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Axion-like particles (ALPs) might constitute the totality of the cold dark matter (CDM) observed.
The parameter space of ALPs depends on the mass of the particlem and on the energy scale of inflationHI ,
the latter being bound by the nondetection of primordial gravitational waves. We show that the bound on
HI implies the existence of a mass scale m̄χ ¼ 10 neV–0.5 peV, depending on the ALP susceptibility χ,
such that the energy density of ALPs of mass smaller than m̄χ is too low to explain the present CDM
budget, if the ALP field has originated after the end of inflation. This bound affects ultra-light axions
(ULAs), which have recently regained popularity as CDM candidates. Light (m < mχ) ALPs can then be
CDM candidates only if the ALP field has already originated during the inflationary period, in which case
the parameter space is constrained by the nondetection of axion isocurvature fluctuations. We comment on
the effects on these bounds from additional physics beyond the standard model, besides ALPs.
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I. INTRODUCTION

In the era of precision cosmology, the cold dark matter
(CDM) budget in our Universe has been established at about
84% of the total matter in the Universe, yet its composition
remains unknown. Among the proposed hypothetical par-
ticles which could address this fundamental question is the
QCD axion [1,2], the quantum of the axion field arising from
the spontaneous breaking of aU(1) symmetry conjectured by
Peccei and Quinn (PQ [3,4]) to solve the strong-CP problem
in quantum chromodynamics (QCD). The symmetry break-
ing occurs at a yet unknown energy scale fa, which is
constrained by measurements to be much larger than the
electroweak energy scale [5]. The mass of the QCD axion at
zero temperature m0 is related to the axion energy scale fa
by m0fa ¼ Λ2

a, where the energy scale Λa is related to the
QCD parameter ΛQCD. Realistic “invisible” axion models
introduce new particles that further extend the standard
model: examples include the coupling of the axion to heavy
quarks [6,7] or to a Higgs doublet [8,9].
The history and the properties of axions produced in

the early Universe depend on the relative magnitude of
the energy scale fa compared to the inflation energy
scale HI [10–19]. In facts, if fa > HI=2π, the breaking
of the Uð1ÞPQ symmetry occurs before reheating begins
and axions must be present during inflation, while, if
fa < HI=2π, the axion field originates after the end of
inflation. Measurements of the CMB properties constrain
the parameter space of the axion, including the scale of
inflation HI and axion isocurvature fluctuations. See
Refs. [20–27] for reviews of the QCD axion.

Besides the QCD axion, other axion-like particles (ALPs)
arise from various ultraviolet completion models, in which
additional U(1) symmetries which are spontaneously broken
are introduced, as well as some other underlying physics.
In fact, although the ALPmassmight share a common origin
with the QCD axion, it is possible for these particle not to
be related to the dynamics of the gauge fields whatsoever.
Examples include “accidental” axions [28–34] and axions
from string theory [19,35–42]. See also Ref. [43] for the
effects of wormholes to the QCD axion potential. In all these
scenarios, two energy scales emerge: the symmetry-breaking
scaleΛ and the ALP decay constant f. Similarly to the QCD
axion, the ALP field acquires a mass m ∼ Λ2=f, so that,
contrarily to theQCD axion, themassm and the energy scale
f can be treated as independent parameters. An interesting
proposed ALP is the ultra-light axion (ULA), of mass
mULA ≈ 10−22 eV [44–55]. Such a light axion, recently
revised in Refs. [56,57], would have a wavelength of
astrophysical scale λ ∼ 1 kpc and could possibly address
some controversies arising when treating small scales in the
standard ΛCDM cosmology, namely the missing satellites
and the cusp-core problems (see Ref. [58] for a review).
ALPs from global and accidental U(1) symmetries share

a common cosmological history with the QCD axion and
spectate inflation whenever f > HI=2π. One of the main
results of the present paper is to show that, in the opposite
regime f < HI=2π, the observational constraint on HI
coming from the Planck mission leads to a lower bound on
the ALP mass, m≳ m̄χ , for some limiting mass m̄χ whose
value depends on the ALP susceptibility χ. We find a
numerical value m̄χ ¼ 10 neV–0.5 peV, depending on the
value of χ. This means that, if the CDM is discovered to be
entirely composed of an ALP of mass m < m̄χ , e.g. ULAs,
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such particles must be already present during inflation.
Instead, if an ALP is discovered with m > m̄χ , both
cosmological origins are possible. We also show that,
when f > HI=2π and the U(1) symmetry is never restored
afterwards, the nondetection of axion isocurvature fluctua-
tions by the Planck mission leads to an upper bound on the
scale of inflationHI , regardless of the ALP mass. Although
this second result is quite straightforward to derive, it has
never been stressed in the past literature.
The paper is organized as follows. In Sec. II we review the

temperature dependence of the QCD axion mass, the ALP
parameter space, and we derive the lower bound on the ALP
mass. In Sec. III we show results for the ALP parameter
space, assuming either a cosine or a harmonic potential.
In Sec. IV, we discuss some exceptions to the computation
used coming from the effects of some physics beyond the
standard model, including the modification to the effective
number of degrees of freedom, nonstandard cosmologies, or
entropy dilution. Conclusions are drawn in Sec. V.

