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The strong gravitational field around a proto-neutron star can modify the neutrino flavor transformations
that occur above the neutrinosphere via three general relativistic (GR) effects: time dilation, energy redshift,
and trajectory bending. Depending on the compactness of the central object, the neutrino self-interaction
potential is up to three times as large as that without GR principally due to trajectory bending which
increases the intersection angles between different neutrino trajectories, and time dilation which changes
the fluxes. We determine whether GR effects are important for flavor transformation during the different
epochs of a supernova by using multiangle flavor transformation calculations and consider a density profile
and neutrino spectra representative of both the accretion and cooling phases. We find the GR effects are
smaller during the accretion phase due to low compactness of the proto-neutron star and merely delay the
decoherence; the neutrino bipolar oscillations during the cooling phase are also delayed due to the GR
effects but the delay may be more important because the delay occurs at radii where it might alter the
nucleosynthesis in the neutrino driven wind.
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I. INTRODUCTION

The collapse of the core of a massive star at the end of its
life forms a hot and dense object known as a proto-neutron
star which cools via the emission of neutrinos over a period
of ∼10 s [1,2]. The spectra and flavor distribution of the
neutrinos that emerge from the supernova are not the same
as those emitted from the proto-neutron star: for a recent
review see Mirizzi et al. [3]. At the present time the most
sophisticated calculations of the neutrino flavor transfor-
mation adopt the so-called “bulb” model: the neutrino
source is a spherically symmetric, hard neutrinosphere, the
calculation assumes a steady state, and neutrinos are
followed along multiple trajectories characterized by their
angle of emission relative to the radial direction—the
“multi-angle” approach [4,5]. The Hamiltonian governing
the flavor evolution for a single neutrino depends on the
local density profile plus a contribution from all the other
neutrinos which are escaping the proto-neutron star—the
neutrino self-interaction. The neutrino self-interaction
depends upon the neutrino luminosity, mean energy and
a term proportional to 1 − cosΘ due to the current-current
nature of the weak interaction whereΘ is the angle between
two neutrino trajectories. Curiously, while the density
profile and the neutrino spectra are sometimes taken from
hydrodynamical simulations of supernova which include
general relativistic (GR) effects either exactly or approx-
imately, e.g., from the simulations by Fischer et al. [6],
the calculations of the neutrino flavor transformation
ignore them.
The flavor transformation that occurs in a supernova will

alter the expected signal from the next Galactic supernova
[7–10], as well as modify the diffuse supernova neutrino
background [11–17], and the nucleosynthesis that occurs in

the neutrino driven wind [18–22]. Neutrino heating in the
region behind the shock is thought to be the mechanism by
which the star explodes and such heating depends upon the
neutrino spectra of each flavor which depends upon the
flavor transformation [23,24]. With so many different
consequences of flavor transformation, one wonders how
including GR in the flavor transformation calculations
might alter our expectations.
GR effects upon neutrino oscillations in vacuum have

been considered on several occasions e.g. [25–32]. The
inclusion of matter is occasionally considered [33–36] and
the effect of GR usually limited to a shift in location and
adiabaticity of the Mikheyev-Smirnov-Wolfenstein (MSW)
resonance [37,38] via the redshift of the neutrino energy.
The effects of GR upon neutrino self-interactions have not
been considered. The effect of GR has also been studied for
the neutrinos emitted from the accretion disk surrounding a
black hole formed in the merger of two neutron stars, a
black hole and a neutron star, or in a collapsar. For example,
Caballero, McLaughlin and Surman [39] studied the GR
effects for accretion disk neutrinos (but without neutrino
transformation) and found the effects upon the nucleosyn-
thesis were large because of the significant changes to the
neutrino flux.
The aim of this paper is to explore the GR effects upon

flavor transformation in supernovae including neutrino self-
interactions and determine whether they might be important
in different phases of the explosion. Our paper is organized
as follows. In Sec. II we describe our calculation and how the
GR effects are included. Section III contains our results for
the two representative cases we study: luminosities, mean
and rms energies, density profiles and source compactness
characteristic of the accretion phase, and a different set
representative of the cooling phase. In Sec. IVwe discuss the
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conditions that lead to the formation of a neutrino halo—
neutrinos that were emitted but which later turned-around
and returned to the proto-neutron star. We present a
summary and our conclusions in Sec. V.

