their power spectra (65),
assuming small, but not necessarily slowly varying devia-
tions from scale invariance in the two source functions. For
cases when variations occur on the e-fold time scale or
slower, we provide explicit expressions in terms of five
slow-roll hierarchies of parameters for bs, cs, bt, ct and H.
By optimizing the evaluation of these slow-roll parameters,
we greatly improve the accuracy of the truncated hierar-
chies leading to simple but accurate expressions in terms of
leading-order parameters.

ACKNOWLEDGMENTS

This work was supported by the Kavli Institute for
Cosmological Physics at the University of Chicago through
Grants No. NSF PHY-0114422 and No. NSF PHY-0551142
and an endowment from the Kavli Foundation and its
founder Fred Kavli. H.M. was supported in part by
Ministerio de Economia y Competitividad (MINECO)
Grant No. SEV-2014-0398, PROMETEO Grant No. II/
2014/050, Spanish Grant No. FPA2014-57816-P of the
MINECO, and European Unions Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie
Grants No. 690575 and No. 674896. H.M. thanks the
Research Center for the Early Universe, where part of this
work was completed. W. H. was additionally supported by
U.S. Department of Energy Award No. DE-FG02-
13ER41958 and National Aeronautics and Space
Administration (NASA) Grant No. ATP NNX15AK22G
and thanks the Aspen Center for Physics, which is supported
by National Science Foundation Grant No. PHY-1066293,
where part of this work was completed.

APPENDIX A: RELATIONSHIP
TO LITERATURE

In this section, we present correspondence between our
notation and that in the literature. We also highlight the
advantages of our analysis for the EFT action (2), notation
of (8), and simplicity of the quadratic Lagrangian (16) in
comparison.

1. Gleyzes, Langlois, Piazza, and Vernizzi

Gleyzes et al. [3] study the Lagrangian

S ¼
Z

d4xN
ffiffiffi
h

p
LðN;K; R;S;Z;Y; tÞ; ðA1Þ

where

S ≡ Ki
jKj

i; Z ≡ Ri
jRj

i; Y ≡ Ri
jKj

i; ðA2Þ
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which is a subset of (2) that is equivalent at the level of the
quadratic action. The perturbations of these combinations
around the flat FLRW metric are given by

δS ¼ 2HδK þ δKi
jδKj

i; δZ ¼ δRi
jδRj

i;

δY ¼ HδRþ δKi
jδRj

i; ðA3Þ

which mixes the structure of the quadratic Lagrangian. For
example, the linear δR term is given by

L ⊃ L;RδRþ L;UδU ¼ ðL;R þHL;UÞδR; ðA4Þ

where L;Y ≡ ∂L
∂Y jb is evaluated at the background in their

notation. In our notation, the δR term is simply given by
CRδR in (12). As an example at quadratic order, the δK2

term is given by

L ⊃
1

2
L;KKδK2 þ L;SKδSδK þ 1

2
L;SSδS2

¼ 1

2
ðL;KK þ 4HL;SK þ 4H2L;SSÞδK2; ðA5Þ

whereas in our notation the entire term is represented by
1
2
CKKδK2 in (12). Our notation makes the correspondence

between the EFT coefficients of the quadratic Lagrangian
and the EFT Lagrangian transparent.
Beyond the above notational difference, they performed

an additional integration by parts of the δKi
jδRj

i term so as
to rewrite the Y dependence in terms of the other existing
N, R, K, S terms and reduce the total number of EFT
coefficients. Specifically they exploit

N
ffiffiffi
h

p
~CKRδKi

jδR
j
i ∼

a3

2

�
ð _~CKR þH ~CKRÞ

�
δ

ffiffiffi
h

p

a3
δRþ δ2R

�

þ ~CKRδRδK þH ~CKRδNδR

�
: ðA6Þ

Again one can obtain the more transparent form (12) by
omitting the process.
To fully translate from the notation of [3], we have

L̄ ¼ C; L;N ¼ CN; L;NN ¼ CNN;

L;S ¼ 1

2
~CKK; L;Z ¼ 1

2
~CRR; A ¼ CKK;

B ¼ CNK; F ¼ CK;

L;R þ 1

2
_L;Y þ 3

2
HLY ¼ CR þ 1

2

_~CKR þ 1

2
H ~CKR;

L;RR þH2L;YY þ 2HL;YR ¼ CRR;

L;NR þHL;NY −
1

2
_L;Y ¼ CNR −

1

2

_~CKR;

