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A new frontier in the search for dark matter (DM) is based on the idea of detecting the decoherence caused
by DM scattering against a mesoscopic superposition of normal matter. Such superpositions are uniquely
sensitive to very small momentum transfers from new particles and forces, especially DMwith a mass below
100 MeV. Here we investigate what sorts of dark sectors are inaccessible with existing methods but would
induce noticeable decoherence in the next generation of matter interferometers. We show that very soft but
medium range (0.1 nm–1 μm) elastic interactions between nuclei and DM are particularly suitable. We
construct toy models for such interactions, discuss existing constraints, and delineate the expected sensitivity
of forthcoming experiments. The first hints of DM in these devices would appear as small variations in the
anomalous decoherence ratewith a period of one sidereal day. This is a generic signature of interstellar sources
of decoherence, clearly distinguishing it from terrestrial backgrounds. The OTIMA experiment under
development in Viennawill begin to probe Earth-thermalizingDMonce sidereal variations in the background
decoherence rate are pushed below one part in a hundred for superposed 5-nm gold nanoparticles. The
proposals byBateman et al. andGeraci et al. could be similarly sensitive although theywould require at least a
month of data taking. DM that is absorbed or elastically reflected by the Earth, and so avoids a greenhouse
density enhancement, would not be detectable by those three experiments. On the other hand, the aggressive
proposals of theMAQRO collaboration and Pino et al.would immediately open upmany orders ofmagnitude
in DM mass, interaction range, and coupling strength, regardless of how DM behaves in bulk matter.
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I. INTRODUCTION

One of the basic challenges facing fundamental physics in
the 21st century is finding ways to learn more about the nature
of the darkmatter (DM) thatmakes up some 80%of thematter
in the Universe. If it is a particle, then we would like to know
whether it is a boson or a fermion, to measure its mass, and to
understand what interactions, other than gravity, it has with
itself as well as with the particles we are made of. Even if we
restrict ourselves to the case of fermionic DM, in which case
galactic phase-space considerations generally require masses
greater than Oð100Þ eV, the allowed mass range is still very
large. Given our deep ignorance about the basic properties of
DM, it is important to devise experiments to cover as much of
the parameter space as possible.
The most developed programs looking for DM above the

keV mass range are direct detection experiments, indirect
detection observations, and direct production at colliders.
Direct detection experiments look for anomalous energy
deposition at the keV range from collisions with dark matter
with amass greater than 1GeVandweak (and now subweak)
cross sections [1–4]. These experiments are insensitive for
masses below 1 GeV because the kinetic energy of such
particles in the halo is below 1 keV and they do not impart
enough energy to be detected. Recently, promising new ideas

for experiments targeting lighter DM in the keV–GeV mass
range have emerged [5–11], and the first limits were
announced in Ref. [12]; these exploit the increased energy
transfer if electrons, rather than heavier nucleons, are struck.
Alongside the lower mass, the cross sections targeted by
these experiments are generally considerably higher than
weak scale (1–1000 pb). Detection through indirect obser-
vations searches for the annihilation or decay of dark matter
into stable forms of matter, such as photons, protons,
electrons and their antiparticles [7,13]. These processes must
be sufficiently frequent and energetic to be distinguished
from background, which becomesmore challenging below a
DMmass of 1 GeV. The most notable hints in this area arise
in searches for anomalous x-ray lines in the keV range [13].
Finally, searches for the production of DM at colliders
looking for excess events with large missing energy are
sensitive to DM with a large mass range that is only limited
by the available center-of-mass energy. These searches are
generally limited to production cross sections somewhat
larger than weak scale. These different approaches to
learning more about the nature of DM are of course over-
lapping and act to inform and complement each other.
A particularly challenging task is to detect DMwith a mass

in the MeV range and below, especially through interactions
with the nucleus. The available kinetic energy of such
particles in the halo is below 1 eV and there are currently
no proposals utilizing conventional means that can search for
collisions involving such low energy depositions. Recently, a
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novel approach based on detecting the decohering effects
due toDM interactionswithmatter was suggested byRiedel in
Ref. [14]. While the proposal delineated the achievable
sensitivity in cross section, it remained unclear what type of
interactions can actually give rise to such a signal. In this paper
we close this gap and show that it is interactions mediated by
new long range forces between matter and DM that can be
effectively searched for with this technique. The key insight
underlying our work is this: the big advantage decoherence
has over other techniques is in detecting collisional processes
with a cross section that is dominated by extremely low
momentum transfers. This compliments a recent derivation
of a standard quantum limit for diffusion, showing that a given
testmass is strictlymore sensitive to smallmomentum transfers
when placed in an extended spatial superposition than in any
localized (even zero-temperature) state [15].
It is important to recognize that the answer to the question

“What is the nature of DM?” may not be unique. DM, just
like us, may be composed of several different stable relics
interacting through a variety of forces. Laboratory experi-
ments looking for DM are generally sensitive even to
cosmological relics that only form a subcomponent of
DM. Astrophysical constraints on the interactions of the
dominant component of DM,whichmay be inapplicable to a
subcomponent, should therefore not limit our vision for what
is possible to look for in laboratory experiments.
We close this introduction with two comments. First, it

should be duly noted that the signals we discuss in this paper
are extremely weak and will require great control over the
experimental apparatus. It will likely take quite a few more
years before the experiments reach the required sensitivity.
Decoherence is ubiquitous and may arise from a variety of
other mundane sources. Once a signal is seen, it would be
necessary to run several crosschecks (discussed later) before
rejecting alternative explanations and confidently attributing
the signal to DM. Second, the interactions between matter
and DM that we consider in this paper, while physically
consistent, are not motivated by any deep principle or any
other consideration. This may seem unappealing to some.
Despite these two cautionary remarks, we believe that experi-
ments utilizing large quantum superpositions represent a
promising new frontier to look for new physics and new
fundamental interactions. The purpose of this paper is to
expose the type of new physics such experiments can probe
and to serve as a proof of principle that such interactions are
physically consistent.
Section II begins with the key aspects of decoherence

of quantum superpositions and discusses the concrete
DM scenarios on which they have the largest advantage.
Section III reviews the relevant experimental considerations,
including the most promising interferometric devices, the
properties of and constraints on the DM scenario, the
decoherence process itself, and methods for isolating signal
from background. Section IV presents the results, summa-
rized in Figs. 4 and 5, and Sec. V concludes with a brief
discussion.

II. LONG-RANGE INTERACTIONS

The basic challenge facing the proposal of Ref. [14] is
that, on the one hand, simple estimates of the flux and
experimental sensitivity reveal that the interaction cross
sections required are very large and are at the level of
10−20–10−26 cm2. On the other hand, the many experi-
mental searches for DM discussed in the introduction,
including direct production searches which are sensitive to
arbitrarily low DM masses, have already explored and
excluded far smaller cross sections than that. So, the natural
question is what type of interactions could be searched for
with decoherence experiments that are not already strongly
excluded by other searches?
The basic objective of matter interferometer experiments

is to create and verify a very large aggregate of atoms in a
spatial superposition separated by some distance Δx, often
with Δx ∼ tens of nanometers. The experimentalists then
observe the decoherence of this superposition as external
particles in the environment scatter against the sample. As
the Heisenberg microscope thought experiment suggests,
the type of scattering processes that destroy the super-
position are ones that reveal “which path” information
about the scattering, i.e., against which of the superposed
aggregates did the scattering take place? Such scattering
events need to resolve the spatial superposition, and
therefore need to involve momentum exchange of the order
of q ∼ 2πℏ=Δx ∼ 10 eV=c. (We set ℏ ¼ c ¼ 1 hereafter.)
There lies the power of such macroscopic decoherence
experiments: they are potentially sensitive to new physics
processes with far lower momentum transfers than any-
thing achievable through the direct, indirect, or collider
experiments discussed above.
Thought of in this way, it becomes clear what the type of

interactions are that can be best probed by decoherence
experiments. Scattering due to a long-range force, or a
light mediator in the parlance of quantum field theory, is
dominant at low-momentum transfers. In such a case, the
large cross section needed for observability at decoherence
experiments can be reconciled with the very small cross
sections excluded by all the other searches. In fact, as we
shall see below, the strongest constraints on this scenario
are not coming from other DM searches at all, but rather
from experiments looking for additional long-range forces
between matter and itself. This becomes clear when
thinking about the physics in terms of momentum transfer
scales and the fact that if there exists a long-range force
between matter and DM, then quantum field theory gen-
erally requires this force to also modify the interactions of
matter with itself.

A. Nonrelativistic description

The galactic halo particles making up the dark matter that
we hope to detect move at relatively slow speeds, about
230 km=sec or so. In the nonrelativistic regime relevant
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for the collision of such particles with matter we take the
differential cross section to be of Yukawa type,

dσ
dΩ

¼ 4αMαDMM2

ðq2 þm2Þ2 : ð1Þ

Here αM ¼ g2M=4π (αDM ¼ g2DM=4π) is the dimensionless
parameter associated with the coupling gM (gDM) of the
new force to normal (dark) matter,M is the mass of the DM
particle,1 and m is the mass of the particle mediating the
new force. The momentum transfer is q ¼ 2Mv sin θ=2,
where θ is the angle of the collision in the lab frame and v is
the DM incoming velocity. When the Compton wavelength
of the mediator mass is comparable to the separation of the
superposition, m−1 ∼ Δx, then the cross section is largest
for momentum exchange that is very small q ∼m yet
sufficiently large to resolve the superposition.
The strong dependence of the differential cross section in

Eq. (1) on themomentum exchange andmediator mass leads
to interesting behavior of the detection sensitivity as a
function of the model parameters. For the purpose of
calculating this sensitivity, the nonrelativistic differential
cross section is all we need. However, in order to better
understand the physics involved and to be able to relate the
current proposal to other searches for new physics, it is useful
to have some examples of the possible microscopic origin of
Eq. (1) coming from a more fundamental description.

B. Quantum field theory description

The cross section in Eq. (1) is the result of a Yukawa-
type potential between DM and matter,

VðrÞ ¼ −
gMgDM

4π

1

r
e−mr: ð2Þ

In quantum field theory, such a potential arises from the
exchange of a boson of mass m that couples to both DM as
well as normal matter (see, e.g., Ref. [16] p. 121–122). The
simplest model that realizes such an exchange is one where
the mediator is a simple scalar (ϕ) that couples to nucleons2

(N) as well as to DM (ψ), which we take to be a Dirac
fermion. The Lagrangian density for such a model is then

L ¼ LSM þ 1

2
ð∂μϕ∂μϕ −m2ϕ2Þ þ ψ̄ðiγμ∂μ −MÞψ

þ gDMϕψ̄ψ þ gMϕN̄N; ð3Þ

where the kinetic terms for the nucleons and all their other
standard interactions are in LSM. Using the Feynman
prescription, the lowest-order contribution to the amplitude
describing Nψ → Nψ scattering is given by

where δss
0
and δrr

0
enforce spin conservation in the non-

relativistic limit and q ¼ p − p0 is the spatial component of
the four-momentum transfer. This can be compared with
the Born approximation of the amplitude in nonrelativistic
quantummechanics to obtain the Yukawa potential, Eq. (2),
through the inverse Fourier transform of the momentum
exchange q (the factors of 2M and 2MN must be dropped as
they relate to the relativistic normalization of states).
This microscopic description of the interaction makes it

clear that the same scalar exchange would also result in a
potential between matter and itself,

ð4Þ

and similarly there would be DM self-interactions with gDM

instead of gM. Transcribing the physics into quantum field
theory has immediately revealed a very strong constraint on
the model: new long-range forces between nucleons are
extremely constrained by a variety of experiments and
require the coupling gM to be extremely small, gM ≪ 1. In
fact, for the range of mediator masses we will consider
below, 104–10−2 eV (corresponding to a force range of
10−9–10−3 cm), the constraints require gM ≲ 10−4–10−15,
respectively.3 See4 Fig. 1.

1More generally, it should be the reduced mass of the DM
particle and the target particle, but for the purpose of this paper
we mostly focus on the case of light DM colliding against the
much heavier nucleus.

2Fundamentally, the coupling must be to the constituents that
make up nucleons, i.e., quarks and gluons, but such fine-grained
description will not be important for what follows. Our focus on
nucleons as compared to electrons is not an essential one. The
only requirement is that the atom as a whole is charged under the
new force so that there is no screening of the Yukawa potential.

3These constraints are strictly stronger than limits inferred
from upper bounds on the rate at which DM collisions heat
interstellar hydrogen [17] for all DM masses we will consider.

