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We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating
reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific
readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor.
This paper shows how to relate this form factor to Maxwell’s stress tensor computed on all interfaces of the
moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating
reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013)] utilizing a
simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those
of the exact analysis in the present paper. The relation between the form factor and Maxwell’s stress tensor
implies a close correlation between the optical properties of functional optical surfaces and thermal noise.
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I. INTRODUCTION

Thermal noise sets a crucial limitation to several high-
precision instruments, for example, ultrastable laser reso-
nators for the realization of optical clocks, high resolution
optical spectroscopy, and gravitational wave detectors
[1–6]. Particularly, Brownian displacement noise from
random motion of amorphous optical coatings, as utilized
for high-reflectivity Bragg mirrors, represents a severe
bottleneck for future sensitivity improvements of these
measurement systems [7–11]. The reason for the large
Brownian noise amplitude is the high mechanical loss of
the coating materials. Currently, several approaches to
reduce Brownian coating thermal noise are under inves-
tigation, for example, optimizing the mechanical properties
of amorphous materials, or using crystalline coating stacks
based on AlGaAs=GaAs and AlGaP=GaP as low-loss
coating materials [12–17].
As an alternative to Bragg mirrors, grating reflectors

based on crystalline silicon have been theoretically pro-
posed [18] and experimentally realized [19–21]. Since
these elements can be monolithically implemented without

adding any amorphous material with high mechanical
loss, they are promising as low-noise optical components.
In contrast to Bragg mirrors, in grating reflectors high
reflectivity is realized by an optical resonance which leads
to a penetration of the light into a surface layer with a
thickness of only a few hundred nanometers [22,23].
Figure 1 illustrates a typical field distribution in a mono-
lithic high-reflectivity structure. The lower grating region
acts as a supporting structure that prevents the light from
leaking into the substrate.
A typical task in high-precision optomechanical experi-

ments is to measure the phase shift of light reflected from
a mirror surface or, alternatively, the change of the optical
mode frequency if the mirror is a part of the optical
resonator. For small displacements, this readout variable
depends linearly on the displacement of the reflecting
surface. It can be expressed as

ẑðtÞ ¼
Z

fðr⃗Þu⊥ðr⃗; tÞdA: ð1Þ

r⃗ is the location of a point on the surface, and u⊥ðr⃗; tÞ is the
displacement of the mirror perpendicular to the surface A at
r⃗ and time t. The form factor fðr⃗Þ depends on the intensity
profile of the laser beam and is proportional to the laser*stefanie.kroker@ptb.de
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light intensity at r⃗ as will be shown below. In the case of a
planar surface the form factor is simply the laser beam
profile, whereas in the case of a structured surface the
determination of fðr⃗Þ is a nontrivial task. The standard
way to compute thermal noise in this variable is to use a
formulation of the fluctuation-dissipation theorem by
Callen and Welton [24] which employs a virtual oscillating
pressure of the form [7]

pðr⃗Þ ¼ F0 cosðωtÞfðr⃗Þ; ð2Þ
where F0 is an arbitrary constant characterizing the total
force applied to the surface and fðr⃗Þ is the form factor of
Eq. (1). The virtual pressure is utilized to determine the
strain energy density ϵðx; y; zÞ. This strain distribution then
serves as a basis to calculate the dissipated mechanical
energy in the system at a given frequency ω. Using the
model of structural loss, the dissipated energy reads [7]

WdissðωÞ ¼ ω

Z
ϵðr⃗Þϕðr⃗ÞdV; ð3Þ

with ϕðr⃗Þ as the mechanical loss angle. The integral in
Eq. (3) needs to be performed over the whole component
under investigation. The Brownian thermal noise power
spectral density can be expressed by

Szðω; TÞ ¼
8kBT
ω2

Wdiss

F2
0

: ð4Þ

The challenge is to compute the form factor on arbitrary
surfaces, and this paper gives a direct and exact answer.
The previous approach by Heinert et al. [25] gave an
approximation by assuming that the form factor was
constant on large segments on the interface. Heinert et al.
evaluated the impact on the overall phase shift of the
reflected light by displacing these segments as a whole. In
contrast, this paper finds that the form factor is strongly
inhomogeneous, which significantly affects the computa-
tion of thermal noise spectral density.
As an application of our formalism, we investigate

