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In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived
through a radial distance expansion method. From the regular conditions both at the horizon and at spatial
infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are
identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial
conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream
equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems
of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.
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I. INTRODUCTION

Black hole magnetospheres are believed to play essential
roles in many high-energy astronomical objects. In the
popular Blandford-Znajek model [1,2], energy can be
extracted from a rotating black hole via a stationary
and force-free magnetosphere to eject dipole relativistic
jets, which may account for most of the high-energy
phenomena in active galactic nuclei, gamma-ray bursts,
and microquasars.
In the simplest configuration, the force-free magneto-

sphere is well described by the clean and precise electro-
dynamics on a Kerr black hole. However, the present
understanding of such a system relies strongly on numeri-
cal simulations. Existing analytical approaches leave us
with very few options.
One of the approaches is the perturbation method first

given in the original work of Blandford and Znajek [1].
Based on the split monopole and paraboloidal solutions on
a nonrotating black hole, analytical solutions on a slowly
rotating black hole are derived by expanding the functions
and stream equation to leading orders of the spin parameter.
So the solutions apply to slowly rotating black holes. To get
analytical properties of magnetospheres on rapidly rotating
black holes, which may be more interesting to us, we need
to calculate higher-order corrections, but this seems diffi-
cult to do [3]. Recently, the solution up to the fourth order
was derived [4].
Solutions that go beyond the slow-rotation limit in the

perturbation approach can be obtained in some limited
regions. In the work [5,6] of Menon and Dermer (MD),
asymptotic solutions (and their generalization [7]) were
derived in regions far away from the horizon. The solutions

can apply to black holes with general angular momentum.
But these solutions are radial-distance independent. In
particular, one of the solutions is the only known exact
solution so far that can solve the full stream equation,
which makes it very interesting. However, the current for
this solution is along the infalling principle null geodesic.
This means that charged particles must move at the speed of
light, which is not allowed. Besides, the electromagnetic
fields from the solution are also null. A method was given
in Refs. [8,9] by the same authors, in which the lightlike
current is artificially decomposed into a linear combination
of two timelike currents with opposite charges.
On the other hand, in past years, exact solutions on

extremely fast rotating black holes were obtained by
focusing on the near-horizon region [10–13]. But, a smooth
connection between these near- and far-region solutions is
lacking.
In this work, we consider a different expansion method

other than the one in the traditional perturbation approach. In
terms of the boundary conditions of a magnetosphere, we
expand the functions and stream equation in series of the
radial distance, instead of the spin parameter. Analytical
solutions that depend on both poloidal coordinates can be
derived order by order following a precise procedure. So this
approach hopefully can help us extend solutions in the far
region to the ones in the near region. Moreover, this provides
a method to generalize the MD exact solution and relax the
problems of the null current and electromagnetic fields.
The paper is organized as follows. In Sec. II, the stream

equation of a force-free magnetosphere is constructed and
presented. In Sec. III, we show the boundary conditions at
the horizons and at infinity, which can be determined from
the stream equation. Two special cases of the boundary
conditions lead to the previously known asymptotic sol-
utions. In Sec. IV, the expansion forms and solving*lhq@ynao.ac.cn
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procedure of the stream equation are introduced in terms of
the boundary conditions. Examples of solutions are derived
and analyzed in Sec. V. Then we summarize in the last
section.

II. THE STREAM EQUATION

Using the Boyer-Lindquist coordinates, a Kerr black
hole is depicted by the metric

ds2 ¼ −Λ2dt2 þ ρ2

△
dr2 þ ρ2dθ2 þϖ2ðdϕ − ωdtÞ2; ð1Þ

where

ρ2 ¼ r2 þ a2cos2θ; a ¼ J
M

;

Λ2 ¼ ρ2△

A
; ϖ2 ¼ Asin2θ

ρ2
; ω ¼ 2Mar

A
;

△ ¼ ðr − rþÞðr − r−Þ; r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

A ¼ ðr2 þ a2Þ2 − a2△sin2θ ¼ 2Mrðr2 þ a2Þ þ△ρ2:

The spin parameter a measures the angular momentum J
per unit mass M of the black hole. The inner and outer
horizons are located at r ¼ r− and r ¼ rþ, respectively.
From the above relations, the velocities of the black hole at
the horizons are

ω� ≡ a
r2� þ a2

: ð2Þ

In the 3þ 1 split formulation [14], the four-dimensional
spacetime (1) is replaced by a three-dimensional absolute
space and a universal time coordinate. The electrodynamics
on a Kerr black hole can be equivalently dealt with on the
following absolute space:

ds2A ¼ ρ2

△
dr2 þ ρ2dθ2 þϖ2dϕ2: ð3Þ

The four-dimensional quantities and equations are split
accordingly. The quantities we deal with on the absolute
space are measured by the so-called zero-angular momen-
tum observers (ZAMOs). From the inverse metric, the unit
basis vectors are given by

er̂ ¼
ffiffiffiffiffi
△

ρ2

s
∂r; eθ̂ ¼

1ffiffiffiffiffi
ρ2

p ∂θ; eϕ̂ ¼
ffiffiffiffiffi
ρ2

p
ffiffiffiffi
A

p
sin θ

∂ϕ: ð4Þ

The Kerr spacetime has Killing vectors along the time
and along the toroidal directions. For simplicity, we
consider the stationary and axisymmetric case of electro-
dynamics on the spacetime. The relevant inhomogeneous
Maxwell’s equations relate the electromagnetic fields to the
electric charge and current densities (ρe, j):

