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We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and
hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of
fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a
generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras,
and can leave imprints in the cosmic microwave background polarization and may be observed in future
ground- and space-based interferometers. We also discuss a specific model where chiral gravitational
waves are generated via the production of light chiral fermions during pseudoscalar inflation.
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I. INTRODUCTION

Gravitational waves (GW) are an invaluable probe for
studying the early Universe as well as various astrophysical
events. Recently, there has been a tremendous effort to
detect them using both direct and indirect methods.
Primordial gravitational waves, i.e., GW of cosmological
origin, leave imprints on the polarization of the cosmic
microwave background (CMB). There are several ongoing
and upcoming experiments dedicated to observe the CMB
polarization signal, such as Keck Array [1], BICEP3 [2],
PolarBEAR [3], SPTpol [4], and ACTpol [5]. In addition,
the recent detection of GW from the astrophysical events
GW150914 and GW151226 by the LIGO-Virgo collabo-
ration [6,7] has inspired the interest in the direct detection
of the cosmological GW in ground and space-based
interferometers. In fact, primordial GW will open a new
observational window into the very first moments of the
Universe.
One of the important questions about the Universe is

whether parity (P) is respected or broken on macroscopic
scales.1 Observation of chiral configurations of electro-
magnetic or gravitational fields on macroscopic scales will
be a strong evidence for P violation. Chiral (circularly
polarized) GWof primordial origin can give rise to nonzero
TB and EB cross correlators in the CMB [26]. Furthermore,
they can also be directly detected in an array of ground and
space-based interferometers [27–29].
Only a few mechanisms that can generate primordial

chiral GW in the early Universe have been proposed in the

literature. The first mechanism involves the coupling of a
time varying scalar field to the gravitational topological
term, i.e., ΔL ∝ φRμνρσ

~Rμνρσ [30–33]. The other mecha-
nism that produces chiral GW relies on the generation of
helical gauge field configurations [34–36] via the term
ΔL ∝ φFμν

~Fμν [37–44]. These helical gauge fields, in turn,
contribute to the anisotropic stress tensor and source chiral
GW. Also, it has been pointed out that chiral GW are
produced in Horava-Lifshitz gravity [45].
In this work, we report on a new model-independent

mechanism that generates primordial chiral GW. We show
that production of light chiral fermions in a time varying
background is accompanied by chiral GW. Light chiral
fermions with mass much smaller than the Hubble scale,
m=H ≪ 1, have definite helicity since the helicity flip
process is negligible as it is suppressed by ðm=HÞ2.
Production of fermions with a definite helicity leads to
an asymmetry between the two components of the energy
momentum tensor projected along the helicity eigenbasis.
Hence, an imbalance between left and right helicities of
GW will be created. Therefore, any mechanism that creates
an asymmetry between light left and right-chiral fermions
will also lead to chiral GW.
This paper is organized as follows. In Sec. II, we start by

developing the necessary formalism to study the generation
of gravitational waves via the production of left-chiral Weyl
fermions in the Fridmann-Robertson-Walker (FRW) back-
ground. The formalism used to study the generation of GW
from fermions is not new, see, e.g., [46–49]. The new
component in this work, however, is the generation of
helical GW due to the presence of chiral fermions, which is
shown by computing the two point functions of the tensor
perturbations in the helicity eigenbasis. At the end of
Sec. II, we show that there is an imbalance between the
correlation functions of the left and right-helical compo-
nents of GW. Our main results are given by Eq. (32) and
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1Parity violation has a paramount importance in explaining the

baryon asymmetry of the Universe. A possible connection
between various baryogenesis mechanisms and macroscopic
violation of P have been considered in Refs. [8–25].
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Eq. (33) for left and right-chiral fermions respectively. In
Sec. III, we give an explicit example where chiral GW are
generated from the production of chiral fermions during
pseudoscalar inflation. We conclude with a brief summary
and discussion of our results in Sec. IV.