II. CALCULATION DESCRIPTION

A. GR effects upon neutrinos

Before describing the formulation of neutrino oscilla-
tions in a curved spacetime, we first describe the three
general relativistic effects that will be important. For this
paper we adopt an exterior Schwarzschild metric for the
space beyond the neutrinosphere1 which is given by

dτ2 ¼ BðrÞdt2 − dr2

BðrÞ − r2dψ2 − r2sin2ψdϕ2; ð1Þ

where the function BðrÞ is BðrÞ ¼ 1 − rs=r and rs is the
Schwarzschild radius given by rs ¼ 2GM with M the
gravitational mass. Throughout our paper we set
ℏ ¼ c ¼ 1. Since the rest mass of all neutrino species
are much smaller than the typical energies of supernova
neutrinos, we can comfortably take the ultrarelativistic limit
and assume neutrinos follow null geodesics just like
photons. The Schwarzschild metric is isotropic so all
geodesics are planar. By setting dτ2 ¼ 0 and dϕ ¼ 0 so
that the geodesic lies in the plane perpendicular to the
equatorial plane, we obtain

BðrÞdt2 ¼ dr2

BðrÞ þ r2dψ2: ð2Þ

The energy of a neutrino E decreases as it climbs out of the
gravitational well such that its energy at a given radial
coordinate r relative to its energy at r → ∞, E∞, is

E
E∞

¼ 1ffiffiffiffiffiffiffiffiffi
BðrÞp : ð3Þ

The angular momentum l of the neutrino also decreases as
it climbs out of the potential well by the same scaling. This
means the ratio of the neutrino’s angular momentum to its
energy is constant and in our chosen plane is given by

l
E
¼ r2

BðrÞ
���� dψdt

���� ¼ b ð4Þ

where b is a constant called the impact parameter. The
impact parameter can be evaluated at the neutrinosphere
r ¼ Rν where we find it is given by

b ¼ Rν sin θRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=Rν

p ; ð5Þ

where θR is the emission angle of the neutrino with respect
to the radial direction at the neutrinosphere. Using
Eq. (4) to eliminate dt from Eq. (2) we find2

dψ ¼ �
�
1

b2
−

1

r2
BðrÞ

�
−1=2 dr

r2
; ð6Þ

This equation can be used to describe the neutrino
trajectory associated with a certain emission angle θR.
Or using Eq. (4) to eliminate dψ from Eq. (2) gives

dt ¼ � 1

BðrÞ
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 BðrÞ
q : ð7Þ

For an observer at position r the relation between the
coordinate time t and the local proper time3 τ is

dτ2 ¼ BðrÞdt2 ð8Þ

so using the result from Eq. (7) we find

dτ ¼ � 1ffiffiffiffiffiffiffiffiffi
BðrÞp drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 BðrÞ
q : ð9Þ

This collection of equations will be useful when we
describe flavor oscillations in a curved spacetime.

B. Neutrino oscillations in a curved spacetime

Our calculations of the effects of GR on neutrino flavor
transformation are based upon the neutrino bulb model
established by Duan et al. [4,5]. In this model, neutrinos are
emitted from a hard neutrinosphere with radius Rν and for
simplicity we assume the angular distribution of emission is
half-isotropic. The setup is illustrated in Fig. 1 which shows
the trajectory of a neutrino emitted at the neutrinosphere Rν

with angle θR relative to the radial direction. After propa-
gating to radial coordinate r with angle ψ relative to the
radial direction at the point of emission, it makes an angle θ
relative to the radial direction at ðr;ψÞ. The formulation of
neutrino flavor transformation in a curved spacetime has
been considered on multiple occasions [28–33]. The flavor
state at some local proper time τ of a neutrino with
momentum q is related to the flavor state at the local
proper time of emission τ0 with momentum q0 via an
evolution matrix Sðτ;q; τ0;q0Þ which evolves according to

1For simplicity we ignore the gravitational effect of the matter
outside the neutrinosphere.

2Here the plus sign is for outgoing neutrinos, the minus sign is
for ingoing neutrinos, this is true for all following equations.

3The “local proper time” is defined as the clock time of an
observer sitting at a particular point along the neutrino trajectory.

