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Proposed near-future upgrades of the current advanced interferometric gravitational wave detectors
include the usage of frequency dependent squeezed light to reduce the current sensitivity-limiting quantum
noise. We quantify and describe the degradation effects that spatial mode-mismatches between optical
resonators have on the squeezed field. These mode-mismatches can to first order be described by scattering
of light into second-order Gaussian modes. As a demonstration of principle, we also show that squeezing
the second-order Hermite-Gaussian modes HG02 and HG20, in addition to the fundamental mode, has the
potential to increase the robustness to spatial mode-mismatches. This scheme, however, requires
independently optimised squeeze angles for each squeezed spatial mode, which would be challenging
to realise in practise.
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I. INTRODUCTION

The current advanced gravitational-wave detectors, e.g.,
the Advanced LIGO [1] detectors, are dual-recycled
Michelson interferometers with arm cavities, as shown in
Fig. 1. One of the limiting noise sources is quantum noise
which arises from quantum fluctuations of light. To reduce
the quantum noise over a broad-frequency band, one
approach is to inject frequency dependent squeezed vac-
uum states into the dark port of the interferometer [2,3].
These states are produced by the combination of a squeezer
and a filter cavity, where the filter cavity generates the
frequency dependency [4–6], such that the phase quad-
rature is squeezed for high frequencies and the amplitude
quadrature is squeezed for low frequencies. This technol-
ogy can be fitted into the current infrastructure [7,8], and
is planned to be implemented in the next upgrade of the
current observatories.
There are several practical imperfections that can influ-

ence the performance of this scheme, such as spatial mode-
mismatches, optical losses, and phase noise [8–10]. This
paper focuses on spatial mode-mismatches. Their effects on
the squeezing can be categorized into two types. The first
type is when a part of the squeezed states in the fundamental
mode irreversibly scatters to higher-order modes, which has
an effect similar to an optical loss. The second type is when
the quantum states are allowed to coherently couple back
and forth between the fundamental and higher-order modes.
This type requiresmultiple interfaces wheremode-mismatch

induced scatterings occur. Particularly, there are two impor-
tant such interfaces, located between the three components of
interest in this work: the squeezer, the filter cavity, and the
interferometer—each to a good approximation having its
own well-defined spatial mode basis.

FIG. 1. The field emitted by the squeezer is reflected off a filter
cavity to produce frequency dependent squeezed states. These
states are injected into the interferometer through the signal
recycling mirror. There are three potentially different spatial
eigenbases in this setup: UFC for the filter cavity (yellow back-
ground), USQZ for the squeezer (green), and UIFO for the interfer-
ometer (blue), where the background colors indicate which basis
that is used where. All the coherent laser power is in the
fundamental mode of the interferometer basis.
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Kwee et al. [8] studied the combined effect of these
two types by considering mode-mismatches at the above
mentioned interfaces. In this study, to better understand
these two effects individually, we isolate them as much as
possible by mode-mismatching one of the three compo-
nents at a time, i.e., two components are always kept
perfectly mode matched to each other. In contrast to
Ref. [8] and to what would be done in practice, the filter
cavity is intentionally made to be resonant for higher-order
modes within the frequency band of interest. On the one
hand, this allows us to further study the interesting coherent
scattering effect. On the other hand, it might also be
relevant in reality for long filter cavities.
Additionally, we have looked intowhether injectingmulti-

spatial-mode squeezing, where two higher-order spatial
modes are squeezed in addition to the fundamental mode,
can provide robustness to mode-mismatches. The interesting
spatial aspects of squeezed states have generated the rela-
tively new field of quantum imaging [11–13], which has
experimentally demonstrated the abilities of both generating
squeezed higher-order Gaussian modes [14–16], and com-
bining different squeezed transverse modes [17]. These are,
in principle, the tools needed to produce the multi-spatial-
mode squeezing considered in this paper.
The key results of this paper are summarized as follows.

In Fig. 2 we show the quantum noise limited sensitivity for
various levels of mode-mismatches between the interfer-
ometer and the filter cavity, while keeping the squeezer
mode matched to the filter cavity. This mode-mismatch has
the same effect as a lossy element between the filter cavity
and the interferometer. The exact same effect is seen when
mode-mismatching the squeezer to a mode matched filter
cavity and interferometer. These results are consistent with
the result obtained by Kwee et al. [8] in the high-frequency
part of the spectrum.
Figure 3 shows the result when the squeezer is kept mode

matched to the interferometer instead of to the filter cavity.