II. THEORY AND FORMULATION

In this section, we will study the gravitational wave
generation due to the production of left-chiral Weyl
fermions from vacuum in a time varying curved back-
ground. By left-chiral Weyl fermions we mean fields with
spin 1=2 that transform in the irreducible representation
ð1
2
; 0Þ of the Lorentz group. In addition to chirality, one can

also talk about helicity which is the projection of the spin S
of a particle along its momentum p, i.e., we define the
helicity as the eigenvalue of the operator ĥ≡ 2S · p=p. A
massive left-chiral Weyl fermion can have both helicities
�1. In general, helicity is not a Lorentz-invariant quantity
since different observers measure different values of h
depending on the relative velocity between the fermion and
the observer. However, in the mass goes to zero limit we
find that the helicity h ¼ þ1 decouples. Or in other words,
a massless left-chiral Weyl fermion has a definite helicity
h ¼ −1, and thus, helicity and chirality coincide in the
massless limit and both serve as a good Lorentz invariant
quantum number.
In the following analysis we assume that the mass of the

left-chiral Weyl fermion is very small compared to the
Hubble’s parameter, and hence, we set the mass to zero. We
show, in a model-independent way, that the production of
chiral fermions from vacuum will always accompany the
generation of chiral gravitational waves.

A. Chiral gravitational waves

In this part we review the general formalism used to
study the gravitational wave production due to the presence
of anisotropic energy-momentum tensor in the Friedmann-
Robertson-Walker (FRW) background. In particular, we are
interested in studying the two-point functions of the tensor
perturbations projected along the helicity eigenbasis. To
this end, we use natural units c ¼ 1, ℏ ¼ 1 and start with
the FRW metric written in the conformal coordinates as
ds2 ¼ aðτÞ2ðdτ2 − dx2Þ, where the conformal time τ is
related to the cosmic time t via dt ¼ adτ. In what follows
derivatives with respect to the cosmic time will be denoted
by d=dt≡ ·, while derivatives with respect to the con-
formal time will be denoted by d=dτ≡ 0. The Hubble
parameter is given by H ≡ _a=a and the conformal Hubble
parameter is H≡ a0=a ¼ aH.
Introducing the tensor perturbations hμν to the FRW

background metric, we have

ds2 ¼ a2ðτÞ½ημν þ hμν�dxμdxν; ð1Þ

where ημν ¼ diagð1;−1;−1;−1Þ. Then, the linearized
equation of motion for the tensor perturbations hμνðx; τÞ
is given by

½∂2
τ þ 2H∂τ − ∇2�hμνðx; τÞ ¼

2

m2
p
Tμνðx; τÞ; ð2Þ

where Tμνðx; τÞ is the physical energy momentum tensor
and mp is the reduced Planck mass. One can also take the
Fourier transform of the above equation to obtain

½∂2
τ þ 2H∂τ þ k2�hμνðk; τÞ ¼

2

m2
p
Tμνðk; τÞ; ð3Þ

where k≡ jkj is the comoving momentum.
Gravitational waves have two physical degrees of free-

dom that can be expressed using the polarization tensor
ϵμνλ ðkÞ with appropriate gauge fixing conditions. In what
follows we will be interested in the circular helicity modes
of gravitational waves, and thus, we use the following
parametrization

ϵμνλ ðkÞ ¼ ϵμλðkÞϵνλðkÞ; ð4Þ

and we define the circular polarization 4-vectors ϵμλðkÞ as

ϵμλðkÞ ¼
1ffiffiffi
2

p ½0; ϵ1ðkÞ þ iλϵ2ðkÞ�: ð5Þ

The set fϵ1ðkÞ; ϵ2ðkÞ; k̂g form an orthonormal basis, where
k̂≡ k=k ¼ ê3, and ê3 is a unit vector along the third axis.
The polarization takes two values �1 which we simply
denote as λ ¼ �. One can easily check that the following
relations are satisfied

ϵμ�λ ðkÞ ¼ ϵμ−λðkÞ; ϵμλð−kÞ ¼ −ϵμ−λðkÞ;
k · ϵλðkÞ ¼ 0; ϵλðkÞ · ϵ�λ0 ðkÞ ¼ −δλ;λ0 ;

ϵλðkÞ · ϵλ0 ðkÞ ¼ −δλ;−λ0 : ð6Þ

Also, notice that the polarization tensor (4) is consistent
with the gauge fixing conditions h00 ¼ h0i ¼ hii ¼
hii;j ¼ 0, where i, j denote the spatial coordinates.
Using Eq. (4), the gravitational perturbations hμν can be

expressed in terms of the circular helicity modes h� as

hμνðk; τÞ ¼
X
λ¼�

ϵμλðkÞϵνλðkÞhλðk; τÞ: ð7Þ

The inverse relation can be obtained upon contracting
Eq. (7) with the polarization tensor ϵμν−λ0 ðkÞ, which yields
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ϵμν−λ0 ðkÞhμνðk; τÞ ¼
X
λ¼�

ϵμλðkÞϵνλðkÞϵμ−λ0 ðkÞϵν−λ0 ðkÞhλðk; τÞ

¼ hλ0 ðk; τÞ: ð8Þ

The decomposition of hμνðk; τÞ in Eq. (7) satisfies the
transverse traceless conditions h00 ¼ h0i ¼ hii ¼ hii;j ¼ 0,
and hence, this decomposition projects only the physical
degrees of freedom. This can be checked by contracting hμν
with the transverse traceless projection tensor

Πμν;αβðkÞ ¼ PμαðkÞPνβðkÞ −
1

2
PμνðkÞPαβðkÞ;

PμνðkÞ≡ δμν −
kμkν
k2

: ð9Þ

Now, the polarization tensor satisfies the following identity:

ϵμνλ ðkÞΠαβ
μνðkÞ ¼ ϵαβλ ðkÞ: ð10Þ

Thus, operating with Πμν;αβðkÞ and then with ϵμν−λ0 ðkÞ on
Eq. (3) we obtain the equation of motion for the circular
helicity modes of the gravitational waves

½∂2
τ þ 2H∂τ þ k2�hλðk; τÞ ¼

2

m2
p
ϵαβ−λðkÞΠμν

αβðkÞ

× Tμνðk; τÞ: ð11Þ

The solution of Eq. (11) can be expressed as

hλðk; τÞ ¼ hhomλ ðk; τÞ

þ 2

m2
p

Z
dτ0Gkðτ; τ0Þϵμν−λðkÞTμνðk; τ0Þ; ð12Þ

where hhomλ ðk; τÞ is the homogeneous solution of Eq. (11)
and Gkðτ; τ0Þ is the retarded Green’s function of the
differential operator on the left-hand side of Eq. (11), i.e.,

ð∂2
τ þ 2H∂τ þ k2ÞGkðτ; τ0Þ ¼ δðτ − τ0Þ: ð13Þ

Wewill be interested in the disparity between the left and
right circular polarizations of the gravitational waves. Since
the homogeneous part contributes equally well to both the
left and right handed modes, wewill ignore this part in what
follows. Thus, the correlation function of the helical modes
of the gravitational waves is given by

hhλðk; τÞhλ0 ðk0; τÞi ¼
4

m4
p

Z
dτ0dτ00

1

aðτ0Þ2
1

aðτ00Þ2
× Gkðτ; τ0ÞGk0 ðτ; τ00Þ
×Mλλ0 ðk; k0; τ; τ0; τ00Þ; ð14Þ

and we defined

Mλλ0 ðk; k0; τ; τ0; τ00Þ≡ aðτ0Þ2aðτ00Þ2ϵμν−λðkÞϵρσ−λ0 ðk0Þ
× hTμνðk; τ0ÞTρσðk0; τ00Þi: ð15Þ

The functionsMλλ0 are simply the projections of the energy-
momentum tensor correlators along the helicity eigenbasis.
Thus, we can immediately see that an imbalance between
Mþþ and M−− will cause a disparity between hhþhþi and
hh−h−i, and hence, the generation of chiral gravitational
waves. The brackets hi in (14) can denote quantum,
thermal, or stochastic averages. In the rest of this paper,
we compute the expectation value of Mλλ0 due to non-
perturbative quantum production of chiral fermions in a
time varying background, namely, in the FRW universe.

B. Weyl fermions in FRW background

The action for the free left-chiral massless Weyl fermions
ψ in a curved background reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; L ¼ iψ†eμaσ̄aDμψ ; ð16Þ

where eμa are the vielbeins, the latin letters denote the flat
coordinates, and the Greek letters denote the curved
coordinates. The covariant derivative is given by
Dμ ¼ ∂μ þ 1

2
σabωμab, where ωμab are the spin connections,

σab ≡ 1
4
½σa; σ̄b�, σa ≡ ð1; σiÞ, and σ̄a ≡ ð1;−σiÞ, where

fσig are the Pauli matrices. Using the conformal FRW
metric to compute the spin connections and performing the
change of variable ψ ¼ a3=2χ in (16) we obtain the
Lagrangian

L ¼ i
a4ðτÞ χ

†δμaσ̄a∂μχ: ð17Þ

From now on it will be easier to stop distinguishing
between the curved and flat coordinates, and we can just
use the Greek letters to denote all quantities in flat
Minkowski space, i.e., the above Lagrangian can be
rewritten as L ¼ i

a4ðτÞ χ
†σμ∂μχ.