II. ALPS AND INFLATION

A. Reviewing the temperature dependence
of the QCD axion mass

The QCD axion mass originates from nonperturbative
effects during the QCD phase transition. At zero temper-
ature, the axion gets a mass m0 from mixing with the
neutral pion [1],

m0 ¼
Λ2
a

fa
¼

ffiffiffi
z

p
1þ z

mπfπ
fa

; ð1Þ

where z ¼ mu=md is the ratio of the masses of the up and
down quarks, mπ and fπ are respectively the mass and the
energy scale of the pion, and fa is the QCD axion energy
scale. The energy scale Λa is proportional to the QCD
scale ΛQCD, so that the axion mass is tied to the underlying
QCD theory. Using z ¼ 0.48ð5Þ,mπ ¼ 132MeV, and fπ ¼
92.3 MeV, the authors in Ref. [59] obtainΛa ¼ 75.5 MeV,
a value slightly smaller than what obtained in other work.
For example, Ref. [24] obtains Λa ¼ 78 MeV within the
framework of the “interacting instanton liquid model”,
fixing the QCD scale to ΛQCD ¼ 400 MeV. Recently, more
refined computations on the QCD lattice have become
accessible [60–62].
When temperature-dependent effects become important,

the QCD axion mass acquires a complicated dependence
on the plasma temperature [63,64]. Here, we model such
dependence as [24,65,66]

maðTÞ ¼
(

α2Λ2
QCD

fa
ðΛQCD

T Þχ=2; for T ≥ Teff ;

m0; for T < Teff ;
ð2Þ

where χ is the QCD axion susceptibility and α is a numerical
factor. At present, there is no general consensus on the

numerical value of the susceptibility, which depends on the
particle content of the embedding theory [67,68], as well as
the computational technique used [24,60,65]. Reference [24]
obtains χ ¼ 6.68 and α ¼ ð1.68 × 10−7Þ1=4 ≈ 0.02while the
methods in Refs. [15,63,64,69] predict χ ¼ 8 and

α ¼ Λa

ΛQCD
C1=2

�
ΛQCD

200 MeV

�
1=4

≈ 0.03–0.05; ð3Þ

where C ¼ 0.018, see Eq. (4) in Ref. [69]. In addition,
we have introduced the temperature scale Teff ¼
ΛQCDðαΛQCD=ΛaÞ4=χ at which the two expressions in
Eq. (2) match. This allows us to rewrite Eq. (2) as
maðTÞ ¼ m0GðTÞ, with the function

GðTÞ ¼
� ðTeff

T Þχ=2; for T ≥ Teff ;

1; for T < Teff :
ð4Þ

B. Observational constraints

The QCD axion, and more generally ALPs, are suitable
CDM candidates in some region of the parameter space,
provided that these particles are produced nonthermally.
In the following, we assume that the totality of the observed
CDM budget is in the form of ALPs of mass m. This is
equivalent to demanding that the energy density in ALPs,
here ρA, is equal to the present CDM energy density ρCDM.
We write this requirement as

ΩAh2 ¼ ΩCDMh2 ¼ 0.1197� 0.0022

at 68% Confidence Level ðCLÞ; ð5Þ

where ΩA ¼ ρA=ρcrit and ΩCDM ¼ ρCDM=ρcrit are, respec-
tively, the energy densities in ALPs and in the observed
CDM [70], both given in units of the critical density
ρcrit ¼ 3H2

0M
2
Pl=8π, with the Planck mass MPl ¼ 1.221 ×

1019 GeV and where h is the Hubble constant H0 in units
of 100 km s−1Mpc−1.
Besides its mass, energy scale, and initial value of the

misalignment angle, the ALP energy budget depends on
the Hubble expansion rate HI at the end of inflation, which
is constrained from measurements on the scalar power
spectrum Δ2

Rðk0Þ and the tensor-to-scalar ratio rk0 at the
pivotal scale k0 as [71,72]

HI <
MPl

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΔ2

Rðk0Þrk0
q

∼ 7 × 1013 GeV: ð6Þ

The numerical value of the bound has been computed
by using the measurements at the wave number k0 ¼
0.05 Mpc−1 [73–77]

Δ2
Rðk0Þ ¼ ð2.215þ0.032

−0.079Þ × 10−9; at 68%CL; ð7Þ
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rk0 < 0.07; at 95% CL: ð8Þ
We finally comment on isocurvature perturbations.

Quantum fluctuations imprint into all massless scalar field
a present during inflation, with variance [78,79]

hjδa2ji ¼
�
HI

2π

�
2

: ð9Þ

Primordial quantum fluctuations later develop into isocur-
vature perturbations [80], which modify the number density
of axions, since the gauge invariant entropy perturbation is
nonzero [81–83],

Sa ¼
δðna=sÞ
na=s

≠ 0; ð10Þ

where s is the comoving entropy and na the axion number
density. If all of the CDM is in axions, then we define
[69,84,85]

Δ2
S;A ≡ hjSaj2i ¼ Δ2

Rðk0Þ
β

1 − β
; ð11Þ

where the parameter β is constrained from Planck [73,74] at
the scale k0 ¼ 0.05 Mpc−1 as

β ≲ 0.037; at 95% CL; ð12Þ

independently on the ALP mass.