C þHLKY þ 2H2LSY þ 1

2
LY ¼ CKR þ 1

2
~CKR: ðA7Þ

The notation (8) simplifies the coefficients as can be seen in
the right-hand sides. Note that the right-hand sides have

additional _~CKR and ~CKR terms, which come from additional
integration by parts of the δKi

jδRj
i term. One can confirm

that their quadratic Lagrangian in Eq. (21) with the
definition Eqs. (13) and (127) of [3] and our (16) are
equivalent up to total derivative after using these corre-
spondences and the identity (A6). We thus obtain the same
scalar, vector, and tensor equations of motion.2

2. Kase and Tsujikawa

Kase and Tsujikawa [4] extended the above approach by
adding additional dependencies to the Lagrangian (A1) on
new types of combinations, which include spatial covariant
derivatives such as ∇iR∇iR, and/or the acceleration aμ ≡
nνnν;μ such as aiai. While the Lagrangian (2) does not
include these types of combinations it is contained as a
subset within which we can establish the correspondences.
To translate from the notation of [4], we have

L̄¼C; L;N ¼CN; L;NN ¼CNN; L;S ¼
1

2
~CKK;

L;Z ¼1

2
~CRR; A¼CKK; B¼CNK;

C¼CKRþ
1

2
~CKR; D¼CNR−

1

2

_~CKR;

E¼CRþ
1

2

_~CKRþ
1

2
H ~CKR; F ¼CK; G¼CRR: ðA8Þ

Again, with these correspondences and the identity (A6),
their quadratic Lagrangian in Eq. (4.29) matches our (16).
We thus obtain the same scalar, vector, and tensor equations
of motion.
For the restriction to theories having up to second order

spatial derivatives in EOM, the scalar quadratic Lagrangian
is given as their Eq. (4.59), which matches our (36) with

W ¼ CNK − 2HCKK;

M ¼ 1

2
A_ζζ − CKR;

Qs ¼ A_ζ _ζ: ðA9Þ

3. Gleyzes, Langlois, and Vernizzi

Gleyzes et al. [5] also extend our Lagrangian (2) to cases
where there are extra spatially covariant derivatives similar
to [4] and introduced the tensor derivative structures forKi

j

and Ri
j that we generalize in (8). Again we can compare

results for the subset that omits these additions.

2In their intermediate equations Eqs. (12)–(21) there are
additional terms _F þ L;N ¼ _CK þ CN , which vanish by virtue
of background equations (14).
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Aside from compactness of notation, the conceptual
difference with our treatment is again that they performed
additional integration by parts of δKi

jδRj
i, which we

discuss in (A6) above. However in this case we could
not establish agreement in the final quadratic Lagrangian
due to what are apparently typos in the current
arXiv:1411.3712v2 [5].

Eq: ð55Þ∶ CδKi
jδR

j
i → 2CδKi

jδR
j
i ;

Eq: ð60Þ∶ G� ¼ Gþ _C þHC;

C� ¼ Ĉ þ C;

B�
R ¼ BR − _C; ðA10Þ

where we used N̄ ¼ 1 in comparison with their original
expressions. Their subsequent equations and quantities
based on the above variables such as cT , αT in [5] should
be corrected with this relation (A10). Some but not all of
these typos are addressed in [6] and consequently those that
require correction in [6] include

Eq:ð2.25Þ∶ αT ≡ Gþ _C þHC
AK

− 1: ðA11Þ

To translate the notation of [5], including the corrections
of (A10), we have

L̄¼ C; L;N ¼ CN; L;NN ¼ CNN; ÂK ¼ CKK;

AK ¼ 1

2
~CKK; ÂR ¼ CRR; AR ¼ 1

2
~CRR; B ¼ CNK;

B�
R ¼ CNR −

1

2

_~CKR; C ¼ 1

2
~CKR;

G� ¼ CR þ
1

2

_~CKR þ
1

2
H ~CKR; Ĉ ¼ CKR;

Ĉ� ¼ CKR þ
1

2
~CKR: ðA12Þ

With the corrections (A10), the above correspondences
(A12), and the identity (A6), their quadratic Lagrangian in
Eq. (59) matches our (16).
From (A12) we also have3

M2 ¼ ~CKK; αM ¼ 1

H
d
dt

ln ~CKK; αK ¼ 2CN þ CNN

H2 ~CKK
;

αB ¼ CNK

2H ~CKK
; αT ¼ 2CR þ _~CKR þH ~CKR

~CKK
− 1;

αH ¼ 2CR þ CNR þH ~CKR
~CKK

− 1: ðA13Þ

With these correspondences, the tensor quadratic
Lagrangian in Eq. (66) of [5] matches our (19) up to total
derivative. For the scalar quadratic Lagrangian, with the
correspondences (A13), the assumption (30), and noting
that

1þ αH
1þ αB

¼ H
CKK

ð2CKR −A_ζζÞ; ðA14Þ

we have

L_ζ _ζ ¼ 2A_ζ _ζ;

L∂ζ∂ζ ¼ −2ϵHbs; ðA15Þ

and thus the scalar sector of Eq. (79) of [5] matches
our (36).