The Weyl fermions can be quantized using creation and
annihilation operators as follows:

χðx; τÞ ¼
Z

đ3p½uðτ; pÞaðpÞeip·x

þ vðτ; pÞb†ðpÞe−ip·x�ξ−ðpÞ; ð18Þ

where we use the shorthand notation d3p=ð2πÞ3 ≡ đ3p,
and the functions u and v are the mode solutions of the
Casimir of the representation ð1

2
; 0Þ of the Poincare group.

The creation and annihilation operators satisfy the anti-
commutation relations
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faðpÞ; a†ðp0Þg ¼ fbðpÞ; b†ðp0Þg ¼ ð2πÞ3δ3ðp − p0Þ;
faðpÞ; aðp0Þg ¼ fbðpÞ; bðp0Þg ¼ faðpÞ; bðp0Þg ¼ 0: ð19Þ

The spinor ξ−ðpÞ is the eigenstate of the helicity operator

σ · pξ−ðpÞ ¼ −pξ−ðpÞ; ð20Þ

where p≡ jpj, and it satisfies the relation

ξ−ðpÞξ†−ðpÞ ¼
1

2
σμn̂μðpÞ; ð21Þ

where we have defined the unit 4-vector n̂μ as
n̂μðpÞ≡ ð1; p=ðjpjÞÞ. It is useful to factorize eip·x and
rewrite Eq. (22) as follows

χðx; τÞ ¼
Z

đ3p½uðτ; pÞaðpÞξ−ðpÞ

þ vðτ;−pÞb†ð−pÞξ−ð−pÞ�eip·x: ð22Þ

It can be easily shown that the Weyl field operator χ
annihilates a state with negative helicity particle and creates
a state with positive helicity antiparticle, as required from
the CPT theorem.
The physical energy momentum tensor of the Weyl

fermion is given by

Tμνðx; τÞ ¼
1

aðτÞ2
i
2
½χ†ðx; τÞσ̄ðμ∂νÞχðx; τÞ

− ∂ðμχ†ðx; τÞσ̄νÞχðx; τÞ� − ημν½…:�; ð23Þ

where the term ημν½…:� drops when we take the transverse
part of the energy-momentum tensor, as we will do
momentarily. In what follows we will need the Fourier
transform of the energy momentum tensor to calculate the
gravitational waves sourced by the Weyl fermions.
Substituting Eq. (22) into Eq. (23), and then taking the
Fourier transform, we obtain

Tμνðk; τÞ ¼
1

aðτÞ2
Z

d3x
Z

đ3p
Z

đ3p0L†ðp0; τÞ

× ½σ̄μpν þ σ̄μp0
ν�Lðp; τÞeiðp−p0−kÞ·x; ð24Þ

and we defined the operator

Lðp; τÞ≡ ½uðτ; pÞaðpÞξ−ðpÞ
þ vðτ;−pÞb†ð−pÞξ−ð−pÞ�: ð25Þ

Upon taking the integral over the 3-volume and 3-momen-
tum p0, we finally obtain the Fourier transform of the
energy momentum tensor as

Tμνðk; τÞ ¼
1

aðτÞ2
Z

đ3pL†ðp − k; τÞ

× ½σ̄μpν þ σ̄μðp − kÞν�Lðp; τÞ: ð26Þ

Having the energy-momentum tensor at hand, now we
are ready to compute the two-point functions of the tensor
perturbations. This is achieved in the next section.

C. Chiral gravitational waves from Weyl fermions

The correlation function of the gravitational waves that
result from the production of left-chiral Weyl fermions can
be found by substituting Eq. (26) into Eq. (14). We will
denote Mλλ0 ðk; k0; τ; τ0; τ00Þ ¼ Mλλ0 to reduce notational
clutter. Then, the left-handed Weyl fermions yield

Mλλ0 ¼
Z

đ3p
Z

đ3p0hL†ðp − k; τ0Þϵμν−λðkÞ

× ½σ̄μpν þ σ̄μðp − kÞν�Lðp; τ0ÞL†ðp0 − k0; τ00Þ
× ϵρσ−λ0 ðk0Þ½σ̄ρp0

σ þ σ̄ρðp0 − k0Þσ�Lðp0; τ00Þi: ð27Þ

The initial vacuum of the theory is defined as
aðpÞj0i ¼ bðpÞj0i ¼ 0. The time varying background will
cause the production of fermions from vacuum, and
information about the background are encoded in the mode
functions uðτ; pÞ and vðτ;−pÞ. In this section we keep our
formalism general enough and we do not specify a
particular particle physics model that can lead to the
production of left-chiral Weyl fermions. Using the explicit
forms of the Lðp; τÞ operator given in Eq. (25), computing
the vacuum expectation values of operators of the form

h0jbðk − pÞaðpÞa†ðp0 − k0Þb†ð−p0Þj0i ¼ ð2πÞ6
× δ3ðkþ k0Þδ3ðp0 − pþ kÞ; ð28Þ

ignoring the contribution from the zero point fluctuations,
and integrating over the 3-momentum p0, we find after
some algebra

