
Orbital flips in hierarchical triple systems: Relativistic effects
and third-body effects to hexadecapole order

Clifford M. Will*

Department of Physics, University of Florida, Gainesville, Florida 32611, USA
and GReCO, Institut d’Astrophysique de Paris, CNRS, Université Pierre et Marie Curie,

98 bis Boulevard Arago, 75014 Paris, France
(Received 12 May 2017; published 31 July 2017)

We analyze the secular evolution of hierarchical triple systems in the post-Newtonian approximation to
general relativity.We expand the Newtonian three-body equations ofmotion in powers of the ratio a=A, where
a andA are the semimajor axis of the inner binary’s orbit andof the orbit of the third body relative to the center of
mass of the inner binary, respectively. The leading order “quadrupole” terms, of order ða=AÞ3 relative to the
1=a2 accelerationwithin the inner binary, are responsible for thewell-knownKozai-Lidovoscillations oforbital
inclination and eccentricity. The octupole terms, of order ða=AÞ4 have been shown to allow the inner orbit to
“flip” from prograde relative to the outer orbit to retrograde and back, and to permit excursions to very large
eccentricities. We carry the expansion of the equations of motion to hexadecapole order, corresponding to
contributions of order ða=AÞ5.We also include the leading orbital effects of post-Newtonian theory, namely the
pericenter precessions of the inner and outer orbits. Using the Lagrange planetary equations for the orbit
elements of both binaries, we average over orbital time scales, obtain the equations for the secular evolution of
the elements through hexadecapole order, and employ them to analyze cases of astrophysical interest. We find
that, for the most part, the orbital flips found at octupole order are robust against both relativistic and
hexadecapole perturbations.We show that, for equal-mass inner binaries, where the octupole terms vanish, the
hexadecapole contributions can alone generate orbital flips and excursions to very large eccentricities.
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I. INTRODUCTION AND SUMMARY

The hierarchical three-body problem, in which a close
binary system is in orbit with a distant third body, is as old as
Newton’s gravity, but continues to yield surprises. The first
surprise camewhen Newton himself failed to account for the
advance of the lunar perigee caused by the perturbing effect
of the distant Sun (although a correct calculation does exist
in his unpublished papers). Clairaut published a correct
solution in 1749. Another notable surprise was LeVerrier’s
failure in 1859 to account for the advance of Mercury’s
perihelion by including perturbations of the Sun-Mercury
binary system due to the distant planets. The solution to this
surprise was famously provided by Einstein.
A contemporary surprise was the discovery in the 1960s

of the Kozai-Lidov mechanism, in which, over long time
scales, there is an interchange between the eccentricity of the
two-body inner orbit and its inclination relative to the plane
of the third body. This remarkable effect was discovered
independently by Lidov [1], who was studying orbits of
artificial satellites, and Kozai [2] who was studying asteroid
orbits. For many years, interest in the Kozai-Lidov effect was
largely confined to solar-system research, until the discov-
eries of unusual exoplanet and multiple star systems brought
the phenomenon into the astrophysical realm. Because the
mechanism could generate orbits with high eccentricity, it

even became of interest for general relativistic astrophysics
because of the possible enhancement of relativistic effects
such as the pericenter advance and the emission of gravi-
tational radiation.
The Kozai-Lidov mechanism is obtained by expanding

the perturbing acceleration in the inner binary’s motion
caused by the third body in powers of ϵ≡ a=A, the ratio of
the two semimajor axes, and keeping the leading term, which
is proportional to ϵ3 (conventionally called the “quadrupole
order” term). A similar expansion is performed on the
acceleration of the third body. The equations of motion
are averaged over time to suppress periodic effects and to
reveal the long-timescale, secular changes in the orbits. One
immediate consequence is that the two semimajor axes, a
and A, do not experience secular changes. In the limit where
one of the inner bodies is much less massive than the other,
the component of the angular momentum of the inner orbit
that is perpendicular to the plane of the outer orbit turns out
to be constant. Since this component is proportional to

cos z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
, where z is the inclination angle between the

normals to the two orbital planes and e is the eccentricity of
the inner orbit, we see that, as z decreases, e increases, and
vice versa. The variables e and z oscillate between well-
defined maxima and minima, depending on the initial
conditions. In addition, if z is initially less than 90°, so that
the inner orbit is prograde relative to the outer orbit, the orbit
stays prograde. If the inner orbit is initially retrograde*cmw@phys.ufl.edu
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(z > 90°), it stays retrograde. The inner orbit cannot flip
relative to the outer orbit.
The next surprise came in 2011. It was known by then that

in about 25 percent of exoplanet systems with “hot Jupiters,”
that is Jovian-mass planets close to the host star, the planet
was in a retrograde orbit relative to the spin of the star. If, as in
the Solar System, the star and the other planets rotated in the
same direction, how did these Jupiters end up in retrograde
orbits? Naoz et al. [3] pointed out that, if one included the
terms in the perturbing acceleration at the next order in ϵ,
namely ϵ4, (called “octupole order” terms) then orbital flips
could occur. In addition, unlike the modest variations in
eccentricity allowed by the Kozai-Lidov mechanism, excur-
sions to eccentricities very close to unity could occur. (These
behaviors had actually been noticed almost a decade earlier
[4–6], but at the time there was no obvious astrophysical
application.) As a result a “run of the mill” Jupiter, perturbed
by amore distant planet, could be flipped to a retrograde orbit
and also brought very close to the star, where tidal and other
dissipative processes could circularize the orbit, thus pro-
ducing a retrograde “hot Jupiter.”
In follow-up papers, Naoz and collaborators [7,8]

studied other situations in which orbital flips could occur.
Naoz et al. [9] studied the effects of post-Newtonian
general relativistic (GR) corrections, including gravita-
tional radiation reaction, on the generation of orbital flips
and extreme eccentricities, while Liu et al. [10] studied the
impact of short-range forces induced by tidal, rotational,
and GR effects on these extreme phenomena. Lithwick and
Naoz [11] and Katz et al. [12] studied the case where one of
the inner bodies is a “test” particle. Naoz [13] provides a
thorough review of these effects in hierarchical triple
systems and discusses their astrophysical implications.
Given the complexity of the hierarchical three-body

problem, it is natural to ask, are there more surprises?
To that end, we have gone to the next order in the expansion
of the perturbing acceleration, to order ϵ5, called “hex-
adecapole order.”Other authors have addressed this level of
approximation in a range of contexts, mainly using the
canonical approach of Delaunay variables. Laskar and
Boué [14] obtained the disturbing function in the
Hamiltonian formally to all orders and explicitly to very
high orders in ϵ; they did not derive the explicit equations of
motion at hexadecapole order. Hamers derived the secular
equations through hexadecapole order (unpublished),
and Hamers and Portegies Zwart [15] expanded the
Hamiltonian for an N-body system in a sequence of
hierarchical orbits to hexadecapole and dotriocontupole
(ϵ6) orders. Antognini [16] derived (though did not display)
the secular equations through hexadecapole order in both
the Delaunay approach and in a method using eccentricity
and angular momentum vectors, and made the code
publicly available. Carvalho et al. [17] derived the con-
tributions to the disturbing function at hexadecapole and

dotriocontupole orders, but under the assumption that the
orbital plane of the third body is fixed.
We use the approach of “osculating orbit elements”

whereby each of the orbits is characterized by its semimajor
axis and eccentricity, its inclination and angle of ascending
node relative to a reference coordinate system, and its
angle of pericenter measured from the ascending node.
The equations of motion for the two orbits can then be
rewritten as the “Lagrange planetary” equations for the
orbit elements, which take the generic form dYα=dt ¼
QαðXβ; Zγ; tÞ, where Xβ and Zγ denote orbit elements of the
inner and outer binary, respectively, and Yα denotes an orbit
element of either binary. We then carry out the conventional
average over an orbit of both the inner binary and the outer
binary, arriving at equations for the secular changes in the
orbit elements. To quadrupole and octupole orders, our
equations for the secular evolution of the elements agree
completely with those derived using the Delaunay variables
approach, and presented in Sec. II B of Ford et al. [5], or in
Appendixes A and B of Naoz et al. [7].
We incorporate the effects of GR by adding to the secular