YUE YANG and JAMES P. KNELLER PHYSICAL REVIEW D 96, 023009 (2017)

023009-2



the Schrödinger equation. In a curved spacetime the
evolution matrices evolves with the local proper time τ as

i
dS
dτ

¼ HðτÞS: ð10Þ

Here H is the Hamiltonian which is also a function of the
local proper time for the case of neutrinos in a nonuniform
medium. The local proper time τ may be replaced with the
radial coordinate r by using Eq. (9) once the impact
parameter/emission angle is given. Similarly, the evolution
of the antineutrinos is given by an evolution matrix S̄which
evolves according to a Hamiltonian H̄. Once the evolution
matrix has been found, the probability that a neutrino in
some generic initial state νj with momentum q0 at τ0 is later
detected as state νi at proper time τ and momentum q
is Pðνj → νiÞ ¼ Pij ¼ jSijðτ;q; τ0;q0Þj2.
The Hamiltonian H is the sum of three terms:

H ¼ HV þHM þHSI, where HV is the vacuum term,
HM is the matter term to describe the effect of passing
through matter, and HSI is a term due to neutrino self-
interactions. For the antineutrinos the Hamiltonian is also a
sum of three terms with H̄ ¼ H̄V þ H̄M þ H̄SI , which are
related to the corresponding terms in the neutrino
Hamiltonian via H̄V ¼ H�

V , H̄M ¼ −H̄�
M, H̄SI ¼ −H̄�

SI .
In a flat spacetime the vacuum term for a neutrino with
energy E takes the form of

HðfÞ
V ¼ 1

2E
UV

0
B@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CAU†

V ð11Þ

where mi are the neutrino masses and UV is the unitary
matrix relating the “mass” and flavor bases. The flavor
basis is denoted by the superscript (f) upon relevant
quantities and we order the rows/columns as e, μ, τ (here
τ is the neutrino flavor, not local proper time). We adopt the
Particle Data Group parametrization of the matrix UV

which is in terms of three mixing angles θ12, θ13, and
θ23 plus a CP violating phase δCP [40]. In a curved
spacetime the energy of a neutrino is dependent on position
due to the gravitational redshift so the vacuum term will
change accordingly and is

HðfÞ
V ¼

ffiffiffiffiffiffiffiffiffi
BðrÞp
2E∞

UV

0
B@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CAU†

V: ð12Þ

The matter Hamiltonian HM in the flavor basis depends
upon the electron density neðrÞ and is simply

HðfÞ
M ¼

ffiffiffi
2

p
GFneðrÞ

0
B@

1 0 0

0 0 0

0 0 0

1
CA: ð13Þ

C. The GR correction to neutrino self-interactions

In addition to the vacuum and matter terms, in a neutrino
dense environment such as a supernova we must add to the
Hamiltonian a term due to neutrino self-interactions. The
form of the self-interaction is

HSIðr;qÞ ¼
ffiffiffi
2

p
GF

X
α¼e;μ;τ

Z
ð1 − q̂ · q̂0Þ½ραðr;q0Þdnαðr;q0Þ

− ρ�̄αðr;q0Þdnᾱðr;q0Þ�dq0 ð14Þ

where ραðr;qÞ is the density matrix of the neutrinos at
position r with momentum q and initial flavor α defined as
ραðr;qÞ ¼ ψαðr;qÞψ†

αðr;qÞ, with ψαðr;qÞ being the cor-
responding normalized neutrino wave function, dnαðr;qÞ is
the differential neutrino number density [4], which is the
differential contribution to the neutrino number density at r
from those neutrinos with initial flavor α and energy jqj
propagating in the directions between q̂ and q̂þ dq̂, per
unit energy (the hats on q and q0 indicate unit vectors).
Note that here we have replaced the local proper time τwith
the radial coordinate r to denote the location along a given
neutrino trajectory.
In order to use Eq. (14) we have to first specify the

expression for dnαðr;qÞ. This requires relating the neutrino
momenta q at radial coordinate r back to their values q0 at
the neutrinosphere where they are initialized. After this
relationship is obtained we can substitute dnαðr; qÞ with
dnαðRν; q0Þ and calculate HSI by integrating over the
neutrino momentum distributions at the neutrinosphere.
While the magnitude of q is related to the magnitude of q0
via an energy redshift q ¼ q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRνÞ=BðrÞ

p
, relating q̂ to

q̂0 means finding the relation between the emission angle
θR and the angle θ shown in Fig. 1 since the neutrino
trajectory is planar. In flat spacetime, the relation between
θR and θ can be found through geometric arguments [4]. In
a curved spacetime, however, θ and θR might be expected