Mλλ0 ¼ ð2πÞ3δ3ðkþ k0Þ
Z

đ3puðτ0; pÞu�ðτ00; pÞ

× vðτ00; k − pÞv�ðτ0; k − pÞβλλ0 ðk; pÞ; ð29Þ

where we defined

βλλ0 ðk; pÞ≡ ½ξ†−ðk − pÞϵμ−λðkÞσ̄μϵν−λðkÞpνξ−ðpÞ�
× ½ξ†−ðpÞϵρ−λ0 ð−kÞσ̄ρϵσ−λ0 ð−kÞpσξ−ðk − pÞ�:

ð30Þ

Making use of the completeness relation, Eq. (21), we
obtain
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βλλ0 ðk; pÞ ¼
1

4
ϵ−λðkÞ · pϵλ0 ðkÞ · pϵμ−λðkÞϵρλ0 ðkÞ

× n̂γðpÞn̂αðk − pÞTr½σ̄μσγσ̄ρσα�: ð31Þ

Then, using the trace identity Tr½σ̄μσγσ̄ρσα� ¼
2½ημγηρα − ημρηγα þ ημαηγρ − iϵμγρα�, where ϵ0123 ¼ −1,
and fixing the coordinate system by choosing
p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, we finally obtain the
helical mode correlators that are sourced by the left-chiral
Weyl fermions

hhλðk; τÞhλ0 ðk0; τÞiL
¼ δλλ0

δ3ðkþ k0Þ
m4

p

Z
d3pp2dτ0dτ00

× aðτ0Þ−2aðτ00Þ−2Gkðτ; τ0ÞGkðτ; τ00Þ
× uðτ0; pÞu�ðτ00; pÞvðτ00; k − pÞv�ðτ0; k − pÞ

× sin2θ
�
1þ ðλþ λ0Þ

2
cos θ

þ
�
cos θ þ ðλþ λ0Þ

2

�
p cos θ − kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ k2 − 2pk cos θ
p

�
: ð32Þ

Similarly, one can also follow the same procedure to obtain
an expression for the correlators due to contribution from
right-handed Weyl fermions:

hhλðk; τÞhλ0 ðk0; τÞiR
¼ δλλ0

δ3ðkþ k0Þ
m4

p

Z
d3pp2dτ0dτ00

× aðτ0Þ−2aðτ00Þ−2Gkðτ; τ0ÞGkðτ; τ00Þ
× uðτ0; pÞu�ðτ00; pÞvðτ00; k − pÞv�ðτ0; k − pÞ

× sin2θ

�
1 −

ðλþ λ0Þ
2

cos θ

þ
�
cos θ −

ðλþ λ0Þ
2

�
p cos θ − kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ k2 − 2pk cos θ
p

�
: ð33Þ

Equations (32) and (33) are the main results of our work.
They reflect the fact that the production of fermions, from
vacuum, with a definite helicity is accompanied by the
generation of helical gravitational waves. However, we
warn the reader that these equations are contaminated by
ultraviolet (UV) divergences that have to be exorcised
before making sense of their physical significance. Unlike
the bosonic UV divergences, UV divergences of fermions
in FRW background is a subtle topic that has been
discussed in a few works, see, e.g., [50–52], and in the
context of GW production in [46,49]. In this work we do
not try to follow a rigorous procedure to regularize

expressions (32) and (33). Instead, we follow a more
phenomenological method, as we briefly discuss in Sec. III.
So far, our results did not depend on a specific particle

physics model that can lead to the production of fermions
with a definite helicity. In the next section, we examine the
possibility of this scenario in a model of pseudoscalar
inflation.