equations the relativistic pericenter advances of both the
inner and outer orbits at the first post-Newtonian order
(we do not include additional GR terms studied in [9]). We
then apply these hexadecapole-order equations including
GR to a number of case studies presented in the literature,
particularly those where orbital flips and large eccentricity
excursions occur at octupole order [7,8,11]. We also
explore the special case where the masses comprising
the inner binary are equal. In this case the octupole terms
vanish identically. Nevertheless, we find a “sweet spot” in
the space of orbits where the hexadecapole terms alone can
generate orbital flips and large eccentricity excursions.
The remainder of this paper presents details. In Sec. II

we present the detailed derivation of the secular Lagrange
planetary equations through hexadecapole order. In Sec. III
we present five case studies analyzed using these higher-
order equations. Section IV considers the equal-mass case.
Section V presents concluding remarks. In an Appendix, we
present a dictionary for converting between the language of
osculating orbit elements and the Delaunay variables
approach used in [5,7]. Hereafter, we refer to the two papers
by Naoz et al. [3,7] collectively as NFLRT.

II. SECULAR EVOLUTION OF HIERARCHICAL
TRIPLE SYSTEMS

A. Equations of motion and conserved quantities

We begin with the Newtonian equations of motion for a
three-body system,

aa ¼ −
Gmbxab
r3ab

−
Gmcxac
r3ac

; ð2:1Þ

where a ¼ ð1; 2; 3Þ, b ≠ c ≠ a, G is Newton’s constant,
xab ≡ xa − xb, and rab ≡ jxabj. Bodies 1 and 2 are taken to
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be the inner binary, with body 3 taken to be the outer
perturbing body. We define the centers of mass of the
system and of the inner binary to be

Xc ≡ 1

M
ðm1x1 þm2x2 þm3x3Þ;

xc ≡ 1

m
ðm1x1 þm2x2Þ; ð2:2Þ

where M≡m1 þm2 þm3 and m≡m1 þm2. A “hierar-
chical” triple system is one in which the orbital separation
of the inner binary is small compared to that of the outer
binary, so we expand the equations of motion in powers
of that small ratio. This can be carried out by writing
xa3 ¼ xac þ xc3, where a ¼ ð1; 2Þ, with jxacj ≪ jxc3j, and
using the Taylor expansion

xja3
r3a3

¼ xjc3
r3c3

−
X∞
l¼1

1

l!
xLac∂jL

c

�
1

rc3

�
; ð2:3Þ

where the superscript L is a multi-index, with the inter-
pretation zL ≡ zi1zi2…zil ; similarly, ∂jL

c is a multipartial
derivative with respect to xc, and a contraction over the l
repeated indices is assumed. We now define x≡ x1 − x2,
r≡ jxj, n≡ x=r, X ≡ x3c, R≡ jXj, N ≡ X=R; note that X
is chosen to point from the inner binary to the third body.
We also define the dimensionless mass coefficients αi ≡
mi=m (i ¼ 1, 2), with α1 þ α2 ¼ 1. We define the dimen-
sionless mass difference and dimensionless reduced mass

Δ≡ α2 − α1; η≡ α1α2; ð2:4Þ

and choose body 1 to be less than or equal in mass to body
2, so that Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

≥ 0; recall that η ranges between 0
and 1=4. We note that x1c ¼ α2x and x2c ¼ −α1x. With this
convention, in the limit m1 → 0, η → 0, Δ → 1, and the
relative orbit x and the actual orbit x1c of body 1 coincide.
We also recall that ∂jL

c rc3 ¼ ð2lþ 1Þ!!NhjLi=Rlþ2, where
the superscript h…i denotes a symmetric trace-free product
(for a review see [18]).
We can then express the equation of motion of the inner

binary and of the third body relative to the inner center of
mass in the general form

aj ¼ −
Gmnj

r2
þ Gm3

R2

X∞
l¼1

ð2lþ 1Þ!!
l!

�
r
R

�
l

× nLNhjLi½αl2 − ð−α1Þl�;

Aj ¼ −
GMNj

R2
− η

GMr
R3

X∞
l¼1

ð2lþ 3Þ!!
ðlþ 1Þ!

�
r
R

�
l

× nLþ1NhjðLþ1Þi½αl2 − ð−α1Þl�; ð2:5Þ

where a≡ d2x=dt2 and A≡ d2X=dt2. Note that the per-
turbing terms in the equation for Aj depend on the inner
binary’s reduced mass parameter η; this is to be expected,
since in the limit in which body 1 is a test body, η → 0, and
the third body moves on an unperturbed Keplerian orbit
around the massive body 2.
The equations admit conserved total energy and angular

momentum, given by

E ¼ 1

2

X
a

mav2a −
1

2

X
a;b

Gmamb

rab

¼ 1

2
ðmηv2 þMη3V2Þ − Gm2η

r
−
GM2η3

R
− ηη3

GM2r
R2

X∞
l¼1

ð2lþ 1Þ!!
ðlþ 1Þ!

�
r
R

�
l
nLþ1NhLþ1i½αl2 − ð−α1Þl�;

J ¼
X
a

maxa × va ¼ mηðx × vÞ þMη3ðX × VÞ; ð2:6Þ

where η3 ≡mm3=M2, and we have chosen the coordinates so that Xc ¼ 0.
Beginning with l ¼ 1, the terms in the expansions over l are conventionally denoted quadrupole, octupole,

hexadecapole, dotriocontupole, etc. We expand the equations through hexadecapole order, leading to the final forms

aj ¼ −
Gmnj

r2
þ Gm3r

R3
ð3NjNn − njÞ þ 3

2

Gm3r2

R4
Δð5NjN2

n − 2njNn − NjÞ

þ 1

2

Gm3r3

R5
ð1 − 3ηÞð35NjN3

n − 15njN2
n−15NjNn þ 3njÞ;

Aj ¼ −
GMNj

R2
−
3

2

GMr2

R4
ηð5NjN2

n − 2njNn − NjÞ − 1

2

GMr3

R5
ηΔð35NjN3

n − 15njN2
n−15NjNn þ 3njÞ

−
5

8

GMr4

R6
ηð1 − 3ηÞð63NjN4

n − 28njN3
n−42NjN2

n þ 12njNn þ 3NjÞ; ð2:7Þ
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where Nn ≡ N · n. The octupole perturbations depend on
the dimensionless mass difference Δ, while the hexadeca-
pole perturbations depend on the factor ð1 − 3ηÞ. To
hexadecapole order, the energy is given by

E ¼ 1

2
ðmηv2 þMη3V2Þ − Gm2η

r
−
GM2η3

R

−
1

2

GM2ηη3r2

R3

�
ð3N2

n − 1Þ þ Δ
�
r
R

�
Nnð5N2

n − 3Þ

þ 1

4
ð1 − 3ηÞ

�
r
R

�
2

ð35N4
n − 30N2

n þ 3Þ
�
: ð2:8Þ

B. Osculating orbit elements and the Lagrange
planetary equations

We define the osculating orbit elements of the inner and
outer orbits in the standard manner: for the inner orbit, we
have the orbit elements p, e, ω,Ω and ι, with the definitions

r≡ p=ð1þ e cos fÞ;
x≡ rn;

n≡ ½cosΩ cosðωþ fÞ − cos ι sinΩ sinðωþ fÞ�eX
þ ½sinΩ cosðωþ fÞ þ cos ι cosΩ sinðωþ fÞ�eY
þ sin ι sinðωþ fÞeZ;

λ≡ dn=df; ĥ ¼ n × λ;

h≡ x × v≡ ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
ĥ; ð2:9Þ

where (eX, eY , eZ) define a reference basis, to be specified
below. From the given definitions, it is evident that v ¼
_rnþ ðh=rÞλ and _r ¼ ðhe=pÞ sin f.
For the outer orbit, we have the elements P, E, ω3, Ω3,

and ι3, with the definitions

R≡ P=ð1þ E cosFÞ;
X ≡ RN;