4Hardy and Lasenby have recently argued that the limits from
stellar cooling can be strengthened by ∼103 once mixing of the
new scalar mediator with plasma oscillations is properly taken
into account [18].
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The self-interactions of DM through the scalar exchange
are also constrained from a variety of observations such as
the Bullet Cluster and the shape of galaxy clusters. The
constraints, reported as the cross section per DM mass, are
fairly stringent and require σ=m≲ 0.1 cm2=g [24]. This
means that either the coupling to DM must also be very
small, gDM ≪ 1, or that this is a subcomponent of DM.
In fact, for the parameters we will be interested in, with
DM mass in the MeV range and mediator mass in the eV
range, the coupling αDM would have to be so small that the
cross section against normal matter, Eq. (1), would be far
below current sensitivity.
Thus, the current proposal is really about a search for

a subcomponent of DM with long-range interactions. As
discussed in the introduction, given the complexity of the
baryonic sector there is no reason to limit ourselves only to
searches for the dominant component of DM. Indeed, in a
recent publication the authors of Refs. [25,26] advocated
this scenario as a natural possibility for a subcomponent
and showed that it can even form a dark galactic disk. The
amount of DM near the Earth in this case has even larger
uncertainties than usual (the dark galactic disk might even
be misaligned with the baryonic disk), but in what follows
we simply set ρDM ¼ 0.04 GeV=cm3 and αDM ¼ 1 and our
results can be easily rescaled to other values.
One obvious question is why the coupling of ϕ to DM is

so much stronger than to matter, gDM ≫ gM. One possibility
is that this is just the way it is for no deep reason; these are
pure numbers undetermined by the model. After all, in the
Standard Model the Higgs boson coupling to the top quark

is some five orders of magnitude stronger than the Higgs
coupling to electrons. Another possibility is to obtain the
coupling of ϕ to the nucleons through mass mixing with the
Higgs boson. In this case ϕ would inherit all the couplings
of the Higgs, including its coupling to nucleons (∼10−3)
times the mixing angle between ϕ and the Higgs boson.
However, for the masses and couplings we consider this
scenario would require severe fine-tuning of the model
parameters, no better than simply choosing gDM ≫ gM.
Choosing the mediator to be a vector boson, rather than

the scalar ϕ, does not improve things in terms of model
building. One possibility is to gauge B-L of the Standard
Model, and endow the associated gauge boson with a mass
through the spontaneous breaking of B-L. However, it still
leaves open the question why gDM ≫ gM. Both couplings are
proportional to the B-L gauge coupling times the charge.
This requires an extremely large charge ratio between DM
and normal matter, which is not easy to obtain without
additional assumptions on the model (e.g., having the DM
be some sort of composite object made of many charged
particles, hence carrying a very large charge, stabilized by
yet another force).
The most natural way to obtain a small coupling to

nucleons is based on the ideas of Shifman, Vainshtein, and
Zakharov [27]. Suppose there exist additional heavy quarks
with a coupling to the scalar,

Lh ¼ h̄ðiγμ∂μ −MhÞhþ ghϕh̄h: ð5Þ

The scalar also couples to DM as in Eq. (3) but at this point
has no couplings to nucleons. The heavy quarks are very
heavy,Mh ≫ MN . At energies below the mass of the heavy
quarks, but above the scale of QCD, the heavy quarks can
be integrated out, and instead one obtains coupling to the
gluon field-strength [27],

L ¼ LSM þ Lϕ −
2

3

αs
8πMh

ϕGμνGμν; ð6Þ

where Lϕ is the Lagrangian describing ϕ and its interaction
with DM, αs is the strong coupling constant, and Gμν is
the field strength of the gluon. The coupling with the
gloun field strength generates the required coupling with
nucleons at scales below the confinement scale of QCD. The
coupling of ϕ to nucleons, gM, is obtained by the overlap
of the gluon field strength with the nucleon wave function,
which according to Ref. [27] in the chiral limit is given by

hNjGμνGμνjNi ¼ −
8π

9αs
MNN̄N: ð7Þ

Thus, at low energy we obtain the Lagrangian in Eq. (3)
with

FIG. 1. Existing experimental constraints on possible new
Yukawa forces. The region shaded solid gray has been excluded
directly by neutron-lead scattering [19] (light green), measure-
ments of the neutron electric form factor [20] (orange), neutron
optics experiments [19] (purple), Casimir forces measurements
[21] (red), and torsion balances [21] (dark green). The region
hashed gray is excluded by the strong but somewhat model-
dependent constraint arising from the rate of stellar cooling
[22,23] (blue). The dashed box encloses our region of primary
interest, investigated in Figs. 4 and 5.
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gM ¼ 2gh
27

MN

Mh
: ð8Þ

The small ratio of nucleon mass to heavy quark mass can
thus provide a natural explanation for the smallness of gM

without requiring gh to be particularly small.

III. EXPERIMENTAL CONSIDERATIONS

We now examine the possibility of detecting DM
through the decoherence it induces in future experiments
featuring massive quantum superpositions. In the absence
of an independently motivated and specific DM scenario,
we focus on what can be learned with minimal modification
of these devices, and especially with passive data analysis.
Indeed, the unusual sensitivity of quantum superpositions
to very weak Brownian jostling from any source [15] makes
them good systems for general exploration of many new
particles and forces.5 Relying on principles common to all
large superpositions is more likely to uncover unexpected
new physics than techniques that depend on the details of
any particular DM model.
As we discuss below, decoherence that varies with the

sidereal day is a compelling preliminary sign of an
interstellar source, and this behavior is generic for new
particles interacting strongly enough with normal matter to
influence terrestrial superposition experiments. Once a
candidate signal has been identified, more extensive

experimental interventions would be justified in order to
rule out alternative explanations.

A. Matter interferometers

We concentrate on matter interferometers: devices that
produce and confirm spatial superpositions of material
objects over distances that are comparable to the object size
itself.6 Some, like the KDTL (Kapitza-Dirac-Talbot-Lau)
[30] and OTIMA (optical time-domain ionizing matter-
wave) [29,31–33] experiments, pass a flux of particles
through several sets of gratings—a generalization of the
original two-slit experiment by Young—and interference
between different paths is observed. Others cool and super-
pose individual nanoparticles in optical or magnetic traps,
like the proposed MAQRO (macroscopic quantum resona-
tor) satellite [34–36] and the terrestrial proposals byBateman
et al. [37],Geraci et al. [28], Pino et al. [38,39], andWan et al.
[40]. For our main results we consider the sensitivity of these
seven benchmark experiments, with parameters given in
Table I. In this subsection, we briefly discuss two alternative
classes of devices for comparison: cold test masses and
quantum (nanomechanical) resonators.
For M ≲ 100 MeV, and especially when predominantly

scattering forward, DM collisions act as an extremely weak
Brownian bath, i.e., a source of momentum diffusion for a
test mass. If a given test mass is prepared in a thermal state
of some trapping potential, the minimal detectable rate of

TABLE I. Parameters describing some existing and proposed interferometers. Their potential DM sensitivity is illustrated in Figs. 4 and 5
(except forKDTL andWan et al.). TheKDTLandOTIMA interferometers can be used to superposemultiple types of objects; we specialize
to the choices below. For the purposes of estimating decoherence rates, we model the superposed object as a sphere with the given radius,
superposed over the given length and timescales. The uniform sphere approximation is poor for the organicmolecules (which are only about
a dozen atoms across) superposed in KDTL, but this experiment is shown only for comparison and is not plausibly sensitive to DM. The
measurement rate is used to estimate the increase in sensitivity from integrating over onemonth for all experiments.KDTLandOTIMApass
a large continuous flux of particles through a sequence of gratings, yielding a high rate of individual measurements, while the other three
experiments superpose one particle at a time. For all experiments, we assume a residual background of sidereal fluctuations in the
decoherence rate of one part in a thousand (see Table II), which limits the sensitivity of OTIMA. For the terrestrial experiments interfering a
single nanoparticle at a time (Bateman et al., Geraci et al.,Wan et al., Pino et al.), the rate at which the entire process can be repeated had not
been analyzed in detail in the relevant proposals; the measurement rates we assume below are rough conservative estimates based on the
length of the entire measurement process and private correspondence with the authors.

Experiment
Target

composition
Target radius

(nm)
Nucleon
count

Superposition
separation (nm)

Exposure
time (ms)

Measurement
rate (Hz) Status

KDTL [30,41] C284H190F320N4S12 ∼1 1.0 × 104 266 1.24 10000 completed
OTIMA [29,31,32] Gold (Au) 5 6 × 106 78.5 94 600 prototype
Bateman et al. [37] Silicon (Si) 5.5 1.1 × 106 150 140 0.5 proposed
Geraci et al. [28] Silica (SiO2) 6.5 1.6 × 106 250 250 0.5 proposed
Wan et al. [40] Diamond (C) 95 7.5 × 109 100 0.05 1 proposed
MAQRO [34–36] Silica (SiO2) 120 1 × 1010 100 100000 0.01 proposed
Pino et al. [38] Niobium (Nb) 1000 2.2 × 1013 290 450 0.1 proposed

5Matter interferometers may also use unitary (nondecoherent)
dynamics to strengthen constraints on new Yukawa forces with
ranges over a micron [28].

6For instance, the gold nanospheres superposed by the OTIMA
experiment will be roughly 10 nm in diameter but will be
superposed over distances exceeding 70 nm [29].
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diffusion is inversely related to its temperature, achieving
a finite sensitivity at zero temperature in accordance with
the uncertainty principle; this defines a standard quantum
limit (SQL) [15]. The same test mass, if placed in a spatial
superposition, has sensitivity that surpasses the SQL,
improving quadratically with the spatial coherence length.
In this restricted sense, matter interferometers are an
extension of cold classical test masses to negative effective
temperatures.
Of course, the enhancement from quantum coherence

must be traded off against the limitations it imposes, so it is
worth comparing interferometers to state-of-the-art cold
test masses. One can estimate that the cooling of 70-nm
radius nanospheres in optical traps to 50 mK described in
Ref. [42] has a diffusion sensitivity one to two orders of
magnitude less than the (vastly less massive) superposed
organic molecules of the existing KDTL interferometer.
(See also related experiments [43–48].) When these sys-
tems can be cooled to the ground state, they will approach
the sensitivity of the interferometric proposals of Bateman
et al. and Geraci et al. that we analyze in Figs. 4 and 5,
but remain less sensitive than the (much less massive)
superposed nanospheres in the OTIMA interferometer and
vastly less sensitive than the (comparably sized) super-
posed nanospheres of the MAQRO satellite and the Pino
et al. proposal. This illustrates the sense in which quantum
spatial coherence is a resource, like low temperatures, for
detecting soft momentum transfers.
Quantum (nanomechanical) resonators [49–53] are

mechanical devices placed in coherent superpositions of
different vibrational modes. They differ conceptually from
interferometers in that the spatial extent of the superposition
(i.e, the coherence length) of a quantum resonator is (much)
smaller than the superposed object itself. Although usually
much more massive, quantum resonators typically achieve
spatial coherence only on the scale of femtometers or less,
which is far from the nanometers produced by the interfer-
ometers we consider. (See Fig. 2.) As described below,
the sensitivity penalty is generally quadratic in the coherence
length. The increased mass of a resonator is not sufficient
to compensate, especially since the coherent scattering
enhancement (discussed below) saturates for objects larger
than the length scale of the typical momentum transfer.
However, in the future the powerful optomechanical tech-
niques [54,55] used in quantum resonators could conceiv-
ably produce coherence over much larger distances using
suspension [56–61] and especially levitation [62,63] rather
than mechanical clamping.
For these reasons we concentrate on matter interferom-

eters as the most promising devices for probing very soft
DM collisions in the medium-term future.

B. Dark matter flux

We assume a uniform mass density ρDM ≈ 0.04 GeV in
the solar system to represent a 10% interacting DM

component [64].7 We set αDM ≈ 1 and allow M and m to
vary in the ranges 1keV≲M≲10MeV, 10 meV≲m≲
10 keV. These mediator masses m correspond to a force
with range 20 pm≲ ƛm ≲ 20 μm. We take the velocity
distribution to be thermal (Maxwellian) in the galactic rest
frame, concentrated around v̄DM ≈ 230 km=s, except for a
cutoff at the galactic escape velocity vesc ∼ 550 km=s [66].
The Solar System moves at a velocity v⊙ ≈ v̄DM in the
Milky Way, roughly toward the star Vega, so that the
velocity distribution in the solar system looks like8

pðvÞ ∝ e−ðvþv⊙Þ2=v̄2DM : ð9Þ

In terrestrial experiments, the DM flux is also modified by
the Earth and its atmosphere.
DM may pass completely through the Earth for suffi-

ciently small αM, but such weak interactions are outside the
sensitivity range of most of the terrestrial9 experiments we
consider. Therefore, the Earth acts as an effective DM
windscreen. Since the apparent direction of the DM wind

??

LL

R

R

(a) (b)

FIG. 2. Interferometers vs. resonators. Matter interferometers,
(a), superpose objects over a distance comparable to or larger than
their physical size (nanometers, generally). In contrast, quantum
nanomechanical resonators, (b), are typically much larger
(microns) but are superposed over much shorter distances
(femtometers). Scattered environmental particles can carry off
which-path (L or R) information, decohering the superposition.
However, a particle scattered from a region jointly shared by both
parts of the superposition intuitively does not acquire which-path
information and hence does not contribute to the decoherence
rate. This suppression of decoherence can be confirmed analyti-
cally and applies even for momentum transfers too small to be
localized within the superposed object.