In this case, there are scattering points (spatial basis
changes) before and after the filter cavity, which allows
the squeezed states to coherently scatter to higher-order
modes and then back to the fundamental mode. If a higher-
order mode involved in this process picks up a different
phase than the fundamental mode when reflected off the
filter cavity, this mode-mismatch enables for potentially
antisqueezed states to mix in with the squeezed states—
which would be worse than just a loss. This coherent
scattering effect can be seen in Fig. 3 at low frequencies
where the fundamental mode is near-resonant while the
higher-order modes are off resonance, and at the two local
peaks where the second and fourth order modes are
resonant while the fundamental mode is off resonance.
These results are consistent with the low-frequency part of
the spectrum obtained by Kwee et al. [8].
Figure 4 shows the results obtained when letting the field

emitted by the squeezer have squeezed states in the three
Hermite-Gaussian modes HG00, HG02, and HG20. This is in

FIG. 2. The figure shows the quantum-noise-limited sensitivity
for various levels of mode-mismatch between the interferometer
and the filter cavity. The squeezer is kept mode matched to the
filter cavity. This type of mode-mismatch creates a broad-
frequency band squeezing degradation similar to an optical loss.

FIG. 3. In contrast to Fig. 2, the squeezer is kept mode matched
to the interferometer. Around the resonance frequencies of the
involved spatial modes, we experience squeezing degradation due
to coherent mode-scattering.

FIG. 4. The figure shows the improvement in dB that we obtain
by squeezing the vacuum fluctuations that enters through the signal
recycling cavity. The dashed traces indicates the improvement
when squeezing 3 spatial modes, and the solid lines indicate the
improvement when squeezing 1 spatial mode. This is shown for
two different levels of mode-mismatch.
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contrast to above where only the HG00 mode was squeezed.
Just as when generating Fig. 2, the filter cavity is mode-
mismatched to the interferometer while the squeezer is kept
mode matched to the filter cavity. The filter cavity is
redesigned so that the second order modes have the same
resonance condition as the fundamental mode, which is
necessary to correctly rotate all the squeezed states.
In addition, the squeeze angles of the second order modes
have been independently optimized to maximize the broad-
frequency band sensitivity. Figure 4 shows that, in principle,
the injection of a multi-spatial-mode-squeezed field could
provide resilience to the type of mode-mismatch considered
here. For practical implementation it would require a more
detailed study and experimental demonstration.
The outline of this paper goes as follows. In Sec. II, we go

into the details of the model used to study the impact of
spatial mode-mismatches, and we thoroughly analyze the
results presented in Figs. 2 and 3 by using analytical
expressions. In Sec. III we elaborate on the model used to
study if the injection of squeezed states in multiple spatial
modes could provide robustness to mode-mismatches, and
the results presented above in Fig. 4 are further analysed.

II. THE EFFECT OF SPATIAL
MODE-MISMATCHES

We now go into the details behind the modeling of
how mode-mismatches affects the quantum-noise-limited
sensitivity of a squeezed-light-enhanced interferometric
gravitational wave detector. Specifically, we start with the
description of the optical setup in subsection II A, and then
in subsection II B,we describe thegeneral framework used to
analyze the results. FINESSE [18–20]—the numerical soft-
ware thatwas used to produce the results—uses an equivalent
method [21,22]. A similar framework can also be found in
Ref. [23]. In the later subsections II C, II D, and II E, we look
into mode-mismatches between the three components—the
squeezer, the filter cavity, and the interferometer.

A. The optical setup

The optical setup used here is visualized in Fig. 1, and is
a simplified and idealized model of an Advanced LIGO
detector [1]with frequencydependent squeezed light injected
through the dark port. The key parameters of the interfer-
ometer are listed in Table I. The frequency dependent
squeezing is realized by reflecting the squeezed field off a
detuned over-coupled Fabry-Perot cavity. This cavity is
frequently referred to as a filter cavity [4–6]. The filter cavity
considered in this work is a linear overcoupled 16 m long
confocal optical cavity, based on the one proposed in [7] for
near-termupgrade ofAdvancedLIGO. In thiswork, the input
mirror is lossless, the endmirror isperfectly reflective, andwe
have assumed that the mirrors are much larger than the beam
sizes so that clipping losses arenegligible.Thevaluesused for
cavity detuning and input mirror transmission were obtained

bymaximizing the broadband sensitivity between 10 Hz and
3kHz. The radius of curvature for the twomirrors is chosen to
make the higher-order modes resonant within the frequency
band of interest, for the reasonmentioned in the introduction.
All the used filter cavity parameters are shown in Table II.
We have three components to mode-mismatch to each

other: the interferometer, the filter cavity, and the squeezer.
Themode-mismatchbetween the interferometer and the filter
cavity is generated by displacing amodematching lens along
the optical axis. For the squeezer component, FINESSE allows
us to freely specify the complex beam parameter of the field
that is emitted, and we used this feature to control the mode
matching of the squeezer.