∇ · E ¼ 4πρe; ð5Þ
∇ × ðΛBÞ ¼ 4πΛj −ϖðE · ∇ωÞeϕ̂: ð6Þ

Throughout this paper, the operator ∇ is the covariant
derivative associated with the three-dimensional spatial
dimensions (3). The homogeneous Maxwell’s equations
tell us that the electromagnetic fields can be expressed as
the gauge potentials (A0, A):

E ¼ 1

Λ
ð∇A0 þ ω∇AϕÞ; ð7Þ

B ¼ ∇ ×A: ð8Þ
We ignore the dynamics of plasma and impose the force-

free condition

ρeEþ j ×B ¼ 0; ð9Þ
which automatically satisfies

j ·E ¼ 0; E ·B ¼ 0: ð10Þ
Under these conditions, the electrodynamics is described
by three correlated functions: the flux ψ ¼ 2πAϕ and the
total electric current IðψÞ flowing through the area enclosed
by an axisymmetric loop, and the angular velocity of the
electromagnetic field linesΩðψÞ ¼ −dA0=dAϕ on the loop.
The electromagnetic fields read

E ¼ −
Ω − ω

2πΛ
ffiffiffiffiffi
ρ2

p ð
ffiffiffiffi
△

p ∂rψer̂ þ ∂θψeθ̂Þ; ð11Þ

B ¼ 1

2π
ffiffiffiffi
A

p
sin θ

�
∂θψer̂ −

ffiffiffiffi
△

p ∂rψeθ̂ þ
4πI

ffiffiffiffiffi
ρ2

p

Λ
eϕ̂

�
:

ð12Þ
The charge and current densities are, respectively,

ρe ¼ −
1

8π2
∇ ·

�
Ω − ω

Λ
∇ψ

�
; ð13Þ

j ¼ 1

Λ
½ρeϖðΩ − ωÞeϕ̂ þ I0B�; ð14Þ

where the prime stands for a derivative with respect to ψ .
Note that the total current I is defined to flow upwards, with
opposite sign to that defined in the original paper [14].
From the above equations and expressions, we will find

that the force-free electrodynamics on a Kerr spacetime can
be described by the following unique stream equation [14]:

∇ ·

�
Λ
ϖ2

�
1 −

ðΩ − ωÞ2ϖ2

Λ2

�
∇ψ

�
þ Ω − ω

Λ
Ω0ð∇ψÞ2

þ 16π2

Λϖ2
II0 ¼ 0: ð15Þ
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For the electromagnetic system, the poloidal components
of the energy and angular momentum flux densities from
the hole are given by

Er ¼ ΩLr ¼ −Ω
I∂θψ

2π sin θρ2
; ð16Þ

Eθ ¼ ΩLθ ¼ Ω
I∂rψ

2π sin θρ2
: ð17Þ

III. BOUNDARY BEHAVIOURS

In regions that are accessible to us, the differential
equation (15) has two boundaries: one at the horizon
and the other at spatial infinity (if the force-free region
extends far away from the outer horizon). In some sense,
the two boundaries have similar behaviors and features,
e.g., they both attain the radiation condition [15]

Eθ ¼ �Bϕ ð18Þ
for the electromagnetic fields (11) and (12) as they are
approached. The condition can be obtained directly from
the stream equation (15). To make this clear, we reexpress
the stream equation in the following form:

△

A

��
A2sin2θðΩ − ωÞ2

ρ4
−△

�
∂2
rψ

þ A2sin2θðΩ − ωÞ
ρ4

∂rΩ∂rψ þ 2Asin2θ
ρ2

×

�
rΩ2 −

Ma2sin2θðr2 − a2cos2θÞðΩ −ΩNÞ2
ρ4

�
∂rψ

− ∂2
θψ þ 1

2

�
△

A
þ Asin2θðΩ2 −Ω2

NÞ
ρ4

�
∂θρ

2∂θψ

�

þ
ffiffiffiffi
A

p
sin θðΩ − ωÞ

ρ2
∂θ

ffiffiffiffi
A

p
sin θðΩ − ωÞ∂θψ

ρ2

− 16π2II0 ¼ 0; ð19Þ

where ΩN ¼ 1=ðasin2θÞ.

A. Conditions at horizons

From Eq. (19), we can see that only the last line of the
equation remains at the horizons r ¼ r� or △ ¼ 0:

16π2I
∂
∂ψ I¼

ffiffiffiffi
A

p
sinθðΩ−ωÞ

ρ2
∂θ

ffiffiffiffi
A

p
sinθðΩ−ωÞ∂θψ

ρ2

¼
ffiffiffiffi
A

p
sinθðΩ−ωÞ∂θψ

ρ2
∂
∂ψ

ffiffiffiffi
A

p
sinθðΩ−ωÞ∂θψ

ρ2
:

ð20Þ

Approaching the event horizon, ψ is only dependent on θ
[14]. This structure in the stream equation is also found in

the near-horizon treatments of magnetospheres on near-
extreme Kerr black holes [12].
From the above relation at the horizons, we have

r ¼ r�∶ I2 ¼ C� þ
� ffiffiffiffi

A
p

sin θðΩ − ωÞ
4πρ2

∂θψ

�2
; ð21Þ

where C� are constants. So we can conclude that any
solution ψ [with any given correlated functions ΩFðψÞ and
IðψÞ] satisfying the stream equation (19) will always
satisfy the condition (21), only if the sum of the terms
within the brackets in Eq. (19) is nonsingular compared
with the rest of the terms at the horizons.
It is easy to find that the Znajek boundary condition can

be obtained by setting the special value

C� ¼ 0: ð22Þ

When the positive sign is chosen, the conditions (21) at the
horizons read

Iþ ¼ Mrþ sin θðΩþ − ωþÞ
2πρ2þ

∂θψþ; ð23Þ

I− ¼ Mr− sin θðΩ− − ω−Þ
2πρ2−

∂θψ−; ð24Þ

where ψ� ¼ ψðr�Þ, Ω� ¼ Ωðψðr�ÞÞ, I� ¼ Iðψðr�ÞÞ, and
ρ2� ¼ r2� þ a2 cos2 θ. The former is exactly the Znajek
regularity condition at the outer horizon [2], which corre-
sponds to the positive-sign case of the radiation condition
(18): Eθ ¼ Bϕ. The positive sign is chosen because this
means current flow is directed outwards for 0 < Ωþ < ωþ
[14,16], which leads to energy and angular momentum
extraction from the hole across the event horizon, as
implied by Eq. (16).

B. Condition at spatial infinity

Let us now turn to the behaviors at spatial infinity. As
shown in Eqs. (16) and (17), the energy and momentum
extraction rates differ by the angular velocity Ω. Since the
energy and momentum extracted from the hole must be
finite at spatial infinity, Ω should be independent of r at
infinity,

Ωðr; θÞ → Ω0ðθÞ as r → ∞; ð25Þ

as noticed in Refs. [5,6]. Further, since IðΩÞ and ψðΩÞ are
functions of Ω, the associated functions I0 and ψ0 at
infinity should be functions of Ω0 as well:

r → ∞∶ ψðΩÞ → ψ0ðΩ0ðθÞÞ; IðΩÞ → I0ðΩ0ðθÞÞ: ð26Þ

That is, all three correlated functions should be independent
of r at infinity if one is. This is quite similar to the situation
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at the outer horizon, where the functions are also only
dependent on θ.
In the present work, we consider the case in which Ω0 is

not a constant or other trivial function of θ (and similarly
for ψ0 and I0). With the asymptotic conditions (25)
and (26), we can find that the stream equation (19) takes
the following simple form at infinity:

16π2I0
∂I0
∂ψ0

¼ sin θΩ0∂θðsin θΩ0∂θψ0Þ: ð27Þ

Similarly, we have

I20 ¼ C0 þ
1

16π2
ðsin θΩ0∂θψ0Þ2; ð28Þ

where C0 is a constant. So any solutions satisfying the
boundary conditions (25) and (26) must satisfy this
relation. Here, we also choose the special case C0 ¼ 0,
for which the above relation reads

I0 ¼ −
1

4π
sin θΩ0∂θψ0: ð29Þ

Here, the negative sign is chosen when Ωþ ≤ ωþ, which
guarantees an outflow of energy by inserting the current (29)
into Eq. (19). This also corresponds to the positive-sign case
of the radiation condition (18). Note that, when Ωþ > ωþ,
we need to choose the positive sign in Eq. (29) (correspond-
ing to the minus-sign case of the radiation condition:
Eθ ¼ −Bϕ), which leads to an influx of energy at spatial
infinity. The reason is that the direction of energy cannot
reverse on a field line [1]. If the energy inflows across the
event horizon for Ωþ > ωþ, we should also have influx at
infinity.

C. The cases with identical boundary conditions

As in usual second-order differential equations, a set of
solutions can be defined by constraining appropriate con-
ditions on the two boundaries. On the other hand, as we
stated above, the behaviors are similar at the two boundaries:
the functions are purely θ-dependent and satisfy the radiation
condition (18). So it is natural to consider the special cases in
which the conditions on the two boundaries are identical.
Generalizing the condition (29) to include the

positive-sign case, we can express the boundary condition
at infinity as

� 4π

sin θ
¼ Ω0

∂θψ0

I0
: ð30Þ

On the other hand, the Znajek boundary condition (23) can
be reexpressed as

4π

�
1

sin θ
− a sin θωþ

�
¼ ðΩþ − ωþÞ

∂θψþ
Iþ

: ð31Þ

Now we consider the special case that the functions satisfy
the same boundary conditions at the horizon and at infinity1:

Ω0 ¼ Ωþ; ψ0 ¼ ψþ; I0 ¼ Iþ: ð32Þ
(1) If we choose the positive sign in Eq. (30), we can

have Ωþ∂θψþ=Iþ ¼ 4π=sin θ and ∂θψþ=Iþ ¼
4πa sin θ by comparing Eqs. (30) and (31). From
the difference between them, we have

ΩþðθÞ ¼ Ω0ðθÞ ¼ ΩN ≡ a
2Mrþ − ρ2þ

¼ 1

asin2θ
:

ð33Þ
As expected, the angular velocity is larger than that
of the black hole. That is why we have chosen the
positive sign in the condition (30), as stated in the
previous subsection.