7Lower bounds on the mass of a fermionic DM particle [65]
are significantly relaxed when it constitutes only a portion of the
total DM mass distribution.

8We ignore the ∼10% oscillation in the apparent DM wind
over a year due to the Earth’s motion with respect to the sun,
∼30 km=s. This effect is discussed in Sec. III E.

9The MAQRO satellite and the Pino et al. proposal might be
sensitive to such weakly coupled scenarios, but shielding by the
Earth is irrelevant for the MAQRO satellite because it would
occupy a Lissajous orbit around one of the Sun-Earth Lagrange
points L1 and L2 [36]. In the case of Pino et al., we assume the
Earth effectively blocks DM originating from below the horizon,
but this likely depends on details of the DM behavior in bulk
material, which we do not explore.
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in the lab frame changes with the Earth’s rotation through-
out the day, this generically produces a large daily
modulation in the total DM flux. See Fig. 3.
We do not know how DM will behave passing through

solid bulk matter, so for our main results we conserva-
tively ignore all DM entering the Earth (from above or
below) by setting the flux originating below the horizon
to zero. The possibility that DM is reflected by the
Earth’s surface, or is absorbed and reemitted as a ther-
malized gas, is considered in Appendix C; the substantial
additional sensitivity in such scenarios is illustrated in
Figs. 4 and 5.
For much of the parameter space we consider, the DM

passes easily through the atmosphere. Even when it does

interact, the forward and elastic nature of Yukawa scatter-
ing means it takes many scattering events to isotropize the
direction of the DM, and even more to thermalize its
energy. The effect of the atmosphere on experimental
sensitivities is detailed in Appendix B. The effect of solid
material less than a meter thick should be comparatively
small.10 Shielding from experimental equipment and build-
ing material is therefore ignored although this would need
to be reconsidered for experiments performed underground
or near the bottom of large buildings.

C. Decoherence

The essential quantum effects in an interferometer
relevant to DM can be modeled by taking the superposed
object to evolve in a two-dimensional subspace spanned by
two macroscopically distinct states. These can be thought
of as different position eigenstates, as different slits in a
grating, or as the left and right arms of a Mach-Zehnder
interferometer. If the object is initially prepared in a
balanced superposition of the states, jψ0i ∝ jLi þ jRi,
and if transitions between the two states jLi and jRi are
forbidden, then the most general possible open-system
dynamics produce a final state

ρ ¼ 1

2

�
1 γ

γ� 1

�
; ð10Þ

where γ ¼ expð−sþ iϕÞ is the decoherence factor asso-
ciated with the evolution, decomposed into the dimension-
less decoherence s and the phase shift ϕ. For Markovian
dynamics, s increases monotonically in time and τ−1 ≡
ds=dt is called the decoherence rate.11

The experiment concludes by effectively making a
measurement in the basis fj�i ∝ jLi � jRig, obtaining
outcome jþi with probability Pþ ¼ ð1þℜγÞ=2. By
inserting an adjustable phase offset ϕ0 (e.g., by aligning
beam splitters or shifting a grating), both the real part
ℜγ and imaginary part ℑγ of the decoherence factor
can be inferred over many trials. The presence of a
quantum superposition is demonstrated when γ differs
significantly from zero, i.e., when the decoherence is
low: s≲ 1.
Since the DM interaction with other potential sources of

decoherence is negligible, the decoherence factor decom-
poses as γ ¼ γDMγother where [14,67–69]

FIG. 3. Sidereal daily variation. Consider the OTIMA experi-
ment at lattitude 48 °N (Vienna, Austria) with the spatial
coherence vector Δx (i.e., the direction connecting different
slits) pointed horizontal and oriented at 70° with respect to
geographic north. Let the DM be characterized by M ¼ 1 keV
and m ¼ 200 eV (inset: M ¼ 1 MeV and m ¼ 20 eV). In accor-
dance with the Solar System’s velocity through the Milky Way,
the apparent wind blows at v⊙ ≈ v̄DM from a þ38° declination.
The total DM flux (black, solid) varies over the course of the day
due to shielding by the Earth. The flux is largest when the DM
wind blows down from overhead, and smallest 12 hours later
when the experiment is inside the partial shadow cast by the
Earth. The variation in the DM-induced decoherence rate
(colored lines) tracks the variation in the overall flux, both when
the DM isotropizes (blue, dotted) or does not isotropize (red,
dashed) in the atmosphere before reaching ground level. Varia-
tions in the typical DM momentum with respect to Δx give only
modest corrections. There is a small relative phase shift between
the DM flux and the unisotropized decoherence rate in the main
plot because the dominant momentum transfer is comparable to
Δx, so the rate of decoherence is sensitive to the orientation of the
DM distribution even with the energy spectrum fixed. This is not
true for the heavier DM shown in the inset, which consequently
does not exhibit the asymmetry. These order-unity daily varia-
tions of the decoherence rate are a generic feature of all DM
scenarios coupled strongly enough to be shielded by the Earth.
The absolute phase with respect to the solar day drifts together
smoothly over the course of the year because the DM has
interstellar origins and tracks the sidereal day, allowing it to
be distinguished from terrestrial sources of decoherence.

10The overhead mass of the atmosphere is roughly equivalent
to several meters of concrete or one meter of lead, and
different nuclei should not combine coherently in amorphous
materials—even when they are within a single DM de Broglie
wavelength—except for scattering in the forward (nonattenuat-
ing) direction [14].

11Contributions of different independent parts of an environ-
ment, such as different species of scattering particles, combine
additively in the decoherence rate: τ−1 ¼ P

iτ
−1
i .
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γDM ¼ e−sDMþiϕDM ¼ exp

�
−
Z

T

0

dtFðΔxÞ
�

ð11Þ

and

FðΔxÞ ¼
Z

dknðkÞ k
M

Z
dΩ½1 − expðiq · Δx=ℏÞ� dσT

dΩ
:

ð12Þ
Here, nðkÞ is the phase-space density of the DM distribu-
tion, k is the incident DM momentum, q is the momentum
transfer, and dσT=dΩ is the (spin-independent) elastic
scattering cross section for the entire superposed target.12

The cross section of a target of N nucleons, rather than
being simply related to the single-nucleon cross section
[Eq. (1)] by a multiplicative factorN, can receive a coherent
scattering enhancement [72] in the Born approximation
when the nuclei are located in a region smaller than the
reduced de Broglie wavelength ƛq ¼ λq=2π ¼ 1=q asso-
ciated with the momentum transfer q. In this case, the cross
section scales like N2, so superposed objects become
dramatically more sensitive to decoherence as they increase
in size.13 In fact, even for short range ƛm and surprisingly
small coupling αM, the effective DM-scattering cross
section of the target can approach its geometrical size.
This explains how decoherence from a weakly coupled
10% interacting subcomponent of (say) keV DM, which
has a number of density of a few tens of thousand per cubic
centimeter, can compete with decoherence from collisions
with the residual molecules in a laboratory vacuum that is
roughly two orders of magnitude denser and only three
orders of magnitude slower. The effect of coherent elastic
scattering on the behavior of the decoherence rate FðΔxÞ is
discussed further in Appendix E.

D. Signal

The signal induced by DM in matter interferometers is
anomalous decoherence, i.e., decoherence in excess of what
is expected from conventional sources like stray gas mole-
cules or background blackbody radiation. Of course, it is
difficult to fully characterize or completely eliminate conven-
tional sources of decoherence, and the mere observation of

unexplained decoherence, like any unexplained noise, is
certainly not convincing evidence for new particles or forces.
However, a small excess of DM-induced decoherence can
be distinguished from larger backgrounds through several
methods.Most notably, the terrestrial DM flux is expected to
varywith the Earth’s rotation over the sidereal day (23 hours,
56 minutes, 4 seconds), leading to large oscillations in the
DM-induced decoherence rate. The variation is due to
shielding of the DM wind by the Earth, and is generically
true whenever DM interactions are strong enough to be
relevant to a terrestrial interferometer. This characteristic
period can distinguish interstellar sources of decoherence
from mundane terrestrial ones, such as vibrations or temper-
ature-dependent blackbody radiation, even when those
sources vary with the solar day (24 hours). Additional
background-rejection methods are discussed in the next
section.
As shown in Fig. 3, the magnitude of the daily variation

of the DM-induced decoherence rate is comparable to the
mean rate: ~FðΔxÞ=F̄ðΔxÞ≡ ηDM ∼ 50%. We take the daily
variation of the DM decoherence seen by each shot in the
experiment to be

~sDM ¼ ηDMsDM ¼ ηDMRe
Z

T

0

dtFðΔxÞ: ð13Þ

A statistical estimator for ~sDM can be computed from
observed frequencies in a simple bin-counting experiment.
We consider the event rates for two different outcomes
(þ vs −, i.e., “peak” vs “trough”) during two different
halves of the day (“morning” vs “evening”). The number of
events observed in each of these four bins is an independent
Poissonian variable, and in Appendix D we derive the
asymptotic estimator error

σ ~s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ−2vis − 1Þ=B0

q
ð14Þ

for visibility γvis ≈ℜðγotherÞ and total expected number
of events B0 (summed over all four bins). This assumes
only that the DM decoherence is small compared to
other sources of decoherence (~sDM ≪ 1 − γvis ≤ 1), and
that the fractional daily variation in the overall count rate
is small (ΔB ≪ B0). Thus, an interferometer’s sensitivity
to anomalous decoherence exhibits Poissonian scaling
(∝ B−1=2

0 ), but fails if any conventional decoherence
sources drive γvis → 0.
Gathering additional data over multiple weeks to

statistically increase sensitivity to small sidereal DM
decoherence rates does not require an assumption that
other, conventional sources of decoherence are absolutely
stable on those long timescales. Only daily variations of
mundane sources (which are generally a small fraction of
the overall decoherence rate) have the ability to mimic
DM in the short term, and these can be rejected in the
long term by looking for the expected phase drift of
the sidereal signal over the year. The sensitivity of

12We ignore the inelastic formation of DM-nucleus bound
states. Although bound states do exist when ðM=mÞN ffiffiffiffiffiffiffiffiffiffiffiffi

αDMαM

p ≳ 1
[70,71], the cross section for formation of such states
through radiative capture of DM is suppressed by additional
factors of v̄−1DMN

ffiffiffiffiffiffiffiffiffiffiffiffi
αDMαM

p
compared to elastic scattering [71].

13In the better known case of neutron scattering [73], the
exploitation of the coherence enhancement is limited by the
detector’s ability to resolve small angles in the forward direction;
large enhancements are only seen for volumes q−3 large enough
to contain the N neucleons, corresponding to the smaller
scattering angles θ ∼ q=k. For the detection of decoherence, an
analogous role is played by the distance Δx over which quantum
coherence can be maintained. Superpositions with larger Δx are
decohered by smaller momentum transfers q, corresponding to
the detection of very small scattering angles.
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this passive strategy is ultimately limited only by
seasonal variation in the size of daily fluctuations in
the decoherence rate from terrestrial sources. Let us call
this the sidereal decoherence background. If a distinctive
sidereal signal were observed, active techniques could
then be brought to bear to eliminate alternative
explanations.

Interferometer experiments are concerned chiefly with
the constant part of the decoherence background, and
estimates of the expected amplitude of fluctuations in
the decoherence background are not currently available.
For the purposes of estimating the limits of DM sensitivity
in Figs. 4 and 5, we assume each experiment can control the
sidereal fluctuations in decoherence from conventional

FIG. 4. Interferometer sensitivity to MeV dark matter. Each point in the m; αM plane corresponds to a DM scenario with fixed
M ¼ 1 MeV, αDM ¼ 1. The characteristic length scale ƛm ¼ m−1 of the Yukawa potential is given by the inverse mass of the associated
mediator. The solid black line bounds the gray and hashed-gray regions that have already been excluded, as detailed in Fig. 1. Three gray
dotted curves depict the progressively larger minimum couplings αM for which DM incident on the atmosphere scatters at least once, is
isotropized, and thermalizes before it reaches the ground. The first two coincide when the interaction is short range, ƛm ≪ ƛDM ∼ 0.26 nm.
Under the conservative assumption that all DM incident on theEarth’s crust is absorbed, the solid colored lines denote the limit of sensitivity
for five proposed interferometer experiments: OTIMA [29,31,32], Bateman et al. [37], Geraci et al. [28], theMAQRO satellite [34–36], and
Pino et al. [38]. (Because of atmospheric shielding, the experiments could only detect DM where the sensitivity line dips below the
isotropization curve, as discussed in Appendix B.) Nonexcluded regions for which DM would induce detectable decoherence in the
experiments are shaded in the corresponding color, and account for atmospheric effects. If the surface of the Earth isotropically reflects
incident DM, then the sensitivity lines would shift slightly downward (more sensitive) by roughly a factor of log10ð2Þ ≈ 0.3 and would not
need to pass below the isotropization curve. The sensitivity lines end when the Born approximation breaks down; as described in
Appendix F, this indicates that the cross section has become of the order of the geometric cross section, and the sensitivity would generally
saturate for arbitrarily large αM although there can be sensitivity enhancements for resonant scattering with attractive potentials. The dashed
colored lines denote the increased sensitivity if there is a DMgreenhouse effect, i.e., if rather than being absorbed or reflected, DM incident
on the Earth’s surface thermalizes to the temperature of the upper crust and is re-emitted (see Appendix C). We do not include greenhouse
lines for theMAQRO satellite or the Pino et al. proposal; the former operates away from the Earth, and the latter would need to account for
scattering lengths that could exceed the dimensions of the atmosphere or the Earth.
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sources14 to one part in a thousand, ηres ≈ 10−3. In practice,
this could be achieved by either suppressing all daily noise
below this threshold, or by taking data at different times of

the year to distinguish the sidereal and solar days. Our
results can be scaled for alternative background rates as
discussed in Sec. IV.