APPENDIX B: UNITARY VS COMOVING GAUGE

While tensor perturbations are gauge invariant, the scalar
curvature perturbations are not. Hence the question of
which curvature spectrum controls observable quantities
arises. In this appendix, we clarify the difference between
curvature perturbations in the unitary gauge, used in the
main text, and the comoving gauge used in initial con-
ditions for evolving the observables after inflation.
Let us first consider the most general description of

scalar perturbations in a mode with wave number k around
the flat FLRW metric

ds2 ¼ −ð1þ 2AQÞdt2 þ 2aBQidtdxi

þ a2ðδij þ 2HLQδij þ 2HTQijÞdxidxj; ðB1Þ

where Q is an eigenfunction of the Laplace operator
δij∂i∂jQ ¼ −k2Q and

Qi ¼ −k−1∂iQ; Qij ¼
�
k−2∂i∂j þ

1

3
δij

�
Q: ðB2Þ

In the spatially flat background assumed here Q are simply
plane waves. The metric fluctuations transform under a
diffeomorphism or gauge transformation xμ → xμ þ ϵμ

with ϵ0 ¼ TQ and ϵi ¼ LδijQj as

δϵ

�
HL þHT

3

�
¼ −HT; δϵðAÞ ¼ − _T;

δϵðBÞ ¼ a _Lþ k
a
T; δϵðHTÞ ¼ kL; ðB3Þ

where HL þHT=3 is the curvature perturbation. Unitary
and comoving gauges correspond to placing conditions on
the metric fluctuations A; B;HL;HT that fix this gauge
freedom. For the comoving gauge condition, it is useful to
note that the 0i perturbation to the Einstein tensor

3αM, αK , αB, αT were introduced in [50] but with a different
normalization for αB ¼ −CNK=H ~CKK.

HAYATO MOTOHASHI and WAYNE HU PHYSICAL REVIEW D 96, 023502 (2017)

023502-14



δG0
i ¼ GvQi ðB4Þ

is given by

Gv ¼
2k
a

�
HA −

�
_HL þ 1

3
_HT

��
: ðB5Þ

This combination transforms under a gauge transformation
as

δϵGv ¼
2k
a

_HT: ðB6Þ

1. Comoving gauge

The curvature perturbation in comoving gauge is usually
taken as the initial conditions from inflation for structure
formation. Comoving gauge is so named because for
canonical inflation, the perturbed Einstein equation is given
by δGμν ¼ δTϕ

μν. Comoving time slicing is defined by the
vanishing of the momentum density associated with field
perturbations δTϕ0

i ¼ 0. We can generalize this treatment
to cases where the Einstein equation does not hold by
defining comoving slicing such that δG0

i ¼ 0 (see [51]).
This condition sets Gv ¼ 0 and completely specifies the
time slicing T whereas settingHT ¼ 0 completely fixes the
spatial gauge freedom. Provided that the scalar field decays
into matter after inflation, the condition δG0

i ¼ 0 will
be smoothly connected to the usual comoving gauge
condition δTm0

i ¼ 0 used as the initial conditions for
structure formation.
To avoid confusion, we denote the curvature perturbation

and the lapse in the comoving gauge as

R ¼ HL þHT

3
; ξ ¼ A: ðB7Þ

It is shown in [51] that since _R ¼ _a
a ξ, for any metric theory

jξj ≪ jRj ⇒
���� 1R

dR
dN

���� ≪ 1; ðB8Þ

if the background spatial curvature vanishes. Hence when
the lapse is much smaller than the curvature, the curvature
is approximately conserved on the e-fold time scale. The
comoving gauge lapse function is given by

ξ ¼ −
δp

ρþ p
þ 2

3

pπ
ρþ p

; ðB9Þ

where ρ, p, π are the components of Gμν that would
be associated with total energy density, pressure, and
anisotropic stress given the Einstein equations (see [51]
for details). Note that in this definition ρþ p ¼
−dH2=dN ¼ 2ϵHH2.

Therefore, the condition (B8) can be violated even
outside the horizon when dH2=dN → 0, which happens
in ultraslow-roll inflation with a canonical kinetic term
[39–43], certain Pðϕ; XÞ models [52–54], and certain
Horndeski models through the □ϕ term [55]. In these
cases superhorizon fluctuations cannot be absorbed into a
separate universe construction and hence violate non-
Gaussianity consistency relations.