(2) If we choose the negative sign in Eq. (30), we
have Ωþ∂θψþ=Iþ ¼ −4π= sin θ and ∂θψþ=Iþ ¼
−4πð2Mrþ þ ρ2þÞ=ða sin θÞ, which leads to

ΩþðθÞ ¼ Ω0ðθÞ ¼ ΩP ≡ a
2Mrþ þ ρ2þ

: ð34Þ

The two solutions (33) and (34) at the boundaries are
exactly the same as the asymptotical solutions found in
Refs. [5,6] (the MD solutions). The first solution is the only
known exact solution to date that can solve the full stream
equation. In deriving the above solutions, the functions I
and ψ are identical but not specified at the boundaries.
In what follows, we only take them as initial values at the

two identical boundaries, instead of asymptotical solutions,
to explore analytical solutions that are ðr; θÞ-dependent in
between the boundaries.

IV. THE EXPANSION METHOD

In terms of the boundary properties, we may derive
solutions to the stream equation by expanding the functions
in series of the radial distance r, as done in the Appendix
for the Schwarzschild black hole case. If Ω0, ψ0, and I0 are
all nontrivial functions of θ (i.e., not zero or constant), we
can take the three correlated functions in the following
general expanded forms:

Ω ¼
X∞
n¼0

Ω−nðθÞr−n;

ψ ¼
X∞
n¼0

ψ−nðθÞr−n;

I ¼
X∞
n¼0

I−nðθÞr−n: ð35Þ

1Actually, the latter two stringent conditions can be simply
replaced by the unique one ∂θψ0=I0 ¼ ∂θψþ=Iþ when the
relations between I, ψ , and Ω are not necessarily the same at
the two boundaries.
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We assume these expanded forms to be valid in all force-
free regions outside the event horizon of the Kerr space-
time. These forms saturate the conditions (25) and (26) at
infinity. Inserting the expanded forms into the stream
equation, solutions can be derived order by order. The
solving procedure is as follows.
First, we need to choose the right zeroth-order functions

Ω0, ψ0, and I0, i.e., the conditions at infinity. But we only
need to know two of them, because the third one can be
determined via Eq. (29) [or Eq. (30), more generally] when
the other two are given.
Second, we need to know the functional forms ΩðψÞ and

IðψÞ of ψ [we can also take ψðΩÞ and IðΩÞ as functions of
Ω]. The functional relations can be simply determined by
the zeroth-order ones,

ψ ;ΩðψÞ; IðψÞ ⇔ ψ0;Ω0ðψ0Þ; I0ðψ0Þ; ð36Þ
since the former will always lead to the latter as r → ∞.
With the specific forms of the functions ΩðψÞ and IðψÞ, we
can determine the values ψþ, Ωþ, and Iþ at the horizon by
inserting the functions into the Znajek regularity condition
(23). This is how the conditions at the two boundaries are
correlated. So the zeroth-order functions can be adjusted if
the conditions at the horizon are found to be inappropriate.
Finally, with all of the functions and expanded forms

inserted into the stream equation, we can solve the equation
order by order. The obtained solutions should apply for
rotating black holes with general a.
In summary, the derived solutions in this method com-

pletely rely on the choices of the conditions at the two
boundaries. Given any two of ψ0, Ω0, and I0, the general
functional relations among ψ ,Ω, and I can be determined by
the zeroth-order ones. This further leads to the determinant
of the condition at the horizon. So, with appropriate
conditions at both boundaries, a set of solutions are defined.
Besides, there is an extra problem that needs to be

classified: the convergency at the horizon in the extreme
limit. The coefficient of the nth-order term of the derived
solution should be of the order of

ψ−n ∼OðmnÞ ðn ≥ 1Þ; ð37Þ
where

mn ¼
Yn
i¼1

mi; mi ¼ ða;MÞ: ð38Þ

Thus, in the extreme limit rþ ¼ M ¼ a, each term of the
expanded forms (35) is order Oð1Þ at the coincident
horizon. So every term is important close to the horizon
in the extreme case. We must check this convergency of the
solution, which is hard to do because we usually cannot
derive the full solution of all orders. Fortunately, its
convergency should be guaranteed by the Znajek regularity
condition at the horizon, since it applies for arbitrary a.

V. SOLUTIONS

As examples, we shall adopt the special boundary
conditions obtained in Sec. III C to make solutions in
what follows.

A. Ω0 =ΩP

As shown in Ref. [5], this case may correspond to the split
monopole because it is expanded to the leading order of a as
ΩP ¼ a=ð8M2Þ þ � � � in the slow-rotating limit. Thus, we
take the zeroth-order flux ψ0 as that in the split monopole
solution (on the upper half hemisphere 0 ≤ θ < π=2)

ψ0 ¼ αð1 − cos θÞ; ð39Þ
where α is a constant. Then we have from Eq. (29)

I0 ¼ −
α

4π
sin2θΩP: ð40Þ

In terms of the relations between ψ0 and I0ðψ0Þ,Ω0ðψ0Þ,
we can generalize them by assuming that the relations
apply for any r:

ΩðψÞ ¼ α2a
BðψÞ ; IðψÞ ¼ −

αaψð2α − ψÞ
4πBðψÞ ; ð41Þ

where BðψÞ ¼ α2ðr2þ þ 2MrþÞ þ a2ðα − ψÞ2. Thus, we
have

II0 ¼ Mrþα4a2ψðα − ψÞð2α − ψÞ
2π2B3

: ð42Þ

Inserting the functions ΩðψÞ and IðψÞ into Eq. (19), we
get an equation for ψ. The resulting equation can be solved
order by order by using the expanded forms (35), in
analogy to the Schwarzschild case shown in the
Appendix. Similarly, let us define