E. Background rejection

Once a candidate sidereal signal has been found, there
are several distinct strategies for gathering more evidence
that the source is astrophysical, and for characterizing
the cross section and flux. Here we list the most notable
methods.
First, if the length scale 1=q associated with the

typical momentum transfer is comparable to or longer
than the spatial coherence Δx ¼ jΔxj, the DM
decoherence is modulated by order unity when the
direction Δx is changed, i.e., by physically rotating

FIG. 5. Interferometer sensitivity for other DM masses. The same quantities displayed in Fig. 4 with M ¼ 1 keV, 10 keV, 100 keV,
and 10 MeV. The dot-dashed lines for MAQRO and Pino et al. when M ¼ 1 keV bound the regions with a detectable phase shift from
the DM wind [14] that exceeds the decoherence rate. (See Appendix D.) Due to scattering in the atmosphere at this mass, the DM
distribution seen by the other four experiments would always be isotropic, implying no net DM wind and hence no phase shift. The
greenhouse scenario (dashed colored lines) only increases the sensitivity when the Earth is cooler than the temperature of incident DM,
translating to M ≳ 120 keV. For smaller masses, the dominant source of decoherence is just the unthermalized component of the DM
distribution, so greenhouse effects have little effect on sensitivity.

14One can distinguish “true” decoherence, due to the entan-
glement of the target with the environment, from mere dephasing,
due to an unknown classically noisy phase shift. Both reduce
fringe visibility, but the latter can, in principle, be undone by
identifying the phase shift and subtracting it off. For interfer-
ometers recording a continuous fringe pattern, this can be
accomplished by looking at the second-order correlation function
of particle impacts, and has been demonstrated experimentally
[74–76]. Conventional sources of dephasing with a sidereal
period cannot be distinguished from a possible oscillatory phase
shift due to the force of the DM wind, but they both can be
subtracted off together to allow observation of DM decoherence.
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the interferometer.15 This makes the superposition a
directional target. By varying the orientation independ-
ently of the time of day, one can roughly identify a celestial
direction associated with extremal decoherence, giving an
important additional constraint (up to an unknown polarity)
on any candidate direction for the DM wind. However, this
mechanism does not work if qΔx ≫ 1 since then each
scattering event will cause complete decoherence regard-
less of orientation, or if the local DM environment is
isotropic due to prior scattering in the atmosphere (see
Appendix B).
Second, for DM couplings not too far below the

“isotropized by atm” line in Figs. 4 and 5, it is possible
to directly modulate the DM flux by, e.g., adding and
removing lead shielding, or by moving the detector under-
ground. Observing this effect would be particularly striking
evidence to rule out many mundane sources of anomalous
decoherence. This mechanism fails if the DM is too weakly
interacting or if the DM is locally isotropic.
Third, the parameters describing the interferometer (e.g.,

equipment temperature, vacuum quality, target size, target
speed, target composition, interferometric arm length) can be
varied to see if the observed dependence of the decoherence
rate is consistent with unobserved soft scattering events. For
instance, changing the isotopic composition of the target
would not much change mundane (electromagnetic) sources
of anomalous decoherence, but would significantly change
decoherence from DM that probes the dark charge of the
nucleus. Likewise, slightly varying the temperature of the
experimental equipment and measuring any change in
decoherence rate can upper bound temperature-dependent
noise in the experiment, which could rule out sidereal
temperature fluctuations as an explanation of any anomalous
decoherence that is observed.
Fourth, the time dependence of the DM distribution has

significant structure. Earth’s orbital speed around the Sun,
∼30 km=s, modulates the average speed set by the Sun’s
path in the galactic rest frame, ∼230 km=s. This introduces
a slight annual modulation of the mean decoherence rate,
which is analogous to the signal sought by several weakly
interacting massive particle (WIMP) experiments [77–79].
It also would adjust the amplitude of the daily variations
(since the apparent DM wind changes), an effect which is
not found with WIMP DM that cannot be shielded by the
Earth. The phase of these annual and daily modulations is
roughly determined by the direction the Solar System
travels in the Milky Way (with adjustments due to gravi-
tational focusing by the Sun [80]). With sufficient sensi-
tivity in the future it is even conceivable to observe monthly
fluctuations due to the Moon [81].
Fifth, the magnitude of the expected sidereal variation

can be changed by moving the experiment to different
geographic locations. Locations near the equator will see

larger daily changes in the DMwind than locations near the
poles. The phase of the daily signal should change
predictably with longitude.
Finally, we emphasize that the observation of quantum

interference is good evidence that all sources of
decoherence are small (s≲ 1) on the relevant timescale.
Upper bounds on the anomalous decoherence rate immedi-
ately and robustly constrain DM, without requiring any of
the active techniques described above.

IV. RESULTS

Neither the KDTL experiment nor the Wan et al.
proposal would be sensitive to the DM we consider. The
sensitivities of the other five benchmark experiments from
Table I are depicted in Figs. 4 and 5. The decoherence
sensitivity curves are defined as the critical matter-DM
coupling α̂M for which the magnitude of the sidereal
variation ~sDM [Eq. (13)] begins to exceed the residual
background ~sres ¼ ηressbkg ¼ ηres lnðγ−1visÞ combined with
the estimator error σ ~s [Eq. (14)],

~sDMðα̂MÞ≡ σ ~s þ ~sres: ð15Þ

We take the daily variation of the DM decoherence rate16 to
be ηDM ≈ 50%, the residual sidereal daily background to be
ηres ≈ 10−3 of the total decoherence from all conventional
sources, the data-taking run to be Trun ¼ 1 month, and the
fringe visibility achieved to be γvis ≈ 50%.
We neglect atmospheric shielding when plotting the

sensitivity curve, which allows us to include less sensitive
experiments—which are not sensitive to any DM that can
pass through the atmosphere—for comparison. However,

15Ref. [14] has a plot of this effect.

16The MAQRO satellite is an exception for which we use the
absolute DM decoherence rate F, not the variation ~F. MAQRO
would not operate in the vicinity of the Earth and therefore would
not expect to see a sidereal variation in the flux, necessitating
other methods determining whether anomalous deocherence were
due to DM. Unlike terrestrial experiments which often aim to just
achieve interference (γvis > 0), the MAQRO experiment will
explicitly test modifications to quantum mechanics that induce
objective wave-function collapse by looking for very small
changes to the interference pattern. A preliminary analysis of
the mundane sources of decoherence in MAQRO has been done
[34,35], and the background in the pristine satellite environment
is small enough to not only achieve interference but to increase
sensitivity beyond this through integration over at least 20 months
of data taking. Therefore, observing anomalous decoherence in
the first month would be very notable on its own. In the absence
of a strong sidereal variation from Earth shielding, other effects
like annual variations and directional dependence, as discussed in
Sec. III E, would be needed to determine whether anomalous
decoherence could be attributed to DM. Indeed, MAQRO aims
to test objective wave-fuction collapse, and must be capable
of ruling out astrophysical sources (like DM) if any anomalous
decoherence is observed since these plausibly have higher
a priori probability than a fundamental breakdown of quantum
mechanics.
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limitations imposed by the atmosphere are taken into
account by the shaded regions denoting unexcluded DM
parameter space that would be probed.
DM elastic scattering with individual molecules in the

atmosphere can be reasonably modeled, but interactions in
the Earth could be very complex, especially if there are
other, inelastic modes. Our main sensitivity curves in
Figs. 4 and 5 conservatively ignore any DM that thermal-
izes in the atmosphere or is incident on the Earth’s surface.
In this case, only the ambitious proposals by Pino et al. and
the MAQRO collaboration could detect DM. However, as
illustrated by the dashed lines in those figures, the OTIMA
experiment would be sensitive to a narrow class of DM that
thermalizes in the Earth’s crust and is re-emitted. This is
due to a strong greenhouse effect for such DM, which is
discussed further in Appendix C.
An intermediate scenario, in which DM is isostropically

reflected from the surface of the Earth without thermaliz-
ing, can also be considered. The primary difference here
would be that even when DM isotropizes in the atmos-
phere, its flux would not be greatly suppressed at the
surface of the Earth, and so could better decohere some
superpositions. However, for the experiments we consider,
the only part of parameter space in which this increases
sensitivity by more than about a factor of two is already
excluded by the stellar heating bound. Therefore, it is not
plotted separately but is discussed in Appendix C.
Our calculation of the decoherence rate for different

experiments and DM parameters stretches over several
qualitatively distinct regimes defined by the ratios between
four characteristic length scales: the range of the dark force
ƛm ¼ 1=m, the typical DM reduced de Broglie wavelength
ƛDM ¼ 1=ðMv̄DMÞ, the radius of the target R, and the spatial
extent of the superposition Δx. The characteristic inverse
momentum transfer is given by17

q−1 ∼maxðƛm; R; ƛDMÞ: ð16Þ

The sensitivity curves, α̂MðmÞ, are calculated in
Appendix E using Eq. (12). An order-of-magnitude esti-
mate for the sensitivity curve is given in several limiting
cases by18

1

α̂M

∼ χTN2αDMρDMƛDMΣ2; ð17Þ

where

Σ ¼

8>>>>><
>>>>>:

ƛ2m=R; if Δx ≫ R ≫ maxðƛm; ƛDMÞ
ƛm; if Δx ≫ ƛm ≫ maxðR; ƛDMÞ
Δx; if ƛm ≫ maxðΔx; R; ƛDMÞ
Δxƛ2m=ƛ2DM; if ƛDM ≫ maxðΔx; ƛm; RÞ

ð18Þ

is a characteristic length scale and

χ ¼

2
642

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2vis − 1

TrunΓ

s
þ ηres lnðγ−1visÞ

3
75
−1

∼minð
ffiffiffiffiffiffiffiffiffiffiffi
TrunΓ

p
; η−1resÞ ð19Þ

is the statistical enhancement. These limiting cases give
reasonable estimates for the large-m and small-m regions of
Figs. 4 and 5.

V. DISCUSSION

Future interferometers can maximize their sensitivity by
increasing the mass, spatial extent, and exposure time of the
superpositions produced. Sensitivity increases quadrati-
cally with mass (in the coherence scattering regime),
quadratically with spatial extent Δx (until this is larger
than typical momentum transfer), and linearly with expo-
sure time T. In particular, the Wan et al. proposal is
hampered mostly by its unusually short exposure time, and
modestly more aggressive parameters (an increase in radius
by ∼20%, or a tripling of exposure time) would make it
sensitive to unexcluded DM withM ≈ 1 keV. (This thresh-
old behavior is related to the saturation of the cross section
during the breakdown of the Born approximation, as
discussed in Appendix F.)
The fast data-gathering rate of the OTIMA interferom-

eter means its sensitivity is limited by the sidereal
decoherence background from conventional sources in
the laboratory, the magnitude of which is currently
unknown and assumed here to be ηres ≈ 10−3. Better
understanding of this background would be very valuable,
and the DM reach of OTIMAwould increase linearly with
its suppression. In contrast, the proposals by Pino et al. and
the MAQRO collaboration are limited by the amount of
data that can be collected in a reasonable time (taken here to
be 1 month), and so are not particularly sensitive to this
assumption. The proposals by Bateman et al. and Geraci
et al. are intermediate between these cases.
Let us briefly point out two other possibilities, albeit with

little a priori motivation, that would produce an enhanced
DM signal. First, relatively strong matter-DM interactions
might lead to DM clumping in the Solar System [82–84]
although this is not thoroughly understood and gravita-
tional three-body interactions are not effective [85]. Direct
constraints on the DM mass density in the vicinity of the

17The upper bound from the length scale R−1 on the character-
istic momentum transfer arises because the scattering is always
dominated by the coherent scattering component in the regimewe
consider, and any momentum transfers that probe the interior of
the target cannot be coherent over it. The implication, when this
occurs, is that only very forward scattering contributes.