FIG. 1. The schematic of a neutrino trajectory in strong
gravitational field. Here Rν is the radius of neutrinosphere, r
is the distance from the center, θR is the emission angle, ψ is the
polar angle, and θ is the angle of intersection.
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to be related only after solving for the neutrino trajectory.
But fortunately, for the Schwarzschild metric the relation
between θ and θR can also be found simply by making use
of the fact that the impact parameter b is a conserved
quantity along each neutrino trajectory [39]. It makes no
difference whether the impact parameter is evaluated at Rν

or at r, therefore bðrÞ ¼ bðRνÞ. Using this conserved
quantity we must have

r sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=r

p ¼ Rν sin θRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=Rν

p ; ð15Þ

from which we find

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Rν sin θR

r

�
2
�

1 − rs=r
1 − rs=Rν

�s
: ð16Þ

In Fig. 2 we plot the angle θ as a function of emission angle
θR for three different ratios of rs to Rν at r ¼ 10Rν. The
figure shows that for each particular emission angle θR, the
trajectory bending effect always makes the angle θ larger
than without GR. In the bulb model ð1 − q̂ · q̂0Þ is found to
be equivalent to ð1 − cos θ cos θ0Þ after averaging over the
angles in the plane perpendicular to the radial direction.
Thus the correction to cos θ by GR increases the magnitude
of HSI by increasing the value of 1 − q̂ · q̂0 for every
neutrino.
Now we have the expression relating θ to θR, we can

write the expression for the differential number density,
after taking time dilation into account, as

dnαðr;qÞ≡ dnαðr; q; θÞ
≡ dnαðRν; q0; θRÞ

¼ 1

2πr2
ffiffiffiffiffiffiffiffiffi
BðrÞp �

Lα;∞

hEα;∞i
�
fαðq0Þ

�
cos θR
cos θ

��
dq0
dq

�

× d cos θR; ð17Þ

where fαðq0Þ is the normalized distribution function for
flavor α with momentum q0 that redshifts to q at r, Lα;∞ is
the luminosity of flavor α at infinity if no flavor trans-
formation had occurred, and similarly hEα;∞i is the mean
energy of neutrinos of flavor α at infinity again assuming no
flavor transformation had occurred. The expression for the
antineutrinos is similar. The derivation of Eq. (17) can be
found in the Appendix.
The density matrix ραðr;qÞ for neutrinos at r with

momentum q is related to the corresponding density
matrix at the neutrinosphere via ραðr;qÞ ¼ Sðr;q;Rν;q0Þ×
ραðRν;q0ÞS†ðr;q;Rν;q0Þ and the same for the antineutri-
nos using the evolution matrix S̄ðr;q;Rν;q0Þ.
Combining these equations together, we obtain the GR

corrected expression of neutrino self-interaction in curved
spacetime as

HSIðr;qÞ ¼
ffiffiffi
2

p
GF

2πr2
ffiffiffiffiffiffiffiffiffi
BðrÞp X

α¼e;μ;τ

Z
ð1 − cos θ cos θ0Þ

×

��
Lα;∞

hEα;∞i
�
ραðr;q0Þfαðq00Þ

−
�
Lᾱ;∞

hEᾱ;∞i
�
ρ⋆̄αðr;q0Þfᾱðq00Þ

	�
cos θ0R
cos θ0

�
× d cos θ0Rdq

0
0: ð18Þ

When we take the weak gravity limit rs ≪ r and rs ≪ Rν

we find this expression reduces to the same equation found
in Duan et al. [4,5]. This equation includes two GR effects:
trajectory bending and time dilation (the energy redshift of
the luminosity cancels with the energy redshift of the mean
energy). In order to appreciate how significant the GR
effects can be for the self-interaction Hamiltonian we show
in Fig. 3 the neutrino trajectories which converge at a
certain point above the surface of the central proto-neutron
star. From the perspective of an observer at this point,
the neutrinos seem to be coming from an expanded
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source whose radius is increased by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − rs=rÞ=ð1 − rs=RνÞ
p

, which can be seen from
Eq. (16). As noted earlier, the effect of trajectory bending
causes the neutrino trajectories to cross at larger angles than
in the case without GR. Time dilation also enhances the
self-interaction because it leads to a larger effective
neutrino flow rate. Close to the neutrinosphere time dilation
is the larger effect because the effect of trajectory bending is
small. At larger radii the situation is reversed with trajectory
bending more important than time dilation.
To quantify the magnitude of the GR effects upon the

self-interaction we show in the top panel of Fig. 4 the
enhancement of the self-interaction due to GR, which is
defined to be the ratio of the magnitude of the self-
interaction potential with GR effects to that without, as a
function of the coordinate r and assuming no flavor
oscillation occurs, for different values of rs=Rν. The
striking feature of the GR effects is that, even though
the spacetime curvature is only pronounced near the proto-
neutron star, the enhancement of the neutrino self-coupling
turns out to be a long-range effect that is asymptotic to a

value greater than unity which depends upon the ratio
rs=Rν. Since the influence of GR on neutrino flavor
transformation is not just a local effect, it can have
repercussions upon processes at larger radii such as
neutrino heating in the accretion phase and nucleosynthesis
in the cooling phase.
As we have seen, the magnitude of the GR effect is

governed by ratio of the radius of the neutrinosphere
relative to the Schwarzschild radius of the proto-neutron
star which itself is just proportional to the mass of the
proto-neutron star. This suggests we define a neutrino
“compactness”—similar to the definition of compactness
found in O’Connor and Ott [41]—as