C. Constraining the ALP mass

We now consider the parameter space of ALPs produced
through the vacuum realignment mechanism (VRM)
[86–88], as revised in Appendix. Although, in principle,
other mechanisms in addition to the VRM like the decay of
topological defects produced at the PQ phase transition
through the Kibble mechanism [89] and the decay of parent
particles into ALPs might sensibly contribute to the present
abundance of cold ALPs, we do not consider them here.
Similarly to what obtained for axions, we represent the

ALP mass as mðTÞ ¼ mGðTÞ, where m is a new parameter
and GðTÞ is given in Eq. (4). The ALP susceptibility χ
might take any real non-negative value and is left here as a
free parameter. An infinite susceptibility corresponds to the
ALP mass abruptly jumping from zero to the value m at
temperature Teff ; any finite value of χ results in a smoother
transition. ALPs from string theory or arising from acci-
dental symmetries have χ ¼ 0. The ALP energy scale f is
related to the ALP mass by f ¼ Λ2=m, where Λ is a new
energy scale specified by an underlying theory. Finally, we
write Teff ¼ cΛ, for some constant value c.
We review the non-thermal production of a cosmological

population of ALPs from the misalignment mechanism in
the Appendix, assuming that ALPs move in the potential

VðθÞ ¼ f2m2ðTÞð1 − cos θÞ; ð13Þ
where θ ¼ a=f and a is the ALP field. We assume that,
when the ALP field originates, the initial value of the
misalignment angle is θi. The present value of the ALP
energy density obtained from the misalignment mechanism
is given in Eq. (A17),

ρA ¼ Λ4GðT1Þ
2

gSðT0Þ
gSðT1Þ

�
T0

T1

�
3

hθ2i i; ð14Þ

where hθ2i i is the initial value of the misalignment angle
squared, averaged over our Hubble volume, while the
effective number of relativistic (“R”) and entropy (“S”)
degrees of freedom are defined as [79]

gRðTÞ ¼
X
i

15gi
π4

�
Ti

T

�
4

×
Z þ∞

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2i

p
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2i

p
Þ þ ð−1ÞQf

i

dx; ð15Þ

gSðTÞ ¼
3

4

X
i

15gi
π4

�
Ti

T

�
3
Z þ∞

0

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2i

p
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2i

p
Þ þ ð−1ÞQf

i

×

�
1þ x2

3ðx2 þ y2i Þ
�
dx: ð16Þ

In the expressions above, T is the temperature of the plasma,
and the sum runs over the i species considered, each with
temperature Ti, massmi, yi ≡mi=Ti, andQ

f
i ¼ 1 (Qf

i ¼ 0)
if i is a fermion (boson). Instead of computing the integrals
in Eqs. (15)–(16), we have considered the parametrization
in Refs. [24,90], where the effective number of degrees of
freedom are approximated with a series of step functions,
for temperatures up to Oð100 GeVÞ.
In Eq. (14), we have introduced the initial value of the

misalignment angle θi, which is the ALP field in units of f,
and angle brackets define the average over all possible
values of θi. In this scenario, θi takes different values within
our Hubble horizon, so

hθ2i i ¼
1

2π

Z
π

−π
θ2i FðθiÞdθi; ð17Þ

where the weighting function FðθiÞ has been thoroughly
discussed in the literature [18,57,66,91–94]. Here, we
take [57]

FðθiÞ ¼ ln

�
e

1 − ðθi=πÞ4
�
; ð18Þ

which gives
ffiffiffiffiffiffiffiffiffi
hθ2i i

p
¼ 2.45.

Coherent oscillations in the ALP field begin at temper-
ature T1 given by 3HðT1Þ ¼ m, see Eq. (A2) below, and the
Hubble rate during radiation domination is
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HðTÞ ¼ AðTÞ T2

3MPl
; AðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3

5
g�ðTÞ

r
: ð19Þ

The temperature T1 at which the coherent oscillations in the
ALP field begin is

T1 ¼ Teff

8>><
>>:

�
f̂
f

	 2
4þχ; for f ≤ f̂;�

f̂
f

	1
2; for f > f̂:

ð20Þ

where we have defined the axion energy scale

f̂ ≡ MPl

c2AðT1Þ
: ð21Þ

Inserting Eq. (20) into Eq. (14), we obtain the present ALP
energy density as

ρA ¼ ρ̂Ahθ2i i
�
m

f̂

�
1=2

8>><
>>:

�
f
f̂

	16þ3χ
2ð4þχÞ; for f ≤ f̂;�

f
f̂

	
2
; for f > f̂;

ð22Þ

where we have defined

ρ̂A ¼ g�SðT0Þ
g�SðT1Þ

f̂
2

�
T0

c

�
3

: ð23Þ

If the ALP field originates after inflation, the energy density
is a function of the mass m and the ALP energy scale f
only, but it does not depend on θi which is averaged out.
Equating ρA in Eq. (22) with the CDM energy density
ρCDM ¼ ΩCDMρcrit gives

f ¼ f̂

8>><
>>:

�
ρCDM
ρ̂Ahθ2i i

	 8þ2χ
16þ3χ

�
f̂
m

	 4þχ
16þ3χ; for f ≤ f̂;�

ρCDM
ρ̂Ahθ2i i

	1
2

�
f̂
m

	1
4; for f > f̂:

ð24Þ

For any value of m, Eq. (24) expresses the value of f for
which the ALP explains the observed CDM budget.
We show that lighter ALPs cannot make the totality of

the CDM when produced after the end of inflation. In facts,
the region where f < HI=2π (which implies f < f̂) is
constrained by the bound onHI expressed in Eq. (6), which
leads to the lower bound on the ALP mass,

m ≥ m̄χ ≡ f̂

�
64π

Δ2
Rðk0Þrk0

�
f̂
MPl

�2�16þ3χ
8þ2χ

�
ρCDM
ρ̂Ahθ2i i

�
2

: ð25Þ

The numerical value of m̄χ depends on the susceptibility χ
and on the value of the constant c in the model. Setting
c ¼ 1, we obtain the limiting cases m̄0 ¼ 10 neV and

m̄∞ ¼ 0.5 peV. Axion theories wherem < m̄χ must embed
the axion production in the inflationary mechanism, as we
discuss below. We remark that the bound in Eq. (25) only
applies if the ALP field originated after the end of inflation,
f < HI=2π, and if the ALP field has originated from the
breaking of a U(1) symmetry. in these scenarios, a Hubble
volume contains a multitude of patches where the axion
field has a different, random value. These patches are
bound by topological defects which could decay and leave
to an additional component of the cold ALP energy density.
The inclusion of nonrelativistic ALPs from the decay of
topological defects would increment their number density,
potentially reducing the value of m̄χ by a couple of orders
of magnitude. Here, we do not consider such contribution.
Notice that the result in Eq. (25) does not depend on the
value of Λ.

D. ALPs and inflation

ALPs of mass smaller than m̄χ can still be regarded as
CDM candidates, although the related U(1) symmetry must
have broken during the inflationary period, with the ALP
energy scale satisfying f > HI=2π. The cosmological prop-
erties of suchALPswould greatly differ from those described
in the region f < HI=2π, in particular no defects are present
and a unique value of θi is singled out by the inflationary
period within our Hubble volume. For example, consider
the case of an ULA of massmULA ¼ 10−22 eV, which is the
mass scale proposed to solve some small-scale galactic
problems [44–55] and recently has been vigorously recon-
sidered as a possible CDM candidate [56]. Since the mass
scale mULA falls well within the limit excluded by Eq. (25),
ULAs must have been produced during inflation to be the
CDM, with a precise relation between the initial misalign-
ment angle and the energy scale given by Eq. (24) with hθ2i i
replaced by θ2i FðθiÞ. The replacements account for the fact

i 1 0
8

20 15 10 5 0

10

12

14

16

Log10 m eV

L
og

10
f

G
eV

FIG. 1. The energy scale f as a function of the ALP mass m,
Eq. (24). We have chosen the initial misalignment angle θi ¼ 1
and different values of the susceptibility: χ ¼ 0 (blue solid line),
χ ¼ 8 (green dotted line), χ ¼ þ∞ (red dashed line).
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that the angle average hθ2i i singles out a uniform value for θi
over the entire Hubble volume. In this scenario, we expect
that the initial misalignment angle is of the order of one, with
smaller values of θi still possible albeit disfavored. In Fig. 1,
we show the value for f given in Eq. (24), as a function of the
ALP massm, for the value θi ¼ 1 and for different values of
the ALP susceptibility: χ ¼ 0 (blue solid line), χ ¼ 8 (green
dotted line), χ ¼ þ∞ (red dashed line). Values of f of
the order of the GUT scale f ∼ 1015 GeV are expected for
m ∼ 10−17–10−13 eV, while the ULA mass mULA ∼
10−22 eV gives f ∼ 1017 GeV [56]. For higher values of
the ALP mass, the spread among f for different values of χ
widens.

III. FRAMING THE ALP PARAMETER SPACE

A. Cosine potential

We apply the expression for axion isocurvature fluctua-
tions in Eq. (11) to the ALP scenario, to obtain [95]

Δ2
S;A ¼

�∂ ln ρA
∂θi

�
2

hδθ2i i ¼
�
HIF ðθiÞ
πθif

�
2

; ð26Þ

where in the last step we have used Eq. (9), and where we
defined the function

F ðxÞ ¼ 1þ xF0ðxÞ
2FðxÞ : ð27Þ

Results on the various bounds on the ALP parameter space
are summarized in Fig. 2. Since we do not consider the
contribution from the decay of topological defects, the
parameter space of CDM ALPs depends on six quantities,
f, θi, HI , m, c, and χ. We show how the parameter space
modifies when considering different values of the ALPmass:
m ¼ 10−20 eV (top left), m ¼ 10−10 eV (top right), m ¼
10−5 eV (bottom left), andm ¼ 10−3 eV (bottom right). For
eachpanel, the linef ¼ HI=2π separates the regionwhere the
axion is present during inflation (top-left) from the region
where the axion field originates after inflation (bottom-right),
for a fixed value c ¼ 1. This line has to be though as a
qualitative bound between the two scenarioswewill describe,
since the exact details depend on the inflationary model, the
preheating-reheating scenarios, and axion particle physics.
The horizontal line labeled “ALP CDM” corresponds to the
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FIG. 2. The APL parameter space for different values of the ALP mass. We have assumed the ALP potential in Eq. (13). Top left:
m ¼ 10−20 eV. Top right: m ¼ 10−10 eV. Bottom left: m ¼ 10−5 eV. Bottom right: m ¼ 10−3 eV. We have shown results for different
values of the susceptibility: χ ¼ 0 (solid blue), χ ¼ 8 (dotted green), χ ¼ þ∞ (dashed red). The yellow region is excluded by CDM
overproduction, ρA > ρCDM. The region labeled “Axion isocurvature fluctuations” is excluded below the curve shown. For clarity, we
have shaded in yellow the region below the lowest of the three curves only. Horizontal lines show the values of f for which the ALP is
the CDM for each ALP mass and for each value of χ. The green region is accessible, however the ALP is a subdominant CDM
component, ρA < ρCDM. The bound labeled “Tensor modes” is derived from the nondetection of primordial gravitational waves,
see Eq. (6).
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requirement that the primordial ALP condensate has started
behaving likeCDMatmatter-radiation equality (SeeRef. [96]
for details),