18This neglects the contribution from incoherent scattering, but
that is almost always subdominant for the experimentswe consider.
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Earth are weak, being compatible with an increase of 105

above the interstellar average if distributed smoothly
through the Solar System [86–89] and 1013 if concentrated
within the orbit of the Moon [90]. Second, depending on
the exact shape and size of the superposed target, resonance
scattering—which occurs outside the region of validity for
the Born approximation and would be especially important
for M ≳ 10 MeV—could greatly enhance the scattering
cross section. Resonant behavior is illustrated in Ref. [91]
for a related low-mass DM search proposal using matter
interferometers.19

To conclude, the impressive metrological power of
matter interferometers complements their exciting but
speculative role testing the foundations of quantum
mechanics [31,32,36,38,39]. Even in the absence of dark
matter, they put model-independent limits on anomalous
sources of weak diffusion, especially from any interstellar
sources shielded by the Earth.
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APPENDIX A: VELOCITY DEPENDENCE

The rate for Yukawa-type scattering processes grows
strongly as velocity decreases. In particular, the momen-
tum-transfer cross section

σtr ¼
Z

dΩð1 − cos θÞ dσ
dΩ

∝
Z

dΩ
1 − cos θ

ðβ2ð1 − cos θÞ=2þ 1Þ2 ; ðA1Þ

with β≡ 2Mv̄DM=m, grows like σtr ∝ 1=v̄4DM for small v̄DM.
This is the relevant cross section for computing various DM
astrophysical parameters as well as the DM-stopping power
of the atmosphere.

It might be guessed that the decoherence rate observed in
superposition experiments would grow similarly as v̄DM

decreases since the degree to which any scattering event
decoheres a superposition increases with the momentum
transferred. Here we point out that the decoherence rate
does not share this behavior, in contrast to atmospheric and
astrophysical dependencies. Rather, the effective cross
section for decoherence behaves more like the total cross
section than the momentum-transfer cross section. This
velocity dependence is important for understanding
decoherence in scenarios where DM is trapped and
thermalized by the atmosphere, or where the DM incident
on the atmosphere is not near the typical galactic velocity
∼230 km=s. Below we assume that the mediator mass is
much less than the typical incident DM momentum,
m ≪ jkj, so that we are in the forward scattering regime.
For general superposition separation Δx, the

decoherence per DM particle goes like

σdecoh ¼
Z

dΩ½1 − cosðq · ΔxÞ� dσ
dΩ

. ðA2Þ

Formally, this is neither the total cross section nor the
momentum-transport cross section. When the superposition
size Δx is very large, each collision causes full
decoherence, the phase q · Δx oscillates rapidly, and the
decoherence rate just goes like the total cross section
σ0 ∝ v̄−2DM. On the other hand, when the superposition size
is very small, we can expand cosðq · ΔxÞ to second order in
Δx and we find that the relevant quantity is the momentum-
transport cross section weighted by the incident momentum
squared,

1

2
ðq · ΔxÞ2 dσ

dΩ
∝ m2v̄2DMð1 − cos θÞ dσ

dΩ
: ðA3Þ

Therefore, in both cases the decoherence per DM particle
goes like 1=v̄2DM, not 1=v̄4DM. Since, for fixed DM density
ρDM, the total flux is proportional to v̄DM, the overall
decoherence rate due to DM increases only like 1=v̄DM

in the forward scattering region. This behavior is confirmed
in numerical integrals for the more general case.20

Unlike for decoherence, the atmospheric shielding does in
fact go like 1=v̄4DM, so this soon dominates for small velocities.
That is, slower DM is generally blocked much more effec-
tively by the atmosphere, and this is not well compensated by
the increased ability of slow DM to decohere superpositions.
The fundamental difference between shielding and
decoherence is that, as the incident momentum of the DM
decreases, the atmosphere has to do less and less total work to
isotropize it while the amount of spatial discriminating power

19Note that the DM candidate considered in Ref. [91] appears
to violate constraints on the annihilation rate arising from power
injection into the cosmic microwave background because thermal
DM with this little mass can reionize hydrogen by annihilation
during matter-radiation equality [92,93].

20The coherent scattering enhancement complicates this
somewhat. In the parts of the DM parameter space where the
enhancement is only partial, we get an additional boost of 1=v̄3DM.
However, the coherence enhancement eventually saturates.

DECOHERENCE AS A WAY TO MEASURE EXTREMELY … PHYSICAL REVIEW D 96, 023007 (2017)

023007-13



(momentum transfer) necessary to decohere a given mass
superposition does not change.

APPENDIX B: ATMOSPHERIC
AND EARTH SHIELDING

In this paper we consider some DM-nucleon cross
sections large enough that the DM may collide multiple
times with molecules in the atmosphere. Here we estimate
the effectiveness of the atmosphere at modifying the DM
flux and potentially shielding terrestrial experiments from
it. The main results of this paper, illustrated as solid colored
lines in Figs. 4 and 5, make the following conservative
assumptions: DM thermalized in the atmosphere is ignored,
DM reaching the ground is fully absorbed, and no DM is
emitted from the Earth. (We discuss relaxing these assump-
tions in the next section.)
For fixed DM particle massM, we calculate three curves

in them − αM plane delineating whether the DM (a) scatters
at least once in the atmosphere, (b) scatters sufficiently to
isotropize, or (c) scatters sufficiently to thermalize. One can
see that (a) is necessary but not sufficient for (b) since the
Yukawa scattering [Eq. (1)] is generally dominated by the
forward direction. Likewise, (b) is necessary but not
sufficient for (c) since, for nonrelativistic elastic scattering,
the energy transfer is suppressed by the mass ratioM=matm,
where matm ∼mN2

≈ 26 GeV=c2 is the typical mass of the
(mostly nitrogen) molecules in the atmosphere.

1. Scattering in atmosphere

The mean free path of a DM particle as a fraction of the
overhead atmospheric mass is

ζscatt ∼
matmgE
σatmpatm

. ðB1Þ

Here, patm is atmospheric pressure at the detector, gE is the
gravitational acceleration, and σatm is the average scattering
cross section with atmospheric molecules. The scattering
curves in Figs. 4 and 5 are defined by ζscatt ¼ 1, so that
values of αM below this curve correspond to DM which
passes unimpeded through the atmosphere.

2. Isotropization in atmosphere

When DM scatters in the atmosphere, we model its
trajectory to have an initial adiabatic portion where the
energy is fixed while the direction of the momentum
follows a random walk on the unit sphere. The variance
associated with the angular distribution following a single
collision is

σ2θ ≡ hsin2 θi ≈ 4
1þ β2

β6
½ð2þ β2Þ lnð1þ β2Þ − β2�; ðB2Þ

where q¼jk0−kj¼2ksinðθ=2Þ, β≡2Mv̄DM=m≈2k=m,
and the distribution of angular step sizes is given by the

Yukawa cross section [Eq. (1)]. For small steps (forward
scattering), this takes the form of diffusion on the unit
sphere and proceeds mathematically similarly to on the
plane [94]. The incident DM will be isotropized after
roughly Niso collisions if σθN

1=2
iso ∼ π, and this will be

associated with traversing a fraction

ζiso ∼
Nisoζscattffiffiffi

3
p ∼

1ffiffiffi
3

p
�
σθ
π

�
2 matmgE
σatmpatm

ðB3Þ

of the atmospheric mass.21 The isotropization curve is
defined by ζiso ¼ 1, so that values of αM below this curve
correspond to DM that reaches the surface traveling with
approximately the same momentum vector as when it
entered the atmosphere.
On length scales larger than the isotropization depth,

but before thermalization takes place, the DM trajectory
can be modeled as a random walk in fractional atmos-
pheric penetration depth with step size ζiso. This walk
takes place on the interval [0, 1], beginning at the initial
penetration depth ζiso, with absorbing barriers on either
end (i.e., the Earth’s surface22 and the top of the
atmosphere23).
A random walk starting n and m steps from two
absorbing barriers is known to lead to absorption
in the barriers with probabilities m=ðnþmÞ and
n=ðnþmÞ, respectively. Therefore, the probability of
a given DM particle reaching ground level is ζiso
(when ζiso ≤ 1).

3. Thermalization in atmosphere

After a sufficient number of steps, DM still in the
atmosphere will thermalize. The temperature of the inter-
stellar DM flux is about Mv̄2DM=3, so for the characteristic
speed v̄DM ¼ 230 km=s, DM particles with mass above
∼120 keV will be hotter than the atmosphere. More
specifically, the DM is hotter than the atmosphere by
factor of roughly24

21The factor of 1=
ffiffiffi
3

p
arises from the standard deviation in a

particular direction for a random step in three dimensions.
22See the next section for discussion of reflection from the

Earth’s surface.
23For DM masses below ∼Mesc ≈ 37 MeV, mean thermal

velocities at 300 K are above gravitational escape velocity, so
Jeans escape is immediate for DM reaching the exosphere, even
when accounting for thermalization. For masses above Mesc, the
process is slower, allowing for a somewhat larger steady-state
density of DM in the atmosphere than would be suggested by
the model with the exosphere as a random-walk absorber.
However, we do not concentrate such large masses here since they
are not particularly amenable to detection through decoherence,
especially for M ≳ 100 MeV.

24The majority of the atmosphere by mass is between 240 K
and 300 K, and 99% is hotter than 210 K.
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Mðv̄2DM=3Þ
270 K

∼ 8

�
M

1 MeV

��
v̄DM

230 km=s

�
2

: ðB4Þ

ForM ≪ matm and a momentum transfer q, the expected
energy deposition for a collision is ΔE ¼ q2=ð2matmÞ.
Therefore, the DM will thermalize to ∼270 K after taking
approximately M=matm isotropic steps.25 That is, the DM
particle thermalizes after passing through a fraction

ζtherm ∼
ffiffiffiffiffiffiffiffiffi
matm

M

r
ζiso ðB5Þ

of the atmospheric mass; the thermalization curve is
defined by ζtherm ¼ 1. DM particles from models corre-
sponding to points below this curve will not thermalize
before reaching the ground.
Even if the DM thermalizes quickly after entering the

atmosphere, its probability of reaching the ground is still
given by ζiso, as computed with the initial velocity
v̄DM ≈ 230 km=s. This is because the probability of reach-
ing one absorbing barrier in a random walk is determined
by the initial relative distance from the two barriers, not the
step size of the random walk (for small steps). Thus, the
total DM flux at ground level is always reduced roughly by
the fraction ζiso. This is the probability for a single incident
DM particle to reach ground level without first exiting the
atmosphere, and does not strongly depend on ζtherm. For
ζtherm ≫ 1, the reduced DM flux still has essentially
the same energy distribution as outside the Earth’s atmos-
phere, while for ζtherm ≪ 1 the DM energy distribution at
ground level will be thermalized to the temperature
of the atmosphere.

4. Experimental implications

Now we discuss how these three thresholds interact with
the ability of superposition experiments to detect DM. For a
given experiment, the sensitivity curve is defined as the
minimum coupling α̂M sufficient to induce detectable
decoherence in the relevant experiment in the absence of
any atmospheric shielding. Therefore, any region above the
sensitivity curve but below the isotropization curve—
regions for which DM flux at ground level is essentially
identical as the top of the atmosphere—will be detectable
by the experiment. Additionally, the experiment sees
nothing for all values of m where the experimental
sensitivity curve is above the isotropization cut off because
the atmosphere can only reduce the flux.
But now fix m such that the isotropization curve

lies above the sensitivity curve, and consider two values

of αM: the lower αM lies on the isotropization curve, and the
upper αM is one order of magnitude larger. The flux seen by
terrestrial experiments in DM scenarios corresponding to
the upper point is reduced by about one order of magnitude
compared to a coupling on the isotropization curve. But the
total cross section has also increased by an order of
magnitude to compensate, so that the rate of decoherence
in the experiment is actually unchanged. Therefore, this
type of DM should be about as visible as the type lying on
the isotropization curve. This argument applies for even
large values of αM so long as they are below the thermal-
ization curve, i.e., so long as the rare DM particle reaching
the surface has not yet thermalized.
For values of αM where the isotropization curve and

sensitivity curve are comparable (i.e., where the experi-
ments are at the limits of their sensitivity) the values of αM

above the isotropization curve will likewise strain detec-
tion. This region is not precisely defined since the istrop-
ization curve [Eq. (B1)] has only been specified up to a
factor of order unity.
Of course, terrestrial experiments will not be able to

function as directional detectors of DM for αM above the
isotropization curve because directional information about
the DM flux will be washed out. Likewise, adding or
removing shielding materials (e.g., lead or concrete) is
ineffective at modulating the flux. However, in this scenario
it will still be possible to look for sidereal oscillations in the
decoherence rate from the change in the total number flux
and (if below the thermalization curve) mean energy
illustrated in Fig. 3.
If DM interacts sufficiently strongly to thermalize

in the atmosphere before it reaches the ground, the
suppression of the total number flux relative to the top
of the atmosphere is still ζiso ∝ αM. (As mentioned above,
the probability of a random walk reaching one absorbing
barrier is determined by the initial placement, not by the
step size.) However, as described in Appendix A, the
rate of decoherence for a given number flux changes
due to shifts in both the chance of any collision in the
detector and the degree of decoherence per collision.
For M ≳ 120 keV, the DM slows down as it thermalizes
and its effective decoherence cross section increases,
while the reverse happens for M ≲ 120 keV. If the
stellar cooling bound can be avoided, Figs. 4 and 5
show that several of the experiments are potentially
sensitive to DM that thermalizes in the atmosphere.
However, no DM thermalizing in the atmosphere is
compatible with all constraints.

