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We study the scalar singlet as well as the two-Higgs doublet model inert dark matter particles’ impact on
compact objects, and we provide the first constraints of the parameter space using neutron stars. The
models discussed here are characterized by two free parameters, namely the mass Mχ of the scalar particle
that plays the role of the dark matter in the Universe, and a dimensionless coupling constant λχ that
determines the strength of the interaction of the dark matter particles with the Standard Model Higgs boson.
By considering a typical neutron star we are able to obtain constraints on scalar dark matter depending
on the dark matter (DM) annihilation cross section and self-interaction coupling constant. Our findings
show that (i) for heavy DM particles neutron stars can provide us with bounds better that the current limits
from direct detection searches only when the self-annihilations of DM particles are negligible and the DM
self-interaction coupling constant is very small, while (ii) for light DM particles the bounds obtained here
are comparable to limits from Higgs invisible decays unless the DM particles are extremely light.
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I. INTRODUCTION

Several well-established observational and theoretical
results from cosmology and astrophysics strongly suggest
that the nonrelativistic matter component of the Universe
is dominated by a new type of matter particles, yet to be
discovered, the so-called dark matter (DM). It was in 1933
when Zwicky studying clusters of galaxies introduced the
term “missing mass” or dark matter [1]. Much later Rubin
and Ford with optical studies of M31 made the case for
DM in galaxies in 1970 [2]. For a review on dark matter
see e.g. [3]. Despite the fact that as of today there are
many DM candidates [4], the nature and origin of DM
still remains a mystery, comprising one of the biggest
challenges in modern theoretical cosmology. Among all
the possible choices, perhaps the most popular class of
DM candidates is the so-called weakly interacting massive
particles (WIMPs), which are thermal relics from the big
bang. Initially the temperature of the Universe was high
enough to maintain the DM particle in equilibrium with
the rest of the particles. However, as the Universe expands
and cools down at some point the annihilation rate of
DM particles Γ ¼ nχhσviχ , with nχ being the number
density of the DM particle χ and hσviχ the thermal average
annihilation cross section, drops below the Hubble param-
eter H that measures the expansion rate of the Universe.
When this happens the DM abundance freezes out since
the χ particles can no longer annihilate, and their current
abundance remains the same ever after. It turns out that
their current relic density is given by [5]

Ωχh2 ¼
3 × 10−27 cm3=s

hσviχ
; ð1Þ

where h is related to the Hubble constant H0 ¼
100 hðkm s−1Þ=ðMpcÞ. In order to reproduce the observed
DM abundance Ωχh2¼0.1198�0.0015 [6,7], the WIMPs’
annihilation cross section must have the value hσvist ≃
3 × 10−26 cm3=s, which is a typical value for a particle that
does not have either strong or electromagnetic interactions.
One should keep in mind that this result is obtained
assuming a cosmological scenario with a high reheating
temperature TR after inflation, in which the DM particle is a
thermal relic from the big bang. However, the reheating
temperature does not have to be high, as primordial big-
bang nucleosynthesis and thermalization of all three neu-
trino species requires TR > 4 MeV [8], and in fact in the
literature various cosmological scenarios with a low reheat-
ing temperature have been studied [9–12]. In these scenar-
ios nonthermal production mechanisms for the DM
particles are invoked, and thus the DM abundance can
be reproduced even if the DM particle annihilation cross
section does not have the “standard” value.
In this work we will focus our study on two special

classes of WIMPs known as scalar (inert or singlet) dark
matter particles, which are the simplest and most economi-
cal extensions of the Standard Model (SM) of particle
physics. In the first class [13–16] the scalar sector consists
of the SM Higgs boson as well as a real scalar S that is a
gauge singlet and does not have direct interactions with
fermions. Furthermore, the extra scalar field is stable due to
a discrete Z2 symmetry, and since it is neutral it is a very
good DM candidate. In the second class [17–19] the Higgs
sector consists of two-Higgs doublets H1, H2, while a
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discrete Z2 symmetry forbids the Yukawa couplings for the
second doublet. After electroweak symmetry breaking five
physical scalar fields remain in the spectrum, namely the
SM Higgs h, two charged bosons H�, a CP even H0 and a
CP odd A0 scalars that are neutral. The CP even scalar, if
it is the lightest among the extra Higgs bosons, becomes
stable and therefore can play the role of the DM in the
Universe.
To probe the nature of dark matter several Earth based

experiments have been designed. In these experiments an
effort is made to observe the nucleus recoil after a dark
matter particle scatters off the material of the detector.
These direct detection experiments have put limits on the
DM-nucleon candidate cross section for a given mass of
the DM particle [20–22]. During the last 15 years or so
observational data from astrophysical objects, such as the
Sun [23–25], solarlike stars [26–28], white dwarfs and
neutron stars [29–31], have been employed to offer us
complementary bounds on the DM-nucleon cross section,
see e.g. [32] and the references therein.
Since neutron stars are the densest objects in the