ξν ¼
M=M⊙

Rν=10 km
¼ rs=2.95 km

Rν=10 km
¼ 3.39

rs
Rν

: ð19Þ

In the bottom panel of Fig. 4 we plot the enhancement factor
as a function of compactness at different distances from the
center of the proto-neutron star. For a very compact neutrino
source we find the enhancement of the self-interaction
can be as large as a factor of 300% if ξν ∼ 2.26 which
corresponds to rs=Rν ¼ 2=3. We shall explain the signifi-
cance of this compactness in Sec. IV. The blue line in this
figures shows the enhancement factor at the neutrinosphere,
where the trajectory bending effect is minimal. Here the
enhancement is purely due to time dilation.

III. NUMERICAL CALCULATIONS

With the formulation complete and with the insights
gained from the computation of the enhancement as a
function of compactness, we proceed to compute numeri-
cally the multiangle neutrino flavor evolution for two
representative cases. These are a density profile, neutrino
spectra and compactness typical of the accretion phase of a
supernova, and one representative of the cooling phase.
The neutrino mixing angles and square mass differences
we adopt are m2

2 −m2
1 ¼ 7.5 × 10−5 eV2, m2

3 −m2
2 ¼

−2.32 × 10−3 eV2 θ12 ¼ 33.9° θ13 ¼ 9° and θ23 ¼ 45°.
The CP phase δCP is set to zero. We do not consider a
normal mass ordering on the basis of the results by
Chakraborty et al. [42] and Wu et al. [22].

A. Application to SN accretion phase

For the accretion phase we use the density profile at
tpb ¼ 0.3 s postbounce from Fischer et al. [6] for the
10.8 M⊙ progenitor. As previously stated, this simulation
includes GR effects in both the hydrodynamics and evo-
lution of the neutrino phase space density (see Liebendörfer
et al. [43] for further details about the code). The density
profile at this snapshot time is shown by the red line in
Fig. 5. We set the neutrinosphere radius to be Rν ¼ 25 km
which corresponds to the minimum of the electron fraction
for this model at this time. This working definition for the
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use in our calculations for the accretion phase and cooling phase,
respectively.
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neutrinosphere radius comes from noting the coincidence of
the electron fraction minimum and the neutrinosphere radii
shown in Figs. 7 and 8 in Fischer et al. and produces a curve
which is similar to Fig. 15 found in their paper. We note that
the value of Rν we adopt is different from the value
estimated by others, e.g., [42,44], which tend to use
relatively larger values for Rν during the accretion phase.
From the simulation we find the mass enclosed within the
Rν¼25km radius isM¼1.33M⊙, giving a compactness of
ξν ¼ 0.53. The neutrino luminosities and mean energies we
use are also taken from the same simulation and are listed in
Table I. To save computational resources we use a source
distribution fαðq0Þ which is a delta-function at a single
energy taken to be 15MeV. Single-energy calculations were
also undertaken by Chakraborty et al. [45] when they also
studied the self-interaction effects during the accretion
phase. As previously stated, the angular distribution is
assumed to be half-isotropic which is the same distribution
used in Duan et al. [4,5].
Our results are shown in Fig. 6 which is a plot of the

electron flavor survival probability averaged over all

angular bins as a function of distance. In the figure we
also include three vertical dashed lines to indicate the start
of the bipolar oscillation region, the position of the
shockwave, and the end of the bipolar oscillation region.
The predictions for the beginning and end of the bipolar
oscillation region come from equations given in
Chakraborty et al. [45]. The change in the angle-averaged
survival probability Pee which occurs at r ∼ 475 km is
simply decoherence [42]. Comparing the results with and
without GR effects we see the decoherence is slightly
delayed when GR is included but the difference is only of
order ∼20 km and the final result is identical to the case
without GR. Thus it appears GR has little effect upon flavor
transformation during the accretion phase and where little
change occurs is in a region where it has little consequence.