B. The mathematical framework

The spatial distribution of the field within the interfer-
ometer can be expanded in one common interferometer
eigenbasis UIFO

n ðx; y; zÞ. Specifically, the sideband field at
ω0 �Ω (ω0 is the carrier frequency of the laser) reads:

Êðω0 � Ω; x; y; zÞ ¼
XN
n¼0

cnâω0�Ω;nUIFO
n ðx; y; zÞ: ð1Þ

Here âω0�Ω;n are the annihilation operators for the upper and
lower sidebands of the nth mode, cn is the relative weight
of the nth mode satisfying

P∞
n¼0 jcnj2 ¼ 1, N denotes the

number of modes included in the model, z is the coordinate
along the optical axis, and x and y are the transverse
coordinates. Similarly, the eigenbases of the filter cavity and

TABLE I. The table shows the interferometer parameters that
were used.

Symbol Parameter Value

λ0 Carrier wavelength 1064 nm
Parm Arm cavity power 0.74 MW
Pbs Power on the beam splitter 5.3 kW
Larm Arm cavity lengths 3994.5 m
m Mass of test-mass mirrors 40 kg
Lsrc Signal recycling cavity length 57 m
Tsrm SRM power transmission 0.35

TABLE II. The table shows the design parameters for the filter
cavity used in Sec. II.

Symbol Parameter Value

Lfc Length 16.0 m
RC Mirror radius of curvature 15.999 m
T in Input mirror transmission 61 ppm
Rin Input mirror reflection 1-T in
Rend End mirror reflection 1
FSR Free spectral range 9.37 MHz
Δ=2π Detuning 46.18 Hz
γfc=2π Half-width 45.49 Hz
δf Mode-separation ð1þ 4 × 10−5Þ FSR

2
Hz
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the squeezer are denoted by UFC
n and USQZ

n , respectively.
These are the three eigenbases used to describe the spatial
distribution of the field within the optical setup. Which
eigenbasis is used where is indicated by the background
colors in Fig. 1, and the red dots indicate where the basis
changes take place. Scattering between modes labeled by
different numbers n occurs when changing basis fromUSQZ

n

to UFC
n and when changing basis from UFC

n to UIFO
n , if the

complex beam parameters of the bases are different.
In this paper, we use the two-photon formalism [24–26]

to model the quantum noise. In this formalism, the key
quantitates are (i) the amplitude and phase quadrature
operators which are defined as

â1ðΩÞ ¼
âω0þΩ þ â†ω0−Ωffiffiffi

2
p ; â2ðΩÞ ¼

âω0þΩ − â†ω0−Ωffiffiffi
2

p
i

ð2Þ
and (ii) the transfer matrix relating the quadrature operators
of the fields at different locations. In our case, we care
about higher-order modes where the quadrature operators
can be represented in terms of a column vector of length
2N:

a ¼ ⨁
N

n¼0

anðΩÞ ð3Þ

with each pair of quadrature operators for mode n being
defined as

anðΩÞ ¼ ½ â1;nðΩÞ â2;nðΩÞ �T: ð4Þ

The field that enters the interferometer can be related to
the field entering the squeezer through

aIFO ¼ K2T K1SaSQZ; ð5Þ

Here, S is the squeezing matrix, T is the filter cavity
transfer matrix,K1 describes the basis change fromUSQZ

n to
UFC

n , and K2 describes the basis change from UFC
n to UIFO

n .
These matrices are described as follows.
The joint squeezing matrix S is given by the direct sum

of the individual squeezing matrices for every spatial mode
in the field:

S ¼ ⨁
N

n¼0

Sn: ð6Þ

The squeezing matrix Sn for spatial mode n is given by

�
cosh rn þ sinh rn cos 2φn sinh rn sin 2φn

sinh rn sin 2φn cosh rn − sinh rn cos 2φn

�
;

ð7Þ

where rn and φn are the squeeze factor and angle,
respectively. In later subsections, the states in the funda-
mental mode are squeezed by 10 dB while all higher
order modes contain pure vacuum states. That is, r0 ¼
ð2 log10 eÞ−1 and rn ¼ 0 for all n > 0. The angle φ0 is
optimized such that the high-frequency shot noise is
maximally reduced. The filter cavity then takes care of
correctly rotating the squeezed states for the rest of the
frequency components.
The matrix K describing a basis change between two

spatial mode bases is given by

K ¼

2
6666666664

K0;0 � � � K0;k � � � K0;N

..