L2
θ ≡ ∂2

θ þ ð2aΩP sin 2θ þ cot θÞ∂θ

þ 6 − 8aΩPcos2θ −
4

sin2θ
: ð43Þ

The vanishing of the coefficients of r0 gives rise to the
equation about ψ0, which is automatically saturated because
it is just the condition chosen at infinity. Comparing all the
terms at order r−1 leads to the following equation about ψ−1:

L2
θψ−1 ¼ 0: ð44Þ

This equation can be solved by

ψ−1 ¼ βasin2θ; ð45Þ
with β being an arbitrary dimensionless constant.
In order to make higher-order calculations simpler, we

may set the free parameter β to be the special value 0. Then
the equation about ψ−2 can be obtained and simplified:
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ðL2
θ þ 2Þψ−2 ¼ −8Mrþαa cos θsin2θΩP: ð46Þ

A solution to the equation is

ψ−2 ¼
1

2
αa2 cos θsin2θ: ð47Þ

Accurate to this order, the solution is somehow similar to
the slow-rotating solution in the large-r limit, Aϕ ¼ Cð1−
cos θÞ þOða2=MÞðC cos θsin2θÞr−1 þ � � �, obtained in
the perturbation approach [1]. The difference is that the
next-to-leading order is at r−2 for the former and it is at r−1

for the latter.
The equation for ψ−3 is

ðL2
θ þ 6Þψ−3

¼ 2αM cos θð3aΩ−1
P þ 4Mrþ − 8Mrþasin2θΩPÞ:

ð48Þ
No analytical solution is found for the equation and so the
calculation procedure cannot proceed.
Inserting the relations in Eq. (41) into the Znajek

condition (23), we can find that the condition of ψ at
the horizon is the same as the one at infinity, ψþ ¼ ψ0, as
we mentioned in the previous section. This means that all
higher-order terms ψ−n (1 ≤ n < ∞) of a legal solution ψ
must cancel out on the horizon, which is a constraint of the
Znajek regularity condition.
At boundaries, the solution satisfies Ω0 ¼ Ωþ ≥ ωþ=2,

where the equality occurs at θ ¼ 0. Generally, the solution
up to the second order also satisfies

Ωðr;θÞ¼ a
2Mrþþ r2þþa2cos2θð1− 1

2
a2sin2θr−2Þ2>

1

2
ωþ:

ð49Þ

This means that the magnetosphere in the valid regions is
stable [4,17] against the screw instability [18]. Since the
obtained solution is quite similar to the split monopole
perturbation solution at large r, other properties about the
solution will not be reconsidered here.

B. Ω0 =ΩN

1. The expanded solution

As stated previously, Ω ¼ ΩN is the MD exact solution
of the force-free magnetosphere on general rotating black
holes. But this r-independent solution is unrealistic. It is
interesting to investigate the situation by extending the
solution to the r-dependent case through the expansion
approach given above.
We take ΩN as the initial value at the boundary to derive

the r-dependent solution. Obviously, Ω0 ¼ ΩN is singular
at the poles θ ¼ 0; π=2. Thus, we demand ψ0 to be
nonsingular by taking the simple form

ψ0 ¼ cΩ−k
0 þ d ðc > 0; k > 0Þ; ð50Þ

where c, d, and k are constants. By choosing the positive
sign in Eq. (30) instead, we have

I0 ¼
kc
2π

cos θΩ1−k
0 ; ð51Þ

since Ω0 ¼ 1=ðasin2θÞ is already faster than ωþ.
In terms of the relations among the zeroth-order func-

tions, we can get the functional relations at general r:

ψðΩÞ ¼ cΩ−k þ d; ð52Þ

IðΩÞ ¼ kc
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðaΩÞ−1

q
Ω1−k; ð53Þ

which lead to

16π2

kc
II0Ω2þk ¼ 4ðk − 1ÞΩ4 −

2ð2k − 1Þ
a

Ω3: ð54Þ

It is convenient for later calculations to redefine

~Ω≡ Ω
ΩN

with ~Ω−nðθÞ≡Ω−nðθÞ
ΩN

: ð55Þ

With the above relations, the stream equation can be
expressed as

ρ2 ~Ω½A ~Ωð ~Ω − 2asin2θωÞ − a2sin2θðρ2 − 2MrÞ�ð△∂2
r
~Ωþ ∂2

θ
~ΩÞ

− ρ2½A ~Ωðk ~Ω − ð2kþ 1Þasin2θωÞ − ðkþ 1Þa2sin2θðρ2 − 2MrÞ�½△ð∂r
~ΩÞ2 þ ð∂θ

~ΩÞ2�
þ 2△ ~Ω½rρ4 ~Ω2 −Ma2sin2θðr2 − a2cos2θÞð ~Ω − 1Þ2�∂r

~Ω

þ cot θ ~Ωfð4k − 1Þρ2½A ~Ωð ~Ω − 2asin2θωÞ − a2sin2θðρ2 − 2MrÞ�
þ 2a2sin2θA½ ~Ωð ~Ω − 2asin2θωÞ þ asin2θω� − 2ρ2ðr2 þ a2Þ2 ~Ω2g∂θ