B. Application to SN cooling phase

As the proto-neutron star cools it contracts which
increases the compactness. The sensitivity of the neutrino
self-interaction to the compactness means we might expect
a larger effect from GR during the cooling phase. To test
whether this is the case we use the density profile at
tpb ¼ 2.8 s postbounce from the Fischer et al. [6] simu-
lation for the same 10.8 M⊙ progenitor and which is shown
by the blue line in Fig. 5. We set the neutrinosphere radius
to be Rν ¼ 17 km which, again, is close to the minimum of
the electron fraction for this model at this time and
consistent with Fig. 15 from Fischer et al.. The mass
enclosed within this radius is M ≈ 1.44 M⊙, giving a
compactness of ξν ¼ 0.85. For this cooling epoch calcu-
lation we use multi-energy as well as multi-angle. The
neutrino energy range is chosen to be E∞ ¼ 1 MeV to

FIG. 5. The matter density profiles of the 10.8 M⊙ simulation
by Fischer et al. [6] at postbounce times tpb ¼ 0.3 s (red solid
line) and tpb ¼ 2.8 s (blue solid line).

TABLE I. The luminosities and mean energies used for the
accretion phase calculation.

Flavor Luminosity Lα;∞

e 41.52 × 1051 erg=s
μ, τ 14.23 × 1051 erg=s
ē 42.35 × 1051 erg=s
μ̄, τ̄ 14.39 × 1051 erg=s

Flavor Mean Energy hEα;∞i
e 10.39 MeV
μ, τ 16.19 MeV
ē 12.67 MeV
μ̄, τ̄ 16.40 MeV
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FIG. 6. The survival probability of electron neutrinos as a
function of distance in the SN accretion phase, when tpb ¼ 0.3 s.
The result is averaged over all angular bins. Rν is set to 25 km, red
solid line and blue dotted line are the results with and without GR
effect, respectively. The vertical dashed lines labeled rsync and
rend are the predicted beginning and ending locations of bipolar
oscillations as given by the equations given in [45]. The position
of the shock wave is also indicated and labeled as rshock.
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E∞ ¼ 60 MeV, and is divided into 300, equally spaced,
energy bins. To generate the neutrino spectra for flavor α at
the neutrinosphere we use the luminosities, mean energies,
and rms energies at this snapshot of the simulation—listed
in Table II—and insert them into the pinched thermal
spectrum of Keil, Raffelt and Janka [46] which has the form

fαðq0Þ¼
ðAαþ1ÞAαþ1qAα

0

hEα;Rν
iAαþ1ΓðAαþ1Þexp

�
−
ðAαþ1Þq0
hEα;Rν

i
�
; ð20Þ

with hEα;Rν
i ¼ hEα;∞i=

ffiffiffiffiffiffiffiffiffiffiffiffi
BðRνÞ

p
and the pinch parameter

Aα for flavor α is given by

Aα ¼
2hEα;∞i2 − hE2

α;∞i
hE2

α;∞i − hEα;∞i2
: ð21Þ

The result of this calculation is shown in Fig. 7 where we
plot the electron neutrino flavor survival probability aver-
aged over all angular bins and energy bins (using the
emitted neutrino spectrum as the weighting function) as a
function of distance. At this epoch self-interaction effects
occur much closer to the proto-neutron star and the effect of
GR is more important. The net result of adding GR is to
delay the onset of bipolar oscillations by around 25 km and
once more we find the probability at large radii are almost
identical to that without GR. But while this shift in the
onset of bipolar oscillations may seem small, we note the
neutrino flavor evolution in the region from 50 km≲ r≲
500 km was found to be crucial for determining the
nucleosynthesis yields in the calculations by Duan et al.
[20] and Wu et al. [22] so even a relatively small delay of

flavor transformation caused by GR might have a
consequence.

IV. THE GR NEUTRINO HALO

So far we have considered only cases where all neutrinos
propagate to r → ∞. However if the compactness of the
source becomes too large the neutrinosphere becomes
smaller than the “photon sphere,” whose radius is 3rs=2.
When this occurs there will be a critical emission angle for
neutrinos beyond which they cannot escape to infinity.
Following the argument in Hartle [47], one can obtain a
condition for the neutrinos to escape to infinity to be