Universe after black holes, they comprise excellent
laboratories to study and constrain nonstandard physics.
It is the aim of the present article to use neutron stars to
constrain the parameter space of the scalar dark matter.
Our work is organized as follows: after this introduction,
we present the theoretical framework in Sec. II, and we
constrain the scalar parameter space in Sec. III. Finally we
conclude in Sec. IV. We work in units in which the speed
of light in vacuum c, the Boltzmann constant kB and the
reduced Planck mass ℏ are set equal to unity. In these
units all dimensionful quantities are measured in GeV,
and we make use of the conversion rules 1 m ¼ 5.068×
1015 GeV−1, 1 kg ¼ 5.610 × 1026 GeV and 1K ¼ 8.617×
10−14 GeV [33].

II. THEORETICAL FRAMEWORK

A. The DM-nucleon cross section
and Higgs invisible decays

The DM particles once trapped inside the neutron star
interact with the neutrons and eventually thermalize, and
since they are nonrelativistic they are described by the
Maxwell-Boltzmann distribution [23,27,34]. If a large
number of them are accreted during the lifetime of a
neutron star, they may collapse and form a mini black hole
inside the star that eventually destroys the compact object
[35]. Therefore, the existence of old neutron stars can
impose constraints on the properties of scalar singlet DM.
It thus becomes clear that the most important quantity for
the discussion is the DM-nucleon cross section σnχ , which
from the theory side can be computed in terms of the free
parameters of the model, namely the scalar singlet massMχ

and the coupling constant λχ , while from the experiment

side is constrained from direct detection searches, roughly
σnχ < 10−44 cm2 [20–22].
In the two classes of models analyzed here, the relevant

interaction Lagrangian has two terms, namely (i) the DM
self-interactions

Lself−int ¼ −λχ4; ð2Þ

where λ is a dimensionless coupling constant, and (ii) the
interaction between the SM Higgs boson h and the DM
particle S (singlet scalar DM model) or H0 (inert DM
model) [14,17]

Lhχχ ¼ −λχVhχ2; ð3Þ

where λχ is another dimensionless coupling constant,
V ¼ 246 GeV is the vacuum expectation value of the SM
Higgs boson, and χ ¼ S or χ ¼ H0 depending on the
model. The relevant Feynman diagram for the process
χN → χN, with N being the nucleon, is the one with the
SMHiggs exchange. We remark here that in the class of the
inert scalar dark matter there is another diagram with the Z
boson exchange, but this has already been ruled out from
observations [17]. Neglecting the difference between neu-
tron and proton, the DM-nucleon scattering cross section is
given by [14,17]

σnχ ¼
λ2χf2m2

nμ
2
χ

πm4
hM

2
χ

ð4Þ

and it is spin independent. In the expression above
mh ¼ 125 GeV is the mass of the SM Higgs boson, Mχ

is the DM particle mass, mn is the nucleon mass, taken
to be equal to the mass of the proton mp ≃ 1 GeV,
μχ ¼ Mχmn=ðMχ þmnÞ is the reduced mass of the DM-
nucleon system, and f parametrizes the Higgs-nucleon
coupling. A complete expression for the factor f can
be found e.g. in [15]. Following the lattice computations
[36–38] we shall consider the central value f ¼ 0.3 in
agreement with other studies [14–16].
Although neutron stars are hot upon formation, they

gradually cool down. However, even isolated neutron stars
cannot go below 105 K (in agreement with the value taken
in [31]) due to heating by accretion of interstellar matter
[35,39]. Therefore in the discussion below we shall con-
sider a typical neutron star (millisecond pulsar) with the
following parameters [40–42]: mass M⋆ ∼ 2 M⊙ ¼
4 × 1030 kg, radius R⋆ ∼ 10 km, interior temperature
T⋆ ∼ 105 K, age t� ∼ 1 Gyr, ordinary matter density ρ⋆ ∼
1017 kg=m3 and pressure P⋆ ∼ 1033 N=m2, withM⊙ being
the solar mass.
We remark here that while in the singlet scalar DM

model the whole parameter space consists of the three
parameters considered here, namely Mχ, λχ and λ, the
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parameter space of the inert model involves more param-
eters. However, in our analysis here only the aforemen-
tioned parameters are relevant for the discussion, while the
rest of the parameter space is left unconstrained.
Finally, when the decay channel h → χχ is kinematically

allowed (mh > 2Mχ), it contributes to the SM Higgs boson
invisible decays, which by now is constrained from studies
at the LHC to be BRðh → invÞ ≤ 0.3 [43]. The branching
ratio of invisible decays is given by