. . .
. ..

. . .
. ..

.

Kn;0 � � � Kn;k � � � Kn;N

..

. . .
. ..

. . .
. ..

.

KN;0 � � � KN;k � � � KN;N

3
7777777775
; ð8Þ

where each entry Kn;k is a 2 × 2 matrix given by

Kn;k ≡ κnk

�
cos βnk − sin βnk
sin βnk cos βnk

�
: ð9Þ

Here, κnk is the coupling magnitude from mode number k
in the old basis to mode number n in the new basis, and βnk
is the corresponding coupling phase.
Expressed in the spatial basis UFC

n , the reflection off the
filter cavity is given by

T ¼ ⨁
N

n¼0

T nðΩÞ; ð10Þ

where the spatial mode n undergoes a phase change
specified by

T nðΩÞ ¼ A2

�
rnðΩÞ 0

0 r�nð−ΩÞ

�
A−1

2 : ð11Þ

The transfer function for a sideband in spatial mode n is
given by

rnðΩÞ ¼
e−iϕnðΩÞ −

ffiffiffiffiffiffi
Rin

p
ffiffiffiffiffiffi
Rin

p
e−iϕnðΩÞ − 1

; ð12Þ

where

ϕnðΩÞ ¼
�
2L
c
ðΩþ ΔÞ − qnψ rt

�
ð13Þ

and Rin is the input mirror power reflectivity,Δ is the cavity
detuning, L is the macroscopic cavity length, c is the speed
of light, ψ rt is the round-trip Gouy phase and qn is the order
of the mode n. The matrix
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A2 ¼
1ffiffiffi
2

p
�
1 1

−i i

�
ð14Þ

is used to transform the transfer function for the sidebands
to that for the quadratures.

C. Mode-mismatched interferometer

In this scenario, the interferometer is mode-mismatched
to both the squeezer and the filter cavity, while the squeezer
and the filter cavity are kept mode matched to each other.
To generate this mode-mismatch, one of the lenses used to
mode match the filter cavity to the interferometer is
displaced along the optical axis. The resulting quantum-
noise-limited sensitivity is shown in Fig. 2, while Fig. 5
shows the same data but expressed in terms of improvement
over the nonsqueezed case. The dip in improvement around
70 Hz demonstrates that one cannot achieve a perfect
broad-frequency band noise reduction by using only one
filter cavity [4]. However, when operating with a tuned
signal recycling cavity, as done here, one filter cavity still
performs very well [27,28]. Since we are using realistic
mirror losses inside the interferometer, the sensitivity
improvement does not reach exactly 10 dB even when
all three components are perfectly mode matched.
The reason for the broad-frequency band squeezing

degradation is best explained by using the analytics
developed above. Since the squeezer and the filter cavity
are mode matched, and assuming that the self-coupling
phases in Eq. (9) are βkk ¼ 0, the basis change matrixK1 in
Eq. (5) becomes the identity matrix. This assumption does
not reduce the generality as any self-coupling phase could
be compensated for by adjusting the initial squeeze angle.
Equation (5), describing the quantum field injected into the
interferometer, is then reduced to

aIFO ¼ KT SaSQZ; ð15Þ

which is visualised in Fig. 6. The only frequency dependent
process that the field undergoes is the interaction with the
filter cavity, which is described by Eq. (10). When this
process takes place, all the squeezed states are in the
fundamental mode and therefore undergo the correct
rotation T0ðΩÞ. The phase changes of the pure vacuum
states in the higher-order modes TnðΩÞ are unimportant, as
these just rotate circular symmetric probability distributions
around their symmetry axes.
The mode-mismatch-induced basis change K makes the

fundamental mode exchange some squeezed states for pure
vacuum states with the higher-order modes. This makes the
fundamental mode of the interferometer eigenbasis less
squeezed for all frequencies, and has the same effect as an
optical loss. That is, for small coupling coefficients κ0, where

κ20 ¼
XN
n¼1

κ20n ð16Þ

is the total power coupling magnitude for scattering away
from the fundamental mode, the quantum noise in the
interferometer scales as

ð1 − κ20Þe−2r0 þ κ20: ð17Þ

D. Mode-mismatched filter cavity

Just as above, the filter cavity is spatially mode-
mismatched to the interferometer, but here the squeezer
is kept mode matched to the interferometer instead of to the
filter cavity.
In this case, there are nontrivial spatial basis changes

before and after the filter cavity that give rise to couplings
between different spatial modes. Since the squeezer and the
interferometer are mode matched to each other, the second
basis change is the inverse of the first, thus, Eq. (5) becomes

aIFO ¼ K−1T KSaSQZ: ð18Þ
This process is visualised in Fig. 7.
Due to the mode-mismatch K between the squeezer and

the filter cavity, the field incident on the filter cavity input

FIG. 5. The figure shows the effect of mode-mismatching
the interferometer to the squeezer and the filter cavity. We see
a broad-frequency band decrease in improvement that is similar
to an optical loss.