N ≡ ½cosΩ3 cosðω3 þ FÞ − cos ι3 sinΩ3 sinðω3 þ FÞ�eX
þ ½sinΩ3 cosðω3 þ FÞ þ cos ι3 cosΩ3 sinðω3 þ FÞ�eY
þ sin ι3 sinðω3 þ FÞeZ;

Λ≡ dN=dF; Ĥ ¼ N × Λ;

H ≡ X × V ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
GMP

p
ĥ: ð2:10Þ

In a similar manner, V ¼ _RN þ ðH=RÞΛ and _R ¼
ðHE=PÞ sinF. The semimajor axes of the two orbits are
defined by a≡ p=ð1 − e2Þ and A≡ P=ð1 − E2Þ.
The total angular momentum is strictly conserved if the

system is isolated and we ignore gravitational radiation
reaction; therefore, it is natural to choose the Z axis to lie
along J, i.e., eZ ¼ J=J (see Fig. 1). In general,

J ¼ Jb½sin ιðsinΩeX − cosΩeYÞ þ cos ιeZ�
þ J3½sin ι3ðsinΩ3eX − cosΩ3eYÞ þ cos ι3eZ�; ð2:11Þ

where Jb ¼ mη
ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
and J3 ¼ Mη3

ffiffiffiffiffiffiffiffiffiffiffiffi
GMP

p
. Thus, to

align J with the Z axis, we must impose Jb sin ι sinΩ ¼
−J3 sin ι3 sinΩ3 and Jb sin ι cosΩ ¼ −J3 sin ι3 cosΩ3; this
implies that tanΩ¼ tanΩ3 and sgnðsinΩÞ ¼ −sgnðsinΩ3Þ.
Together, these imply that

Ω3 ¼ Ωþ π: ð2:12Þ

Another way of stating this result is that the components
of the angular momenta of the two orbits in the X-Y plane
must be equal and opposite, and thus that the orbital planes
must intersect the X-Y plane along a common line, and the
lines of ascending nodes must be parallel and in opposite
directions. We then have that Jb sin ι ¼ J3 sin ι3. Defining

β≡ Jb
J3

¼ sin ι3
sin ι

; z ¼ ιþ ι3; ð2:13Þ

it is straightforward to obtain the relations

cot ι ¼ β þ cos z
sin z

; cot ι3 ¼
β−1 þ cos z

sin z
: ð2:14Þ

It turns out that only the relative inclination z between the
two orbits is dynamically relevant; given an evolution for z
and β, the individual orbital inclinations can be recovered
algebraically from Eqs. (2.14).
From Eqs. (2.7), we define the perturbing accelerations

δa≡ aþGmn=r2 and δA≡ AþGMN=R2. Then, for the
inner binary, we define the radial R, cross-track S, and
out-of-plane W components of the perturbing acceleration
δa, defined respectively by R≡ n · δa, S ≡ λ · δa and
W ≡ ĥ · δa, and we write down the “Lagrange planetary
equations” for the evolution of the orbit elements,

FIG. 1. Orientation of inner and outer orbits.
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dp
dt

¼ 2

ffiffiffiffiffiffiffiffi
p3

Gm

r
S

1þ e cos f
;

de
dt

¼
ffiffiffiffiffiffiffiffi
p
Gm

r �
sin fRþ 2 cos f þ eþ ecos2f

1þ e cos f
S
�
;

dϖ
dt

¼ 1

e

ffiffiffiffiffiffiffiffi
p
Gm

r �
− cos fRþ 2þ e cos f

1þ e cos f
sin fS

�
;

dι
dt

¼
ffiffiffiffiffiffiffiffi
p
Gm

r
cosðωþ fÞ
1þ e cos f

W;

sin ι
dΩ
dt

¼
ffiffiffiffiffiffiffiffi
p
Gm

r
sinðωþ fÞ
1þ e cos f

W: ð2:15Þ

The auxiliary variable ϖ is defined such that the change in
pericenter angle is given by _ω ¼ _ϖ − _Ω cos ι.
For the outer binary, the analogous components of the

perturbing acceleration δA are defined by R3 ≡ N · δA,
S3 ≡ Λ · δA andW3 ≡ Ĥ · δA. The planetary equations for
the outer binary take the form of Eqs. (2.15), with suitable
replacements of all the relevant variables, p → P, e → E,
m → M, f → F, and so on, and with _ω3 ¼ _ϖ3 − _Ω3 cos ι3.
Combining these equations and inserting the perturbing

accelerations, it is straightforward to verify directly that

d
dt

ðΩ −Ω3Þ ¼ 0;

d
dt

�
mη

ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
sin ι −Mη3

ffiffiffiffiffiffiffiffiffiffiffiffi
GMP

p
sin ι3

�
¼ 0;

d
dt

�
mη

ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
cos ιþMη3

ffiffiffiffiffiffiffiffiffiffiffiffi
GMP

p
cos ι3

�
¼ 0; ð2:16Þ

reflecting the conservation of the three components of the
total angular momentum.

C. Secular evolution of the orbit elements

We now use first-order perturbation theory to obtain the
secular evolutions of the orbital elements. This is done by
substituting constant values of the orbit elements into the
right-hand sides of the planetary equations, and averaging
over an orbit of both the inner and outer binaries. This is
justified by the fact that the leading order perturbation is at ϵ3

and we are going out to order ϵ5. Were we including terms of
dotriocontupole order (ϵ6) in the equations of motion, for
example, it would have been necessary to invoke second-
order perturbation theory for the quadrupole terms, in which
the full (secular plus periodic) solutions at quadrupole order
are substituted back into the Lagrange planetary equations
and the orbital average carried out again.
Each planetary equation can be written in the generic

form

dYα

dt
¼ QαðXβ; Zγ; tÞ ¼ AαðXβ; fÞBαðZγ; FÞ; ð2:17Þ

where the Xβ and Zβ are orbit elements associated with the
inner and outer binaries, respectively, and where the last
step recognizes that every term on the right-hand side can
be factorized into a product of terms depending only on one
or the other orbital elements and on either f or F. Then the
average of dYα=dt is approximated as a product of averages
of Aα and Bα, in other words
	
dYα

dt



¼ hAαihBαi

¼ 1

Pinner

Z
Pinner

0

Aαdt
1

Pouter

Z
Pouter

0

Bαdt; ð2:18Þ

where the two orbital periods are given by Pinner ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=Gm

p
and Pouter ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3=GM

p
, with the

assumption that Pinner ≪ Pouter. In integrating over an orbit
of the inner binary, it is useful to convert the angular
variable from the true anomaly f, to the eccentric anomaly
u, using the relations

sin f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin u

1 − e cos u
; cos f ¼ cos u − e

1 − e cos u
; ð2:19Þ

along with r ¼ að1 − e cos uÞ and dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=Gm

p
ð1 − e cos uÞdu. For the outer binary, we use the fact that
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3=GM

p
ð1þ E cosFÞ−2dF. Thus the orbit aver-

ages may be written

	
dYα

dt



¼ ð1 − E2Þ3=2

ð2πÞ2
Z

2π

0

Aαð1 − e cos uÞdu

×
Z

2π

0

Bα

ð1þ E cosFÞ2 dF: ð2:20Þ

After carrying out the orbital averages, we convert from
time t to a dimensionless time scaled by the inner orbital
period, namely

τ≡ t
Pinner

¼ t
2π

�
Gm
a3

�
1=2

: ð2:21Þ

With this scaling, the entire secular dynamics depends on
the three dimensionless parameters,

α≡m3

m
; η≡m1m2

m2
; ϵ≡ a

A
: ð2:22Þ

In terms of these parameters, the quantity β ¼ Jb=J3 is
given by

β ¼ η
ð1þ αÞ1=2

α
ϵ1=2

�
1 − e2

1 − E2

�
1=2

: ð2:23Þ

Through hexadecapole order, we recover the well-known
result that p, e, P, and E evolve in such a way that the
semimajor axes a and A are constant; in other words
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da
dτ