~Ω

þ 2½2ðk − 1Þρ2ðA − a2ðρ2 þ 2MrÞÞ þ 2Mrðr2 þ a2Þðr2 − a2cos2θÞ þ ρ4△� ~Ω4

þ 2½ð2k − 1Þρ2ð4Mra2cos2θ − ρ4Þ − 4Mra2sin2θðr2 − a2cos2θÞ� ~Ω3

þ 2½2ðk − 1Þρ2a2cos2θðρ2 − 2MrÞ − a2sin2θðρ4 − 2Mrðr2 − a2cos2θÞÞ� ~Ω2 ¼ 0: ð56Þ

HUIQUAN LI and JIANCHENG WANG PHYSICAL REVIEW D 96, 023014 (2017)

023014-6



Inserting the expanded form of ~Ω into the above
equation, we can get an expanded equation. The vanishing
of the coefficients of r6−n gives rise to the equation about
~Ω−n (n ≥ 1), which can be formally expressed as

½L2
θ þ nðn − 1Þ� ~Ω−n ¼ F−nð ~Ω0; ~Ω−1;…; ~Ω−ðn−1ÞÞ ðn ≥ 1Þ;

ð57Þ

where

L2
θ ¼ ∂2

θ þ ð4k − 3Þ cot θ∂θ þ 2ð2k − 1Þ: ð58Þ

The functions F−n at order −n are some functions of ~Ω−i
with 0 ≤ i ≤ n − 1.
The fact that Ω ¼ ΩN is an exact solution to the full

stream equation means that we can always have for all
n ≥ 1

½L2
θ þ nðn − 1Þ� ~Ω−n ¼ 0 with ~Ω−n ¼ 0: ð59Þ

Inwhat followswe shall considermore general (r-dependent)
solutions other than this trivial case.
With Ω0 ¼ ΩN , the vanishing of the terms at order r6 is

automatically satisfied, as expected. For the order r5, the
obtained equation is

L2
θ
~Ω−1 ¼ 0: ð60Þ

The equation has the simple solution

~Ω−1 ¼ −2αa cos θ; ð61Þ

where α is an arbitrary dimensionless constant. We assume
that the solution applies to the upper hemisphere θ ∈
½0; π=2� since it is asymmetric about the equatorial plane.
Equation (60) has the second kind of solution, which is

symmetric. The solution generally can be expressed in
terms of the hypergeometric functions. But we can have
their explicit forms when 4k − 3 is an odd number. For
example, the solution for k ¼ 3=2 is

~Ω−1 ¼ −βa
�
1 −

1

2
cot2θ þ 3

4
cos θ ln

1 − cos θ
1þ cos θ

�
; ð62Þ

where β is a dimensionless constant. This solution is
symmetric under cos θ → − cos θ. But the solution forms
closed magnetic field lines, which is excluded for a force-
free magnetosphere [14,19]. So this solution is abandoned.
At order r4, the resulting equation about Ω−2 can be

simply reduced by inserting the solution (61):

ðL2
θ þ 2Þ ~Ω−2 ¼ 4kα2a2: ð63Þ

A simple solution to this equation is

~Ω−2 ¼ α2a2: ð64Þ

The equation for ~Ω−2 [obtained by inserting the second
solution (62)] is difficult to solve and is not considered.
The vanishing of the coefficients of r3 leads to the

equation about Ω−3, which can be reduced to

ðL2
θ þ 6Þ ~Ω−3 ¼ 4α2Ma2ð1 − 2kcos2θÞ

þ 4αa3 cos θ½3þ 2ð1 − 2kÞcos2θ�: ð65Þ

When k ≠ 3=2, a solution to this equation is

~Ω−3 ¼ 2αa3cos3θ þ α2Ma2

2k − 3

�
4kcos2θ −

3

kþ 1

�
: ð66Þ

The solution at the critical value k ¼ 3=2 is not found.
The solutions at higher orders are hard to derive due to

the involvement of many more terms. But we can perform a
simple analysis based on Eq. (56) and the derived solutions
above. For higher orders, we can find that the function F−n
for each n in Eq. (57) should be some polynomial of cos θ:

F−nðθÞ ¼
Xn
i

fiðα; kÞcosiθ; ð67Þ

where fi are coefficients and are of ordermn, as pointed out
in Eq. (37). So Eq. (57) with the form of F−n should be
solvable. This implies that an exact solution may eventually
be obtained or guessed by following the procedure if we
could successfully handle all of the terms to higher enough
orders.
At the moment, the above solution up to the first few

orders should be valid for asymptotical regions far away
from the horizon. The solution is consistent with our near-
horizon solution for near-extreme black holes [12]. It can
be checked that the solution forms open magnetic field
lines, which may be separated by a current sheet on the
equatorial plane, just like the split monopole solution.

2. Analysis of the solution

Our solution generalizes the MD exact solution Ω ¼ ΩN
[5,6] to the (r, θ)-dependent case. The MD exact solution is
taken as an initial condition at both boundaries and is
recovered from the generalized solution when the param-
eter α ¼ 0. The exact solution has difficulties describing a
realistic magnetosphere since its four-current and the
electromagnetic field are both null. Here we examine the
situation for our generalized solution.
Before doing that, we first determine the conditions for

which the quantities from the solution are not singular on
the poles θ ¼ 0, which are summarized in Table I. For
k ≥ 3=2, all of the quantities in the table (as well as the
electromagnetic fields) are nonsingular on the poles.
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The existence of a magnetosphere in all frames requires
that it should be magnetically dominated, i.e., the invariant
should be