f ≳ 53 TeV
π

ffiffiffiffiffiffi
eV
m

r
: ð28Þ

We first discuss the scenario where f > HI=2π. The
region is bound by the nondetection of axion isocurvature
fluctuations, obtained from Eq. (12) with the requirement
that ρA ¼ ρCDM.We plot the bound for three different values
of the susceptibility: χ ¼ 0 (blue solid line), χ ¼ 8 (green
dotted line), χ ¼ þ∞ (red dashed line). For clarity, we shade
in yellow the region below the minimum of the three curves
although we have to bear in mind that the whole parameter
space below a curve of fixed χ has been ruled out. The change
in the slope corresponds to the argument of the anharmo-
nicity function FðθiÞ approaching π. For each value of χ,
the horizontal lines in the allowed parameter space show the
“natural” value of f for which ρA ¼ ρCDM and θi ¼ 1, as
shown in Fig. 1. Form ¼ 10−20 eV, the natural value of the
axion energy scale is of the order of f ∼ 1016 GeV, corre-
sponding to the “ALP miracle” discussed in Ref. [56]. For
smaller values of theALPmass, the natural value off lowers,
and the spread among different values of χ widens, as shown
in Fig. 1. The bound from isocurvature fluctuations steepens
when θi decreases, and it is vertical for θi ≪ 1 and for χ ¼ 0,
or for f > f̄. We reformulate this constraint as an upper

bound on HI for a given ALP theory, which is obtained by
combining Eqs. (11), (24), and (26) as

HI ≤ πf̂

�
f̂
m

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρCDM
ρ̂A

β

1 − β
Δ2

Rðk0Þ
s

¼ 107 GeV

ffiffiffiffiffiffi
eV
m

4

r
:

ð29Þ

Isocurvature bounds have been used in the string axiverse
realization discussed in Ref. [19], neglecting the dependence
on the susceptibility and the anharmonic corrections in the
potential. The presence of axion isocurvatures in the CMB,
whose constrain on the power spectrum leads to Eq. (29),
relies on the fact that the PQ symmetry has never been
restored after the end of inflation. Caveats that allow to evade
the bound from isocurvature fluctuations in Eq. (29) include
the presence of more than one ALP [95] or by identifying the
inflaton with the radial component of the PQ field [97].
This latter technique has been embedded into the SMASH
model [98] where, for a decay scale f ≲ 4 × 1016 GeV,
the PQ symmetry is restored immediately after the end of
inflation and isocurvature modes are absent, so that the
bound in Eq. (29) does not apply.
In the second scenario f < HI=2π, the axion is not

present during inflation. In this scenario, a horizontal
line gives the value of f for which the ALP is the CDM
for a given value of the susceptibility. ALPs with an energy
scale smaller than this value are a subdominant CDM
component (green region, ρA < ρCDM), while values above
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FIG. 3. Same as Fig. 2, but for a harmonic potential in Eq. (30).
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are excluded (yellow region, ρA > ρCDM). The constraint in
Eq. (25) applies in this region of the parameter space, for
some values of the ALP mass. For m ¼ 10−20 eV, which
lies below the critical value m̄χ in Eq. (25), we always have
ρA < ρCDM, so the region f < HI=2π is shaded with green.
Larger values of the ALP mass allow for ρA ¼ ρCDM for
some values of f and χ, avoiding the constraint in Eq. (25).

B. Harmonic potential

In Fig. 2, we have shown the parameter space of ALPs
moving in the cosine ALP potential in Eq. (13), including
the nonharmonic corrections through the function FðθiÞ in
Eq. (18). However, the ALP potential can greatly differ
from what expressed in Eq. (13). For example, in the
presence of a monodromy [99–101], the degeneracy among
the minima of the cosine potential is lifted by a quadratic
potential, which might dominate the axion CDM potential
[102]. We repeat the computation in the previous section
for a harmonic potential, by switching off the nonharmonic
corrections, setting FðθiÞ ¼ 1, considering the ALP
moving in the quadratic potential

VHðθÞ ¼
1

2
f2m2ðTÞθ2: ð30Þ

Inserting Eq. (22) into Eq. (26) for a harmonic potential to
eliminate θi leads to a relation between HI and f,

f ¼ f̂

��
πf̂
HI

�2 ρCDM
ρ̂A

βΔ2
Rðk0Þ

1 − β

�8þ2χ
8þχ

: ð31Þ

We show results for the parameter space thus obtained in
Fig. 3. Notice that the upper left panel (m ¼ 10−20 eV)
qualitatively reproduces the results recently obtained in
Ref. [57] when the anharmonic corrections are neglected in
the isocurvature modes. Equation (29) describes the vertical
blue line at the boundary of the region excluded by the
nonobservation of isocurvature fluctuations.