APPENDIX C: EARTH REFLECTION AND
GREENHOUSE EFFECTS

In this section we relax some conservative assumptions
made about how DM interacts with the atmosphere
and the Earth to see how this could potentially increase

25For M ¼ 1 MeV, the mass ratio is M=mN2
≈ 4 × 10−5,

which ensures that there are of order 104 isotropic steps before
thermalization becomes significant. Random-walking DM that
avoids exiting the atmosphere will therefore pass through a
fraction of order 102ζiso of the atmospheric mass.
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the DM parameter space visible to forthcoming
experiments.26

1. Reflection by Earth

For our main results, Figs. 4 and 5, we assumed that
DM that passes through the atmosphere and reaches the
ground is fully absorbed. Unlike interactions in the
atmosphere, which can be reasonably treated as elastic
scattering events with isolated free molecules, energy
deposition in solid material is a thorny topic, depending
sensitively on material composition. However, given that
the large mass ratio of DM with nucleons can suppress
energy transfer,27 it is possible that the ground acts
effectively as a Lambertian (isotropic) DM reflector.
Indeed, we expect the weakly interacting DM to penetrate
into the ground, yet it may (with order unit probability)
emerge from the surface with approximately the same
energy.
When DM passes unimpeded through the atmosphere,

this would only roughly double the flux seen by the
detector; the Earth-reflected DM would travel up and out
of the atmosphere. (DM reflected by the ground would
almost certainly be isotropized, so this would also reduce
the size of the directional signature by a factor of two.)
However, if interactions are strong enough for the DM to
isotropize in the atmosphere, the random-walk model
discussed in the previous section must be changed. In this
case—one absorbing barrier with a given flux and one
reflecting barrier—the steady-state solution is given by an
equal isotropic DM flux at all altitudes. The experimental
sensitivity curve need not dip below the isotropization
curve to imply observable decoherence; all directional
information will be washed out, but the atmosphere does
not reduce the flux. This is not depicted in our main plots
because it is only significant for DM excluded by the
stellar-cooling bound.

2. Thermalization by Earth

Rather than reflecting from the ground, DM may
thermalize to the temperature of the crust.28 When
M ≳Mesc ≈ 37 MeV, the Earth-thermalized DM simply
sinks into the interior of the planet, but otherwise its typical
velocity at 300 K is sufficient to bring it back to the surface.
In this case, there will be two dominant populations of DM
particles in the atmosphere: those coming directly from
outside the atmosphere with characteristic speed v̄DM, and

those that thermalized inside the Earth and leaked back into
the atmosphere. Appealing again to the random-walkmodel,
one can check that the steady-state solution (with equal
number flux entering and exiting the Earth) results in an
Earth-thermalized number flux at the surface that is enhanced

by ζiso=ζ
ð300 KÞ
iso relative to the interstellar flux at the top of the

atmosphere. In the forward scattering regime (m ≪ k), this

reduces to v̄4DM=ðv̄ð300 KÞ
DM Þ4 ¼ T2

DM=ð300 KÞ2.
ForM ≳ 120 keV, the DM is cooling as it thermalizes to

300 K, so this can significantly increase the flux seen by the
experiments.29 This is a DM greenhouse effect. Cooler DM
also has a larger effective decoherence cross section as
discussed in Appendix A, further increasing the potential
signal to several orders of magnitude larger than the
conservative Earth-absorbing scenario. The resulting
enhancement to the sensitivity of the OTIMA interferom-
eter and the proposals by Bateman et al. and Geraci et al. is
plotted in Figs. 4 and 5.
The flux of unthermalized DM penetrating to ground

level closely tracks the daily fluctuation in the interstellar
flux at the top of the atmosphere because the time to diffuse
through the atmosphere is much less than 24 hours for
almost all the parameter range we consider. Note that if the
isotropization length in bulk matter is dramatically shorter
for thermalized than unthermalized DM, it is possible
unthermalized DM entering the Earth and then sub-
sequently thermalizing would take much longer than a
day on average to escape. In this case, the interior of the
planet would serve as a large reservoir of thermalized DM
that smooths out the fluctuations in the flux at the surface.
This would suppress the sidereal variations of the Earth-
thermalized component, making it harder to positively
attribute anomalous decoherence to DM.

APPENDIX D: STATISTICS

In previous work [14] a superposition experiment’s
sensitivity to DM was identified as the coupling strength
αM necessary to produce an e-fold of decoherence
(γDM ¼ 1=e). Here we strengthen our reach by exploiting
oscillations in the DM flux expected from the Earth’s
rotation over the sidereal day (23 hours, 56 minutes,
4 seconds), which produce large (∼50%) oscillations in
the decoherence rate from DM. For simplicity, we follow
Sec. III C and assume a toy model with a two-dimensional
Hilbert space that generates binary data, i.e., “þ” or “−”
measurement outcomes; this can be obtained from the
continuous fringe pattern seen in most interferometers by
simply partitioning the data into peak (þ) and trough (−)
bins, with modest loss of information.

26This is distinct from other scenarios that might, for one
reason or another, increase the total DM density in the vicinity of
the Earth above the interstellar average ∼0.4GeV=cm3, e.g., [95].

27On the other hand, light electrons, band transitions, orbital
angular momentum, etc., probably give many channels for more
efficient energy transfer.

28It is also possible that DM thermalizes to the hotter temper-
atures deeper in the Earth’s interior and then passes through the
(comparatively thin) crusts without much cooling.

29When M ≲ 120 keV, the decoherence rate is still at least as
large as the strictly more conservative scenario of an absorbing
surface for the Earth.
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To estimate the maximum sensitivity, we decompose
the decoherence factor30 as γ ¼ γotherγDM and assume
the decoherence due to DM is relatively weak,
γDM ¼ e−sDM ≈ 1 − sDM. (A possible phase shift from the
DM wind is discussed separately below.) We break the DM
decoherence sDM into a constant part s̄DM and a daily
variation

~sDM ¼ ηDMsDM ¼ ηDMℜ
Z

T

0

dtFðΔxÞ; ðD1Þ

where ηDM ∼ 50% (see Fig. 3) is the relative amplitude of
the daily varying part of the decoherence. We bundle the
constant part in with the non-DM decoherence rate,
γvis ¼ ℜγothere−s̄DM . (In other words, here we are not
attempting to distinguish mundane terrestrial decoherence
from the constant component of DM decoherence.) In this
idealized case, we can identify γvis ∈ ½0; 1� as the (24-hour-
averaged) inference fringe visibility (also known as the
contrast) [96].
Let us further simplify our analysis by crudely separating

our events (fþ;−g measurement outcomes for individual
particles passing through the interferometer) into two time
periods of the day: the morning and the evening. The
probabilities of getting outcomes fþ;−g during these
periods are

Pmrn
� ¼ 1

2

�
1� γvis

�
1þ ~sDM

2

��
; ðD2Þ

Peve
� ¼ 1

2

�
1� γvis

�
1 −

~sDM
2

��
; ðD3Þ

respectively (since ~sDM ≪ 1). Suppose that, when account-
ing for the detection efficiency of the interferometer, the
total expected number of detection events over a multiday
experimental run is B0 with a possibly nonzero expected
difference ΔB between morning and evening due to a daily
varying background. Then the four counts (þ=− for
morning/evening) are statistically independent random
variables, each distributed as a Poisson process with the
respective means

Bmrn
� ¼ B0 þ ΔB=2

4

�
1� γvis

�
1þ ~sDM

2

��
; ðD4Þ

Beve
� ¼ B0 − ΔB=2

4

�
1� γvis

�
1 −

~sDM
2

��
: ðD5Þ

The maximum-likelihood estimator is obtained by solving
for ~sDM,

~sDM ¼ 2
Bmrnþ Beve

− − Bmrn
− Beveþ

Bmrnþ Beveþ − Bmrn
− Beve

−
; ðD6Þ

and the estimator variance is

σ2~s ¼
X
X

σ2X
∂ ~sDM
∂X

¼ B0ð4ð4þ ~s2DMÞ − γ2visð4 − ~s2DMÞ2Þ þ 8ΔB~sDM
γ2visð4B2

0 − ΔB2Þ

≈ 4
γ−2vis − 1

B0

; ðD7Þ

where the sum is taken over X ¼ Bmrn
� , Beve

� , and where
we have used σ2X ¼ X̄ for Poisson processes. The last
line follows from assuming that the DM decoherence is
small compared to other sources of decoherence
(~sDM ≪ 1 − γvis ≤ 1), and that the fractional daily variation
in overall count rate is small (ΔB ≪ B0). The fringe
visibility for successful interferometers is typically of order
unity (e.g., [30,97]), so we set γvis ¼ 50% for the purposes
of our main results.31

The error on the amount of daily varying DM
decoherence for a single particle passing through the
interferometer therefore goes like ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12=B0

p
, the expected

scaling for Poissonian statistics. It is also reasonable that
when there is effective decoherence from mundane sources,
γvis is driven exponentially to zero and the experiment
becomes completely insensitive to decoherence from DM.
In other words, achieving quantum coherence is critical to
the success of this technique.

1. Phase shift

As shown in the plot for M ¼ 1 keV in Fig. 5, there are
regions of parameter space for which the phase shift from
the DMwind [14] is larger than the decoherence, that is, for
which sDM > ϕDM where

ϕDM ¼ ℑ
Z

T

0

dtFðΔxÞ ðD8Þ

and γDM ¼ e−sDMþiϕDM ≈ 1 − sDM þ iϕDM. Here we briefly
describe how to detect it.
First note that searching for a phase is properly under-

stood as a null experiment for experimental configurations
30Of course, a noisy phase in the decoherence factor is

equivalent to a constant degree of decoherence. Phase noise
from mundane terrestrial sources that varies on a daily basis is
distinguished from DM decoherence using the same appeal to the
sidereal drift.

31The approximation on the last line of Eq. (D7) vanishes for
very high visibility, γvis → 1, but in fact the exact quantity
actually approaches 3~s2DM=B0 once our assumption 1 − γvis ≫
~sDM is violated.
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that truly operate in a two-dimensional Hilbert space like
the Mach-Zehnder toy model (spanned, e.g., by the states
corresponding to the left and right arms). Recall that
probabilities for the two measurement outcomes are
P� ¼ ð1�ℜγÞ=2, where the real part of the total
decoherence factor is

ℜγ ¼ ℜðγDMγotherÞ
¼ ℜγDMℜγother − ℑγDMℑγother

≈ ð1 − sDMÞℜγother − ϕDMℑγother. ðD9Þ

The normal process of aligning the interferometer
applies the correct phase to γother necessary to zero out
ℑðγotherÞ, thereby maximizing the fringe visibility
γvis ¼ ðPþ − P−Þ=ðPþ þ P−Þ. To search for a small phase
shift varying with the sidereal day, the interferometer
should instead be null-aligned by adding a constant π=2
phase shift, zeroing outℜðγotherÞ and maximizing ℑðγotherÞ.
(This would require a separate data-taking session in an
actual Mach-Zehnder interferometer.) The small varying
phase shift from the DM wind, ϕDM, would then give a
small discrepancy between Pþ and P−, which would flip
sign with the sidereal day. The above statistical procedure
could then be applied to the sidereal varying component
~ϕDM with the replacement γvis → ℑγother.
Of course, the measurement output from the interfer-

ometers we consider is actually a continuous real value (the
spatial position of the measured particle) rather than a true
binary outcome fþ;−g. Information is thrown away to
reduce it to the above two-dimensional toy model by
simply partitioning that real value into equal-sized bins.
Thus, searching for a phase shift from the DM wind would
be done during data analysis rather than necessitating a
separate experimental run. (This is accomplished crudely
for the toy model by just shifting the bins by π=2, but
optimal methods would of course take into account the
fine-grained position.) Likewise, full temporal information
can improve on the simple morning/evening binning, which
can aid in rejection of noisy background phase shifts
[74–76] that could otherwise obscure the faint decoherence
signal from DM.