Brownian thermal noise in monolithic silicon T-shaped
grating reflectors and compare the results with the work by
Heinert et al. [25]. In addition, we investigate the impact of
width of the support structure as a critical parameter for
Brownian thermal noise. We find that an optimum support
structure width exists which minimizes Brownian noise.
Due to manufacturing errors, the geometric dimensions of
the grating may differ from the design values by a few
nanometers. We evaluate the consequences of manufactur-
ing errors and show that it may lead to deviations of thermal
noise by a factor of about 2.5.
The article is organized as follows: In Sec. II we

introduce the calculation method based on Maxwell’s stress
tensor. In Sec. III we discuss the components of Maxwell’s
stress tensor in T-shape grating reflectors. Afterwards, in

Sec. IV we explain how the geometric grating parameters of
T-shaped grating reflectors with different support structure
widths were defined. In Sec. V we utilize these parameters
to compute the virtual forces required for the thermal noise
calculations, the energy of elastic deformation in response
to these forces, and finally the Brownian thermal noise.

II. CALCULATION OF BROWNIAN THERMAL
NOISE IN FUNCTIONAL OPTICAL

SURFACES

The form factor can be described following [27,28].
Let us first consider an optical cavity of length L. When one
of the two mirrors is moved by a displacement of z, the
eigenfrequency ω of the cavity is changed by δω:

δω

ω
¼ z

L
: ð5Þ

The quantity z contains the measurement signal, e.g., a
gravitational wave signal. But also random perturbations
u⊥ðr⃗Þ caused by Brownian motion may contribute to a
frequency change and thus disturb the measurement signal.
The question to be answered is how such a displacement
translates into the frequency change of the cavity. A slow
displacement does not change the number of photons in the
cavity. This condition of adiabaticity is satisfied very well if
the frequencies of interest are much smaller than the inverse
light round trip inside the cavity, as is valid for the LIGO
gravitational wave detector. In this case the relation

E
ω
¼ const: ð6Þ

is fulfilled, where E represents the energy of the eigenmode.
Therefore, a change of the energy δE may be converted into a
frequency change of the optical eigenmode:

δE
E

¼ δω

ω
: ð7Þ

The energy change is a result of the work performed against
the ponderomotive pressure perpendicular to the surface p⊥.

FIG. 1. Distribution of Ex and Ez in the high-reflectivity grating
reflector discussed by Heinert et al. [25]. The calculation was
performed by means of the rigorous coupled wave analysis
(RCWA) [26] for a wavelength of 1550 nm, normal incidence and
transverse-magnetic polarized light.
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Thus, the energy change of the optical cavity mode caused
by displacements u⊥ðr⃗Þ can be expressed by

δE ¼
Z

p⊥ðr⃗Þu⊥ðr⃗ÞdA: ð8Þ

The ponderomotive pressure relates a perturbation u⊥ðr⃗Þ of
an arbitrary surface to an effective translation û of the cavity
mirror as a whole:

ẑ ¼ L
E

Z
p⊥ðr⃗Þu⊥ðr⃗ÞdA: ð9Þ

The ponderomotive light pressure results from the difference
of Maxwell’s stress tensor on both sides of the interface:

p⊥ðr⃗Þ ¼ Δσijðr⃗Þninj; ð10Þ

where ni is the unit vector normal to the surface and a
summation over the dummy indices i and j is implied.
Maxwell’s stress tensor with SI units reads

σij ¼ ε0εrEiEj þ
1

μ0μr
BiBj −

1

2

�
ε0εrE2 þ 1

μ0μr
B2

�
δij:

ð11Þ

ε0 and μ0 are the dielectric and magnetic field constants,Ei is
the vacuum electric field amplitude, and Bi is the magnetic
field amplitude, respectively. On arbitrary surfaces, the
electromagnetic field distribution can be calculated with
the finite element tool COMSOL [29]. In the following
sections, we will use the Maxwell stress tensor to evaluate
the virtual forces in T-shaped monolithic grating reflectors
and derive the Brownian thermal noise thereof. Since the
electric and magnetic fields depend on the position at the
surface, the stress tensor components σij are also a function
of the position. For the sake of readability, we will omit this
explicit spatial dependency in our notation.