¼ dA
dτ

¼ 0: ð2:24Þ

The secular evolution of the remaining orbit elements is given as follows:
Quadrupole order

de
dτ

¼ 15π

2
αϵ3

eð1 − e2Þ1=2
ð1 − E2Þ3=2 sin2 z sinω cosω;

dι
dτ

¼ −
15π

2
αϵ3

e2

ð1 − e2Þ1=2ð1 − E2Þ3=2 sin z cos z sinω cosω;

dΩ
dτ

¼ −
3π

2
αϵ3

1

ð1 − e2Þ1=2ð1 − E2Þ3=2
sin z cos z

sin ι
ð1þ 4e2 − 5e2 cos2 ωÞ;

dϖ
dτ

¼ 3π

2
αϵ3

ð1 − e2Þ1=2
ð1 − E2Þ3=2 ½1 − sin2 zð4 − 5 cos2 ωÞ�;

dE
dτ

¼ 0;

dι3
dτ

¼ −
15π

2
ηð1þ αÞ1=2ϵ7=2 e2

ð1 − E2Þ2 sin z sinω cosω;

dϖ3

dτ
¼ 3π

4
ηð1þ αÞ1=2ϵ7=2 1

ð1 − E2Þ2 ½2þ 3e2 − 3 sin2 zð1þ 4e2 − 5e2 cos2 ωÞ�: ð2:25Þ

At quadrupole order, we recover many of the features of the well-known Kozai-Lidov behavior in hierarchical triple
systems, such as the oscillation of e and ι as the pericenter angle ω advances. When η ¼ 0, the outer orbit is a Keplerian
ellipse with constant elements, and the quantity ½að1 − e2Þ�1=2 cos z is constant under the secular evolution of e and ι; this is
proportional to the component of the inner orbit’s angular momentum orthogonal to the plane of the third body. For general
η, there is a fixed point of the orbit elements of the inner orbit (_e ¼ _ι ¼ _ω), when ω ¼ π=2 or 3π=2, and when e and z satisfy
the constraint

5 cos2 z − 3ð1 − e2Þ þ β cos zð1þ 4e2Þ ¼ 0: ð2:26Þ

For the outer orbit, the fixed point implies _ι3 ¼ _E ¼ 0, but _ω3 ≠ 0, in general.
Octupole order

de
dτ

¼ −
15π

256
αϵ4Δ

Eð1 − e2Þ1=2
ð1 − E2Þ5=2 ðð4þ 3e2Þ½ð1þ cos zÞð1þ 10 cos z − 15cos2zÞ sinðω − ω3Þ

þ ð1 − cos zÞð1 − 10 cos z − 15cos2zÞ sinðωþ ω3Þ�
− 105e2sin2z½ð1þ cos zÞ sinð3ω − ω3Þ þ ð1 − cos zÞ sinð3ωþ ω3Þ�Þ;

dι
dτ

¼ −
15π

256
αϵ4Δ

Ee

ð1 − e2Þ1=2ð1 − E2Þ5=2 sin zðð4þ 3e2Þ½ð1þ 10 cos z − 15cos2zÞ sinðω − ω3Þ

− ð1 − 10 cos z − 15cos2zÞ sinðωþ ω3Þ�
− 35e2½ð1þ cos zÞð1 − 3 cos zÞ sinð3ω − ω3Þ − ð1 − cos zÞð1þ 3 cos zÞ sinð3ωþ ω3Þ�Þ;

dΩ
dτ

¼ 15π

256
αϵ4Δ

Ee

ð1 − e2Þ1=2ð1 − E2Þ5=2
sin z
sin ι

ðð4þ 3e2Þ½ð11 − 10 cos z − 45cos2zÞ cosðω − ω3Þ

− ð11þ 10 cos z − 45cos2zÞ cosðωþ ω3Þ�
− 35e2½ð1þ cos zÞð1 − 3 cos zÞ cosð3ω − ω3Þ − ð1 − cos zÞð1þ 3 cos zÞ cosð3ωþ ω3Þ�Þ;
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dϖ
dτ

¼ −
15π

256
αϵ4Δ

Eð1 − e2Þ1=2
eð1 − E2Þ5=2 ðð4þ 9e2Þ½ð1þ cos zÞð1þ 10 cos z − 15cos2zÞ cosðω − ω3Þ

þ ð1 − cos zÞð1 − 10 cos z − 15cos2zÞ cosðωþ ω3Þ�
− 105e2sin2z½ð1þ cos zÞ cosð3ω − ω3Þ þ ð1 − cos zÞ cosð3ωþ ω3Þ�Þ;

dE
dτ

¼ 15π

256
ηð1þ αÞ1=2ϵ9=2Δ e

ð1 − E2Þ2 ðð4þ 3e2Þ½ð1þ cos zÞð1þ 10 cos z − 15cos2zÞ sinðω − ω3Þ

− ð1 − cos zÞð1 − 10 cos z − 15cos2zÞ sinðωþ ω3Þ�
− 35e2sin2z½ð1þ cos zÞ sinð3ω − ω3Þ − ð1 − cos zÞ sinð3ωþ ω3Þ�Þ;

dι3
dτ

¼ 15π

256
ηð1þ αÞ1=2ϵ9=2Δ Ee

ð1 − E2Þ3 sin zðð4þ 3e2Þ½ð1þ 10 cos z − 15cos2zÞ sinðω − ω3Þ

þ ð1 − 10 cos z − 15cos2zÞ sinðωþ ω3Þ�
− 35e2½ð1þ cos zÞð3 − cos zÞ sinð3ω − ω3Þ þ ð1 − cos zÞð3þ cos zÞ sinð3ωþ ω3Þ�Þ;

dϖ3

dτ
¼ −

15π

256
ηð1þ αÞ1=2ϵ9=2Δ eð1þ 4E2Þ

Eð1 − E2Þ3 ðð4þ 3e2Þ½ð1þ cos zÞð1þ 10 cos z − 15cos2zÞ cosðω − ω3Þ

þ ð1 − cos zÞð1 − 10 cos z − 15cos2zÞ cosðωþ ω3Þ�
− 35e2sin2z½ð1þ cos zÞ cosð3ω − ω3Þ þ ð1 − cos zÞ cosð3ωþ ω3Þ�Þ: ð2:27Þ

It is straightforward to verify that these results are completely equivalent to those of Ford et al. [5] and NFLRT [7]. In the
Appendix we provide a dictionary that translates between our osculating orbits language and the Delaunay variables
language used in [5,7].
Hexadecapole order

de
dτ

¼ −
315π

1024
αϵ5ð1 − 3ηÞ eð1 − e2Þ1=2

ð1 − E2Þ7=2 ðð2þ 3E2Þsin2z½ð4þ 2e2Þð1 − 7cos2zÞ sin 2ω − 21e2sin2z sin 4ω�

− E2fð4þ 2e2Þ½ð1þ cos zÞ2ð1 − 7 cos zþ 7cos2zÞ sinð2ω − 2ω3Þ
þ ð1 − cos zÞ2ð1þ 7 cos zþ 7cos2zÞ sinð2ωþ 2ω3Þ�
þ 21e2sin2z½ð1þ cos zÞ2 sinð4ω − 2ω3Þ þ ð1 − cos zÞ2 sinð4ωþ 2ω3Þ�gÞ;

dι
dτ

¼ 45π

2048
αϵ5ð1 − 3ηÞ sin z

ð1 − e2Þ1=2ð1 − E2Þ7=2 ð14e
2ð2þ 3E2Þ cos z½ð4þ 2e2Þð1 − 7cos2zÞ sin 2ω − 21e2sin2z sin 4ω�

þ 2E2ð1 − 7cos2zÞð8þ 40e2 þ 15e4Þ sin 2ω3 þ 7E2e2f4ð2þ e2Þ½ð1þ cos zÞð1 − 7 cos zþ 7cos2zÞ sinð2ω − 2ω3Þ
− ð1 − cos zÞð1þ 7 cos zþ 7cos2zÞ sinð2ωþ 2ω3Þ�
þ 21e2½ð1 − 2 cos zÞð1þ cos zÞ2 sinð4ω − 2ω3Þ − ð1þ 2 cos zÞð1 − cos zÞ2 sinð4ωþ 2ω3Þ�gÞ;

dΩ
dτ

¼ 45π

2048
αϵ5ð1 − 3ηÞ 1

ð1 − e2Þ1=2ð1 − E2Þ7=2
sin z
sin ι

× ð2ð2þ 3E2Þ cos z½ð8þ 40e2 þ 15e4Þð3 − 7cos2zÞ − 28e2ð2þ e2Þð4 − 7cos2zÞ cos 2ωþ 147e4sin2z cos 4ω�
− 4E2 cos zð4 − 7cos2zÞð8þ 40e2 þ 15e4Þ cos 2ω3

þ 7E2e2f2ð2þ e2Þ½ð1þ cos zÞð5þ 7 cos z − 28cos2zÞ cosð2ω − 2ω3Þ
− ð1 − cos zÞð5 − 7 cos z − 28cos2zÞ cosð2ωþ 2ω3Þ�
− 21e2½ð1 − 2 cos zÞð1þ cos zÞ2 cosð4ω − 2ω3Þ − ð1þ 2 cos zÞð1 − cos zÞ2 cosð4ωþ 2ω3Þ�gÞ;
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dϖ
dτ

¼ 45π

1024
αϵ5ð1 − 3ηÞ ð1 − e2Þ1=2

ð1 − E2Þ7=2
ðð2þ 3E2Þ½ð4þ 3e2Þð3 − 30cos2zþ 35cos4zÞ − 28ð1þ e2Þsin2zð1 − 7cos2zÞ cos 2ωþ 147e2sin4z cos 4ω�
− 10E2ð4þ 3e2Þsin2zð1 − 7cos2zÞ cos 2ω3 þ 7E2f4ð1þ e2Þ½ð1þ cos zÞ2ð1 − 7 cos zþ 7cos2zÞ cosð2ω − 2ω3Þ
þ ð1 − cos zÞ2ð1þ 7 cos zþ 7cos2zÞ cosð2ωþ 2ω3Þ�
þ 21e2sin2z½ð1þ cos zÞ2 cosð4ω − 2ω3Þ þ ð1 − cos zÞ2 cosð4ωþ 2ω3Þ�gÞ;

dE
dτ

¼ −
45π

2048
ηð1 − 3ηÞð1þ αÞ1=2ϵ11=2 E

ð1 − E2Þ3 ð2ð8þ 40e2 þ 15e4Þsin2zð1 − 7cos2zÞ sin 2ω3

þ 28e2ð2þ e2Þ½ð1þ cos zÞ2ð1 − 7 cos zþ 7cos2zÞ sinð2ω − 2ω3Þ
− ð1 − cos zÞ2ð1þ 7 cos zþ 7cos2zÞ sinð2ωþ 2ω3Þ�
− 147e2sin2z½ð1þ cos zÞ2 sinð4ω − 2ω3Þ − ð1 − cos zÞ2 sinð4ωþ 2ω3Þ�Þ;

dι3
dτ

¼ 45π

2048
ηð1 − 3ηÞð1þ αÞ1=2ϵ11=2 sin z

ð1 − E2Þ4 ð14e
2ð2þ 3E2Þ½ð4þ 2e2Þð1 − 7cos2zÞ sin 2ω − 21e2sin2z sin 4ω�

þ 2E2ð8þ 40e2 þ 15e4Þ cos zð1 − 7cos2zÞ sin 2ω3

− 7E2e2f4ð2þ e2Þ½ð1þ cos zÞð1 − 7 cos zþ 7cos2zÞ sinð2ω − 2ω3Þ
þ ð1 − cos zÞð1þ 7 cos zþ 7cos2zÞ sinð2ωþ 2ω3Þ�
− 21e2½ð2 − cos zÞð1þ cos zÞ2 sinð4ω − 2ω3Þ þ ð2þ cos zÞð1 − cos zÞ2 sinð4ωþ 2ω3Þ�gÞ;

dϖ3

dτ
¼ 45π

4096
ηð1 − 3ηÞð1þ αÞ1=2ϵ11=2 1

ð1 − E2Þ4 ðð4þ 3E2Þ½ð8þ 40e2 þ 15e4Þð3 − 30cos2zþ 35cos4zÞ

− 140e2ð2þ e2Þsin2zð1 − 7cos2zÞ cos 2ωþ 735e4sin4z cos 4ω�
− ð2þ 5E2Þf2ð8þ 40e2 þ 15e4Þsin2zð1 − 7cos2zÞ cos 2ω3

− 28e2ð2þ e2Þ½ð1þ cos zÞ2ð1 − 7 cos zþ 7cos2zÞ cosð2ω − 2ω3Þ
þ ð1 − cos zÞ2ð1þ 7 cos zþ 7cos2zÞ cosð2ωþ 2ω3Þ�
− 147e4sin2z½ð1þ cos zÞ2 cosð4ω − 2ω3Þ þ ð1 − cos zÞ2 cosð4ωþ 2ω3Þ�gÞ: ð2:28Þ

At all three orders, these equations satisfy the three constraints (2.16) related to the conservation of total angular
momentum.
Substituting the definitions (2.9) and (2.10) into the expression (2.8) for the conserved energy and averaging over time,

we obtain the expression

E ¼ −
Gm2η

2a
−
GM2η3
2A

þ GM2ηη3a2

8A3ð1−E2Þ3=2
�
1þ 9e2 − 3ð1þ 4e2Þcos2z− 15e2cos2ωsin2z

þ 15

64

a
A

eE
ð1−E2ÞΔfð4þ 3e2Þ½ð1þ coszÞð1þ 10cos z− 15cos2zÞ cosðω−ω3Þ

þ ð1− coszÞð1− 10cosz− 15cos2zÞ cosðωþω3Þ�− 35e2sin2z½ð1þ cos zÞ cosð3ω−ω3Þ þ ð1− coszÞ cosð3ωþω3Þ�g

−
9

1024

�
a
A

�
2 1− 3η

ð1−E2Þ2 fð2þ 3E2Þ½ð8þ 40e2 þ 15e4Þð3− 30cos2zþ 35cos4zÞ

− 140e2ð2þ e2Þsin2zð1− 7cos2zÞ cos2ωþ 735e4sin4z cos4ω�−E2ð10ð8þ 40e2 þ 15e4Þsin2zð1− 7cos2zÞ cos2ω3

− 140e2ð2þ e2Þ½ð1þ coszÞ2ð1− 7 cos zþ 7cos2zÞ cosð2ω− 2ω3Þ þ ð1− coszÞ2ð1þ 7 coszþ 7cos2zÞcosð2ωþ 2ω3Þ�

− 735e4sin2z½ð1þ coszÞ2 cosð4ω− 2ω3Þ þ ð1− coszÞ2 cosð4ωþ 2ω3Þ�Þg
�
: ð2:29Þ
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The quadrupole and octupole contributions agree with
the corresponding contributions to the “energy function” F,
displayed in Eqs. (8)–(11) of [11]; in that calculation, η was
chosen to vanish, the constant pericenter of the outer orbit
was chosen to lie along the X axis, and thus ω3 ¼ π −Ω.