FIG. 6. The figure shows the effect of mode-mismatching the
interferometer to the filter cavity and the squeezer. Initially, the
vacuum noise in the spatial mode U0 is squeezed by 10 dB, while
the arbitrary higher-order mode Un contains pure vacuum noise.
The noise fields in the two spatial modes mix after being
subjected to the frequency and mode dependent rotation of the
squeeze angle when reflected off the filter cavity.
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mirror has a part of its squeezed states located in higher-
order modes. If these higher-order modes experience phase
shifts different from the phase shift of the fundamental
mode when reflected off the filter cavity (i.e., if
TnðΩÞ ≠ T0ðΩÞ), then the mode-mismatch between the
filter cavity and the interferometer, K−1, enables for these
now wrongly rotated squeezed states to mix back in with
the squeezed states in the fundamental mode. If the wrongly
rotated states are antisqueezed, this coherent scattering
process is worse than an optical loss. In Figs. 3 and 8, this
coherent scattering effect can be seen in two different
regions: at low frequencies, where the fundamental mode
is nearly resonant while the higher-order modes are off
resonance, and at about 300 Hz and 700 Hz where the
second-order and fourth-order modes are resonant while the
fundamental mode is not. The reason that the second-order
and fourth-order modes show up is that the mode-mismatch
was generated by offsetting the waist size and displacing
the waist position of the beam, which only generates non-
zero couplings between modes with even mode-order
spacing. Since the couplings decrease with increasing
mode-order spacing, we only included modes up to order
four in our simulations.

For a small mode-mismatch, and for the worst case
higher-order-mode rotations, the quantum noise in the
interferometer scales as

e−2r þ 4ð1 − e−2rÞκ20: ð19Þ

See Appendix for a derivation of this formula. For large
squeeze magnitudes, this is a factor of 2 worse than the
effect of a corresponding optical loss. It should be men-
tioned that the filter cavity was deliberately designed to
have this small mode spacing so that we could see the effect
of higher-order mode resonances. If this 16 m filter cavity
would be implemented in LIGO, it would be designed such
that the higher-order modes are resonant well outside the
frequency range of interest. However, this might not be
possible for much longer filter cavities, e.g., as proposed for
the Einstein Telescope [29].
For high frequencies, neither the fundamental mode nor

the higher-order modes are resonant, thus TnðΩÞ ¼ T0ðΩÞ,
and the squeezed field is consequently unaffected by this
mode-mismatch.

E. Mode-mismatched squeezer

Here we consider the case where the squeezer is mode-
mismatched to both the filter cavity and the interferometer,
while the last two are kept mode matched to each other.
This means that the basis change between the squeezer and
the filter cavity generally has non-zero couplings between
different spatial modes, while the matrix performing the
basis change in between the filter cavity and the interfer-
ometer becomes the identity matrix. Thus, Eq. (5) becomes

aIFO ¼ T KSaSQZ; ð20Þ

which is visualized in Fig. 9. The effect is the same in
Sec. II C, thus the result can be seen in Figs. 2 and 5. In
contrast to the case in Sec. II C, there are indeed squeezed
states in the higher-order modes that have incorrect
rotations due to the filter cavity. But since these are not
allowed to couple back to the fundamental mode again, this
does not contribute to any extra quantum noise.

FIG. 7. The figure shows the effect of mode-mismatching the
filter cavity to the squeezer and the interferometer. The noise fields
in the two spatial modes mix twice, with a frequency and mode
dependent rotation of the squeeze angle in between due to the
filter cavity. Since the squeezer and the interferometer are mode
matched, the two mixing operations are the inverse of each other.

FIG. 8. The figure shows the effect of mode-mismatching
the filter cavity to the squeezer and the interferometer. Due to
coherent mode-scattering, we see squeezing degradations around
the resonance frequencies for the involved spatial modes.