F2 ¼ 2ðB2 −E2Þ > 0: ð68Þ

Inserting the solution into the expressions, we can get the
invariant. We find that its sign is strongly affected by the
parameter k but it is not sensitive to other parameters like α
and a. As shown in Fig. 1, the invariant F2 is positive for

k < 3=2, while it is negative for k > 3=2 (the case k ¼ 3=2
cannot be judged since the solution is not available here).
This indicates that the magnetic fields can be dominated
only when (part of) the quantities are singular on the poles.
As expected, the values all asymptotically approach 0 at
large r as the (r, θ)-dependent solution recovers the MD
exact solution at the far boundary.
Whether the four-current Jμ is timelike, lightlike, or

spacelike can be determined by determining whether J2 ¼
JμJμ [contracted by the four-dimensional metric (1)] is
negative, null, or positive, respectively. The contracted
current is related to the charge and current densities
measured in ZAMOs via

J2 ¼ −ρ2e þ j · j; ð69Þ

with their components satisfying

1

Λ
ρe ¼ J0; jr ¼ Jr; ð70Þ

jθ ¼ Jθ; jϕ ¼ −ωJ0 þ Jϕ: ð71Þ

The three-current j is contracted by the metric (3) of the
absolute space.
The sign of J2 is also sensitive to k, as shown in Fig. 2.

For k > 3=2, the values of J2 are almost all positive at all
angles θ. For k < 3=2, they are not always positive and are
negative for larger θ, i.e., near the equatorial plane. The
only case in which its values are mostly negative happens
when k → 3=2 from the k < 3=2 side. The case k ¼ 1.49
(to regularize ~Ω3 to be not too large, we adopt a small
α ¼ 0.1) is shown in the right panel of Fig. 2. It can be seen
that the values of J2 grow with increasing θ from negative
values at the small angle θ ¼ 0.01π=2, and become slightly
positive at around θ ¼ π=4. Then they become negative
again for larger angles. It can be checked that the values of

FIG. 1. Illustrations of the invariant F2 at different radial
distances r and different poloidal angles θ ¼ qπ=2. The param-
eter c ¼ 1 and the spin parameter a ¼ 0.8M. The line groups are
(1) α ¼ 1 and k ¼ 1.3, (2) α ¼ 0.1 and k ¼ 1.49, and (3) α ¼ 1
and k ¼ 2.

FIG. 2. Illustrations of J2 at different distances r and different angles θ ¼ qπ=2. The parameters are chosen to be c ¼ 1 and a ¼ 0.8M.
Left panel: (1) α ¼ 1 and k ¼ 1.3, and (2) α ¼ 1 and k ¼ 3. Right panel: α ¼ 0.1 and k ¼ 1.49.

TABLE I. The conditions of k for the corresponding quantities
to be nonsingular on the rotation axis.

ψ Lθ I, Lr Eθ Er

k ≥ 0 k ≥ 3
4

k ≥ 1 k ≥ 5
4

k ≥ 3
2

HUIQUAN LI and JIANCHENG WANG PHYSICAL REVIEW D 96, 023014 (2017)

023014-8



J2 are also negative for angles smaller than θ ¼ 0.01π=2.
But they all will tend to be null, J2 ¼ 0, at exactly θ ¼ 0.

VI. SUMMARY

In this work, we adopted a new expansion method to
explore analytical solutions of force-free magnetospheres
on black holes with an arbitrary spin parameter. The
functions and stream equation were expanded in series
of the radial distance in terms of the boundary conditions at
the event horizon and at spatial infinity. With the conditions
at the two boundaries chosen, a set of solutions can be
defined and solved order by order.
In terms of the regular conditions at both boundaries, the

two asymptotical solutions found by MD in Refs. [5,6]
were identified as the solutions that have the same con-
ditions at the two boundaries. By taking them as initial
conditions at the boundaries, we derived the corresponding
expanded solutions to higher orders. The first one corre-
sponds to the split monopole solution obtained in the
perturbation approach when we take the a → 0 limit. It was
found to have a similar asymptotical profile to the latter at
large r, though not with the same r dependence.
The second solution can be viewed as an extension of the

r-independent MD exact solution to the (r, θ)-dependent
case. With an appropriate choice of the relation between ψ
and Ω at the far boundary, we found that the expanded
stream equation should be solvable at each order. So an
exact solution (probably with a closed form) can hopefully
be derived or guessed if we could calculate to all or high
enough orders, though we only derived the expanded
solution up to the first few orders in this work.
Based on the obtained solution, we showed that the

extended solution can (partially) avoid the problems of
the r-independent MD solution: the four-current and the
electromagnetic field are both null. When the parameter k
tends to the critical value 3=2 from the k < 3=2 side, our
solution leads to a force-free magnetosphere which is
magnetically dominated with a timelike current in most
directions θ. The current becomes slightly spacelike at
around θ ¼ π=4 and lightlike at exactly θ ¼ 0. A difficulty
for the solution with k less than and close to 3=2 is that the
energy extraction (integration of Er) highly converges
along the rotation axis in a singular way. Similar singular
behaviors also exist in the relieving method [8,9]. But, in
our case, the singular mode is very slight for k → 3=2.
Nevertheless, we may still have to exclude the θ ¼ 0
direction or assume that the force-free condition is violated
by dense plasma in this region.
As we can see, the solution with k ¼ 3=2 is an interest-

ing case, but it was not found in this work and is left for a
future study. We also need to derive the expanded solution
to higher orders and to check whether the results from the
present solution still hold (or even improve). Moreover,
more varieties of the relation between ψ0 and Ω0 other than
Eq. (50) are under consideration to find saturated results.
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APPENDIX: SOLUTIONS ON A
SCHWARZSCHILD BLACK HOLE