BRðh → invÞ ¼ Γinv

ΓSM þ Γinv
; ð5Þ

where Γinv in the classes of models discussed here is given
by [16]

Γinv ¼
λ2χV2

8πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4
M2

χ

m2
h

s

; ð6Þ

with ΓSM ≃ 6 MeV being the Higgs decay width in the
framework of the SM [44]. The constraint BRðh → invÞ ≤
0.3 in theMχ-λχ plane is shown in Fig. 1. For a given scalar
massMχ the coupling constant λχ must lie below the curve.

B. The conditions required for the formation
of the black hole

To see if there is enough DM accretion to collapse and
form a black hole inside the star, we need to compute the
accretion rate [30,35]

Fχ ¼
8π2

3

ρχ
Mχ

GM⋆R⋆
�

3

2πv2χ

�
3=2

v2χ

�
1 − e

−3E0
v2χ

�
p; ð7Þ

where we have adopted a DM mean velocity in the
neighborhood of the neutron star vχ ¼ 270 km= sec, G
is Newton’s constant, E0 ¼ 2ðmp=MχÞGM⋆=R⋆ is the

maximum energy per DM mass that can lead to capture
and ρχ is the local dark matter density (for isolated
neutron stars) taken to be ρχ ¼ 0.3 GeV=cm3. This value
for ρχ is conservative since current observations suggest
ρχ ≃ 0.38 GeV=cm3, while some others indicate a value 2
times larger (see [23,24] for details). Finally the probability
p is given by p ¼ 0.89σnχ=σcr, where the critical cross
section is given by

σcr ¼ 4pb

�
R⋆
R⊙

�
2
�
M⋆
M⊙

�
−1

¼ 4 × 10−46 cm2; ð8Þ

while p saturates to unity if σnχ > σcr. Then the accumu-
lated number of DM particles Nχacc is determined by
solving the rate equation [5]

dNχacc

dt
¼ Fχ −

hσviχ
Vb

N2
χacc; ð9Þ

where Vb is the volume of the sphere in which the DM
particles are mostly concentrated, and hσviχ is the DM
particle annihilation cross section, and it does not neces-
sarily coincide with the classical value required to repro-
duce the observed DM abundance in Eq. (1). With the
initial condition Nχaccð0Þ ¼ 0, the rate equation can be
easily integrated, and thus the number of DM particles
accumulated inside the star during its lifetime is given by

Nχacc ¼
ffiffiffiffiffiffiffiffiffiffiffi
FχVb

hσviχ

s

tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fχhσviχ

Vb

s

t�

!

; ð10Þ

where t� is of the order of a gigayear, and gives an estimate
of the age of the neutron star [41,42]. It is worth mentioned
that the exact solution above acquires a simpler form in two
limiting cases, namely when the argument of the function
tanhðxÞ is very small x ≪ 1, and also when it is large
x ≫ 1. In the first case one finds Nχacc ≃ Fχt�, which can
be obtained from the rate equation neglecting the annihi-
lation term, while in the second case one finds

Nχacc ≃
ffiffiffiffiffiffiffiffiffiffiffi
FχVb

hσviχ

s

; ð11Þ

which can be obtained from the rate equation setting
dNχacc=dt ¼ 0. In the following we shall consider these
two cases separately, namely first we shall assume that DM
annihilations have a negligible affect (case I), and then we
shall consider the case where hσviχ ¼ 10−33hσvist (case II),
where hσvist is the standard value required to reproduce the
DM abundance assuming a thermal relic from the big bang.
For a gravitational collapse to take place inside the star

the following three conditions have to be satisfied:

FIG. 1. Shown is the constraint from invisible SM Higgs decays
BRðh → invÞ ≤ 0.3 [43] in the Mχ-λχ plane. The allowed
parameter space lies below the curve.
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(a) First, in a system of noninteracting bosons only the
uncertainty principle opposes the collapse. The critical
mass of a self-gravitating lump that can form a black
hole is given by [31]

Mcr ¼
2M2

p

πMχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λM2
p

32πM2
χ

s

; ð12Þ

with Mp being the Planck mass, and λ the DM self-
interaction coupling constant. Thus, the first condition
to be satisfied is

Mχacc > Mcr: ð13Þ
We should remark here that in the singlet dark matter
model there is just one dimensionless coupling con-
stant that determines both the DM self-interactions
and the interaction of the DM particle with the SM
Higgs boson, while in the inert model the two
couplings are independent. In the following we shall
consider three cases, namely λ2 ¼ 10−30, λ3 ¼ 10−21

and for comparison λ1 ¼ 0, compatible with observa-
tional constraints on self-interacting DM [45].