FIG. 9. The figure shows the effect of mode-mismatching the
Squeezer to the FC and the Interferometer. The noise fields in the
two spatial modes mix before being subjected to the frequency
and mode dependent rotation of the squeeze angle when reflected
off the FC.
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III. ROBUSTNESS TO MODE-MISMATCHES
THROUGH SQUEEZED HIGHER-ORDER

MODES

In this section, we show that the injection of squeezed
states in multiple spatial modes potentially can provide
robustness to mode-mismatches. This requires that the
initial orientation of the squeezing ellipses can be inde-
pendently optimised for each spatial mode, which would be
challenging to achieve in practice due to the degenerate
resonance conditions of the second order modes. Further,
the field from three different squeezers would have to be
superimposed into one by using mode-selecting cavities.
In subsection III A the mode-mismatched interferometer

is revisited (see Sec. II C), but this time three spatial modes
are squeezed instead of just the fundamental mode.
Subsection III B provides a simple analytic test of the
principle of using multiple squeezed modes—it was not
rejected.

A. Mode-mismatched interferometer

The same mode-mismatch is considered as in Sec. II C,
that is, the interferometer is mode-mismatched to the filter
cavity and the squeezer, while the filter cavity and the
squeezer are kept mode matched to each other. Therefore,
Eq. (15) applies here as well, but with some alterations to
the squeezing matrix S and to the filter cavity transfer
matrix T , as described below.
We squeezed the Hermite-Gaussian modes HG02 and

HG20, in addition to the fundamental mode, as these two
second order modes have the strongest couplings to the
fundamentalmode, asmentioned in Sec. II D.All three states
are squeezed by 10 dB. The two extra modes are labeled
n ¼ 1 and n ¼ 2, thus, the squeeze magnitudes in the
squeezing matrix S [Eq. (7)] becomes rn ¼ ð2 log10 eÞ−1
for n ∈ f0; 1; 2g, and rn ¼ 0 for n > 2. Further, for each
level of mode-mismatch the initial squeeze angles φn for
n ∈ f0; 1; 2g are independently optimized to maximize the
sensitivity (or equivalently, to minimize the quantum noise).
This optimization is needed to correctly compensate for the
phases β0k, k ∈ f1; 2g, that are picked upwhen the squeezed
higher order modes couple into fundamental mode due to
the mode-mismatch-induced basis change K [Eq. (8)].
To acquire the optimal frequency dependent rotation

for the squeezed states in all three spatial modes, the filter
cavity was made critical by changing the radius of
curvature of the two filter cavity mirrors to 16 m. This
gives a round-trip Gouy-phase of π, hence, the second order
modes have the same resonance condition as the funda-
mental mode, and therefore pick up the same phase shift
modulo 2π when subjected to filter cavity transfer matrix
T . This can be seen by setting ψ rt ¼ π, qð0Þ ¼ 0 and
qð1Þ ¼ qð2Þ ¼ 2 in Eq. (13).
The results for two different levels of mode-mismatches

are shown in Fig. 4, and are presented in terms of sensitivity

improvement over the no-squeezing case. The figure also
includes the corresponding traces from subsection II C for
comparison. One can see that for 5% mode-mismatch the
sensitivity is increased with about 1.5 dB compared to the
case when only the fundamental mode is squeezed, and that
most of the mode-mismatch-induced squeezing degrada-
tion is recovered by squeezing the two extra spatial modes.
There are two reasons for this:

(i) In the previous section, pure vacuum states from the
second-order modes mixed in with the squeezed
states in the fundamental mode due to the mode-
mismatch. Now, correctly rotated squeezed states
mix in instead.

(ii) The couplings between the fundamental mode and
the higher-order modes that carry pure vacuum states
are small for this level of mode-mismatch.

For the larger mode-mismatch of 15%, the sensitivity
gain is also larger—about 3 dB. This is because the
coupling magnitudes between the fundamental mode and
the second-order modes have increased. However, the
sensitivity does not rise to around the mode matched case,
as the fundamental mode has significant couplings to pure-
vacuum-state-carrying higher-order modes. The results
show that squeezing the two extra spatial modes provide
robustness to this particular mode-mismatch in our model.