III. AXION COUPLING TO FERMIONS
AND THE PRODUCTION OF CHIRAL

GRAVITATIONAL WAVES

In the previous section we showed that the production of
fermions with a definite helicity will accompany the
generation of helical gravitational waves. Fermion produc-
tion in the early Universe via the parametric resonance has
been the topic of many publications, see, e.g., [53–57].
However, in all these examples the produced fermions are
vector-like, and hence, they source GW which are left-right
symmetric.
In this section we discuss a specific model that is

capable of producing either right- or left-handed fer-
mions during inflation [58], and hence, the generation of
helical tensor modes. This is achieved by coupling a
Dirac fermion to an axion ϕ. Axions could have played
a very important role during the early Universe. In fact,
they are perfect candidates to build radiatively stable
models of inflation [59], thanks to their continuous shift
symmetry (which is broken to a discrete shift symmetry
due to instanton effects). This shift symmetry will
guarantee that the fermions coupling to axions is
governed by a dimension-5 operator [60]. The action
of the model is given in terms of two left-chiral Weyl
fermions, ψ1 and ψ2 which together make up a Dirac
fermion,2 by [58]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
iψ†

1e
μ
aσ̄aDμψ1 þ iψ†

2e
μ
aσ̄aDμψ2

−mðψ1ψ2 þ ψ†
1ψ

†
2Þ þ

C
f
∂μϕðψ†

1e
μ
aσ̄aDμψ1Þ

�
; ð34Þ

where m is the fermion mass, f is the axion constant,
and C is a coupling constant. This action is invariant
under the U(1) global transformation ψ1 → eiθψ1 and
ψ2 → e−iθψ2. Notice that the left-chiral Weyl fermions,
ψ1 and ψ2, are eigenstates of the U(1) charge and that
they have opposite charges under the U(1) symmetry.
In order to study the generation of fermions in FRW

background one defines χ1;2 ≡ ψ1;2a−3=2 and expands χ1
and χ2 in helicity eigensates as:

2In particular, a four-spinor Dirac fermion can be written as
Ψ≡ ½ψ1ψ

†
2
�.
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χ1 ¼
X
λ

Z
đ3p½uðτ; p; λÞξλðpÞaðp; λÞeip·x

þ vðτ; p; λÞξ−λðpÞb†ðp; λÞe−ip·x�;

χ2 ¼
X
λ

Z
đ3p½uðτ; p; λÞξλðpÞbðp; λÞeip·x

þ vðτ; p; λÞξ−λðpÞa†ðp; λÞe−ip·x�: ð35Þ

Notice that unlike the massless case, here both helicities,
λ ¼ �, are present in the expansion since a massive Weyl
fermion does not have a definite helicity. Next, one
substitutes the expansion (35) into the equations of motion,
that result from varying the action (34) with respect to ψ1;2,
and studies the time evolution of the mode functions u and
v assuming that one starts from the Bunch-Davies vacuum
in the far past. This procedure was carried out and
thoroughly investigated in [58], during both the inflationary
and preheating eras, where the axion played the role of the
inflaton. The conclusion is that during inflation and in the
limit H ≫ m only one of the helicities, either left or right,
of both fields, ψ1 and ψ2, will be generated depending on

the sign of the parameter ϑ≡ − C _ϕ
fH. During inflation we

have to a very good approximation _ϕ ¼ constant and hence
the parameter ϑ stays almost constant. Taking ϑ < 0,
jϑj ≫ 1, and m ≪ H, it was shown in [58] that the particle
production of helicity λ ¼ − is enhanced, while the
production of helicity λ¼þ is suppressed, i.e., nλ¼− ≅ 1
and nλ¼þ ≅ 0, where n is the fermion number density.3

Therefore, the physical picture is that the rolling inflaton
(axion) leads to the production of fermions with negative
helicity,4 which in turn breaks the macroscopic parity of the
space. The mode functions that correspond to the helicity
λ ¼ − are given by [58]

uðτ; p;−Þ ¼ e
π
2
ϑffiffiffiffiffiffiffiffiffiffiffi

−2pτ
p W1

2
þiϑ;iϑð−2ipτÞ;

vðτ; p;þÞ ¼ e−
π
2
ϑffiffiffiffiffiffiffiffiffiffiffi

−2pτ
p W�

1
2
−iϑ;iϑð−2ipτÞ; ð36Þ

where Wκ;μ are the Whittaker functions. These are the
explicit forms of the mode functions u and v of the left-
chiral Weyl fermions that appear in Eq. (18). Both of the
mode functions uðτ; p;−Þ and vðτ; p;þÞ accompany the
negative helicity spinor ξ− as can be seen from Eq. (35).
Now, we are in a position to calculate the correlators

hhλðk; τÞhλ0 ðk0; τÞi from Eq. (32). The Green’s function
Gkðτ; τ0Þ in quasi de-Sitter background reads [37]