III. VIRTUAL PRESSURE IN MONOLITHIC
T-SHAPED GRATING REFLECTORS

In a T-shaped structure the relevant components of the
stress tensor are σxx and σzz (see Fig. 2) and the resulting
pressure is the difference of the pressures inside and outside
the structure. For nonmagnetic materials (μr ¼ 1) the
relevant pressure components at the grating surface are

Δσxx ¼
ε0
2
ðεr − 1Þ

�
E2
x

εr
þ E2

y þ E2
z

�
; ð12Þ

Δσzz ¼
ε0
2
ðεr − 1Þ

�
E2
z

εr
þ E2

y þ E2
x

�
: ð13Þ

where Ex, Ey, and Ez are the vacuum fields and εr is the
relative permittivity of the grating material. To relate our

method to the results of Heinert et al. [25], we will restrict
our considerations on light with transverse magnetic (TM)
polarization (Ey ¼ 0). In this case the pressure components
reduce to

Δσxx ¼
ε0
2
ðεr − 1Þ

�
E2
x

εr
þ E2

z

�
; ð14Þ

Δσzz ¼
ε0
2
ðεr − 1Þ

�
E2
z

εr
þ E2

x

�
: ð15Þ

By using finite element analysis, the pressure components
can be calculated and applied to the surface of the structure
[29]. Using Eq. (9), one can show that F0 is the overall
radiation pressure force from the light beam onto the
mirror. One can evaluate it directly from the Maxwell
stresses at the dielectric interface. In this case one should
carefully keep track of the sign contributions from the force
applied at different segments of the grating as shown in
Fig. 2. The resulting force F0 is the integral of the pressure
over the surface A of a single period normalized to a unity
length in the y-direction parallel to the ridges. The elastic
energy then is the volume integral of the energy density ϵ
over one T-shaped ridge. In combination with the mechani-
cal loss ϕðx; y; zÞ, this yields the dissipated energy Wdiss
[see Eq. (3)]. In the 1D periodic structure three main
contributions may be identified: the elastic energy due to
the �σzz pressures on the front and back side of the optical
grating (i.e., the upper grating region); the elastic energy
due to the �σxx pressures on the side walls of the optical
grating; and the elastic energy caused by the�σxx pressures
on the side walls of the supporting structure. Cross terms
account for about 5% of the total elastic energy. The field
distribution in the structure and thereby the stress tensor
component depend on the geometric parameters of the
grating structure. Thus, before calculating thermal noise

FIG. 2. Distribution of the virtual pressure components (left).
Overview of the geometric structure parameters (right).
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in the structure, in the following section we will explain
how suitable parameters yielding high reflectivity are
determined.

IV. CHOICE OF GEOMETRIC
GRATING PARAMETERS

As shown in Fig. 2, five parameters characterize the
structure of a grating reflector: grating period Λ, width wg,
and depth hg of the optical grating, as well as width ws and
depth hs of the support structure. We utilize the rigorous
coupled wave analysis (RCWA) [26], a standard tool to
solve Maxwell’s equations in periodic structures, for the
computation of reflectivity and to explore how the reflec-
tivity depends on the grating parameters. The basic require-
ments for suitable parameter sets are high reflectivity,
low field enhancement inside the structure to minimize
virtual pressure, and possibly compact structures to min-
imize the elastic deformation energy. Thus, we choose
high-reflectivity configurations employing low-Q optical
resonances with low field enhancement [23] and minimize
the total depth hg þ hs. As mentioned above, the support-
ing structure’s task is to optically decouple the optical
grating from the substrate. The penetration depth of light
into the support increases with decreasing refractive index
contrast between the optical grating and the support
structure. The index contrast, in turn, is determined by
the width ws of the supporting structure. Hence ws is an
important parameter for Brownian thermal noise and is
used as a free parameter in the following discussions.
For a given ws, the size of the parameter space fwg; hgg

providing high reflectivity depends on the grating period Λ.
Its shape and position is determined by the complex
interplay of two Bloch modes propagating in the optical
grating. This mechanism for high reflectivity is discussed in
detail in the works by Lalanne et al. [22] and Karagodsky
et al. [30]. Figure 3 illustrates the range fwg; hgg calculated
with RCWA for three different periods. In order to achieve
large fabrication tolerances, the high-reflectivity range of
wg and hg has to be maximized. As illustrated in Fig. 3, the
size of the relevant parameter range grows with increasing
grating period. However, for large grating periods the high-
reflectivity domain in the wg − hg plain degenerates to a