IV. EFFECTS OF ADDITIONAL PHYSICS
BEYOND THE STANDARD MODEL

Additional new physics might sensibly alter the axion
parameter space presented in Fig. 2. Besides the QCD
axion and other ALPs, examples of new physics not
currently described within the framework of the standard
model include additional particles whose presence modifies
the effective number of degrees of freedom, or heavy scalar
fields that might have dominated the Universe before the
onset of radiation domination. We discuss some of the
issues in the following. We focus on the case in which
the axion mass is independent of temperature, since results
can be easily generalized.

A. Effective number of degrees of freedom

The existence of particles that are still to be discovered
would alter the effective number of relativistic and
entropy degrees of freedom for temperatures larger than
T ≳Oð100Þ GeV. For example, the maximum number of
effective relativistic degrees of freedom is 106.75 in the
standard model, and 228.75 in the minimal supersymmetric
standard model [79]. Setting 3HðTÞ ¼ m, with H given in
Eq. (19) and T ¼ 1 TeV, we obtain that corrections to
gRðTÞ from physics beyond the standard model become
important when m≳ 10−4 eV. We thus neglect these
contributions when deriving the results in Sec. II C.

B. Nonstandard cosmological history

The content of the Universe for temperatures larger than
TRH ≳ 4 MeV is currently unknown, with lower bound
being obtained from the requirement that the big-bang
nucleosynthesis is achieved in a radiation-dominated cos-
mology [103–107]. However, for higher temperatures, the
expansion rate of the Universe could have been dominated
by some unknown form of energy, with an equation of
state that differs from the one describing a relativistic fluid.
A popular example is the early domination of a massive
scalar field ϕ, emerging as a by-product of the decay of the
inflaton field. In the following, we refer to this modified
cosmology as being ϕ-dominated. The effect of a non-
standard cosmological history might vary the present value
of the axion energy density by orders of magnitude [93],
depending on the equation of state for the fluid that
dominates the expansion and the presence of an entropy
dilution fact. In a nutshell, in a ϕ-dominated Universe the
ALP begins to oscillate at a temperature T1 that is different
from what obtained in the standard picture, because of a
different relation between temperature and time in the
modified cosmology. Assuming that the equation of state of
the ϕ field in the modified cosmology is p ¼ wρ (w ¼ 1=3
for radiation), for times t larger than the moment tRH at
which the Universe transitions from ϕ domination to
radiation domination, the Hubble rate is

H ¼ 2

3ðwþ 1Þt ¼ HRH

�
T

TRH

�3ðwþ1Þ
2

; ð32Þ

where the last expression is valid only if the entropy density
s ¼ gST3 in a comoving volume is conserved, we have
neglected the contribution from the entropy degrees of
freedom, and

HRH ¼ HðtRHÞ ¼ AðTRHÞ
T2
RH

3MPl
: ð33Þ

We consider the temperature dependence of the ALP mass
as mðTÞ ¼ mðTeff=TÞχ=2, while the constant ALP mass
case is obtained by setting χ ¼ 0. An early ϕ domination
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modifies the temperature at which coherent oscillations
begin, Eq. (20), as

T1 ¼ Teff

�
f̂RH
f

� 2
3ðwþ1Þþχ

�
TRH

Teff

� 3w−1
3ðwþ1Þþχ

: ð34Þ

where f̂RH ≡MPl=c2AðTRHÞ ≈ f̂. The new value of T1

modifies the present energy density, given by Eq. (14)
when it is assumed entropy conservation from the onset of
axion oscillations. The ALP energy density is

ρA ¼ ρ̂A

�
m

f̂

�
1=2

hθ2i i
�
cΛ̂
TRH

�ð6þχÞð3w−1Þ
6ðwþ1Þþ2χ

�
f

f̂

�2ð16þ3χÞþð3w−1Þð8þχÞ
4½3ðwþ1Þþχ�

;

ð35Þ
where ρ̂A has been defined in Eq. (23). Notice that, setting
w ¼ 1=3, we obtain the energy density given in the first line
in Eq. (22). The axion energy scale for which the ALP is the
CDM particle reads

f ¼ f̂

�
ρCDM
ρ̂Ahθ2i i

ffiffiffiffi
f̂
m

s � 4½3ðwþ1Þþχ�
2ð16þ3χÞþð3w−1Þð8þχÞ�

TRH

cΛ̂

� 2ð6þχÞð3w−1Þ
2ð16þ3χÞþð3w−1Þð8þχÞ

:

ð36Þ
For a generic cosmological mode, the constraint in Eq. (25)
for the region f < HI=2π modifies as

m ≥ f̂

�
64π

Δ2
Rðk0Þrk0

�
f̂
MPl

�2�2ð16þ3χÞþð3w−1Þð8þχÞ
2½3wð8þχÞþχ�

×
�
ρCDM
ρ̂Ahθ2i i

�4½3ðwþ1Þþχ�
3wð8þχÞþχ

�
TRH

cf̂

�2ð6þχÞð3w−1Þ
3wð8þχÞþχ

: ð37Þ

The latter expression depends on two additional parameters
w and TRH, and gives the result already obtained in Eq. (25)
for w ¼ 1=3.
For w < 1=3, Eq. (37) can be restated as a lower bound

on the reheating temperature, valid when assuming that the
ALPs considered make up the totality of the CDM observed
and that coherent oscillations in the field began after
inflation, in a ϕ-dominated cosmology. In the case of an
early matter-dominated cosmology w ¼ 0, the bound in
Eq. (37) can be restated as a bound on the reheating
temperature as

TRH ≥ cf̂

�
f̂
m

� χ
2ð6þχÞ

�
64π

Δ2
Rðk0Þrk0

�
f̂
MPl

�2�24þ5χ
4ð6þχÞ

�
ρCDM
ρ̂Ahθ2i i

�6þ2χ
6þχ

:

ð38Þ
If the mass is not affected by nonperturbative effects
and χ ¼ 0, like for accidental ALPs, the expression above
becomes independent on m and yields the bound
TRH ≳ 3 GeV, which is about three orders of magnitude

more stringent than what obtained in Refs. [103–107]
using BBN considerations. We nevertheless stress that the
bound in Eq. (38) can be easily evaded, given the strong
assumptions under which it has been derived.