III. CASE STUDIES OF THE EFFECTS OF
HEXADECAPOLE CONTRIBUTIONS

We now turn to the numerical analysis of the secular
evolution of the orbital elements for cases of astrophysical
interest. The two semimajor axes a and A are constants of
the motion. The precession of the nodal angle dΩ=dτ is of
no internal dynamical interest; it represents an irrelevant
rotation of the entire system about the conserved total
angular momentum vector. None of the evolution equations
depends on Ω. The equation for dΩ=dτ is useful only for
constructing the equations of evolution for ω and ω3 using
the relations _ω ¼ _ϖ − _Ω cos ι and _ω3 ¼ _ϖ3 − _Ω cos ι3. The
individual inclinations ι and ι3 can be directly linked to the
relative inclination angle z via Eq. (2.14), and only z
appears in the equations. Thus the dynamical system
reduces to five evolution equations for the five variables
e, E, z, ω and ω3, depending only on the three dimension-
less parameters α ¼ m3=m, η ¼ m1m2=m2 and ϵ ¼ a=A.
The only place where the actual mass or distance scale
enters is in the conversion from the dimensionless time τ to
real time t via the scaling t ¼ Pinnerτ ¼ 2πτða3=GmÞ1=2.
The foregoing remarks apply only in Newtonian gravity.

In the real world, general relativity should be included, and
indeed it is well known that the simplest quadrupole-order
Kozai-Lidov oscillations can be strongly suppressed if the
rate of relativistic advance of the pericenter of the inner
binary is large enough [19]. Including the leading con-
tribution of general relativity forces us to introduce
an additional dimensionless parameter δ to the problem,
given by

δ≡Gm
c2a

¼ 9.8736 × 10−9
�

m
M⊙

��
a:u:
a

�
; ð3:1Þ

where c is the speed of light. The dominant effect is to add
to the pericenter advances of the two orbits the terms

dϖ
dτ

¼ 6π
δ

1 − e2
;

dϖ3

dτ
¼ 6π

δð1þ αÞϵ
1 − E2

: ð3:2Þ

Additional relativistic effects, such as those studied in [9],
are the subject of future work.
With three fundamental parameters (four if we include

general relativity) and five dynamical variables, a complete
exploration of the full parameter space is beyond the
scope of this paper. Instead we analyze the effects of the
hexadecapole contribution on a selection of case studies
that have appeared in the literature. Most of these have
been presented by Naoz and collaborators [3,7], who first
pointed out examples where orbital flips and excursions to
very large eccentricities induced by octupole-order terms
were astrophysically interesting. We find that, in almost all
cases, the hexadecapole and GR contributions make only
small quantitative differences, but do not impact the orbital-
flip or large-eccentricity phenomena.
Table I lists the specific parameters and initial conditions

for the cases studied in this section.

A. Hot Jupiters

In their seminal discussion of the possibility of hot
Jupiters in retrograde orbits, NFLRT considered an inner
binary of a Jupiter orbiting a solar-mass star with a ¼ 6 a:u:,
perturbed by a brown-dwarf star with a mass of 40MJ and
A ¼ 100 a:u: In this case, with M⊙ ¼ 1047MJ, the param-
eters (including the GR parameter) take the values

α ¼ 0.0382 ϵ ¼ 0.06; η ¼ 9.53 × 10−4;

Δ ¼ 0.998; δ ¼ 1.63 × 10−9: ð3:3Þ

The initial conditions chosen by NFLRT were

e¼0.001; E¼0.6; z¼65°; ω¼45°; ω3¼0°: ð3:4Þ

We evolve the secular planetary equations for 1.7 × 106

orbits of the inner binary (corresponding to about
2.5 × 107 years) for four cases, octupole order, with and
without GR precessions and hexadecapole order, with and
without GR precessions. The four cases yield very similar
results and sowe show only two of the cases. Figure 2 shows
the inclination angle z and logð1 − eÞ against time. Plotted in
blue is the Newtonian evolution at octupole order, matching
very well the results of [3,7]. Initially the system undergoes
Kozai-Lidov-type oscillations in z but with the maximum
value of z rising steadily; when z reaches 90°, the orbit
becomes retrograde and the oscillations flip. Later the orbit

TABLE I. Physical parameters and initial conditions for selected case studies.

System m1 m2 m3 a (a.u.) A (a.u.) e E z ω ω3

Hot Jupiters MJ M⊙ 40 MJ 6 100 0.001 0.6 65 45 0
Coplanar flips MJ M⊙ 0.03 M⊙ 4 50 0.8 0.6 5 0 0
Asteroid-Jupiter 0 M⊙ MJ 2 5 0.2 0.05 65 0 0
Triple star 0.25 M⊙ M⊙ 0.6 M⊙ 60 800 0.01 0.6 98 0 0
CH Cygni 0.5 M⊙ 3.51 M⊙ 0.909 M⊙ 0.05 0.21 0.32 0.6 72 145 0
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flips back to prograde, and so on. Plotted in red is the full
evolution including hexadecapole terms and the GR peri-
center precessions. The pattern of flips and the excursions to
large eccentricity are essentially the same as in the octupole
case; only the time scale has been shortened slightly, in
agreement with the N-body integrations carried out by
Naoz et al. and shown in their Fig. 3 [7]. In this case,
the hexadecapole and relativistic terms do not change the
behavior to any significant degree.
We remark that Carvalho et al. [17] found that hexadeca-

pole contributions, derived assuming a fixed third-body
orbit, appeared to produce somewhat anomalous flip
behavior (their Fig. 8), only to be restored to behavior
consistent with direct numerical integrations by the

dotriocontupole terms, derived under the same assumption
(their Fig. 9). In our approach, both orbits are perturbed
consistently, and the hexadecapole order results are fully
compatible with the N-body integrations of [7].

B. Orbital flips from nearly coplanar orbits

Li et al. [8] discovered the possibility of generating orbital
flips and large eccentricities from initially nearly coplanar
orbits using the octupole-order equations. The inner system
was again a Jupiter-Sun binary with a ¼ 4 a:u:, perturbed by
a brown dwarf, with m3 ¼ 0.03 M⊙ and A ¼ 50 a:u: The
parameters then have the values

α ¼ 0.030 ϵ ¼ 0.08; η ¼ 9.53 × 10−4;

Δ ¼ 0.998; δ ¼ 1.63 × 10−9; ð3:5Þ

and the initial conditions are

e¼0.8; E¼0.6; z¼5°; ω¼0°; ω3¼0°: ð3:6Þ

We evolve the equations for 2.5 × 105 inner orbits
(2 × 106 years), for three cases: octupole and hexadecapole
orders without GR precessions, and hexadecapole order with
GR precessions. The results are shown in Fig. 3. At octupole
order without GR (upper panel, plotted in black), the system
oscillates about small values of z for a while, then migrates
quickly to a retrograde orbit, oscillates about the new values
for a while, then migrates back. During the transition the
eccentricity reaches extreme values close to unity (lower
panel). Including the hexadecapole terms shortens the time
scale slightly (plotted in blue), but otherwise preserves the
basic behavior. These curves are in excellent agreement
with results obtained by Li [20] and Hamers [21] using both
N-body codes and orbit element codes to the same multi-
polar order. However, including the GR precessions with the
hexadecapole terms causes the first flip to abort (plotted in
red); subsequent flips are then out of phase with those where
GR is not included. It is evident that the transition from
prograde to retrograde orbits is very sensitive to the phases of
the two pericenter angles, ω and ω3 as the inclination angle z
approaches 90°. The cumulative precessions in these angles
induced by general relativity can turn a transition to
retrograde into a bounce back to prograde, and vice versa.
We now vary the semimajor axis a of the inner orbit

in order to assess the effects of GR. Holding the other
parameters and initial conditions fixed, we obtain the
curves shown in Fig. 4. Here the time scales as τða=4Þ3,
where a is in astronomical units; this time scale is chosen so
that similar numbers of Kozai cycles can appear on one
plot. For a ¼ 5 (blue), the pattern of flips is very similar to
that obtained without GR, shown in blue in Fig. 3. For
a ¼ 4 (red), the curve is the same as that shown in red in
Fig. 3. For a ¼ 3 (green) the migration to large inclinations
is suppressed by the more rapid GR precessions, although
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FIG. 2. Orbital flips and eccentricity excursions in a Jupiter-
Sun system perturbed by a distant brown dwarf. Blue: octupole
order, without GR (equivalent to Fig. 3 of [7]). Red: hexadeca-
pole order with GR. Parameters and initial orbit elements are
listed in Table I.
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FIG. 3. Orbital flips and eccentricity excursions in a nearly
coplanar Jupiter system. Black: octupole order. Blue: hexadeca-
pole order. Red: hexadecapole order with GR. Parameters and
initial orbit elements are listed in Table I.
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migrations to large eccentricities still occur. Finally, for
a ¼ 2 (black) the GR precessions permit only small Kozai-
like oscillations about the initial values of z and e.
For the nominal value a ¼ 4 a:u:, we also show the

sensitivity of orbital flips to the pericenter angles. Figure 5
shows evolutions for four initial pericenter angles of body
3: 0° (red, same as in Fig. 3), 45° (blue), 90° (green) and
180° (black). Notice that the initial values ω ¼ 0°, ω3 ¼ 0°
correspond to orbits with the initial pericenters pointing
in opposite directions (Fig. 1), while the values ω ¼ 0°,
ω3 ¼ 180° correspond to initial orbits with the pericenters
pointing in the same direction. This dependence is in
agreement with results from N-body integrations by
G. Li (private communication).