A detailed discussion of exact solutions of magneto-
spheres on Schwarzschild black holes can be found in
Ref. [20]. Here, we use the expansion method in the text to
rederive the solutions. The Schwarzschild metric is

ds2 ¼ −
�
1 −

r0
r

�
dt2 þ

�
1 −

r0
r

�
−1
dr2 þ r2dΩ2; ðA1Þ

where the horizon is located at r0 ¼ 2M.
In the nonrotating case, the stream equation reduces to

x2∂x½ð1 − x−1Þ∂xψ � þ L2
θψ ¼ 0; ðA2Þ

where

x≡ r
r0
; ðA3Þ

L2
θ ¼ sin θ∂θðsin−1θ∂θÞ ¼ ∂2

θ − cot θ∂θ: ðA4Þ

Here, we take ψ to be dimensionless to simplify the
notation. This equation is essentially Maxwell’s equation
on a Schwarzschild black hole in the absence of sources,
i.e., ρe ¼ j ¼ 0.
So the force-free condition (9) is trivial here and does not

really provide any extra constraint. We need to find
alternative boundary conditions. Let us adopt the ansatz
of a general solution:

ψðx; θÞ ¼ ψ1ðθÞxþ ψ� ln xþ ψ0ðθÞ þ ψ−1ðθÞx−1
þ ψ−2ðθÞx−2 þ � � � : ðA5Þ

We choose this ansatz to guarantee that the electromagnetic
fields vanish at x → ∞.
Inserting the expanded form into the equation and

comparing the coefficients of each order of x, we get the
following equations:

L2
θψ1 ¼ 0; ðA6Þ

L2
θψ� ¼ 0; ðA7Þ

L2
θψ0 ¼ ψ� − ψ1; ðA8Þ

ðL2
θ þ 2Þψ−1 ¼ −2ψ�; ðA9Þ

½L2
θ þ nðnþ 1Þ�ψ−n ¼ ðn2 − 1Þψ−ðn−1Þ ðn ≥ 2Þ: ðA10Þ
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1. Nonseparable solutions

The first four equations (A6)–(A9) are closed and
complete, and thus they give exact solutions. We first set
the coefficients ψ−n ¼ 0 (n ≥ 1) so that ψ� ¼ 0 since they
are always solutions. Then, from Eq. (A6) a solution of ψ1

can be written in the form

ψ1 ¼ 1 − cos θ: ðA11Þ

With this expression, Eq. (A8) can be expressed as

∂2
yψ0 ¼ −

1

y
; ðA12Þ

where y ¼ 1þ cos θ. A general solution to this is

ψ0 ¼ αþ β cos θ − ð1þ cos θÞ lnð1þ cos θÞ; ðA13Þ

where α and β are constants. When −α ¼ β ¼ 1, the full
solution is

ψ ¼ ðx − 1Þð1 − cos θÞ − ð1þ cos θÞ lnð1þ cos θÞ;
ðA14Þ

which is exactly the nonseparable solution [20].

2. Separable solutions

a. Zeroth-order solution

FromEqs. (A6)–(A8), we can impose the general solution

ψ1 ¼ ψ� ¼ bþ c cos θ; ψ0 ¼ dψ1 þ α cos θ þ β;

ðA15Þ
where b, c, d, and e are constants. So we have

ψ−n ¼ −
1

n
ψ1 ðn ≥ 1Þ: ðA16Þ

Adopting the relation lnð1 − zÞ ¼ −
P∞

n¼1 z
n=n, we can

express the solution as

ψ ¼ α cos θ þ β þ ðbþ c cos θÞ½dþ xþ lnðx − 1Þ�:
ðA17Þ

This is the lowest-order separable solutionwithm ¼ 0 given
in Ref. [20]. The case b ¼ c ¼ 0 is the (split) monopole
solution.

b. First-order solution

From the first three equations (A6)–(A8), we consider
the case

ψ1 ¼ ψ� ¼ 0 ðA18Þ

and

ψ0 ¼ α cos θ þ β: ðA19Þ

Then, Eq. (A9) becomes L2
θψ−1 ¼ −2ψ−1. So the general

solution of ψ−1 can be

ψ−1 ¼ g sin2 θ; ðA20Þ

where g is an arbitrary constant. Thus, we can have
generically from Eq. (A10)

ψ−n ¼
3g

nþ 2
sin2θ ðn ≥ 2Þ: ðA21Þ

By using the expansion expression of lnð1 − zÞ, we can
express the full solution as

ψ ¼ α cos θ þ β − 3gsin2θ

�
1

2
þ xþ x2 ln

�
1 −

1

x

��
:

ðA22Þ

The solution with α ¼ β ¼ 0 is clearly the separable
solution at the order m ¼ 1 given in Ref. [20].

c. Higher-order solutions

If we consider the case ψ1 ¼ ψ� ¼ ψ0 ¼ ψ−1 ¼ 0, then
Eq. (A10) becomes L2

θψ−2 ¼ −6ψ−2. Its solution is
ψ−2 ¼ 3h cos θsin2θ. We can then insert the solution into
the generalψ−n. Following the same approach above,we can
derive the separable solution at the m ¼ 3 order. Similarly,
we can derive all higher-order separable solutions.
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