2

3
ffiffiffi
3

p Rν

rs

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rs=Rν

p sin θR < 1: ð22Þ

We show three example neutrino trajectories for the case
where Rν=rs < 3=2 in Fig. 8. Trajectories 1 and 2 are open
and a neutrino emitted along these trajectories will propa-
gate to infinity: the trajectories of neutrinos emitted at
sufficiently large angles—such as trajectory 3—will turn
around and return to the proto-neutron star. Note that the
farthest place where a neutrino can turn around is the
photon sphere. The consequence of such trajectories are
included in simulations which include GR. In principle
there is a substantial change to the flavor evolution
calculations when neutrinos start to follow trajectories
such as the trajectory 3 in Fig. 8 because they lead to
the formation of a neutrino “halo” around the proto-neutron
star, similar to the neutrino halos produced by scattering on
matter [48,49].
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FIG. 7. The survival probability of electron neutrinos as a
function of distance using neutrino spectra and a density profile
taken from the cooling phase of a simulation of a 10.8 M⊙
progenitor by Fischer et al. [6]. The electron flavor survival
probability is averaged over all angular bins and energy bins. The
red solid line and blue dotted line are the results with and without
GR effects respectively.

TABLE II. The luminosities, mean energies, and rms energies
used for the cooling phase calculation.

Flavor Luminosity Lα;∞

e 2.504 × 1051 erg=s
μ, τ 2.864 × 1051 erg=s
ē 2.277 × 1051 erg=s
μ̄, τ̄ 2.875 × 1051 erg=s

Flavor Mean Energy hEα;∞i
e 9.891 MeV
μ, τ 12.66 MeV
ē 11.83 MeV
μ̄, τ̄ 12.70 MeV

Flavor rms Energy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2

α;∞i
q

e 11.12 MeV
μ, τ 14.99 MeV
ē 13.65 MeV
μ̄, τ̄ 15.07 MeV
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From Eq. (22) we can evaluate the critical angle as a
function of Rν=rs. The relation between the critical angle as
a function of Rν=rs is shown in Fig. 9. If Rν=rs > 3=2,
clearly neutrinos with all emission angles can escape and
no neutrino halo is formed. We define a critical compact-
ness ξν⋆ to be the case where Rν=rs ¼ 3=2 and find it equal
to ξν⋆ ¼ 2.26—the value discussed earlier. The compact-
ness of the sources we have considered for our previous
numerical calculations did not approach this value because
the mass of the proto-neutrons star is not sufficiently large
and the neutrinospheres lay beyond the photon sphere. To
reach the critical compactness for formation of the halo we
require a more massive proto-neutron star with a smaller
neutrinosphere. Whether a proto-neutron star surpasses the
critical compactness while the proto-neutron star is still
cooling via neutrino emission will depend upon the
equation of state of dense matter and the neutrino opacity
[50,51]. Note that from causality, the radius of a neutron

star is required to be greater than RNS ≳ 2.823M [50]
which, if we set Rν ¼ RNS, corresponds to a compactness
of ξν ¼ 2.4, which is beyond the critical value ξν⋆. A halo
will certainly form immediately preceding the collapse of a
proto-neutron star to a black hole.
The formation of a neutrino halo has consequences for

the cooling of the proto-neutron star as well as the flavor
transformation due to neutrino self-interaction. One can
find a presentation of the changes that occur to the emitted
neutrino spectra as the mass of the proto-neutron star
approaches its maximum mass in Liebendörfer et al. [43].
In their simulations, as the maximum mass is approached
(but before the black holes forms) the luminosity of the μ
and τ flavors increases due to contraction of the proto-
neutron star while the luminosities of electron neutrino and
electron antineutrinos drop. The mean energies of all
flavors increases.
When a halo forms, in principle, one would have to

completely change how the flavor calculations are under-
taken in the halo region—the zone between the neutrino-
sphere and the photon sphere. In such cases the flavor
evolution up to the photon sphere cannot be treated as an
initial value problem—as we have done in this paper—
because the flavor evolution up to the photon sphere of
outward moving neutrinos is affected by neutrinos that
were also emitted in an outward direction but which turned
around and are now moving inwards. Thus in the halo
region a paradigm beyond the bulb model would be needed
to correctly deal with the flavor evolution. Prevailing
understanding from the extant literature would indicate
that in the case of three active flavors of neutrino emitted
spherically symmetrically, one should not expect flavor
transformation within the halo: if this is true then the only
effect of the formation of a halo would be to alter the
luminosity and angular distribution of the neutrinos beyond
the photon sphere (which now becomes the effective
neutrinosphere). But in other circumstances—such as
calculations that include sterile neutrinos [52–56] or
calculations with non-standard neutrino interactions
[44,57–59]—flavor transformation can occur much closer
to the neutrinosphere in which case the formation of a halo
may have greater consequences.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the effects of general
relativity upon neutrino flavor transformation in a core-
collapse supernova. We adopted a Schwarzschild metric to
describe the spacetime and included three GR effects—
trajectory bending, time dilation, and energy redshift. Of
the three, time dilation is the major effect close to the proto-
neutron star, whose role is replaced by trajectory bending at
larger radii. The size of the GR effects were found to scale
with a single parameter which is the compactness of the
source: the relative ratio of the Schwarzschild radius to the
neutrinosphere radius. For large compactness with Rν close