C. Dilution factor

Some scenarios predict a violation in the conservation
of the total entropy in a comoving volume, sa3, due for
example to the decay into lighter degrees of freedom of the
ϕ field that dominates the Universe at that time. This is the
case, for example, of a low-temperature reheating (LTR)
stage [87,108–110], in which the Universe is dominated
by a massive, decaying moduli field. In this situation, the
relation between the scale factor and temperature changes
from the simple relation g1=3S T ∼ 1=a to a generic relation
aTδ ∼ const, where δ is a new constant in the model. For
example, δ ¼ 8=3 in the LTR scenario [111]. A different
parametrization consists in assuming that a certain amount
of entropy γ is produced during the decaying stage
[108,112,113]. Either way, the effect of entropy dilution
reduces the present energy density of axions in Eq. (22) by a
factor γ, and the bound on the ALP mass in Eq. (25) is
lowered. In general, we obtain the ALP energy density to be
diluted by a factor ρA → ρA=γ. If γwere to be independent on
the ALP mass, we would get a reduction by m̄χ → m̄χ=γ2.
We compute the dilution factor in the LTR scenario as

γ ¼ gSðTRHÞa3RT3
R

gSðT1Þa31T3
1

¼ gSðTRHÞ
gSðT1Þ

�
T1

TRH

�
3ðδ−1Þ

¼ gSðTRHÞ
gSðT1Þ

�
Teff

TRH

�
3ðδ−1Þ�f̂

f

�6ðδ−1Þ
4þχ

; ð39Þ

where in the last step we have used the expression for T1

in Eq. (20) for the case f ≤ f̂. Sincewe expect oscillations to
begin in the ϕ-dominated scenario, for which T1 > TRH,
demanding δ > 1 indeed leads to a dilution that is larger
than one. For example, using TRH ¼ 4 MeV and m ¼
10−5 eV with δ ¼ 8=3 and χ ¼ 0, we obtain γ ≈ 1020.
This large discrepancy with respect to the standard cosmol-
ogy scenario has been used in Ref. [93] to dilute the energy
density of the cosmological QCD axion, obtaining results
that sensibly differ from the standard picture. Taking the
expression for ρA in Eq. (22), we rephrase the bound in
Eq. (25) when the dilution in Eq. (39) is added as

m ≥
�

gSðT1Þ
gSðTRHÞ

gRðT1Þ
gRðT0Þ

H2
0

T3
0

48ΩCDM

hθ2i iΔ2
Rðk0Þrk0

� 2
3δ−2

×

�
AðT1Þ
MPl

�3ðδ−2Þ
3δ−2

T
6ðδ−1Þ
3δ−2
RH ∼ 10−13 eV: ð40Þ

We have treated separately the effects due to the modified
expansion rate and dilution to obtain the bounds in Eqs. (37)
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and (40). A consistent derivation within a modified cosmol-
ogy (say, LTR), has to consistently take into account both
effects.

V. CONCLUSION

The present energy density of ALPs depends on both its
mass m and the energy scale f. In general, these parameters
can be tuned so that ρA ¼ ρCDM. However, in models where
the ALP field originates after inflation, we have shown in
Sec. II C that the bound on the scale of inflationHI from the
nondetection of primordial gravitational waves leads to a
minimum value of the ALPmass m̄χ below which the tuning
ofm and f is no longer possible. AnALPwithmassm < m̄χ

can still be a CDM candidate if it spectates inflation. In this
latter scenario, the scale of inflationHI is bound by the ALP
mass through Eq. (29) which, although used in other work
[13–19], has never been explicitly derived before. We have
shown how these results affect the parameter space of the
ALP for different values of the mass and of the susceptibility
in Fig. 2 (cosine potential) and Fig. 3 (harmonic potential).
Finally, we have commented on how results are affected by
the presence of additional physics beyond the standard
model, focusing on the modification of the effective number
of degrees of freedom, nonstandard inflation and post-
inflation cosmologies, and entropy dilution.
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APPENDIX: REVIEW OF THE VACUUM
REALIGNMENT MECHANISM

1. Equation of motion for the axion field

The ALP field originates from the breaking of the PQ
symmetry at a temperature of the order of f. The equation
of motion for the angular variable of the ALP field at any
time is

θ̈ þ 3H _θ −
∇̄2

R2
θ þm2ðTÞ sin θ ¼ 0; ðA1Þ

where θ is the ALP field in units of f, ∇̄ is the Laplacian
operator with respect to the physical coordinates x̄, and R
is the scale factor. To derive Eq. (A1), we have considered
the simplest possible ALP potential VðθÞ ¼ f2m2ðTÞ
ð1 − cos θÞ. The mass term in the equation of motion
becomes important when the Hubble rate is comparable to
the axion mass,