ring which is detrimental in terms of fabrication tolerances
if the reflectivity drops below the target value inside the
enclosed area. For each target reflectivity R, which is
typically R ≥ 99.99% [31], there exists an optimal period
which maximizes the size of the simply connected high-
reflectivity area. With R ≥ 99.99%, the optimal period
for the configuration investigated in Fig. 3 is 631 nm.
The optimal working point is then located in the center
of the area obeying R ≥ 99.99%. The depth of the
supporting structure hs does not substantially influence
the reflectivity distribution within the parameter range
fwg; hgg. To achieve structures that are as compact as
possible, at the end of the optimization process the minimal
hs for R ≥ 99.99% may be chosen. Following this strategy,
the optimal parameters in dependence of support structure
widths ws were determined. The resulting values are shown
in Table I. It is noteworthy that enhancing ws from 40 nm to
220 nm increases hs by a factor of 3.4, whereas the other
parameters change by less than 20%.

V. RESULTS AND DISCUSSION

With the grating parameters shown in Table I, the stress
tensor, the pressure, and the resulting force F0 at the grating
surface were calculated. The computation of the elastic
stress distribution within the grating structure was per-
formed with the finite element tool COMSOL [29].
All calculations refer to an incident light power of 1 W.
The power determines the absolute values of the forces and
of the elastic energy but it has no influence on the thermal
noise amplitude [27,28]. The related material parameters
are illustrated in Table II. Figure 4 shows the contributions
of the different interfaces to the total force. The colors of
the data points correspond to the colors used in Fig. 2.
For small ws the force at the back side of the optical grating

FIG. 3. Calculated high-reflectivity parameter range fwg; hgg
for different periods. A supporting structure width ws of 40 nm
was utilized. The incident light has a wavelength of 1550 nm, an
incidence angle of 0° and transverse-magnetic polarization.

TABLE I. Structure parameters for R > 99.99%. In the hg-wg
plot (see Fig. 3) the parameter sets represent the center of the
highly reflective parameter space fwg; hgg for a wavelength of
1550 nm, normal incidence, and TM polarization. Additionally,
the structure parameters utilized by Heinert et al. [25] are
displayed.

ws (nm) Λ (nm) hs (nm) wg (nm) hg (nm)

40 631 640 385 395
60 633 630 385 392
80 637 620 382 390
100 642 620 384 384
120 649 630 384 379
140 660 670 386 371
160 675 750 385 361
172a 688 800 388 350
180 701 920 391 345
200 739 1280 397 335
220 776 2200 409 322

aStructure used by Heinert et al. [25].
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dominates the contributions from the other interfaces.
A very similar situation was found by Heinert et al. [25].
There, the magnitude of the force at the front side is by
a factor of 54 smaller than the force at the back side.
Our calculations reveal a factor of 57. The dominance of
the forces at the back side are a consequence of the Ez
distribution in the structure (see Fig. 1), which is enhanced at
the back side of the optical grating.
In the x-direction, for small ws the optical grating

contributes more to the force than the support structure,
because the electromagnetic field barely penetrates into the
support structure. With increasing ws the refractive index
contrast between the optical grating and support structure
decreases. As a result, the field is increasingly pulled into
the support structure and the field in the upper region of the
support structure increases. Figure 5 shows the elastic
energyUelast stored in one grating ridge for high-reflectivity
configurations with different ws. Here, we refer to the linear
elastic energy density per unit length in the y-direction
(compare Fig. 2):

Uelast ¼
Z

ϵdxdz: ð16Þ

A frequency of 100 Hz was used. Figure 5 demonstrates
that the ridge behaves like a loaded one-dimensional beam
with