-source

1

23

FIG. 8. Typical neutrino trajectories near a ultracompact source.
The inner dashed lines and the outer dashed lines represent the
Schwarzschild radius and the photon sphere respectively. The
three trajectories correspond to three different emission angles.
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FIG. 9. The maximum emission angle of neutrinos that can
escape the source, for different values of Rν=rs. The vertical
dashed line indicates the position of the photon sphere.
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to the radius of the photon sphere, the neutrino self-
interaction Hamiltonian can be up to approximately three
times larger than without GR. We calculated the flavor
evolution in two representative cases to determine whether
the GR effects led to significant differences compared to
calculations without GR. These cases were a density profile
and neutrino spectra typical of the accretion phase, and a
density profile and neutrino spectra typical of the cooling
phase. In both cases we found the effect of GR was to delay
the onset of flavor transformation but for the accretion
phase the flavor transformation occurred due to
decoherence at large radii where the change would have
little consequence. In contrast, the change to the onset of
bipolar oscillations during the cooling phase may be more
important because it is much closer to the proto-neutron
star and may impact the nucleosynthesis in the neutrino
driven wind. Finally, we showed that GR effects can
produce a halo of neutrinos surrounding the proto-neutron
star for very compact neutrino sources. If a halo forms then,
in principle, one would have to treat flavor transformation
in the halo region using a different technique than the usual
approach of treating it as an initial-value problem.
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APPENDIX: THE GR CORRECTED EXPRESSION
FOR THE NEUTRINO SELF-INTERACTION

In order to get the correct expression for dnαðr; q; θÞ, we
start from the conservation of neutrino flow through an
enclosing spherical surface after taking time dilation into
account but ignoring flavor transformation. This allows us
to write

r2
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
Fαðr; qÞdq ¼ R2

ν

ffiffiffiffiffiffiffiffiffiffiffiffi
BðRνÞ

p
FαðRν; q0Þdq0; ðA1Þ

where Fαðr; qÞ is the flux of neutrinos with energy q at r
per unit energy that were emitted with energy q0 at the
neutrinosphere. Integrated over all momenta, both sides of

this equation must evaluate to 1
4π Lα;∞=hEα;∞iwhere Lα;∞ is

the luminosity of flavor α at infinity assuming no oscil-
lations, and similarly hEα;∞i is the mean energy at infinity
again assuming no oscillations. At the neutrinosphere Rν

we have

FαðRν; q0Þ ¼
Z

1

0

2πjαðq0; θ0RÞ cos θ0Rd cos θ0R; ðA2Þ

where jαðq0; θRÞ is the emitted intensity of flavor α with
energy q0 at angle θR with respect to the radial direction. At
radial coordinate r the flux is

Fαðr; qÞ ¼
Z

θmax

0

cos θ0dnαðr; q; θ0Þ; ðA3Þ

where θmax is the angle with respect to the radial direction
of neutrinos that were emitted at the neutrinosphere with
angle θR ¼ π=2. Combining Eq. (A1), (A2), and (A3) we
obtain the result that

dnαðr; q; θÞ ¼
2πR2

ν

r2

ffiffiffiffiffiffiffiffiffiffiffiffi
BðRνÞ
BðrÞ

s
jαðq0; θRÞ

�
cos θR
cos θ

��
dq0
dq

�

× d cos θR: ðA4Þ

In the case of half-isotropic emission the intensity jα is
independent of θR and can be written as

jαðq0Þ ¼
1

4π2R2
ν

ffiffiffiffiffiffiffiffiffiffiffiffi
BðRνÞ

p �
Lα;∞

hEα;∞i
�
fαðq0Þ; ðA5Þ

where fαðq0Þ is the normalized spectral distribution for
flavor α at Rν. The final expression for dnαðr; q; θÞ is thus

dnαðr;q;θÞ¼
1

2πr2
ffiffiffiffiffiffiffiffiffi
BðrÞp �

Lα;∞

hEα;∞i
�
fαðq0Þ

�
cosθR
cosθ

��
dq0
dq

�

×dcosθR: ðA6Þ
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