APPENDIX E: DECOHERENCE RATE

In this section we calculate the decoherence rate
[Eq. (12)] and express it in terms of three integrals to be
computed numerically. We operate in the Born approxi-
mation, the applicability of which is discussed in
Appendix F, and assume the target is rigid, as justified
in Appendix G. For a target superposed over spatial
extent Δx for time T, the off-diagonal terms in the target
density matrix acquire a multiplicative decoherence factor
γDM ¼ exp½− R

T
0 dtFðΔxÞ� due to the DM flux. Here

FðΔxÞ ¼ ρDM

M

Z
dknðkÞ k

M

Z
dΩIðqÞ

× ½1 − expðiq · Δx=ℏÞ� dσ
dΩ

ðqÞ; ðE1Þ

where the DM momentum distribution is

nðkÞ ¼ Z

�
e−ðk=M−v⊙Þ2=v̄2DM

M3v̄3DM

�
; ðE2Þ

(for k=M < vesc, with Z ≈ 0.192 a normalization factor)
the single-nucleon spin-independent Yukawa elastic scat-
tering cross section is

dσ
dΩ

ðqÞ ¼ 4αMαDMM2

ðq2 þm2Þ2 ; ðE3Þ

and the structure factor is

IðqÞ ¼
�����XN

i¼1

e−ixi·q
����
2	

: ðE4Þ

The real part of FðΔxÞ gives the decoherence rate, and the
imaginary part gives the rate of phase shift. The DMvelocity
distribution is Maxwellian (thermal) and isotropic in the
galactic rest frame, but is displaced, in the lab frame, by the
Earth’s velocity through the Milky Way v⊙. The structure
factor IðqÞ comes from summing the contributions (in the
Born approximation) from each particle in the superposed
target charged under the mediating force [73]. The angle
brackets in Eq. (E4) denote a thermal average over configu-
rations of the target, and the xi are the positions of the
scattering charges (nucleons) within it. For simplicity we
assume all protons and neutrons are equally charged with
individual couplings αM, so N is the number of nucleons in
the target. (Many other scenarios, like a B − L charge, lead to
simple order-unity adjustments.)
When Δx is smaller than the size of a homogeneous

target, we expect that the volume overlap (i.e., the spatial
points that are jointly shared by the two configurations of
the superposition) does not contribute to the decoherence.
Intuitively, this is because which-path information in not
encoded into any DM that scatters from this volume since it
is common to both possible configurations; see Fig. 2. One
can check that Eq. (E1) exhibits this behavior. For instance,
a cubic target of volume L3 superposed over a distance
Δx < L (in a direction parallel to one edge) has an identical
decoherence rate FðΔxÞ as a L2 × Δx slab superposed over
a distance L (in the dimension with thickness Δx),
regardless of the form of the single-neucleon scattering
cross section.
In the limit where the target is much smaller than the

length scale 1=q associated with the typical momentum
transfer, the exponent in Eq. (E4) is constant over the sum.
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In this case, all DM-scattering out states add coherently and
the decoherence rate is larger by a factor N2 compared to
the case of a single charge (N ¼ 1), i.e., a factor N larger
than would be expected from incoherent scattering. Since
the next generation of matter interferometers will superpose
objects larger than N ¼ 106, this is a dramatic increase in
sensitivity.
When the momentum q is large enough to begin probing

the internal structure of the target, we expect the coherence
enhancement to fade. This is seen explicitly by expanding
the structure factor as

IðqÞ ¼
�XN

i¼1

XN
j¼1

eiðxi−xjÞ·q
	

¼ N þ A2
XNa

i¼1

XNa

j¼1
j≠i

heiðyi−yjÞ·qi

≈ N þ A2NaðNa − 1Þ ~fðqÞ2; ðE5Þ

where A is the atomic number of the nuclei, yi are the nuclei
centers, and

~fðqÞ ¼
XNa

i¼1

heiyi·qi ðE6Þ

is the Fourier transform of the thermal distribution
of nuclei positions. (We always take M < 1 GeV and
v̄DM < vesc ∼ 0.002c, so ƛq ≳ 100 fm is always large
enough to be fully coherent over a nucleus.) To get the

third line of Eq. (E5), we neglected the edge effects and pair
correlation corrections that are small for the large targets we
consider. (The effects of pair correlations, which become
very small for large N, are illustrated in the appendix
of Ref. [14].)
When the typical length scale q−1 associated with the

momentum transfer is large compared to the atomic spacing
Å, we can take the continuum limit of Eq. (E6). A uniform
spherical target of radius R simplifies ~fðqÞ to

~fðRÞsphðqÞ≡ 3
sinðqRÞ − qR cosðqRÞ

ðqRÞ3 : ðE7Þ

For R ≫ 1=q, we have ~fðqÞ2 ∼ 1=ðqRÞ4 → 0, showing that
only the incoherent contribution N remains on the last line
of Eq. (E5) for large q, as expected. Another way to see this
is to just note that, for q large compared to the interatomic
distances jyi − yjj, the thermal average in the second line
vanishes.
The three key dimensionless quantities that control the

behavior of the integrals in Eq. (E1) are

α ¼ 2Mv̄DMΔx; ðE8Þ

β ¼ 2Mv̄DM=m; ðE9Þ

σ ¼ 2Mv̄DMR: ðE10Þ

Some algebra and integration over the azimuthal
angles gives

FðΔxÞ ¼
�
N
4αMαDMρDMMv̄DM

m4

�
· ½4ð2πÞ2Ze−v⊙=v̄DM �

×
Z

vesc=v̄DM

0

dse−s
2

s3
Z

1

−1
dCkΔx exp

�
2sCv⊙ΔxCkΔx

v⊙
v̄DM

�
I0

�
2sSv⊙ΔxSkΔx

v⊙
v̄DM

�

×
Z

1

0

dCkq

1 − exp ðiαsC2
kqCkΔxÞJ0ðαsCkqSkqSkΔxÞ
ðβ2s2C2

kq þ 1Þ2 Ckq½1þ AðNa − 1Þ ~fðσsCkqÞ�; ðE11Þ

where s ¼ k=ðMv̄DMÞ is the normalized DMmomentum, Jn
(In) is the unmodified (modified) Bessel functions of the
first kind, and Cnm (Snm) is the cosine (sine) of the angle
between the vectors n and m. To produce our main plots,
Eq. (E11) is integrated numerically.
The Earth and its atmosphere modify the flux seen by

terrestrial experiments, as discussed in Appendix B. For our
main plots, Figs. 4 and 5, we assume the Earth’s surface
reflects isotropically (which applies to all experiments
except MAQRO). The most ambitious experiment on
Earth, Pino et al., generally sees an anisotropic distribution
for downward traveling DM (originating from space) and
an isotropic distribution for upward traveling DM (having

been reflected by the Earth). The other three terrestrial
experiments (OTIMA, Geraci et al., Bateman et al.) are
only plausibly sensitive to DM that interacts strongly
enough to isotropize in the atmosphere, so this completely
smooths out the directional distribution. Isotropization can
eliminate the directional signal but affects that overall
decoherence rate by less than a factor of two.

1. Limiting behavior

It is useful to understand the limiting behavior of this
integral for extreme values of α, β, and σ. For simplicity,
take vesc=v̄DM → ∞ (so Z → π−3=2), take v⊙=v̄DM → 1, let

DECOHERENCE AS A WAY TO MEASURE EXTREMELY … PHYSICAL REVIEW D 96, 023007 (2017)

023007-19



the DM wind be parallel to the superposition displace-
ment (Cv⊙Δx ¼ 1), and approximate Na − 1 ≈ Na.
Then the coherent-scattering part of the decoherence rate
simplifies to

FðN2Þ
R ðΔxÞ¼

�
26

ffiffiffi
π

p
e

��
N2αMαDMρDMMv̄DM

m4

�Z
∞

0

dse−s
2

s3

×
Z

1

−1
dCkΔxexpð2sCkΔxÞ

×
Z

1

0

dCkq

1−cosðαsC2
kqCkΔxÞ

ðβ2s2C2
kqþ1Þ2 Ckq

~fðσsCkqÞ:

ðE12Þ
We concentrate on the behavior of the integral over Ckq

using heuristic arguments. Because Ckq ∈ ½0; 1�, and

because of the overall suppression by e−s
2

for s ≫ 1, the
factors ðβ2s2C2

kq þ 1Þ2 and ~fðσsCkqÞ are ignorable when
β ≪ 1 and σ ≪ 1, respectively. Furthermore, if β ≫ σ then
~fðσsCkqÞ can be ignored, and similarly for ðβ2s2C2

kq þ 1Þ2
if σ ≫ β. Lastly, we can approximate 1 − cosðαsC2

kqCkΔxÞ
by 1 if α ≫ maxðβ; σ; 1Þ (because the rapidly oscillating
cosine term averages to zero) and by ðαsC2

kqCkΔxÞ2=2
if α ≪ maxðβ; σ; 1Þ.
This gives limiting behavior in six distinct regimes. In

each regime, we can compute the leading behavior of the
integrals. Letting Ω ¼ maxðβ; σ; 1Þ and Φ ¼ minðα;ΩÞ,
we get the estimate

FðN2Þ
R ðΔxÞ ≈ N2

4παMαDMρDMMv̄DM

m4
YΩ;Φ

Φ2

Ω4
; ðE13Þ

where we have set the mean apparent DM velocity to the
speed of the Earth in the galactic rest frame, v⊙=v̄DM ≈ 1,
and where32

Yβ;β ¼ 4erfð1Þ ≈ 3.3708;

Yσ;σ ¼ 18erfð1Þ ≈ 15.1686;

Y1;1 ¼
4

e
ffiffiffi
π

p þ 6erfð1Þ ≈ 5.88642;

Yβ;α ≈ 1.61279;

Yσ;α ≈ 9.92504;

Y1;α ¼
19

12e
ffiffiffi
π

p þ 55

24
erfð1Þ ≈ 2.25982 ðE14Þ

are the dimensionless coefficients for the six limiting
regimes.
From this we can calculate the critical sensitivity by

setting FðN2Þ
R T ¼ 1 (where T is the exposure time given for

each experiment in Table I), and solving for αM. The
sensitivity of an experiment is defined by the critical value

α̂M at which the sidereal variation in the SM decoherence is
larger than the residual decoherence background and the
statistical estimator error,

~sDMðα̂MÞ≡ σ ~s þ ~sres: ðE15Þ
Here

~sres ¼ ηressbkg ¼ ηres lnðγ−1visÞ ðE16Þ
is the background,

σ ~s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2vis − 1

B0

s
ðE17Þ

is the error derived in Appendix D, γvis is the interference
fringe visibility, B0 ¼ TrunΓ is the expected number of
counts, Trun ¼ 1 month is the presumed length of the data-
taking run, and Γ is the count rate. Values of the parameters
can be found in Tables I and II.
This can be bundled into a statistical factor χ≡ðσ ~sþ ~sresÞ−1

to estimate our sensitivity,

1

α̂M

¼ TηDMχN2
4παDMρDMMv̄DM

m4
YΦ;Ω

Φ2

Ω4
; ðE18Þ

which well approximates the sensitivity line plotted for each
experiment in Figs. 4 and 5.

APPENDIX F: BORN APPROXIMATION

For sufficiently large values of the coupling αM, the Born
approximation will break down. The approximation is
based on the assumption that the potential [Eq. (2)] is
weak—or, more intuitively, translucent—so that the

TABLE II. Parameters taken to be common to all terrestrial
experiments. These also apply to the satellite proposal MAQRO,
with the exception of those marked with *. Being far from Earth,
MAQRO will not observe a sidereal variation due to shielding of
the DM wind.

v⊙ ¼ 230 km=s Earth velocity in galactic rest frame

v̄DM ¼ 230 km=s Thermal DM velocity in galactic rest
frame

ρDM ¼ 0.04 GeV=cm3 Density of interacting DM
subcomponent

αDM ¼ 1 DM coupling

ηDM ¼ 50% Sidereal variation in DM decoherence
rate*

ηres¼ 10−3 Residual sidereal decoherence
background*

Trun ¼ 1 month Data taking timespan

γvis ¼ 50% Interference fringe visibility achieved

32Here erfðxÞ denotes the error function.
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incident plane wave eix·k is only slightly perturbed as it
propagates through the potential and therefore approxi-
mates the exact time-independent solution. For sufficiently
large αM, the potential becomes opaque and we expect the
total cross section to saturate at a maximum value set by the
spatial range of the interaction and the size of the super-
posed target, i.e., of order of the geometric cross section.
To illustrate this breakdown, we recall the toy case of a

spherical square-hump (or square-well) potential of strength
V0 and radius R,

VðrÞ ¼


V0; if r < R

0; if r > R:
ðF1Þ

The following behavior is well known (e.g., p. 519 of
Ref. [98]). For small V2

0, the Born approximation applies
and the total scattering cross section is

σ¼ 2πm2V2
0R

4

k2

�
1−

1

ð2kaÞ2þ
sin4ka
ð2kaÞ3 −

sin2 2ka
ð2kaÞ4

�
; ðF2Þ

which grows quadratically with the strength of the potential,
σ ∝ V2

0 ∝ N2. This is the coherent scattering regime, and it
corresponds to a quadratic (not linear dependence) on the
total charge. However, the Born approximation breaks down
as the interaction strength increases, and as V0 → ∞ the
cross section saturates to of order of the geometric cross
section σgeo ¼ πR2.
This transition can easily be treated analytically for small

momentum,33 k ≪ R−1 and k ≪
ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p
. In this case the

scattering is isotropic, and this crossover is well described34

by (p. 549 of Ref. [98])

σ ¼ 4πR2

�
1 −

tanhðR ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p Þ
R

ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p
�
; ðF3Þ

which saturates at 4πR2 ¼ 4σgeo.
We will now confirm this qualitative behavior—that the

Born approximation breaks down when the total cross

section approaches the geometric35 cross section—when
scattering from a Yukawa potential.
The Born series for the differential scattering amplitude

is [72,100]

fðk;k0Þ ¼ −ð2πÞ2M
X∞
s¼1

λsTðsÞðk;k0Þ; ðF4Þ

where the expansion of the T matrix is given by

Tð1Þðk;k0Þ ¼ hk0jV̂jki
Tð2Þðk;k0Þ ¼ hk0jV̂Ĝ0ðk2=2M þ iϵÞV̂jki

..