B. Test of principle

In this subsection we provide a test of principle for multi-
spatial-mode squeezing by injecting two squeezed quantum
fields into a Mach-Zehnder interferometer. The test origi-
nated from the idea of testing if the benefits of squeezing
higher-order modes could be downgraded or even rejected,
if we allow propagations and scatterings that are more
general in nature than the ones studied in the previous
subsection.
The optical setup is shown in Fig. 10 and consists of two

squeezers—one for each incoming field—and two mixing
points with a generic propagation in between. The test was
performed as follows:

(i) Various parameters of the system are independently
assigned randomized values within realistic and
physically valid intervals. These parameters are:
the beam splitters’ reflection coefficients and micro-
scopical offsets along their surface normals; the

FIG. 10. The figure shows Mach-Zehnder interferometers used
to mix two quantum fields. In the left figure a squeezed vacuum
field is mixed with pure vacuum, and in the right figure two
independent squeezed vacuum fields are mixed. The photo
detector indicates that the upper output path is the one of interest.
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macroscopical and microscopical propagation
phases; and the readout quadrature. Here, micro-
scopical refers to distances smaller than the carrier
wavelength, and macroscopical refers to distances of
any magnitude, but of integer multiples of the carrier
wavelength.

(ii) The upper input field is squeezed by 10 dB and the
lower input field remains pure vacuum, as seen in the
left part of Fig. 10. The initial squeeze angle is
optimized to yield maximum squeezing in the upper
output path in the readout quadrature.

(iii) The second squeezer is switched on so that both fields
are squeezed by 10 dB, as seen in the right part of
Fig. 10. The initial squeeze angle for the lower field is
then also optimized to yield maximum squeezing in
the upper output path in the readout quadrature.

(iv) Repeat 10,000 times.
The result is shown in Fig. 11. The blue distribution is

obtained with one squeezed field in step (ii), and the red
bar is the result obtained in step (iii), when both fields are
squeezed. Thus, for any set of random parameter values, we
can always obtain 10 dB of squeezing as long as we can
independently optimize the two initial squeeze angles.
The rest of this subsection is focused on describing the

model that was used in more detail.
The system can be described by the framework from

Sec. II B, with N ¼ 1 as there are only two fields in this
setup. The upper (lower) field, and the operations acting on
the upper (lower) field, are everywhere in the setup labeled
by n ¼ 0 (n ¼ 1). The relation between the output fields
and the input vacuum fields is given by Eq. (5), however,
the transfer matricesK1,K2 and T are modified as follows.
Each lossless beam splitter can be represented by

Ki ¼

2
6664
ri cos βi −ri sin βi ti 0

ri sin βi ri cos βi 0 ti
ti 0 −ri cos βi −ri sin βi
0 ti ri sin βi −ri cos βi

3
7775

ð21Þ

where ri ∈ ½0.7; 1� is the reflection coefficient, ti is
the transmission coefficient satisfying t2i ¼ 1 − r2i , and

βi ∈ ½−π; π� is the phase shift due to the displacement of
the beam splitter along its surface normal.
The propagation T consists of two independent paths of

lengths Dn ¼ Ln þ δLn, where jδLnj < λ0 and Ln ¼ knλ0
with kn ∈ N. Thus, the transfer matrices for paths n ¼ 0, 1
are given by

T nðΩÞ ¼ e−iθn
�

cosϕn sinϕn

− sinϕn cosϕn

�
: ð22Þ

Here,

θn ¼
ΩLn

c
∈ ½0; π� ð23Þ

is the phase picked up due to the macroscopical length Ln,
and

ϕn ¼
ω0δLn

c
∈ ½−π; π�: ð24Þ

is the phase shift induced by the microscopical length δLn.

IV. A MORE REALISTIC ADVANCED
LIGO MODEL

To get a hint of how mode-mismatches inside the
interferometer affect the multi-spatial-mode squeezed field,
we here consider a FINESSE model of an advanced LIGO
detector that includes small mode-mismatches between the
cavities inside the interferometer.
There are two important differences compared to the

model described in Sec. II. The first one is that the
asymmetries between the two transverse spatial directions
are included in the model, which gives rise to mode-
mismatches that are small, but not negligible. These
asymmetries show up because of nonzero angles of
incidence in combination with spherical mirrors. The
second important difference is that an Advanced LIGO
output mode cleaner has been added to the model. The
reason for this is that some fraction of the coherent laser
power is in higher-order modes due to the internal mode-
mismatches. Without the output mode cleaner, higher-order
modes of the quantum field are allowed to beat with the
higher-order modes of the coherent carrier field. This
creates noise that would not be present with the output
mode cleaner included.
The experiment was performed by mode-mismatching

the filter cavity to the output mode cleaner by varying the
position of a modematching lens along the optical axis. This
mode matching lens is located between the filter cavity and
the injection point for the squeezed field. The squeezer was
kept mode matched to the filter cavity. We computed the
quantum-noise-limited-sensitivity in the frequency band of
interest for two levels of mode-mismatches. This was done
both for a squeezer that emits one and three squeezed spatial
modes. The resulting improvements over the no-squeezing