Uelast ¼
kx2

2
¼ F2

2k
∝

hs
ws

: ð17Þ

The ratio ws
hs
represents the spring constant k. For small ws

the elastic energy is dominated by the 1=ws dependence.
Reducing ws the spring becomes softer and more elastic
energy can be stored. For large ws the thickness of the
supporting structure needs to be increased to impede light
from coupling to the substrate. The increased hs again leads
to a reduced spring constant and to higher elastic energies.
The characteristic dependence on ws is also evident in the
thermal noise amplitude, which is shown in Fig. 6 for a
frequency of 100 Hz and a temperature of 300 K. Thermal
noise becomes minimal for a support structure width ws of
about 160 nm. At cryogenic temperatures Brownian ther-
mal noise is further reduced due to decreased mechanical
loss and temperature.
Deviations from the grating design parameters may not

only influence the feasible reflectivity but also thermal
noise. Therefore, we investigated thermal noise for possible
parameter combinations obeying the reflectivity require-
ment of 99.99%. To this end, we utilized the parameters
given in Table I as working points and performed an error

TABLE II. Material parameters for silicon. ϕgrat is the mechani-
cal loss of the grating structure, ρ the density, Y the Young’s
modulus, and σ the Poisson ratio.

T ¼ 300 K T ¼ 10 K

ϕgrat 5 × 10−5 [32] 1 × 10−5 [33]
ρ in kg=m3 2331
Y in GPa 130 [34]
σ 0.28 [34]

FIG. 4. Linear density of virtual forces (per unit length in the
y-direction) at the surface.

FIG. 5. Linear elastic energy density Uelast (per unit length in
the y-direction) in dependence of the support grating width using
a frequency of 100 Hz.

FIG. 6. Brownian noise amplitude at a frequency of 100 Hz, a
temperature of 300 K, and a beam radius of 9 cm, resulting from
the elastic energies shown in Fig. 5. In addition, data point A
marks the calculation result by Heinert et al. [25]. For compari-
son, point B was calculated by applying Maxwell’s stress tensor
to the same grating parameters. The noise amplitudes for R >
99.5% and R > 99.999% are shown to illustrate the impact of the
reflectivity requirement.
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estimation by checking the dependence of thermal noise
on the parameters hs, ws, hg, and wg. Thermal noise
remains in the same order of magnitude for all relevant
parameter combinations. Deviations of ws change the
spring constant of the grating and therefore make
the largest contributions to changes in thermal noise.
For small values of ws the reflectivity requirement gives
tolerances of about �10 nm, which are comparable to the
values of ws. That is why small values of ws exhibit the
error bars of maximum size.
Finally, we evaluate how thermal noise behaves for

slightly different reflectivity requirements of R > 99.5%
and R > 99.999%. In both cases a ws of 172 nm was
chosen. Brownian thermal noise decreases by 20% for
R > 99.5% and increases by 1.6% for R > 99.999%.
This variation of thermal noise is a consequence of reduced
or enhanced hs, which are necessary to achieve R > 99.5%
and R > 99.999%, respectively.
In comparison to the results by Heinert et al. [25] the

calculation with Maxwell’s stress tensor yields a thermal
noise amplitude which is by a factor 0.61 smaller than the
estimate given in the previous work (see Fig. 6). The
complex field distribution utilized in the present article
was treated as a homogenous averaged distribution in [25].
This leads to the observed deviations of the thermal noise
amplitude. It should be noted that changes of the refractive
index inside the dielectric material are neglected in the
present study and may be subject to future work.
The electric field distribution and thus also the Brownian

thermal noise of grating reflectors with 1D periodicity
depend on the polarization of the incident light [see
Eq. (13)]. Therefore, in the grating design the polarization
dependence has to be carefully taken into account [35].
With advanced grating concepts such as 2D periodic
structures this dependence can be overcome [20].

VI. CONCLUSION

We presented a method to calculate Brownian thermal
noise in micro- and nanostructured surfaces. In our
approach, computing the Maxwell stress tensor at the
dielectric interface leads directly to the mechanical readout
variable that is monitored by optical fields. The method is
exact and computationally simpler compared to the
approximate method developed by Heinert et al. [25],
where the fluctuations of each structural part in all possible
directions need to be considered separately to calculate
the weighing factors. The application of the method to
T-shaped monolithic grating reflectors reveals the follow-
ing behavior: for small support widths, the elastic energy is
high as the deformation of the support structure in response
to the virtual forces becomes high. However, increasing
the width requires a detrimental increase of the support
structure depth in order to keep the reflectivity high.
Therefore, for Brownian thermal noise an optimal ws
exists that all T-shaped grating designs should aim for.
The presented method is applicable to arbitrary functional
optical surface structures and incident light properties.
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