Gkðτ; τ0Þ ¼
1

k3τ02
½ð1þ k2ττ0Þ sin kðτ − τ0Þ

þ kðτ0 − τÞ cos kðτ − τ0Þ� ð37Þ

for τ > τ0 and Gkðτ; τ0Þ ¼ 0 for τ < τ0. Making the change
of variables p ¼ ky, kτ0 ¼ x0, and kτ00 ¼ x00 in (32), making
use of a ¼ − 1

τH, and taking into account that we have two
left-chiral Weyl fermions, we find at the end of inflation,
i.e. at τ → −1=H

hhλðk; τÞhλðk0; τÞi ¼
δ3ðkþ k0Þ

k3
H4

m4
p
F λ

�
k
H

�
; ð38Þ

where

F λðxÞ ¼ π

Z
∞

0

dy
Z

−x

−∞
dx0

Z
−x

−∞
dx00

Z
π

0

dθx0x00

× Gðx; x0ÞGðx; x00Þ y3sin3θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 − 2y cos θ

p
×W1

2
þiϑ;iϑð−2iyx0ÞW�

1
2
þiϑ;iϑ

ð−2iyx00Þ

×W1
2
−iϑ;iϑ

�
−2ix0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 − 2y cos θ

q �

×W�
1
2
−iϑ;iϑ ×

�
−2ix00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 − 2y cos θ

q �

×
�
1þ λ cos θ þ ðcos θ þ λÞðy cos θ − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2 − 2y cos θ
p

�
; ð39Þ

and

Gðx; x0Þ ¼ −
1

x02
½ð1 − xx0Þ sinðxþ x0Þ

− ðxþ x0Þ cosðxþ x0Þ�: ð40Þ

In the limit x → −∞ the Whittaker function behaves as
limx→∞W1

2
þiθ;iθðixÞ ≈ ðixÞ12þiθe−ix=2. Thus, the function F λ

receives an infinite contribution from the vacuum modes
and it needs to be regularized. Here, we do not attempt to
follow a rigorous regularization scheme.5 Instead, we adopt
a heuristic, yet a physical, method to cut off the divergent
integrals. At the end of inflation, a ≈ 1, modes with wave
numbers p > H are deep in the UV, and they do not have
enough time to get on shell. Hence, the integral over p in
(32) should be cut off at momentum p ≈H, i.e., the y
integral should be cut off at values6 of y ≥ 1. Next, we

3Notice that the nonperturbative production of fermions is
blocked by the Pauli exclusion principle and hence we should
expect n ≤ 1.

4Fermions of both positive and negative charges with respect
to U(1) are equally produced.

5See, e.g., [49] for a more sophisticated regularization scheme
that can be used for fermion production in FRW background.

6In fact, the cutoff should depend on ϑ since the amplified
modes have momenta of order p≃ ϑH. Hence, the integral over y
in Eq. (39) should range from 0 to ϑ=x ≳ 1. This dependence on ϑ
is expected to appear in a more sophisticated regularization
method, which is not captured by our scheme.
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observe that the Whittaker functionW1
2
þiϑ;iϑðixÞ behaves as

ðixÞ12−iθ in the limit x → 0. Thus, the only difference
between the two limits x → 0 and x → ∞ of the
Whittaker function is the phase e−i

x
2, which causes the

integrand to suffer from rapid oscillations. This oscil-
latory behavior is associated with the vacuum fluctua-
tions deep in the UV. Therefore, we can set the phase to
zero in our approximation of the Whittaker function in
the limit x → ∞, since anyway we are cutting off the
integral in the UV. Thus, we can approximate the
Whittaker function W1

2
þiϑ;iϑðixÞ by ðixÞ12−iθ throughout

the entire evaluation of the integral. In addition, in order
to efficiently cut off the integrals, we multiply every
function W1

2
þiϑ;iϑðixÞ by e−ϵjxj, ϵ > 0. This exponential

factor will force the integrand to vanish when the
argument of the Whittaker function becomes of order
1 or bigger. After all, we know on physical grounds that
most of the fermion production occurs when pjτj → 0,
i.e., when the argument of the Whittaker function
approaches zero. We used ϵ ¼ 0.5 in our numerical
integration shown in Fig. 1, and verified that the spectral
shape is insensitive to the value of ϵ.
Making the series of the above mentioned approxima-

tions in (39), we find for the superhorizon modes,
k=H ≪ 1, the power spectrum

P− ≡ hh−ðk; τÞh−ðk; τÞi ≅
H2

π2m2
p

�
1þ 108

H2

m2
p

�
;