2. Unitary gauge

While the EFT Lagrangian (2) does not depend on the
scalar field ϕ and so the quadratic Lagrangian does not
include δϕ, we can regard it as the quadratic action in the
unitary gauge. The gauge transformation on the scalar field
acts as δeðδϕÞ ¼ − _ϕT and so the unitary gauge condition
δϕ ¼ 0 completely fixes the time slicing.
Unitary gauge is employed in the EFT of inflation so as

to express the dynamical degrees of freedom through the
metric alone. In addition, it is often employed for analysis
of scalar-tensor theories involving nontrivial derivative
couplings, e.g. GLPV and Horndeski theories [12]. This
is because the unitary gauge fixing condition simplifies
calculation by dropping derivative terms of δϕ which are
present in (48), yielding a scalar quadratic action for
the metric degrees of freedom in the standard form (36).
While unitary gauge coincides with comoving gauge for
the Pðϕ; XÞ model (40), they do not for general scalar-
tensor theories.
In terms of the single k-mode representation of (B1),

unitary gauge sets

α ¼ A; β ¼ B; ζ ¼ HL; 0 ¼ HT: ðB10Þ

These harmonic amplitudes are related to the spatial metric
fluctuations of (26) by δN → αQ, ∂iψ → aβQi, ζ → ζQ.
In unitary gauge, Gv from (B5) reduces to

Gv ¼
2k
a
Δ ðB11Þ

where

Δ≡Hα − _ζ: ðB12Þ

Using (B5) we can define the time shift from unitary gauge
to comoving gauge as

T ¼ −
a

2k _H
Gv ¼ −

Δ
_H
¼ Δ

ϵHH2
ðB13Þ

and thus
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R ¼ ζ −
Δ

HϵH
;

ξ ¼ α −
d
dt

�
Δ

H2ϵH

�
: ðB14Þ

Therefore, the conservation of ζ is not strictly equivalent to
R and the two curvatures need not coincide. We next
consider the conditions under which the two do coincide.

3. Curvature equivalence

If the contribution of Δ is negligible in (B14), the
curvature perturbation in unitary gauge coincides with that
in comoving gauge. For the theories considered here, i.e.
those possessing second-order EOM for scalar perturba-
tions, including Horndeski and GLPV theories, we can use
the constraint equation (32) for the lapse to obtain

Δ ¼ Γ_ζ; ðB15Þ

where

Γ≡ CNK

2HCKK − CNK
: ðB16Þ

As expected, for the canonical case (5), Γ ¼ 0. Note that Γ
diverges if the condition (33) is violated. We can trace the
origin of this divergence to an infinite time shift T between
unitary and comoving gauges.
From (B14), the comoving curvature coincides with the

unitary curvature when

���� d ln ζdN

���� ≪
���� ϵHΓ

����: ðB17Þ

There are two possible cases which satisfy this condition.
The first case is

Γ ≈ 0; ðB18Þ

which means that the model of interest is very close to the
canonical inflation. The second case is when the unitary
gauge curvature is nearly constant,

d ln ζ
dN

≈ 0: ðB19Þ

We have already seen in (54) that conservation of ζ above
the sound horizon requires that

c2s
a3bsϵH

∝ sps ; ðB20Þ

with pðssÞ > 0. Note that even if (B18) is satisfied such
that R ≈ ζ, (B20) must also be satisfied in order to have
R ≈ const above the sound horizon.
If (B20) is satisfied then even if ϵH=Γ is finite, the two

curvatures will eventually coincide as η → 0, but poten-
tially not until well after sound horizon crossing. More
concretely, if

d ln ζ
dN

≈ ðkssÞp; ðB21Þ

the difference between the two gauges reads

R ≈ ζ

�
1 −

ΓðkssÞp
ϵH

�
;

ξ ≈ α −
d
dt

�
ΓζðkssÞp
HϵH

�
: ðB22Þ

Therefore, sufficiently after sound horizon crossing

ðkssÞp ≪ min

����� ϵHΓ
����; 1

�
; ðB23Þ

one can approximate R ≈ ζ and ξ ≈ α.
In conclusion, if (B20) is satisfied [regardless of whether

(B18) is satisfied], one can calculate the power spectrumΔ2
ζ

as described in the main text. Since Δ2
ζ is constant outside

the sound horizon its freeze-out value is the same as its
value at kss → 0. Hence we can take Δ2

R ¼ Δ2
ζ so long as

(B20) is satisfied between freeze-out and the epoch at
which we evaluate Δ2

R.
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