.

TðsÞðk;k0Þ ¼ hk0jV̂½Ĝ0ðk2=2M þ iϵÞV̂�s−1jki: ðF5Þ

Above, λ is a dummy expansion parameter, ϵ is an
infinitesimal guiding the contour integral, V̂ is the scatter-
ing (operator) potential for the entire target, and Ĝ0ðzÞ ¼
ðz − P̂2=2MÞ−1 is the free-particle (operator) Green’s
function.
Note that the convergence properties of the Born series

depend on the momenta ðk;k0Þ and, in particular, that the
approximation can be valid for forward (small-angle)
scattering long after it has broken down for hard (large-
angle) collisions [72,101,102].
The (leading-order) Born approximation for the differ-

ential scattering cross section [Eq. (1)] for a single Yukawa
potential VðrÞ ¼ −ðgMgDM=4πÞe−rm=r is obtained by
expanding Tð1Þðk;k0Þ in the position basis and performing
the resulting Fourier transform of VðrÞ,

Tð1Þðk;k0Þ ¼ hk0jV̂jki

¼ 1

ð2πÞ3
Z

dxVðxÞeiðk0−kÞ·x

¼ 4π

ð2πÞ3
Z

∞

0

drVðrÞr sinðjk
0 − kjrÞ

jk0 − kj
¼ −

gMgDM

ð2πÞ3
1

m2 þ ðk0 − kÞ2 ; ðF6Þ

and then setting dσ=dΩ ¼ jfðk;k0Þj2, λ ¼ 1. A rigid target
of N scattering centers is obtained with the replacement
VðrÞ → P

N
i¼1 Vðjr − xijÞ, which attaches a net factor ofP

N
i¼1 e

iðk0−kÞ·xi ≈ N ~fðk0 − kÞ to the last line of Eq. (F6).
This is the origin of the structure factor, Eq. (E5), in the
Born approximation.
We will now compute the second term in the series and

find the regime when it is smaller than the first term. It will

33An analytical treatment of the large-momentum limit
(R−1 ≪ k, corresponding to geometric optics) is more compli-
cated. One can derive the σ ∝ V2

0 behavior to agree with Eq. (F2),
but as V0 grows, the scattered wave naturally divides into two
equal parts: a refracted component and a defracted component,
each with total cross section πR2 ¼ σgeo. (The latter destructively
interferes with the incident wave to produce a shadow. It is fully
concentrated in the forward direction and so is singular in
the ka → ∞ limit. See, e.g., p. 1551 of Ref. [99].) For large
enough V0, the potential becomes completely reflective, and the
scattering is isotropic.

34When V0<0, we have tanhðR ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p Þ=ðR ffiffiffiffiffiffiffiffiffiffiffiffi
2mV0

p Þ ¼
tanðR ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjV0j
p Þ=ðR ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mjV0j
p Þ, which exhibits resonant behavior.

35Here “geometric” includes the range of the Yukawa force,
which may extend much more than an atomic spacing beyond the
surface of the target.
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further be clear that higher-order terms pick up increasing
powers of small ratios, so that the first-order approximation
provides a good estimate to the entire convergent series.
Inserting a complete set of momentum eigenstates p,

we get

Tð2Þðk;k0Þ ¼ hk0jV̂Ĝ0ðk2=2M þ iϵÞV̂jki

¼ 2M
Z

dp
hk0jV̂jpihpjV̂jki
k2 − p2 þ iϵ

¼ 2MN2
g2Mg2DM
ð2πÞ6

Z
dp

1

k2 − p2 þ iϵ

×
~fðk0 − pÞ

m2 þ ðk0 − pÞ2
~fðp − kÞ

m2 þ ðp − kÞ2 : ðF7Þ

The relevant scales are R−1, m, and k, yielding two
dimensionless parameters. Now we consider how the ratio
jTð2Þ=Tð1Þj behaves in the various limiting cases.
When m ≪ R−1, the Yukawa potentials are strongly

overlapping and extend far beyond the size of the object
itself, so we can set ~fðqÞ ¼ 1. In other words, this is just the
traditional single Yukawa potential with strength
VðrÞ → NVðrÞ. In this case the answer is (p. 292 of
Ref. [100])

Tð2Þðk;k0Þ ¼ Mg2Mg2DMN2

25π4qξ

×

�
2tan−1

�
qm
2ξ

�
þ i ln

�
1þ kq=ξ
1 − kq=ξ

��
ðF8Þ

with ξ2 ≡m4 þ 4m2k2 þ k2q2. Then we have36

����Tð2Þðk;k0Þ
Tð1Þðk;k0Þ

���� ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffi
αDMαM

p
v̄DM

8<
:

k=m; if k ≪ m

1=2; if q ≪ m ≪ k

ð2 ln q
mÞ; if m ≪ q ≪ k:

ðF9Þ

Note that this ratio may be small even for large coupling so
long as the range of the force ƛm ¼ m−1 decreases fast
enough. This just confirms that the N2 dependence, a
characteristic of the coherence elastic scattering enhance-
ment, persists for contact interactions so long as the total
cross section is small compared to the geometric cross
section of the charges. This is ultimately because the Born
approximation does not require the potential at any given
location to be small or even finite, only that the potential’s
overall effect on the incident wave function is small.
Alternatively, when m ≫ R−1 in Eq. (F7), the potential

of each nucleus will generally overlap with its neighbors

(so long as m≲ Å−1) but will not extend much outside of
the superposed object. Intuitively, we expect to roughly
recover the behavior of the spherical square-well potential,
Eq. (F1). This is especially true when the DM cannot probe
the interior of the object, so let us first assume k ≪ R−1. In

this case, ~fðRÞsphðpÞ is slowly varying over scales of order k,

so we can replace ~fðRÞsphðk0 − pÞ ~fðRÞsphðp − kÞ → j ~fðRÞsphðpÞj2.
Similarly, ~fðRÞsphðpÞ ensures the integrand is suppressed for

p≳ R−1, so we can ignore the terms ðp − kÞ2 and
ðk0 − pÞ2 in the denominators. This removes q dependence.
Then

Tð2Þðk;k0Þ ≈ 2M
m4

g2Mg2DM
ð2πÞ6 N

2

Z
dp

j ~fðpÞj2
k2 − p2 þ iϵ

¼ 2M
m4

g2Mg2DM
ð2πÞ6 N

2
1

R

�
12π2

5
þOðkRÞ

�
: ðF10Þ

To get the second line we insert Eq. (E7), compute the
integral over p, take the limit ϵ → 0, and expand in powers
of kR. This gives����Tð2Þðk;k0Þ

Tð1Þðk;k0Þ

���� ≈ N
ffiffiffiffiffiffiffiffiffiffiffiffi
αDMαM

p
v̄DM

�
12k
5m2R

�
: ðF11Þ

We can check that this recovers our intuitive expectation
that, if k ≪ R−1 ≪ m, the Born approximation breaks
down when the total cross section becomes of order of
the geometric cross section. Indeed, dσBorn=dΩ ¼
jfð1Þðk;k0Þj ¼ 16π3M2jTð1Þðk;k0Þj2 and

σBorn
σgeo

≈
�
5

6π

�
2
����Tð2Þðk;k0Þ
Tð1Þðk;k0Þ

����2: ðF12Þ

The last situation, when both k ≫ R−1 and m ≫ R−1, is
the most complicated because the validity of the Born
approximation depends on q ¼ jk − k0j. First, let us
calculate for q ¼ 0, changing integration variables to
l≡ k − p,

Tð2Þðk;kÞ ¼ 2M
m4

g2Mg2DM
ð2πÞ6 N

2

Z
dl

j ~fðlÞj2
2k · l − l2 þ iϵ

¼ 2M
m4

g2Mg2DM
ð2πÞ6 N

22π

Z
∞

0

dlj ~fðlÞj2 l
2k

×

�
ln

�
1 − l=2k
1þ l=2k

�
− iπ

�
; ðF13Þ

where to get the second equality we assume ~fðlÞ ¼ ~fðlÞ is
spherically symmetric (as for our uniform spherical target)
and then perform the integral over the solid angle using the

residue theorem. Specializing ~f → ~fðRÞsph and expanding in
the small quantity ðkRÞ−1, we perform the integral and get

36In the case m ≲ q ≪ k, there is an additional factor of
ð4 ln q

mÞ2.
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Tð2Þðk;kÞ ¼ 3

64π4
Mg2Mg2DMN2

m4

×

�
−i

3

2kR
−

1

ðkRÞ2 þOðk−3R−3Þ
�
; ðF14Þ

which yields

����Tð2Þðk;kÞ
Tð1Þðk;kÞ

���� ≈ N
ffiffiffiffiffiffiffiffiffiffiffiffi
αDMαM

p
v̄DM

�
3

2mR

�
2

: ðF15Þ

Now, note that the quantities Tð1Þðk;k0Þ and Tð2Þðk;k0Þ
should not vary too much for q≲ R−1 because ~fðlÞ ≈ 1 for
all q ≪ R−1. Since the structure factor cuts off the scatter-
ing for q ≳ R−1, we expect the total decoherence (domi-
nated by small momentum transfer) calculated in the Born
approximation to be roughly correct so long as the above
ratio is small, even in regimes where the Born approxi-
mation is invalid for the (very rare) hard scattering events.
For the purpose of calculating decoherence rates, we

identify the regions of validity of the Born approximation
by the condition that the appropriate ratio, Eqs. (F9), (F11),
or (F15), is less than unity for the dominant momentum
transfer, Eq. (16). Our sensitivity estimates in Figs. 4 and 5
cut off when the required coupling α̂M violates these
conditions. With the notable exception of resonance
behavior, we expect the cross section to quickly saturate
at of order of the geometric cross section, so the interfer-
ometers would be insensitive to DM in this regime
regardless of strength of coupling.

1. Exact cross section

The cross section for Yukawa scattering outside the Born
regime cannot be computed in generality. When the range
of the potential is much smaller than the geometric size of
the target, the total potential can be approximated by the
spherical square-well potential, Eq. (F1). The exact scatter-
ing amplitude is

fðθÞ ¼ 1

k

X∞
l¼0

ð2lþ 1ÞflPlðcos θÞ; ðF16Þ

where fl ¼ eiδl sin δl is the harmonic amplitude, Pl is the
Legendre polynomial,

δl ¼ j0lðkRÞjlðκRÞ − ðκ=kÞjlðkRÞj0lðκRÞ
n0lðkRÞjlðκRÞ − ðκ=kÞnlðkRÞj0lðκRÞ

ðF17Þ

is the phase shift, jl and nl are the spherical Bessel
functions of the first and second kind,37 κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2mV0

p
is the momentum inside the potential, and primes denote
derivatives. The sum in Eq. (F16) is dominated by the first
OðkRÞ terms. The efficiently computable spherical square-
well regime (R ≫ m, kR≫1) partially overlaps with the
Born regime, and one can check that the answers agree in
this region.

APPENDIX G: DEBYE-WALLER FACTOR

The Debye-Waller factor quantifies the fractional sup-
pression of coherent elastic scattering due to the mean
relative spatial uncertainty of the scattering centers [103].
For a given momentum transfer q it is given by

e−2W ¼ jheiq·yij2 ¼ e−q
2hyi2=3 ðG1Þ

where the second equality follows by assuming the nuclei
positions y are normally distributed (i.e., in isotropic,
harmonic potentials). When the target is perfectly rigid,
hyi ¼ 0, there is no suppression. In the Debye model one
can approximate the mean squared displacement at temper-
atures T above about 100 K by

hyi2 ≈ 4kBT
πc2sa0ρ

¼ d2300 K

�
T

300 K

�
; ðG2Þ

where the material properties are the speed of sound cs,
the atomic spacing a0, and the density ρ. Here d300 K is the
rms displacement at room temperature, and one can check
(e.g., [104]) that 0.05 Å < d300 K < 0.2 Å for all the
targets we consider. For cooler temperatures, y saturates
at the finite zero-point motion d0 K < d300 K. These are
much smaller length scales associated with the very
small momentum transfer (coherent over the entire target)
which are the dominant source of decoherence. Indeed,
even for hard-sphere scattering with M ¼ 10 MeV, we
have q−1 ≤ ƛDM=2 ≈ 0.1 Å. This confirms the intuition that
decoherence detection is most useful for when the inter-
actions are too soft to excite detectable phonon modes.

37Recall that they are related to the ordinary Bessel functions
of the first and second kind by jlðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2zÞp

Jlþ1=2ðzÞ and
nlðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2zÞp

Nlþ1=2ðzÞ. Some authors use the alternative
notation Yl and yl for the ordinary and spherical Bessel functions
of the second kind.
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