(b) The second condition comes from the fact that the
newly formed black hole must not emit Hawking
radiation [46,47] too fast. In fact, in the black hole
mass rate the Bondi accretion term [48] must dominate
over the energy loss due to the Hawking radiation [31],

4πρG2M2
χacc

c3s
>

1

15360πG2M2
χacc

; ð14Þ

with cs being the speed of sound. Assuming a poly-
tropic equation of state for a nonrelativistic Fermi gas
PðρÞ ¼ Kρ5=3 [40] the speed of sound c2s ¼dP=dρ
is computed to be cs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5P⋆Þ=ð3ρ⋆Þ
p ≃0.42. This

implies that the second condition is

Mχacc >

�
c3sM8

p

4π2ρ⋆ × 15360

�
1=4

¼ 1.95 × 1037 GeV ¼ M2: ð15Þ

(c) Finally, the last condition comes from the onset of DM
self-gravitation. When the total DM mass captured
inside a sphere of radius r� exceeds the mass of the
ordinary matter within the same radius,

Mχacc >
4πρ⋆r3�

3
; ð16Þ

the self-gravitation of DM dominate over that of the star
[31]. Naively it is expected thatmost of the DMparticles
are concentrated inside a radius rth given by [30]

rth ¼
�

9T⋆
8πGMχρ⋆

�
1=2

: ð17Þ

However, as first pointed out by Bose [49] and later
expanded by Einstein [50,51], in a quantum gasmade of
bosons the indistinguishability of the particles requires a
new statistical description, now known as Bose-Einstein
statistics. If the temperature of the gas is low enough or
the number density of particles is large enough, a new
exotic form of matter is formed. The Bose-Einstein
condensate (BEC) is driven purely by the quantum
statistics of the bosons, and not by the interactions
between them. The critical temperature is given by [52]

Tc ¼
2πℏ2

MχkB

�
nχ

ζð3=2Þ
�

2=3 ≃ 3.3
n2=3χ

Mχ
ð18Þ

in our natural units, where ζð3=2Þ≃ 2.612 is Riemann’s
zeta function, and nχ ¼ ð3NχaccÞ=ð4πr3cÞ is the number
density of the DM particles. The BEC, considered to be
the fifth state of matter after gases, liquids, solids and
plasma, is manifested in the classical example of the
helium-4 superfluidity [53], and led to theNobel Prize in
Physics in 2001 [54]. The size of the condensed state is
determined by the radius of the wave function of the
scalar singlet ground state in the gravitational potential
of the star [31],

rc ¼
�
8πGρ⋆M2

χ

3

�−1=4
: ð19Þ

III. CONSTRAINTS ON THE SCALAR
DM PARAMETER SPACE

First we employ the thermalization condition t2 < t�
derived and used in [30], with t2 given by

t2
4yr

¼
�
Mχ

TeV

�
3=2
�
108 g=cm3

ρ⋆

��
10−43 cm2

σnχ

��
107 K
T⋆

�
1=2

:

ð20Þ

The thermalization condition implies a lower limit for the
DM-nucleon cross section,

σnχ
10−52 cm2

> 4

�
Mχ

TeV

�
3=2
�
108 g=cm3

ρ⋆

��
107 K
T⋆

�
1=2

:

ð21Þ

Furthermore, the BEC is formed below the critical temper-
ature, T⋆ < Tc, so the condition for its formation is set by

3Nχacc

4πr3c
>

�
MχT⋆
3.3

�
3=2

: ð22Þ

Our main results are summarized in the figures below.
First of all, given the conditions presented in the

discussion above it is easy to verify that
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(a) Once the DM particles are thermalized the BEC will
be formed.

(b) For a DM particle mass in the range of interest
1 keV < Mχ < 10 TeV, rth is lower than the radius
of the star, so the DM particles are indeed trapped
inside the neutron star. In addition, rc is lower than rth
which implies that the DM particles are indeed
concentrated inside a sphere with radius rc and not
inside a sphere with radius rth as it is expected if the
BEC is not formed.