C. An asteroid-Jupiter system

NFLRT showed that octupole perturbations could induce
orbital flips in a Sun-asteroid-Jupiter system. In this case,
a ¼ 2 a:u: and A ¼ 5 a:u:, and the parameters are

α ¼ 9.55 × 10−4 ϵ ¼ 0.4; η ¼ 0;

Δ ¼ 1; δ ¼ 4.92 × 10−9: ð3:7Þ
The initial conditions are

e¼ 0.2; E¼ 0.05; z¼ 65°; ω¼ 0°; ω3 ¼ 0°: ð3:8Þ
We evolve the planetary equations for 106 orbital periods,
corresponding to about 2.8 million years, with and without
hexadecapole terms. We include the GR precessions, but
they turn out to have negligible effect in this example.
Figure 6 shows the resulting evolutions of z and e.
Including the hexadecapole terms stretches the time scale
somewhat, in agreement with the full N-body numerical
evolutions carried out by NFLRT (see Fig. 8 of NFLRT).
As in the previous example, the initial choice ω3 ¼ 180°
leads to no orbital flips.

D. A triple-star hierarchical system

Analyzing a set of hierarchical triple-star systems studied
by Fabrycky and Tremaine [22], NFLRT again found
orbital-flip behavior (Fig. 9 of [7]). The system studied
consists of an inner binary withm1 ¼ 0.25 M⊙,m2 ¼ M⊙,
a¼60a:u:, and an outer star,withm3¼0.6M⊙,a ¼ 800 a:u:
In this example, the parameters are

α ¼ 0.48 ϵ ¼ 0.075; η ¼ 0.16;

Δ ¼ 0.6; δ ¼ 2.05 × 10−10: ð3:9Þ

The initial conditions are
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e¼ 0.01; E¼ 0.6; z¼ 98°; ω¼ 0°; ω3 ¼ 0°: ð3:10Þ

In this example, the initial inner orbit is already retrograde.
We evolve for 5×104 orbits, corresponding to 2×107years.
The results are shown in Fig. 7. The octupole-order curves
(blue) agree well with the curves displayed in Fig. 9 of [7],
while the hexadecapole contributions (red) preserve the flips
with minor changes. However, if we include the hexadeca-
pole orders and decrease a, making the inner binary more
relativistic, while holding the other parameters and initial
conditions fixed, then the flips to prograde become pro-
gressively more sporadic, finally disappearing completely
when a ¼ 18 a:u:

E. The CH Cygni system

Using the best fit parameters for the triple system CH
Cygni from Mikkola and Tanikawa [23], NFLRT showed
that including the octupole-order contributions changed
the evolution from conventional Kozai oscillations to orbital
flips and excursions to large eccentricity. The parameters are

α ¼ 0.227; ϵ ¼ 0.238; η ¼ 0.109;

Δ ¼ 0.751; δ ¼ 7.89 × 10−7; ð3:11Þ

and the initial conditions are

e¼0.32; E¼0.6; z¼72°; ω¼145°; ω3¼0°: ð3:12Þ
We evolve for 4000 orbits, corresponding to about 22 years,
with results shown in Fig. 8. The octupole-order results
(blue) closely match those of [7], Fig. 11, showing both
orbital flips and large eccentricity excursions. But in this
case, with hexadecapole contributions (red), the flips are
suppressed and the eccentricity excursions are reduced. GR
precessions were included, but make no discernable differ-
ence in this example.

IV. EQUAL-MASS INNER BINARIES

When the bodies making up the inner binary have equal
masses, the octupole terms vanish, leaving only the quadru-
pole and hexadecapole contributions. It is therefore inter-
esting to explore whether the hexadecapole terms alone can
generate orbital flips and large eccentricities. Since precise
equality of masses is rare, this special case might not be of
generic astrophysical interest, although it might be relevant
for inner binaries consisting of neutron stars, whose masses
tend to cluster around 1.4 M⊙.
In the equal-mass case, η ¼ 1=4 and Δ ¼ 0, and thus the

free parameters reduce to three: α, ϵ and the GR parameter
δ. Because the hexadecapole terms are smaller than the
quadrupole terms by a factor ϵ2, then if ϵ is too small,
hexadecapole effects are too small to be of any conse-
quence. One sweet spot, where orbital flips can be induced
by hexadecapole terms alone, occurs around the values
ϵ ∼ 0.1 and α ∼ 10. Note that the combination αϵ3, which
controls the leading quadrupole effects, is still small; this
constraint must hold so that the problem remains within the
perturbative regime.
The first example is displayed in Fig. 9. The chosen

parameters are

α ¼ 10.714; ϵ ¼ 0.127; δ ¼ 3.95 × 10−9: ð4:1Þ

The initial conditions are

e ¼ 0.8; E ¼ 0.6; z ¼ 75°; ω ¼ 0°;

ω3 ¼ 0° or 180°ðredÞ; 90°ðblueÞ: ð4:2Þ

A specific system with these parameters consists of two
1.4 M⊙ neutron stars orbiting a 30 M⊙ star or black
hole, with a ¼ 7 a:u: and A ¼ 55 a:u: Scaling all masses
and semimajor axes by a common factor ζ yields

45

90

135
z 

(d
eg

)

0 5 10 15 20

time (Myr)

10
-4

10
-2

1 
- 

e

octupole
hexadecapole

FIG. 7. Evolution of inclination and eccentricity in a triple-star
system. Blue: octupole order. Red: hexcadapole order.

45

90

135

z 
(d

eg
)

0 5 10 15 20
time (yr)

10
-4

10
-2

1 
- 

e

octupole
hexadecapole

FIG. 8. Evolution of z and e in the CH Cygni system. Blue:
octupole order. Red: hexcadapole order. GR precessions are
included.