HðT1Þ ¼ 3mðT1Þ; ðA2Þ

whose solution gives the temperature T1 when coherent
oscillations begin. Setting the scale factor and the Hubble
rate at temperature T1 respectively as R1 andH1, we rescale
time t and scale factor R as t → H1t and R → R=R1, so that
Eq. (A1) reads

θ̈ þ 3H _θ −
∇2

R2
θ þ 9g2 sin θ ¼ 0; ðA3Þ

where the Laplacian operator is written with respect to
the comoving spatial coordinates x ¼ H1R1x̄ and g ¼
GðTÞ=GðT1Þ. We work in a radiation-dominated cosmol-
ogy, where time and scale factor are related by R ∝ t1=2.
Setting θ ¼ ψ=R, Eq. (A3) reads

ψ 00 −∇2ψ þ 9g2R3 sin

�
ψ

R

�
¼ 0; ðA4Þ

where a prime indicates a derivation with respect to R.
Equation (A4) coincides with the results in Ref. [114],
where the conformal time η is used as the independent
variable in place of the scale factor R.
Taking the Fourier transform of the axion field as

ψðxÞ ¼
Z

e−iqxψðqÞ; ðA5Þ

we rewrite Eq. (A4) as

ψ 00 þ q2ψ þ 9g2R3 sin

�
ψ

R

�
¼ 0: ðA6Þ

Equation (A6) expresses the full equation of motion for the
axion field in the variable R, conveniently written to be
solved numerically.

2. Approximate solutions of the equation of motion

Analytic solutions to Eq. (A6) can be obtained in the
limiting regime ψ=R ≪ 1, where Eq. (A6) reads

ψ 00 þ κ2ðRÞψ ¼ 0; ðA7Þ

with the wave number κ2ðRÞ ¼ q2 þ 9g2R2. An approxi-
mate solution of Eq. (A7), valid in the adiabatic regime in
which higher derivatives are neglected, is [114,115]

ψ ¼ ψ0ðRÞ exp
�
i
Z

R
κðR0ÞdR0

�
; ðA8Þ

where the amplitude ψ0 is given by

jψ0ðRÞj2κðRÞ ¼ const: ðA9Þ
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Each term appearing in κðRÞ is the leading term in a
particular regime of the evolution of the axion field.
We analyze these approximate behavior in depths in the
following.

(i) Solution at early times, outside the horizon
At early times t ∼ R2 ≲ t1 prior to the onset of

axion oscillations, the mass term in Eq. (A7) can be
neglected since mðTÞ ≪ mðT1Þ. Defining the physi-
cal wavelength λ ¼ R=q, we distinguish two differ-
ent regimes in this approximation, corresponding to
the evolution of the modes outside the horizon
(λ≳ t) or inside the horizon (λ≲ t). In the first case
λ≳ t, Eq. (A7) at early times reduces to ψ 00 ¼ 0,
with solution (ψ ¼ Rϕ)

ϕðq; tÞ ¼ ϕ1ðqÞ þ
ϕ2ðqÞ
R

¼ ϕ1ðqÞ þ
ϕ2ðqÞ
t1=2

; ðA10Þ

the first solution being a constant in time ϕ1ðqÞ,
while the second solution dropping to zero. The
axion field for modes larger than the horizon is
“frozen by causality” [115].

(ii) Solution at early times, inside the horizon
Equation (A7) for modes that evolve inside the

horizon λ≲ t reduces to

ψ 00 þ q2ψ ¼ 0; ðA11Þ

whose solution in a closed form, obtained through
Eq. (A8) and ϕ ¼ ψ=R, reads

ϕ ∝ R−1 exp ðiqRÞ: ðA12Þ

The dependence of the amplitude jϕj ∼ 1=R in
Eq. (A12) is crucial, since it shows that the axion
number density scales as cold matter,

nAðq; tÞ ∼
jϕj2
λ

∼
1

R3
: ðA13Þ

(iii) Solution for the zero mode at the onset of oscillations
An approximate solution of Eq. (A7) for the zero-

momentummode q ¼ 0, valid after the onset of axion
oscillations when t ∼ t1, is obtained by setting

κðRÞ ≈ 3gR; ðA14Þ

so that the adiabatic solution for ψ in Eq. (A8) in this
slowly oscillating regime gives the axion number
density

nmis
A ðRÞ ¼ 1

2
mðRÞf2 jψ j

2

R2
¼ nmis

1

�
R
R1

�
−3
; ðA15Þ

where nmis
1 is the number density of axions from the

misalignment mechanism at temperature T1,

nmis
1 ¼ 1

2
mðT1Þf2FðθiÞθ2i ; ðA16Þ

andFðθiÞ is a function that accounts for neglecting the
nonharmonic higher-order terms in the Taylor expan-
sion of the sine function, see Eq. (18). Equation (A15)
shows that the axion number density of the zeromodes
after the onset of axion oscillations scales as cold
matter, with R−3. The present ALP energy density is
found by conservation of the comoving axion number
density,

ρA ¼ mnmis1

sðT0Þ
sðT1Þ

¼ mnmis1

g�SðT0Þ
g�SðT1Þ

�
T0

T1

�
3

; ðA17Þ

where sðTÞ is the entropy density and g�SðTÞ is the
number of degrees of freedom at temperature T.
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