(c) For λ3 the strongest condition comes from the un-
certainty principle in the whole mass range, while for
λ1, λ2 it depends on the mass of the DM particle. When
the DM particles are relatively light, 1 keV < Mχ <
4.9 GeV for λ1 or 1 keV < Mχ < 77.3 GeV for λ2,
the strongest condition for the formation of the black
hole comes from the uncertainty principle, namely
Mχacc > Mcr, otherwise the condition becomes
Mχacc > M2 (the black hole is not evaporated due to
Hawking radiation). Therefore we have considered
two separate cases for light or heavy DM particles.

Figures 2 and 3 show the allowed parameter space on the
Mχ-σnχ plane for light DM particles and for cases I and II
respectively, and for three values of the DM self-interaction
coupling constant (the green curve for λ1 ¼ 0, magenta
curve for λ2 ¼ 10−30 and orange curve for λ3 ¼ 10−21). For
a given DM mass, the DM-nucleon cross section must lie
below the solid curve to avoid the formation of the mini
black hole inside the star. In this mass range there are no
experimental limits.
Figures 4 and 5 show the allowed parameter space on the

Mχ − σnχ plane for heavy DM particles for cases I and II
respectively, and for three values of the DM self-interaction
coupling constant. The gray curve corresponds to λ3, while

the blue curve corresponds to λ2. For a given DM mass, the
DM-nucleon cross section must lie below the solid curve to
avoid the formation of the mini black hole inside the star.
For comparison we show in the same plot the limits from
direct detection searches [20–22] (dashed curve). Thus in
the case II as well as when the self-interaction coupling
constant is large in case I, neutron stars fail to provide us
with bounds better than current limits from DM direct
detection searches.

10 6 10 5 10 4 0.001 0.01 0.1 1
10 60

10 54

10 48

10 42

10 36

10 30

M GeV

n
cm

2

FIG. 2. DM-nucleon cross section in cm2 versus scalar mass
Mχ in GeV for case I, light scalar DM particles and for the
three values of self-interaction coupling (green curve for λ1 ¼ 0,
magenta curve for λ2 ¼ 10−30 and orange curve for λ3 ¼ 10−21).
The solid curves correspond to the formation of a mini black hole,
while in this mass range there are no limits from direct detection
experiments. To avoid the formation of a black hole inside the
star, for a given Mχ the cross section must lie below the curves.
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FIG. 3. Same as in Fig. 2 but for case II.
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FIG. 4. Same as in Fig. 2 but for heavy DM particles. The gray
curve corresponds to λ3, the blue curve corresponds to λ2, while
the dashed curve corresponds to direct detection limits [20–22].
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FIG. 5. Same as in Fig. 4 but for case II.
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The allowed parameter space in the Mχ-λχ plane is
shown in Fig. 6 for case II, light DM particles in the mass
range 1 keV < Mχ < ðafewÞGeV and for negligible DM
self-interactions. For a given DM mass, the coupling
constant λχ must lie below the curve. As we can see the
bound obtained here using neutron stars is comparable to
the constraint coming from SM Higgs boson invisible
decays [43] shown in Fig. 1, unless the DM particles are
extremely light, Mχ ≤ 0.02 GeV.

IV. CONCLUSIONS

In the present article we have used for the first time
neutron stars to constrain the parameter space of the scalar
singlet and inert DM models. These new classes of DM

candidates are the simplest extensions of the SM of particle
physics and very attractive. Since in the spectrum of these
models there is a neutral scalar particle that is stable,massive
and weakly coupled, it is a natural DM candidate. Indeed it
has been shown that both the singlet scalar and
the CP even Higgs boson in the inert model are excellent
dark matter candidates. The parameter space is simple and
consists of two free parameters only, namely the scalar
mass Mχ and the dimensionless coupling constant λχ .
The latter determines the strength of the interaction of the
DMparticle to the SMHiggs boson. Given that neutron stars
do exist we were able to constrain the scalar DM parameter
space by avoiding the formation of a mini black hole inside
the star. Our findings indicate that (i) for heavyDMparticles
neutron stars can provide us with bounds better that the
current limits from direct detection searches only when the
self-annihilations of DMparticles are negligible and theDM
self-interaction coupling constant is very small, while (ii) for
light DM particles the bounds obtained here are comparable
to limits fromHiggs invisible decays unless theDMparticles
are extremely light. Overall, although our study implies a
significant reduction of the parameter space constrained by
our analysis, resulting in noncompetitive with collider
searches, it serves as a new and independent test.
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