CLIFFORD M. WILL PHYSICAL REVIEW D 96, 023017 (2017)

023017-12



identical evolutions, since the three parameters of
Eq. (4.1) are unchanged. Only the time scale set by
the inner orbital period changes, scaling by ζ. Evolving
the system for 500 orbits of the inner binary, we find
that the evolution for ω3 ¼ 0° (initial pericenters in
opposite directions along the line of nodes) is identical
to that for ω3 ¼ 180° (initial pericenters in the same
direction), resulting in an orbital flip (red curves in
Fig. 9), while the evolution for ω3 ¼ 90° does not show
flips. This is in contrast to the cases where octupole
terms dominate, where ω3 ¼ 0° leads to flips while
ω3 ¼ 180° does not. This makes sense because, as can
be seen from Eqs. (2.27), the octupole terms change sign
under the transformation ω3 → ω3 þ π, whereas the
hexadecapole terms in Eqs. (2.28) are invariant under
that transformation. On the other hand, many pieces of
the hexadecapole terms change sign under the trans-
formation ω3 → ω3 þ π=2, and as a consequence, the
initial angle ω3 ¼ 90° yields no flips.
In the foregoing example, the evolutions are the same

whether the GR precessions are included or not. We can
investigate when GR effects become important by “dialing
up” the GR parameter δ while holding α and ϵ fixed. This is
equivalent either to reducing a and A by the same factor,
holding the masses fixed, or to increasing all the masses by
the same factor, holding a and A fixed. We find that orbital
flips are preserved until δ is about 820 times larger than the
value shown in Eq. (4.1).
Another example generates orbital flips from nearly

coplanar orbits, an analogue of the case discussed in
Sec. III B. The results are shown in Fig. 10. In this case
the parameters are

α ¼ 17.857; ϵ ¼ 0.0875; δ ¼ 3.95 × 10−9: ð4:3Þ
A sample system is again two 1.4 M⊙ neutron stars with
a ¼ 7 a:u:, but now orbiting a 50 M⊙ star or black hole at
A ¼ 80 a:u: The initial conditions are

e¼0.99; E¼0.6; z¼5°; ω¼45°; ω3¼0°: ð4:4Þ

The quadrupole-order evolution, shown in blue, displays
the standard Kozai-Lidov cycles, whereas the hexadeca-
pole-order evolution shows orbital flips and excursions
to extreme eccentricities, well beyond [in the sense of
logð1 − eÞ] the initial relatively large initial value of
e ¼ 0.99. Here again, GR precessions play a negligible
role, suppressing the flips only when the GR parameter δ is
dialed up by a factor of about 80.
As a final example, we display in Fig. 11 the effect of

slightly unequal masses on the generation of orbital flips via
octupole-order terms. We again consider an inner binary of
total mass 2.8 M⊙, with a ¼ 4 a:u:, orbiting a star or black
hole of mass 50 M⊙ at A ¼ 50 a:u: The initial conditions are
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e¼0.8; E¼0.6; z¼75°; ω¼0°; ω3¼0°: ð4:5Þ

The equal-mass case shows no orbital flips in this case (blue
curves in Fig. 11), basically because ϵ ¼ 0.08 is smaller than
in the previous cases, and the hexadecopole terms alone are
not large enough to do the job. As we change the two inner
masses holding the total mass fixed, the octupole terms kick
in, but are initially too small to generate flips, until we reach
m1 ¼ 1.33 M⊙, m2 ¼ 1.47 M⊙, whereupon orbital flips
and large eccentricities are generated (red curves).

V. CONCLUDING REMARKS

We have extended the study of Kozai-Lidov-type hier-
archical triple systems to hexadecapole order, or to order
ða=AÞ5, and examined a number of astrophysically inter-
esting cases to elucidate the effect of the higher-order terms
on extreme behavior such as orbital flips and excursions to
large eccentricity. Given the complexity of the three-body
problem, even in the hierarchical regime, it may come
as no surprise that we find a complicated range of
behaviors. In most cases, the hexadecapole terms have
only small quantitative effects on the long-term evolution
of the system.
In addition, in the astrophysical systems examined in

Sec. III, the parameter ϵ ranged from 0.06 to 0.24; at the
upper end of this range, the systems are not very hierar-
chical. Given the inherently chaotic nature of the three-
body problem, it pays to be cautious in ascribing a specific
phenomenon (such as orbital flips) solely to the presence of
a higher-order term, as opposed to a possible slight change
in initial conditions.
For equal-mass systems (and possibly for a range of

nearly equal-mass systems), where the octupole terms
vanish or are suppressed, we found a region of parameter
space where orbital flips and excursions to large eccen-
tricity could be generated by the hexadecapole terms.
We have derived and presented the equations in as clear a

fashion as possible, to make it easy for other researchers to
use them to explore the full parameter space of hierarchical
triple behavior. For example, all the examples discussed in
this paper are characterized by β ≪ 1, whereby the system’s
angular momentum resides primarily in the outer orbit. The
other limit, β ≫ 1, may yield interesting behavior when
hexadecapole terms are included (see [24,25] for studies at
octupole order). Finally one should look at the interplay
between these Newtonian N-body effects and GR effects
beyond the basic pericenter precessions, including higher PN
contributions, frame dragging effects, gravitational-radiation
reaction damping, and effects arising from “cross-terms”
between GR and quadrupole contributions [26].
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APPENDIX: A DELAUNAY/OSCULATING
ELEMENTS DICTIONARY

Here we provide a dictionary that may be useful in
translating between the language of osculating orbit ele-
ments used in this paper, and the language of Delaunay
variables used in conventional treatments of many-body
dynamics, and in particular in NFLRT [3,7].
NFLRT used the subscript 2 to denote the orbit elements

of the outer body, whereas we use the subscript 3; they use
k2 to denote the Newtonian constant G. There are six
Delaunay coordinates: the two mean anomalies l1 and l2,
which correspond roughly to our true anomalies f and F,
the longitudes of the ascending nodes h1, and h2, which
correspond to Ω and Ω3 and the arguments of pericenter g1
and g2, which correspond to ω and ω3. The conjugate
momenta to those variables are [Eqs. (3)—(8) of [7]]

L1 ¼ mη
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ma1

q
; L2 ¼ Mη3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Ma2

q
;

G1 ¼ L1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e21

q
; G2 ¼ L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e22

q
;

H1 ¼ G1 cos ι1; H2 ¼ G2 cos ι2: ðA1Þ

Since G1 ¼ Jb ¼ mη
ffiffiffiffiffiffiffiffiffiffiffi
Gmp

p
and G2 ¼ J3 ¼ Mη3

ffiffiffiffiffiffiffiffiffiffiffiffi
GMP

p
,

it is straightforward to read off the correspondences
ða1;a2Þ⇌ ða;AÞ, ðe1; e2Þ ⇌ ðe; EÞ, ðι1; ι2Þ ⇌ ðι; ι3Þ, with
z ¼ ιtot ¼ ιþ ι3. Note that

G1

G2

¼ β ¼ sin ι3
sin ι

: ðA2Þ

The parameters C2 and C3 of [7], Eqs. (21) and (B1), are
given by

C2 ¼
k4

16

m7m7
3

M3ðm1m2Þ3
L4
1

L3
2G

3
2

¼ G
16

ηη3
M2a2

A3ð1 − E2Þ3=2 ;

C3 ¼ −
15k4

64

m9m9
3ðm1 −m2Þ

M4ðm1m2Þ5
L6
1

L3
2G

5
2

¼ 15G
64

ηη3Δ
M2a3

A4ð1 − E2Þ5=2 : ðA3Þ

The ratio

C3

C2

¼ 15

4
Δ
a
A
ð1 − E2Þ−1; ðA4Þ
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consistent with Eq. (24) of [7]. The amplitudes of the
perturbing effects on the elements of each orbit are
controlled in [7] by the ratios

C2

G1

¼ 1

16

�
Gm
a3

�
1=2 αϵ3

ð1 − e2Þ1=2ð1 − E2Þ3=2 ;

C2

G2

¼ 1

16

�
Gm
a3

�
1=2 ηð1þ αÞ1=2ϵ7=2

ð1 − E2Þ2 ;

C3

G1

¼ 15

64

�
Gm
a3

�
1=2 αϵ4Δ

ð1 − e2Þ1=2ð1 − E2Þ5=2 ;

C3

G2

¼ 15

64

�
Gm
a3

�
1=2 ηð1þ αÞ1=2ϵ9=2Δ

ð1 − E2Þ3 : ðA5Þ

These amplitudes correspond to those displayed in
Eqs. (2.25) and (2.27). Finally, in making comparisons
with [7], it is useful to note that

dι
dt

¼ cos z _G1 þ _G2

G1 sin z
;

dι3
dt

¼
_G1 þ cos z _G2

G2 sin z
: ðA6Þ

With these translations, it can be shown that at quadrupole
order, our Eqs. (2.25) are identical to Eqs. (A26)–(A35),
and that at octupole order, our Eqs. (2.27) are identical to
Eqs. (B6)–(B17) of [7].
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