Pþ ≡ hhþðk; τÞhþðk; τÞi ≅
H2

π2m2
p

�
1þ 37

H2

m2
p

�
; ð41Þ

where we restored the homogenous part. Then, the handed-
ness of the tensor mode is given by

Δχ ¼ P− − Pþ

P− þ Pþ ≅ 35
H2

m2
p
: ð42Þ

Taking H ≤ 1013 GeV, we find that Δχ ≤ 10−8, which is
not in reach within the current CMB polarization experi-
ments. Such a small signal is expected since the production
of fermions is blocked by the Pauli exclusion principle.
We also evaluated the integral (39) for values of k in the

range 0 < k=H < 1 to find that the spectrum is almost scale
invariant with a slight red tilt as can be seen in Fig. 1. This
scale invariance can be quantified by writing either Pþ or
P− as

H2

π2m2
p

�
1þ C

H2

m2
p

�
k
kp

�
−n
�
; ð43Þ

where C is a constant, kp is a reference wave vector, and n
is an index that quantifies the deviation from scale
invariance. The value of n can be extracted from our
numerical calculations to find with a very good approxi-
mation n ≈ 10−4. Such nearly scale-invariant spectrum was
also found in the chiral GW that accompany the non-
perturbative production of helical photons due to their
coupling to axions,7 [37]. Other models, however, predict a
large deviation from scale invariance, see, e.g., [16], and
hence, the spectral index n can be used to distinguish
between various models.8

IV. SUMMARY AND DISCUSSION

In this work, we reported on a new mechanism to
generate chiral gravitational waves from the imbalance
between left and right-handed fermions. This imbalance
breaks P and leads to an enhancement of a certain helicity
mode of gravitational waves. In particular, we showed that
the nonperturbative production of chiral Weyl fermions in a
time varying background is accompanied by tensor per-
turbations of preferred helicity, see Eq. (32) and Eq. (33) for
left and right-chiral fermions, respectively. This mechanism
can be generalized to any process that creates an asymmetry
between fermions of different helicities.
We also studied the generation of chiral GW from the

production of fermions with a definite helicity in a model
of pseudoscalar inflation [58]. We calculated the power
spectrum of the chiral components of the gravitational
waves produced in this model. Chiral gravitational waves
can be detected either indirectly using P-odd TB and EB
CMB correlators, which would otherwise be zero in the
absence of P breaking, or using ground and space-based

F– (x)

F+ (x)

10–15 10–12 10–9 10–6 0.001 1
1

2

5

10

20

x

F
(x

)

FIG. 1. The numerical evaluation of the function F λðxÞ in
Eq. (39) for both positive and negative helicities. Since fermions
with negative helicity are produced from vacuum, we expect that
the amplitude of hh−h−i to be bigger than that of hhþhþi, which
is clear from the figure. We also find that the spectrum is almost
scale invariant with a slight red tilt.

7The spectral index of the tensor modes in [37] was not
calculated. The spectral index of the scalar mode in the same
model, however, was given in [61], which indicated that the scalar
spectrum is also nearly scalar invariant.

8For instance see Refs. [29,38,42,47,62–64] that study GW in
various models.
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interferometers with polarization capabilities. In particu-
lar, we found that the amplitude of the difference between
the chiral components of the superhorizon GW modes is
not in reach within the current CMB polarization experi-
ments [65]. However, the situation changes if a large
number of chiral fermions N is produced during infla-
tion. Provided that the production of a large number of
fermions does not backreact on inflation, the handedness
of the tensor mode is

Δχ ≅ N
H2

m2
p
: ð44Þ

Thus, a large number of fermions,9 N ≈ 108 for
H ≈ 1013 GeV, is needed in order to result in a detec-
table signal in current CMB polarization experiments.
Also, we found that the generated chiral GW are almost
scale invariant with a slight red tilt. It remains to be
studied whether subhorizon modes of these chiral GW

can be directly detected in ground and space-based
interferometers.
Particle production during inflation and radiation domi-

nated eras can leave features in the primordial GW
spectrum. Recently, there has been an interest in the study
of models that can lead to the generation of gravitational
waves that might be detected in future ground and space-
based interferometers [29,49,67]. However, most of these
studies have focused on the magnitude of the GW rather
than their polarization. It will be interesting to study the
possibility of detecting the polarization of the primordial
GW in these experiments. Applications of the mechanism
we reported on in this work to various processes in the early
Universe as well as the possibility of detecting chiral GW in
future experiments are under our current investigation and
will appear elsewhere.
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