FIG. 11. The figure shows the “probability density” for
obtaining a certain quantum noise reduction when mixing a
squeezed vacuum with pure vacuum (blue) and when mixing two
squeezed vacuum fields (red). The squeeze angles have, for both
distributions, been optimized to minimize the noise.
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case are shown in Fig. 12. The behavior at low frequencies
is identical to the result obtained with the simpler model
considered in Sec. III. At high frequencies, the squeezed field
experiences a slightly larger degradation, which mainly
seems to be due to the output mode cleaner, however, further
investigation is needed to conclude this.
Moreover, we can conclude that the internal mode-

mismatches included in this model are too small to give
rise to any large effects. Future work aims at systematically
study the impact of internal mode-mismatches due to, e.g.,
thermal lensing.

V. CONCLUSIONS

In this paper, we have quantified and described how
squeezed-light-enhanced interferometric gravitational-wave
detectors are affected by spatial mode-mismatches between
the interferometer, the filter cavity, and the squeezer.Wehave
shown that spatial mode-mismatches potentially can cause
significantly larger squeezing degradations than a pure
optical loss, if multiple mode-mismatches allow squeezed
states to coherently scatter back and forth between the
fundamentalmode and higher ordermodes.We can conclude
that even with relatively large mode-mismatches, the injec-
tion of frequency dependent squeezed light is beneficial in
our model.
Further, we have shown that the injection of a field

with squeezed states, not only in the fundamental mode,
but also in the second-order Hermite-Gaussian modes HG02

and HG20, potentially can provide resilience to spatial
mode-mismatches. This scheme requires independent

optimization of the squeeze angles for all three involved
spatial modes, which poses a big challenge for any
potential real-world implementation.
Further studies of how combinations of external and

intra-interferometer spatial mode-mismatches affect the
performance of squeezed light are needed to better under-
stand how squeezed light would perform in gravitational
wave detectors.
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APPENDIX: NOISE SCALING OF THE
COHERENT SCATTERING EFFECT

In this section we derive how the noise due to the
coherent scattering effect scales with the coupling
coefficient. We use a simplified version of the system
considered in Sec. II D where the filter cavity is mode-
mismatched to the interferometer and the squeezer, while
the squeezer and the interferometer are kept mode matched.
Here, we only use two fields, i.e., N ¼ 1 in the math-
ematical framework in Sec. II B. The relation between
the output field and the input field is given by Eq. (18),
but where the matrices are simplified.
Only one of the two fields is squeezed, thus, the

squeezing matrix can be written as

S ¼

2
6664
er 0 0 0

0 e−r 0 0

0 0 1 0

0 0 0 1

3
7775: ðA1Þ

The scattering matrix is given by

K ¼

2
6664
cos κ 0 − sin κ 0

0 cos κ 0 − sin κ

sin κ 0 cos κ 0

0 sin κ 0 cos κ

3
7775; ðA2Þ

where sin κ is the coupling between the two fields. For the
propagation, only the relative phase shift between the two

FIG. 12. The figure shows the improvement in quantum-noise-
limited sensitivity over the non-squeezed case, both for a single
squeezed spatial mode (solid lines) and for multiple squeezed
spatial modes (dashed lines). The blue and red traces are for
mode-mismatch levels between the interferometer and the filter
cavity of 5% and 15%, respectively. The squeezer is kept mode
matched to the filter cavity. The black dotted trace indicates the
improvement when the filter cavity and the output mode cleaner
are near perfectly mode matched.
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fields is of importance, hence it can be represented by the
matrix

T ¼

2
6664
1 0 0 0

0 1 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ

3
7775; ðA3Þ

where ϕ is the relative phase shift. Assuming we are
squeezing the readout quadrature, the noise is proportional
to the element Mð2; 2Þ, where

M ¼ K−1T KSðK−1T KSÞT ðA4Þ

¼ K−1T KS2K−1T TK: ðA5Þ

Assuming the coupling magnitude sin κ is small, then

Mð2; 2Þ ¼ e−2r − 2κ2e−2rðe2r − 1Þðcosϕ − 1Þ þOðκ3Þ:
ðA6Þ

Thus, the worst case scenario is if the propagation gives rise
to a relative phase shift between the two fields of ϕ ¼ π, in
which case the noise arising due to the coherent scattering
effect scales as

e−2r þ 4κ2ð1 − e−2rÞ þOðκ3Þ: ðA7Þ

For large squeeze magnitudes, this is a factor of two worse
than if these two scattering points would have been
exchanged for two optics with small losses κ.
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